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Abstract

Solid surface tension can deform soft elastic materials at macroscopic length scales. At a critical surface tension,
elastocapillary instabilities in soft filaments emerge that resemble the Plateau-Rayleigh (P—R) instabilities in liquids.
The experimentally observed P—R instability of soft elastic filaments has been recently investigated via numerical and
theoretical approaches. However, these contributions focus on the incompressible limit and preclude the nonlinear
Poisson’s ratio effects in materials, for example, compressible hydrogels with Poisson’s ratios that can go as low as
0.1. Moreover, most of the research on the solid P—R instability elaborate on the onset, ignoring the post-bifurcation
regime. Here we show that compressibility matters and the form of the assumed compressible strain energy density
has a significant effect on the onset and the post-bifurcation behavior of elastic P-R instability. For example, the P-R
instability can be entirely suppressed depending on the form of the free energy density and Poisson’s ratio. To this
end, we employ a robust and variational elastocapillary formulation and its computer implementation using surface-
enriched isogeometric finite elements at finite strains. We use an arclength solver to illustrate both stable-unstable
amplitude growth and bifurcation points in the entire equilibrium path. Stability maps are drawn with distinct stable-
unstable regions over various shear modulus, surface tension, fiber radius, and applied stretch for cases ranging from
quasi-compressible to fully compressible. The presented elastocapillary model proves to be useful in quantifying the
surface and bulk energies in competition at finite strains and expected to help improve mechanical characterization of
soft materials with at least one dimension that is on the orders of the elastocapillary lengthscale /g ~ O(nm — mm).
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1. Introduction

It is well-established that the external surface of a continuum body exhibits properties that differ from those of
the encased bulk. The influence of the boundary on the material behavior, regardless of its physical nature, is more
pronounced at smaller scales due to the increasing surface-to-volume ratio. Additionally, for very soft solids like gels,
the surface energy is comparable to elastic bulk energy at macroscopic scales. The energetic competition between the
bulk gel and its boundary leads to what is commonly referred to as the elastocapillary effect, which plays an important
role in cavitation [1], soft composites behavior [2, 3], wetting on soft substrates [4—7], soft contact and adhesion [8, 9],
fracture [10], capillary bending [11], and pattern formations in nature [12], to name few. Quantification of these
surface forces for soft elastic materials is an active research field [13, 14]. A seminal study in this area is the work
of Mora, et al. [15] that reports experimental evidence of capillary-induced bead formations at thin, gel filaments due
to elastic Plateau—Rayleigh (P-R) instabilities. The main objective of this manuscript is to investigate the elastic P-R
instabilities in soft solids thereby pre- and post-bifurcation regimes are carefully examined from fully compressible
to quasi-incompressible material behaviors. The main ingredients of the work presented here are (i) elastocapillary

theory and (ii) elastic Plateau—Rayleigh instability. A brief review of these topics is now given.

1.1. State of the art review of elastocapillary theory

The elastocapillary theory and surface modeling of continua can be traced back to the pioneering works of Laplace,
Young and Gibbs. Following Gibbsian thermodynamics and a seminal work of Scriven [16], Gurtin and Murdoch [17]
developed a phenomenological surface elasticity model that has been widely adopted for applications in nanomateri-
als, see [18-22] among others. The surface elasticity theory assumes that a surface possesses its own tensorial stress
which derives from the surface constitutive laws. That is, surface stresses are acquired as energetically conjugated
quantities to surface strains since the surface is endowed with its own thermodynamic structure. As a result, capillary
effects are intrinsically accounted for in the surface elasticity theory. Surface effects introduce a physical length-scale
that is otherwise lacking in classical continuum mechanics since the surface-to-volume ratio is proportional to the
inverse of the domain size. Numerous analytical [18-21] and computational [23-25] studies have demonstrated that
the size-dependent material response due to surface elasticity is physically meaningful and is also in agreement with
atomistic simulations [26-29]. From a computational perspective, the finite element modeling of surface tension for
fluids was carried by Saksono and Peri¢ [30, 31] for quasi-static and dynamic problems, see also [32]. This formu-
lation is suitable for fluids in that the surface tension is accounted for but the surface elasticity is absent. To address
this issue, Yvonnet, et al. [23] introduced surface elasticity into the finite element method for solids though at small

strains in two dimensions only. Javili and Steinmann [33, 34] developed a finite element framework for continua with
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boundary energies that accounted for surface elasticity as well as surface tension for two-dimensional [33] and three-
dimensional [34] solids at finite deformations. Henann and Bertoldi [35] employed this framework and established a
numerical procedure appropriate for modeling elastocapillary phenomena using the commercial finite element (FE)
package Abaqus and studied a variety of problems, see also [36]. A similar approach was adopted by Mora, et al. [37]
and an ad-hoc numerical code using the FEniCS finite element library has been provided. He and Park [38] presented
a computational methodology to capture elastocapillary, essentially equivalent to the classical Young—Laplace model,

that could be readily incorporated to commercial FE packages such as ANSYS and COMSOL, see also [39].

The surface elasticity theory has experienced a prolific growth in the past two decades [40] and the aforementioned
contributions are only given as a few examples among many others. This resurgence of interest in the mechanics of
solid surfaces can be largely attributed to the increasing number of applications involving nanoscale structures and
soft solids such as gels. From a theoretical standpoint also various extensions of the surface elasticity theory have also
been proposed. For example, Steigmann and Ogden [41] extended the theory to account for the flexural resistance of
the surface against the changes of its curvature. Another important extension is the interface elasticity theory [42, 43]
leading to thermo-mechanical interfaces [22, 44] and general interface models [45-47]. Also, surface viscoelasticity

has drawn a considerable attention and recently studied in [48-52].

Here, we employ a variational elastocapillary theory at finite deformations in that the Young—Laplace equation
does not explicitly appear in the governing equations. More precisely, unlike the commonly accepted approach that
introduces the surface tension in an ad-hoc manner via an external force on the surface, we capture the surface tension
via its energy representation as a constant energy density per surface area in the spatial configuration. This subtle point
allows for a more elegant approach to P-R instability wherein only internal energy densities enter into the picture.
This approach is particularly useful from a computational perspective in that it furnishes an appropriate framework

for the problem at hand and the nonlinear stability analysis for the P-R problem.

1.2. State of the art review of solid Plateau—Rayleigh instability

Capillary forces can trigger P-R instability in both fluids and soft solids. In fluids, surface tension overwhelms
cylindrical liquid columns and causes surface undulations with a well-defined wavelength along its length, creating
a periodic pattern. Eventually, the resulting waves in the liquid column grow and break up into regularly spaced
spherical droplets [53]. From an energetic consideration, this column-to-droplet transition is due to the vanishing
shear resistance of the bulk fluid, which facilitates a final configuration with minimal surface area attained under
constant volume, i.e. a sphere formation [54]. In the case of soft solids, the bulk elasticity will resist the surface

tension, playing a fundamental role in solid P-R instability characteristics [55, 56]. For example, Mora, et al. (2010)
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have given the first experimental evidence of solid P-R instability, demonstrating that agar gel fibers form cylindrical
bead patterns (contrary to spherical beads in fluid jets) without complete breakup [15]. The energetic competition
between bulk elastic deformations and capillary action determines the equilibrium pattern. This competition can be
quantified through a characteristic length scale, conceptually £ = y/u, where 7 is the surface tension constant and u
is the bulk shear modulus. For example, in stiff materials (u ~ MPa), the dimension of length ¢ ranges in the order of
nanometers; consequently the bulk elasticity overwhelms the material behavior at macroscopic scales. On the other
hand, for soft solids (u ~ Pa), surface tension can dominate the overall deformations in balance with the bulk elasticity

at relatively larger length scales, i.e., £ ~ mm, for example, see [37, 57].

The solid P-R instability has been investigated using numerical and theoretical approaches. Mora, et al. (2010)
performed a linear stability analysis for a slender elastic fiber, successfully predicting the bifurcation-onset strain in
close match their experiments [15]. Performing a weakly nonlinear stability analysis using hyperelastic solid models,
Taffetani and Ciarletta (2015) concluded that two dimensionless parameters (i) the axial stretch and (ii) the elastocap-
illary ratio €/R, control the onset and the amplitude growth, where R, is the radius of the soft fiber [58, 59]. Further
investigations, including recent nonlinear finite element simulations accounting for capillary forces, are carried out
to elucidate the effect of electric field [39], active surface contraction [60], growth and swelling [61, 62], and hollow
tube geometry [35, 63—65] in P-R instability. Such approaches, however, have failed to quantify the selection of wave
number (or pattern) at the bifurcation-onset. In contrast to the experimental findings, the existing methods employing
quasi-static stability analysis predict infinite-wavelength for the pattern, suggesting global deformations rather than
periodic waves [66, 67]. Recently, Pandey, ef al. (2020) performed a dynamic analysis using hyperelastic solids,
indicating that the pattern selection, i.e., the critical wavelength of cylinder-like formations, is due to a dynamical

process, similar to the selection of bead size in fluid P-R instabilities [68].

In the post-instability regime, fully nonlinear FE analysis predicts that solid column deforms into cylinders with
two distinct radii connected by a transition region with a finite width [69], in a close analogy to phase-separation-like
behavior of inflating hyperelastic, cylindrical balloons [70, 71]. Surprisingly, both cylinder radii remain constant under
increasing end stretches over several hundred percent strains [69]. Another fundamental difference of P-R instabilities
in fluids and solids is that, while fluid beading develops as a supercritical (continuous) bifurcation, its solid counterpart,
in general, demonstrates a subcritical (discontinuous) behavior [59, 66, 67]. Recent work have derived efficient, one-
dimensional models closely matching onset and amplitude evolution predicted by nonlinear finite element simulations
and weakly nonlinear analysis, even at localized deformations far away from the onset [72]. However, most studies in
the field of solid P-R problem have so far only focused on truly incompressible elastic cylinders and, in particular, on

the onset of the instability. Very recently, Tamim and Bostwick (2021) performed stability analysis assuming small
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strains for a compressible viscoelastic material concluding that, while viscous effects stabilize the P-R instability,

compressibility destabilizes as it promotes an earlier bifurcation-onset [73].

1.3. Key features and novelties

Compared to earlier works on the topic, to the best of our knowledge, there are several important areas and
conclusions where this study makes an original contribution to. In summary, the key features and contributions of the

manuscript are:

o to study Plateau—Rayleigh instabilities of compressible soft solids. Thereby, we illustrate that compressibility
matters and, unlike the incompressibility limit, the form of the neo-Hookean free energy density matters when

the compressibility is accounted for,

e to show that - unlike the incompressibility limit - Plateau—Rayleigh instabilities can be avoided altogether for
compressible soft solids depending on the amount of stretch, Poisson’s ratio and the form of the free energy

density,

e to present the full equilibrium path, including stable-unstable states, of solid Plateau—Rayleigh instabilities

using an arc-length method, for the first time.

1.4. Notation and definitions

Direct notation is adopted throughout. Occasional use is made of index notation, the summation convention for
repeated indices being implied. The scalar product of two vectors a and b is denoted a - b = [a];[b];. The scalar
product of two second-order tensors A and B is denoted A : B = [A];;[B];;. The composition of two second-order
tensors A and B, denoted A - B, is a second-order tensor with components [A - B];; = [A];;[B];;. The surface quantities
are distinguished from their bulk counterparts by an accent on top. That is, quantities or operators {8} are the surface
counterparts of the bulk quantity or operator {e}, respectively, unless specified otherwise. The fourth-order identity
tensor is denoted as I. Similarly, other fourth-order constitutive tensors are also written with the same font, such as A
for the fourth-order tangent tensor. The tensor product of two second-order tensors A and B is a fourth-order tensor
D = A® B with [D];jx; = [A];; [Blw. The two non-standard tensor products of two second-order tensors A and B are

the fourth-order tensors [A®B]; ikt = Aix Bjy and [A®B];ji = Ay B .

1.5. Organization of the manuscript

This manuscript is organized as follows. Section 2 lays the theoretical foundation for the study. First, the kine-

matics of the problem is formulated and the key concepts of differential geometry required to describe the boundary
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motion are briefly reviewed in Section 2.1 followed by a generic three-dimensional framework suitable for a surface
tension theory that is concisely introduced in Section 2.2. The connection to Plateau—Rayleigh instabilities is estab-
lished via an eigenvalue analysis in Section 2.3. Thanks to the variational approach, the governing equations naturally
emerge in their weak forms that are immediately suitable for computational implementation elaborated in Section 2.4.
In particular, isogeometric analysis [74] is utilized since it inherently and elegantly accounts for the boundary. The
developed framework and its utility to capture P-R instabilities is elucidated via a series of numerical examples in
Section 3. The numerical examples are devised such that both computational and physical aspects of the problem are
covered. We thoroughly investigate the onset of instabilities as well as post-bifurcation behavior of compressible soft

solids. Section 4 concludes this work and provides an outlook for future work.

2. Theory

The objective of this section is to establish the governing equations of elasticity at finite deformations account-
ing for surface tension, wherein the boundary of a body is endowed with its own free energy density. We provide a
formulation such that the governing equations will be established in their integral forms immediately suited for com-
putational implementation. Another feature of the current approach is that the kinematic measures are formulated in

a unified and consistent manner fitting to IGA.

2.1. Preliminaries

Consider the deformation of a continuum body, as illustrated in Fig. 1 that occupies the material configuration
Ay c R? at time ¢+ = 0 that is mapped to the spatial configuration %, c R? at any time ¢ > 0 via the nonlinear

deformation map ¢ as

x=pX,0) : BoxR, = B, and t=pX,0) : SyxR, > .7, (D

with X and x identifying points in the material and spatial configurations, respectively. According to our convention,
the surface quantities are denoted as {#}. That is, the placement of particles on the surface are labeled X and # in the
material and spatial configurations, respectively, such that X = X| , and X = x|, where ./ := 0%, and ., := 0%,.
The boundary is material in the sense that the boundary is convected with the domain and remains perfectly bonded to
the bulk throughout deformations. The deformation gradient in the bulk, denoted F := Grade, is a linear deformation
map that relates an infinitesimal line element dX € T % to its spatial counterpart dx € 7%, via the relation dx = F-dX

and therefore F = g, ® G' with its inverse defined as f := G; ® g’ where G' are the contravariant basis vectors in the
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Figure 1: Finite deformation of a continuum body (left). The continuum body that occupies the material configuration %y c R? at time ¢ = 0 is
mapped to the spatial configuration %, C R via the nonlinear deformation map ¢. The boundary points are convected via the same deformation
map ¢ as the bulk. Graphical illustration of the covariant basis vectors on %, and .} (right). The domains Q and Q indicate an arbitrary cutout
subdomain of %; and .7, respectively.

material configuration. The contravariant vectors G' and g’ form a dual basis to the covariant (natural) basis G; and g
in the material and spatial configurations, respectively. That is G; := dX/d¢' and g; := dx/0&' such that G; - G/ = 6{
and g, - g/ = 6{ , Where (5{ is the Kronecker delta. The properties F - f = i and f - F = I hold with I and i being
the (mixed-variant) bulk identity tensors in the material and spatial configurations, respectively, as I := G; ® G' and
i:=g;®g' SeeFig. 1 (right) for a graphical illustration of the covariant basis vectors in the bulk and on the boundary.
The ratio of the volume element in the spatial configuration dv over its counterpart in the material configuration dV is

the Jacobian J := dv/dV = DetF.

The surface .#) or .#; in the material or spatial configurations, respectively, is a two-dimensional manifold in
the three-dimensional space IR® that can be parametrized in terms of two surface (curvilinear) coordinates £&*. The
corresponding tangent vectors to the surface coordinate lines £ are the covariant (natural) surface basis vectors G,
and the surface deformation gradient rea dF := 2,® G with its inverse f‘ =G, ® 2% possessing the properties
F.f=1and f-F = I with I and i being the surface identity tensors in the material and spatial configurations,
respectively. The surface contravariant vectors G and 2% form a dual basis to the covariant (natural) basis G, and 8.
in the material and spatial configurations, respectively. That is G := 9£°/9X and 2° := 6&” /0% such that G, -GP = 6§
and g, - 8% = 8. Similarly to the bulk, we define the surface deformation gradient F as the linear map between the
infinitesimal line element dX € T.% and d% € T.%, with d% = F - dX. In contrast to the bulk, the surface identities 1
and  are not equal since I := G, ®G* = [-N® N andi := §,® g” = i — i ® it where N and 7t denote the unit vector
orthogonal to the surface in the material and spatial configurations, respectively. The ratios of area elements in the
spatial over the material configuration is defined by J, as J := da/dA which is the surface determinant of F though,

in contrast to the bulk, F is rank-deficient and thus, its determinant is non-standard.



2.2. Generic framework accounting for elastocapillary

The objective of this section is to derive the governing equations of a continuum body accounting for surface
tension in a variationally consistent framework such that (i) it immediately allows for an elegant axi-symmetric for-
mulation, devoid of external contributions and (ii) it intrinsically results in governing equations in their (weak) integral
form directly suitable for computational implementation in that Young—Laplace equation does not explicitly appear
throughout the manuscript. This advantage is significant since the surface curvature and surface divergence operator
remain embedded in the framework without emerging in the derivations. In addition, the variational approach here
paves the way to extending the proposed framework to higher-gradient continua e.g. accounting for the flexural re-
sistance of the surface. In order to obtain the governing equations, the total energy functional is minimized. The
total energy functional W' consists of the internal and external contributions denoted V'™ and W, respectively. To

minimize P, its first variation is set to zero as
Ptz ittt equilibrium = 6P'= 0 = 6P = s+ 6P = 0. 2
The (incremental) external energy here W' is essentially minus (incremental) working. That is

SPM = —sW  with W= | by spdV+ f to-SpdA, 3)
,980 (9530

in which W denotes working. Also, by and £ are the external body force density and surface force density in the
material configuration, respectively. The arbitrary variation of motion, denoted as d¢, is a vector-valued test function
op € %’61 (%)) that is vanishing where Dirichlet-type boundary conditions are imposed. This subtle detail plays a
crucial role in the current contribution in that it makes 6¥**' identically vanish. More specifically, for the problem
of interest here, shown in Fig. 2, the external body forces are zero and therefore the first integral in Eq. (3) vanishes
identically. Thus, the working ‘W only depends on the external traction £,. Nonetheless, the second integral in Eq. (3)
vanishes too, since (i) o¢ is zero where displacements are prescribed on the two ends of the domain and (ii) ¢, is zero
everywhere that a Neumann-type boundary condition is imposed. The latter immediately follows from the fact that
here, the surface tension is not treated on ad-hoc basis via an externally prescribed traction on the surface, but instead,
it is captured within the internal energy density of the surface. Henceforth, we impose 6¥**' = 0 throughout the
derivations, and therefore we focus on the internal energy variation '™ only. The internal energy ¥ is composed

of bulk and surface contributions. Let ¢ denote the bulk free energy density per volume in the material configuration



and ¢ denote the surface free energy density per area in the spatial configuration. Therefore, ¥ reads
‘Pimzf wdv + JdA. )
330 (7@0

Therefore, from a variational perspective, equilibrium for the current problem reduces to

~

5\1!““:[ 6¢dV+f SPdA=0 = a—‘”.5¢dV+f a—w-égadAio Vop € A (Bp).  (5)
By 0%, 2, 0P 0, 0P

The arbitrary motion variations d¢ in the context of IGA can be expressed in their discretized form as 5@ = N’ §¢’,
with N being the (NURBS) shape function associated with the control point i. Due to the arbitrariness of 6¢’, Eq. (5)
can be formally expressed as R' - 6! = 0 for all arbitrary 6@’ which immediately implies R’ = 0 with R’ = AR’
Here R' the point-wise residual at point i associated with its global number I and A is the assembly operator. That is,

we seek for the solutions of

R' =0 with R’::f 6—w.dV+f a—lﬁ.dA. (6)
2, 0p' 0%, 0"

The residual vector is obviously composed of the residuals in the bulk and the residuals on the surface. Equation (6)
is the point of departure for the remaining discussions. Note that Eq. (6) is essentially a nonlinear system of equations
composed of DOFs relations, with DOFs being the number of degrees of freedom. For nonlinear problems at large
deformations, the deformation is computed incrementally. To solve the nonlinear system of equations (6), at each
increment, an iterative Newton—Raphson scheme is utilized. In doing so, the global residual R is set to zero at (the
end of) each increment. Therefore, the consistent linearization of the resulting system of equations at any iteration k,
reads

R(g,)=0 and  R(p,)=R(p)+K"| Ap{=0 with K= or )

o’

where K"/ is the tangent stiffness at any ¢,. Then the global deformation is updated at each iteration according to

@rs1 = @ + Ap, until the norm of the residual vector reaches zero, numerically speaking.

2.3. Plateau—Rayleigh instabilities

The procedure to capture P-R instabilities in the manuscript relies on an eigenvalues analysis. In doing so, at
each increment an eigenvalue analysis is carried out on the stiffness K. Plateau—Rayleigh instabilities occur as soon

as the stiffness matrix loses its positive-definiteness, which is equivalently captured when at least one eigenvalue of
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&%0 \ three-dimensional

Figure 2: Geometry of the domain in the material (left) and spatial (right) configurations.

K becomes smaller or equal to zero. The eigenvector corresponding to the negative eigenvalue shows the associated
instability mode. Note that on the onset of P—R instability, we expect at least one eigenvalue to become negative
but we observe multiple negative eigenvalues as we progress further in the unstable regime. Figure 3 clearly shows
how the onset of P-R instability can be identified from the eigenvalues of the stiffness K, for any prescribed stretch
on the domain. For any prescribed stretch A, the critical value for (dimensionless) I' := y/u R corresponds to the
first instance of observing an eigenvalue smaller or equal to zero, with y and u being the surface tension and shear
modulus, respectively. The radius of the domain in the reference configuration is denoted R. Each point on the graph
shows the number of negative eigenvalues of K obtained via simulations corresponding to nearly incompressible neo-
Hookean hyperelastic solids, commonly studied in the literature on the subject. In this particular example, and for the
sake of clarity, we preclude post-bifurcation behavior by suppressing the perturbations. That is, we carry out a purely
perturbation-free eigenvalue analysis so that the computations can continue even in the unstable regime. Throughout

the stable regime, K remains symmetric and positive-definite and thus, all the eigenvalues of K are positive.

Having established the final format for the residual and the tangent stiffness, the last step is to set the free energy
densities i in the bulk and ¢/ on the surface. For the bulk free energy density ¢, however, various options are available
in literature. In particular, since this manuscript aims to study the influence of compressibility on P-R instability, we
investigate two options to portray a more complete picture. Two commonly used free energy densities for compressible

hyperelastic materials are

Quadratic D W(F) = 1/1[F:F—3—210g]]+1/1[%[12—1]—105;1],
2 2 )

1
Logarithmic © W(F) = u[F:F—3—210gJ]+§/llog2J,

N =

with the first and second Lamé parameters being A and g, respectively. Obviously, the difference amongst the energy
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Figure 3: Relationship between the eigenvalues of the stiffness K and the onset of P-R instability. For any prescribed stretch A, the critical value
for I' := y/u R corresponds to the first instance of observing an eigenvalue smaller or equal to zero. Note that in this particular example, and for
the sake of clarity, we preclude post-bifurcation behavior via suppressing the perturbations. The simulations correspond to nearly incompressible
neo-Hookean hyperelastic solids, commonly studied in the literature on the subject.

densities is the penalty term in terms of J that resists to the volume change, and both energies render identical results
at the incompressibility limit. Figure 4 illustrates the behavior of the second term of both options (8). Table 1 and
Table 2 gather the free energy densities of interest together with their associated Piola stress P and tangent A, wherein

the fourth-order tensors H := I® I, G := F'® F' and E := F' ® F* are defined to obtain more elegant tangents.

Table 1: The quadratic free energy density (8); together with its corresponding first and second derivatives with respect to F.

W(F) = %p[F:F—3—210gJ]+%/l[%[./z—l]—log”’

oy o, L 2 "
Pi= oo = plF = F'l+ S AL - 11 F,

'_6P_ 1 ) )
./A.—aF—/,t[]H+G] 2/1[] 11G+AJE.

While one can study various free energy densities in the bulk to investigate the influence of compressibility, the
surface free energy density is devoid of elasticity contributions and requires only to represent a constant surface
tension. As such, and since the surface free energy density per unit area in the current configuration is constant and

coincides with the surface tension ¥, the surface free energy density simply reads

with ¥ : surface tension and J := DetF = da/dA. ©

S
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2>
<

11



!
1

450 1
i

Y(F) =

N

1
~u[F:F— 37210g./]+2/l[%[] —1]

i

i
51 y(F) = ; [F:F—-3—2logJ]|+ = /llogJ \
; AN

— log J

1
i
1
!
i
1
i
.
2y !
\
.
\
1
\
A}
\

0.5 -
= Quadratic
=== = |_ogarithmic

0 L L
0 0.5 1 1.5 2

2.5 3 3.5 J

Figure 4: Comparing the penalty term of free energy densities (8) To have a meaningful comparison, ¢ = 0 is assumed for all the energies

Table 2: The logarithmic free energy density (8), together with its corresponding first and second derivatives with respect to F.

1
w(F)z—,u[F:F—3—210gJ]+§/110g21,
o
P = F-F* log JF*,
°F ul 1+ AlogJ
dP

A =

6F=y[]H+(I}]—/llogJ(I}+/lE.

The corresponding surface Piola stress P and its tangent A read

R R . 6& . a R
=9J = P = YyJF* = A
=y o

Fl-hon@[F' F'landE:= F' o Ft.

2.4. Isogeometric formulation and discretization

(10)

In this section, we provide a brief overview of b-splines, which are standard for smooth representation of geome-

tries in computer aided design and computer graphics software, and their implementation for bulk-boundary coupled

axisymmetric discretization using isogemetric finite element analysis (IGA). To define i b-spline function N;, of

polynomial degree p, consider a non-decreasing set of real numbers in the knot vector E={£|, &,

12

<> &nep+1}, Where




n denotes the total number of basis functions. Using the know vector Z, b-spline basis functions are formed starting

with the lowest degree p = 0 (piecewise constants) [75, 76]

Lif & <& <&,
Nio(é) = )

0 otherwise,
and, the higher-order b-spline basis functions, i.e., with p > 0, are constructed using

E-& Eirpr1 —&
Ni et
‘fi+p - Sfi ’ 1({:) * §i+p+1 _‘fi+1

N; () = Nit1,p-1(6). (12)

A B-spline curve ¢ of order p can be represented via linear combinations of N; ,(€) with coefficients stored in a matrix

B; (of IR"X‘J), also referred to as the control points, using

C© = ) Nip©B; (13)
i=1

in R?. The control points in B; are adopted in lieu of nodal coordinates in the standard finite element (FE) context.
However, b-splines are not interpolatory, whereas the nodal points (and fields) are generally interpolated in standard
FE. For practical application of boundary conditions in the numerical analysis, an interpolatory b-spline curve at the
ends is desired. To this end, we adopt open knot vectors and render physical domain with interpolated boundaries.
The continuity of the p™ degree B-spline elements and their boundaries is of order p — 1, in the absence of repeated
knots in the knot vector, achieving the highest possible smoothness for a given polynomial degree. Further details can

be found in [76].

A b-spline surface can be constructed using the knot vector E={&1,&,, . . ., &u4p+1} With the polynomial order p and
the knot vector H={n1,12, ..., Mm+q+1} With the polynomial order q. The surface (£, 7) is then represented as the

product of the univariate b-splines

FED =D > NipNigDBij, (14)

j=1 i=1

with the bidirectional control net B; ;. Essential to the isogeometric analysis, the same b-spline basis functions are

used for the interpolation of the field variables, i.e., the bulk and the surface motion, ¢ and §, respectively. The
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interpolations of the displacement field can be written as

" =N'&)e' in B (15)

o" =N (&)™  on 0B, (16)

using the displacement field ¢’ at the /™" bulk control point and @™ for the m™ surface control point. Nf’ is a b-spline
function of arbitrary degree p constructed from knot vectors defined in each parametric direction in two-dimensions.
The enforced two-dimensionality is due to the axisymmetric assumptions. The polynomial degrees p and the knot
vectors (parametric coordinates) of the bulk & = {£,n} and of the surface § = {£} match at the boundary such
that Nf P&y = Nf(é‘s) ® Nf(fs) making use of tensor product nature of multivariate b-splines. The (p+1) and

(p+1)x(g+1) Gauss integration points are used for boundary (axisymmetric curve) and bulk elements, respectively.

Remark on the advantages of IGA: Note that it is, in principle, possible to approach this problem using standard
FEM approaches such as the one adopted by Henann & Bertoldi [35] using Abaqus in combination with arclength
(Riks) method. We took a different path and implemented our own in-house code using isogeometric analysis due to
the various advantages that it provides. One advantage of IGA lies in its superior performance in approximating the
solution compared to the standard FEM due to its high-order regularity. This results in higher accuracy per-degrees-of-
freedom compared to FEM. Another advantage, when the domain is quasi-compressible, is that higher order elements
significantly reduce the volumetric locking issues, without recourse to the F-bar method for the underlying bulk
elements. Last but not least, one interesting example relevant to elastocapillary is accounting for flexural resistance of
the surface [41]. The calculation of surface curvature tensor requires solving higher order equations and demands at

least C'-continuity of the spatial discretization that can be readily achieved in IGA.

3. Results and discussions

For the incompressible limit, only volume preserving deformations in bulk are permissible, excluding the behav-
iors of a large class of compressible materials and their associated P-R instability, e.g., see [77] for compressible
behavior of hydrogels at relevant length-scales. The objective of this section is to quantify the role of compressiblity
on the onset and the post-bifurcation behaviors for the solid P-R instability. First, we carry out an in-depth instability
analysis of onset for the solid cylinder subjected to an increasing surface tension y and applied end-stretches A, in
Section 3.1. In this section, we present stability maps for stable-unstable behaviors considering two commonly used
compressible strain energy functional, logarithmic- and quadratic-type, detailed in Eq. (8), over a range of (instan-

taneous) Poisson’s ratios. Next, in Section 3.2, we focus on the post-instability behaviors and track the bifurcated
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branches after the onset using an arc-length-based numerical methodology. Although dynamic solutions [69] exist
capturing the post-instability behavior, the full equilibrium path with stable-unstable branches have not been pre-
sented before. Our results clearly show the discontinuous nature of the instability, requiring the boundary to relax so

as to follow the snap-back path.

Prior to and after the onset of the P-R instability, the deformations remain axisymmetric. The axial section of
the cylinder and the boundary conditions are shown in Fig. 2. The cylinder geometry has dimensions of R = 1
and L = 40. The end boundaries of the geometry is constrained in the longitudinal direction, but free to move in
the radial direction. We discretize this domain and its boundary with quadratic C'-continuous B-spline elements.
We first form the coarsest mesh, i.e., a single element, using the open knot vectors E = [0,0,0,1,1,1] and H =
[0,0,0,1,1, 1] and the polynomial degrees p = g = 2. Then, we perform uniform knot insertions (h—refinement)
to obtain 25 x 1000 C'-continuous axisymmetric bulk elements. The surface is directly partitioned from the bulk
discretization with a matching curve parameterization. To this end, we construct 1000 C!-continuous axisymmetric
surface elements. In our simulations, the bulk material has the shear modulus i = 1 and we define the (dimensionless)
elastocapillary number I' := y/u R for later results. In the numerical simulations, depending on the study of interest,

we either apply surface tension y at fixed end-stretches or apply end-stretches at fixed surface tension.

3.1. Effect of compressibility on the onset of the solid P-R instability

In this section, we quantify the critical conditions for the mechanical stability of the compressible cylindrical
employing two different compressible strain energy functionals for various Poisson’s ratios. We first apply a pre-
stretch A to the cylinder in the longitudinal direction. Then, the surface tension on the boundary is increased until
the onset of the instability. Figure 5 illustrates our numerical results pinpointing the critical surface tension y at end-
stretches A, € [0.6,4] for the range of Poisson’s ratio v € [0, 0.499]. What stands out in this figure is the dominant
effect of compressibility, i.e., both the Poisson’s ratio as well as the type of compressible constitutive relations. Toward
the incompressible limit, our results (e.g., for v = 0.499), as expected, approach the reported theoretical solution for
an incompressible solid cylinder [58] (with L../R = 40). This observation is valid for both strain energy densities of
logarithmic-type (Fig. 5A) and quadratic-type (Fig. 5B). As the Poisson’s ratio decreases, v — 0, and the bulk becomes
increasingly compressible, the solid cylinder remains stable at large stretches. Interestingly, using the quadratic-type
strain energy model, we observe that the solid cylinder remains stable in parts where the simulations using logarithmic-
type strain energy predicts P-R instability. This emphasizes on the importance of the proper selection of the volumetric
part of the energy functional to study the P-R instability in compressible materials. At the compressible limit, both

logarithmic- and quadratic-type strain energies display a closely matching behavior. Closer inspection of Fig. 5 shows
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Figure 5: Stability maps obtained by increasing the surface tension, at fixed end-stretches, to the critical point where the PR instability is detected
through an eigenvalue analysis. The critical curves are obtained for various Poisson’s ratios employing a logarithmic-type (A) and quadratic-type
(B) strain energy densities. The dashed (green) line is a closed-form solution, i.e., Eq. (39) in [59], for an incompressible cylinder domain.

that, for fully compressible cylinders, the solid P-R instability is suppressed for the applied end-stretches 1, < 1 for

both logarithmic- and quadratic-type energy functional.

For each critical curve in Fig. 5, there exist a minimum critical elastocapillary number I', below which the cylin-
der remains stable independent of the applied overall stretch. There also exist a stretch A, that corresponds to the
minimum critical I. To this end, Fig. 6A&B illustrate the minimum critical I" and the corresponding end-stretch A,
respectively, over a range of compressibility, i.e., Poisson’s ratio, for both logarithmic- and quadratic-type strain

energy densities. For both energy types, we observe a decrease in the minimum critical I as the Poisson’s ra-

6
A logarithmic ~ —e— quadratic B 14 logarithmic =~ —e— quadratic
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Figure 6: The minimum points in each critical stability curve is determined over the range of compressibility. The shaded area corresponds to the

unstable P-R behavior. (A) Minimum critical elastocapillary number I for different Poisson’s ratios is illustrated. (B) The corresponding applied

stretch values can be compressive or tensile to achieve the minimum critical I'.

tio decreases. This behavior can be considered as a destabilizing effect of compressiblity. The minimum critical
1

I is located at (A.,[q) = (23, V32) for a truly incompressible material, as predicted by weakly nonlinear sta-

bility analysis [58, 67]. Importantly, a sharp decrease in the critical I" is observed in the quasi-compressible re-

gion where v € [0.4,0.499]. For the quadratic-type energy, the sharp decrease further continues and it reaches a
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plateau at compressible regime (v < 0.3). At the fully compressible limit, both strain energy types coincide at
(A1, Terit) = (0.64,4.11). This is expected because the penalty term of free energy densities vanishes since the Lamé
parameter 4 = 0. Hence, the overall energy densities in Eq. (8) recover the same form for both the logarithmic- and
the quadratic-types. For the corresponding applied pre-stretches shown in Fig. 6B, we observe a steady decrease from
26% stretch at the incompressibility limit to 36% compression for at the fully compressible limit for both energy

density types.

Let us now consider the case where 4;,=1 (no applied-stretch) and study the stability of the compressible solid
cylinder subjected to an increasing surface tension. The stability map of the cylinder is illustrated in Fig. 7 for both

quadratic- and logarithmic type strain energies for various Poisson’s ratio. The critical curves divide the parameter

A 12 B u/R
=1 . 0.0 Deformed cylinder
10 4 03 at the onset
¥ 06
i. g logarithmic
ﬁ\ —— quadratic
—
6 i
R
M 0.0086
4 T T T T Critical eigenvector 0.0
0.0 0.1 0.2 0.3 0.4 0.5 (scaled) M 00

Poisson’s ratio, v
Figure 7: Compressibility has a pronounced effect on the onset of PR instability. (A) The critical I" over Poisson’s ratios v € [0, 0.499] is shown
for fixed boundaries, i.e., no-stretch case (4,=1). (B) The deformed geometry is plotted just before the instability initiates, i.e., at the onset. The

contraction in the lateral direction is due to the increasing surface tension. At the onset, the critical eigenvalue-eigenvector pair is obtained for the
minimum eigenvalue A€ ~ 10~'2. This is a qualitatively representative behavior for all other critical points.

space into two distinct regions: stable and unstable (shaded area). Again, at the incompressibility limit, we approach
the theoretical solution of I' = 6 reported in [15, 58]. As the domain becomes compressible, the critical T" first
decreases reaching a minimum and then sharply increases. The results of this investigation show that compressibility
can have both stabilizing and destabilizing effect on the onset of P-R instability at fixed stretches. Toward the fully
compressible regime, the required surface tension to trigger the P-R instability becomes far too large. This can be
explained by the fact that the P-R instability is due to a competition between the bulk and surface energies. The
surface tension applied on the boundary will deform the cylinder so as to minimize its surface area at fixed stretches
by shrinking the radius in the radial direction (see Fig. 7B). This deformation causes mainly a volumetric change in
the bulk. However, for fully compressible materials, the bulk shows no resistance against the surface-induced forces
and shrinks uniformly to a thinner cylinder so as to minimize the surface area. This explains why the P—R instability

is suppressed for fully compressible case at a fixed stretch. We have elucidated the influence of compressibility on the
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onset of P-R instabilities. Moving forward, we illustrate the effect of compressibility on the post-instability quantities.

3.2. Post-instability behavior of compressible P-R instability

So far our analysis has only determined the onset of the instability, resulting in critical curves shown in Figs. 5
to 7. In this section, we characterize the type of bifurcations and also quantify the evolution of the instability beyond
the critical points, from uniform cylinder geometry to the fully developed, beaded state. Recent theoretical stud-
ies [66] show that the solid P-R problem demonstrates a snap-through instability under increasing surface tension.
This behavior is associated with the softening of reaction forces, leading to non-convex force-displacement curves.
Similarly, we investigate the snap-back behavior of solid cylinders subjected to finite end-stretches at fixed surface
tension. To this end, the post-bifurcation analyses is challenged by the discontinuous (subcritical) characteristics of the
snap-back behavior and the simulation technique further requires a path-following nonlinear solution scheme, e.g., the
arc-length method. In this section, we combine our axisymmetric, surface-enriched isogeometric formulation with an
arclength solver employing the load parameter of applied end-stretch, A;. The path-following scheme first pinpoints
the bifurcation point at what overall end-stretch the onset of instability occurs. Then, using the critical eigenvector at
the onset, we use branch-switching to follow the equilibrium path [78]. Equipped with this efficient, path-following
numerical scheme that can track stable-unstable states in the equilibrium path, in what follows, we will focus on the

post-instability behavior of solid P-R problem at fixed elastocapillary number I'.

Figure 8A illustrates the critical curve for the Poisson’s ratio of v = 0.4 employing the quadratic-type strain energy

potential. In this stability diagram, the shaded area corresponds to the unstable state, where a beading formation is
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Elastocapillary number, I'=y/uR
Figure 8: (A) The critical curve divides the domain into stable vs. unstable regions. The unstable domain is shown as shaded. The points
a — e corresponds to the simulations at fixed elastocapillary number I' = 5. The points fgch are at constant overall stretch 4;, = 1. (B) The

three-dimensional deformed surface geometry, constructed from the axisymmetric solutions, are obtained at various stretch values at constant
elastocapillary number I = 5. The colorbar corresponds to the determinant of the surface deformation gradient.

observed in the post-bifurcation analysis. We present two possible scenarios. First, the points a—e in Fig. 8 correspond
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to the pre- and post-bifurcation behavior at constant elastocapillary number I" = 5. Second, the points fgch correspond

to the simulation results at various elastocapillary values with fixed ends, i.e., no applied end-stretch A,=1.

The deformed geometry for both scenarios are shown in Fig. 8B, Figs. 9 and 10. The colormap in Figs. 9 and 10
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Figure 9: Deformed shapes corresponding to the points abcde in Fig. 8. The amplitude of the cylinder-like beading remains constant under applied
stretch at the fixed elastocapillary number I' = 5.
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Figure 10: Deformed shapes corresponding to the points fgch in Fig. 8. The surface tension is increasing from f — g at fixed boundary conditions.
A cylinder-like beading forms, which is also observed in experiments using soft polymeric gels [15].

illustrates the normalized radial displacements u,/R. The following conclusions can be drawn from the present study.
As shown in Fig. 9, the amplitude of the P-R instability remain the same from b —d whereas the width of the cylinder-
like beading decreases with increasing end-stretch. Eventually, the cylinder-like beading formation vanishes and a
uniformly stretched cylinder is recovered (see Fig. 9¢). The points a and e correspond to a homogeneous cylinder
geometry and both points lie outside of the shaded area, further verifying the phase diagram shown in Fig. 8. We
observe the separation of the cylinder into two distinct radii. This interesting result is attributed to a phase-separation-
like behavior [69]. The phase-separated radii (into rpy,x and rpi,) and hence the amplitude (@ = Fmax—7min) Of the
cylinder-like beading remain constant at increasing end-stretches throughout the unstable domain (shaded area in
Fig. 8).

Let us now consider the second scenario, the points fgch are obtained at fixed domain length where the surface

is subjected to increasing surface tension (see Fig. 10). The deformations observed clearly indicates the energetic
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competition between the capillary forces and the hyperelasticity. The increase in surface tension deforms the cylinder,
resulting in experimentally observed cylinder-like beadings. This goemetry is also referred to as cylinders-on-a-string
(COAS) formations [68]. At vanishing shear modulus, e.g., the case of liquids, we expect the bulge to resemble a

spherical bead due to dominating surface tension.

The results of this investigation demonstrate a wide tunability of solid P-R instability characteristics (onset, am-
plitude, and width), achieved by varying the applied end-stretch and elastocapillary number I'. Note that I" can be
altered by exclusively varying the surface tension vy, the shear modulus u of the material, and the initial radius R of
the cylinder. The material behavior, in particular the type of the strain energy function, also plays a role in further
enriching the tunability of P-R characteristics. Although both strain energy types investigated displayed qualitatively
similar results (omitted for the sake of conciseness), the results obtained differed quantitatively in the compressible
regime.

Next, we demonstrate the effect of different compressible strain energies on the instability characteristics, specifi-

cally using the quadratic- and logarithmic-types in Fig. 11.

Figure 11AB illustrates the change in maximum and minimum radii of the cylinder undergoing shape changes
due to P-R instability for the quadratic-type and logarithmic-type strain energies, respectively. A non-monotonic
behavior in applied stretch A;, is observed where, at times, the stretch is reversed and the domain is compressed so as
to follow the loading path. Hence, we expect, in experiments and dynamic solutions, the amplitude of the P-R waves
will snap to a finite value in an instance. The non-monoticity in loading is permitted in a path-following solution
scheme. Interested readers can refer to [78, 79] and the references therein. Notice that a displacement-controlled
solution strategy, in lieu of using the path-following scheme, is likely to lose numerical convergence just after the
onset and therefore fail to simulate this complex behavior. The loading paths, tracking the transient formation of
P-R instability, are illustrated for the logarithmic- (Fig. 11A) and quadratic-type (Fig. 11B) functional at a fixed
elastocapillary number I' = 5 for the Poisson’s ratio v = 0.4. In our simulations, we first apply a pre-stretch of
A = 0.6 to the cylinder and later on the surface tension is linearly increased to I' = 5 on the boundary. In Fig. 11AB,
the arc-length load parameter 1; monotonically increases until the first critical point (¥) at state i. At this singularity
point, the critical eigenvector shown in Fig. 7B, corresponding to the zero eigenvalue within machine precision, favors
deforming the cylinder non-uniformly in the lateral direction. Hence, a secondary path branches off the primary path
(shown in gray-dashed line in Fig. 11) at this critical point, resulting in an axisymmetric bulging deformations. The
primary path, corresponding to the uniform extension of the cylinder, becomes less favorable energetically. The path-
following algorithm switches to the secondary, yet still unstable state (dotted line), which is energetically preferred.
Proceeding the first critical point (), the deformations snap-back at a minimum A, (e) at state ii and undergo a large
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Figure 11: The evolution of minimum and maximum radii (rmi, and rmax) for simulations employing (A) quadratic and (B) logarithmic free energy
densities for v = 0.4. The deformed shapes are shown as insets for the limit points (ii) and (iii). The deformations are amplified in the lateral
direction by a factor of 10 for illustration purposes. For the bifurcation points (i) and (iv), the deformed shape is uniformly stretched cylinder. (C)
The evolution of amplitude for various elastocapillary number and different strain energy types. (D) The bifurcation point are located on the critical
curve whereas the limit points in the snap-back behavior are outside the critical curve.

amplitude growth forming a cylinder-like beading. Beyond this point, the path becomes stable and, surprisingly, the
maximum and minimum radii remain roughly constant even though the overall stretch is increasing. Finally, the P-R
instability eventually disappears when the applied stretch is large enough. Another snap-back behavior is observed
between states iii and iv. At state iv (%), a uniformly stretched cylinder is recovered. Further increase in stretch
contracts the radius of the cylinder without any bulging. The most interesting finding in Fig. 11 is that there is an
interval of applied end-stretches where two states, i.e., a uniformly stretched cylinder and a beaded cylinder, coexist.
Closer inspection of this figure reveals that the main deformations into cylinder-like bead formation take place during
the snap-back portions. This behavior is associated with subcritical behaviors and it is known that such instabilities
are highly sensitive to imperfections. Preexisting defects are expected to change the bifurcation-type instability into
a limit-point instability, which can be efficiently tracked using the developed arclength method. A detailed study of
defect-sensitivity of elastic P-R instability is interesting and it will be presented in a separate work. For the sake of
conciseness, we restrict ourselves only to the homogeneous cylinder with perfect geometry.

Figure 11C illustrates the evolution of amplitude a calculated using a=rmax—¥min for various I' values. The larger
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the elastocapillary number I, the larger the amplitude grows during P-R instability. Unique to solid P-R problem,
the amplitude remain constant between states i and siv. These states are located exactly on the critical curve
presented earlier in Fig. 9 for quadratic-type strain energy and v = 0.4. Figure 11D illustrates these critical points
% and the limit of snap-back behaviors (e) for both strain energy types. The bifurcation points % lie exactly on the
critical curves whereas the limit points are outside the unstable region. Hence, we expect a premature onset or delayed
disappearance under large end-stretches for the P-R in solid cylinders due to this metastable region. Notice that, as
the elastocapillary number increases, the gap between the bifurcation and snap-back limit points increases. Closer to
the minimum critical I, this gap is further reduced, i.e., snap-back behaviors with smaller intervals of unstable states

are observed.

4. Conclusion

A slender solid cylinder subjected to surface tension on the boundary snaps into cylinder-like-beaded pattern due
to an elastocapillary instability, i.e., the solid Plateau—Rayleigh instability. While a column of liquid breaks into
spherical beads to minimize its overall surface area, the bulk elasticity resist the surface forces in solid cylinders. For
surface stresses to deform the bulk, either the surface must be abundant or the bulk stiffness must be small enough to
lead to an elastocapillary length [, = y/u on the same order as the structural feature size. For thin fibers with shear
modulus ~ 10 Pa, the surface effects should be considered in fibers with radius of O(1 mm). To model surface stresses
at such scales for soft fibers, we have implemented a surface-enriched isogeometric finite element framework at finite
strains. A generic, formulation based on kinematic-energetic coupling is presented for compressible hyperelastic
materials with boundaries in tension. Our framework is also capable of tracking structural stability and perform
post-bifurcation analysis under complex, non-monotonic loads. This study has shown that material compressibility
has significant effects on the onset and amplitude growth of the solid P-R patterns. In particular, both the Poisson’s
ratio and the form of volumetric strain energy have an influence. We quantified the compressible P-R instability
characteristics comparing the two common type of compressible strain energies over a range of Poisson’s ratios.
Using a nonlinear path-following solution technique, we tracked the full equilibrium path including stable and unstable
states. After the onset, under increasing stretch the radii at both ends of the cylinder remained constant with a short
transition region. In potential experiments, we expect hysteresis in the loading and unloading path due to existence
of metastable regions. The presented axisymmetric elastocapillary formulation proves to be an efficient and generic
tool to study elastocapillary instabilities in polymeric soft solids. Our next immediate plan is to extend the current
formulation to account for flexural resistance of the surface which is expected to introduce a bending length scale and

regularize the P-R patterns.
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