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Abstract

Solid surface tension can deform soft elastic materials at macroscopic length scales. At a critical surface tension,

elastocapillary instabilities in soft filaments emerge that resemble the Plateau-Rayleigh (P–R) instabilities in liquids.

The experimentally observed P–R instability of soft elastic filaments has been recently investigated via numerical and

theoretical approaches. However, these contributions focus on the incompressible limit and preclude the nonlinear

Poisson’s ratio e↵ects in materials, for example, compressible hydrogels with Poisson’s ratios that can go as low as

0.1. Moreover, most of the research on the solid P–R instability elaborate on the onset, ignoring the post-bifurcation

regime. Here we show that compressibility matters and the form of the assumed compressible strain energy density

has a significant e↵ect on the onset and the post-bifurcation behavior of elastic P–R instability. For example, the P–R

instability can be entirely suppressed depending on the form of the free energy density and Poisson’s ratio. To this

end, we employ a robust and variational elastocapillary formulation and its computer implementation using surface-

enriched isogeometric finite elements at finite strains. We use an arclength solver to illustrate both stable-unstable

amplitude growth and bifurcation points in the entire equilibrium path. Stability maps are drawn with distinct stable-

unstable regions over various shear modulus, surface tension, fiber radius, and applied stretch for cases ranging from

quasi-compressible to fully compressible. The presented elastocapillary model proves to be useful in quantifying the

surface and bulk energies in competition at finite strains and expected to help improve mechanical characterization of

soft materials with at least one dimension that is on the orders of the elastocapillary lengthscale lsolid ⇠O(nm �mm).
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1. Introduction

It is well-established that the external surface of a continuum body exhibits properties that di↵er from those of

the encased bulk. The influence of the boundary on the material behavior, regardless of its physical nature, is more

pronounced at smaller scales due to the increasing surface-to-volume ratio. Additionally, for very soft solids like gels,

the surface energy is comparable to elastic bulk energy at macroscopic scales. The energetic competition between the

bulk gel and its boundary leads to what is commonly referred to as the elastocapillary e↵ect, which plays an important

role in cavitation [1], soft composites behavior [2, 3], wetting on soft substrates [4–7], soft contact and adhesion [8, 9],

fracture [10], capillary bending [11], and pattern formations in nature [12], to name few. Quantification of these

surface forces for soft elastic materials is an active research field [13, 14]. A seminal study in this area is the work

of Mora, et al. [15] that reports experimental evidence of capillary-induced bead formations at thin, gel filaments due

to elastic Plateau–Rayleigh (P–R) instabilities. The main objective of this manuscript is to investigate the elastic P–R

instabilities in soft solids thereby pre- and post-bifurcation regimes are carefully examined from fully compressible

to quasi-incompressible material behaviors. The main ingredients of the work presented here are (i) elastocapillary

theory and (ii) elastic Plateau–Rayleigh instability. A brief review of these topics is now given.

1.1. State of the art review of elastocapillary theory

The elastocapillary theory and surface modeling of continua can be traced back to the pioneering works of Laplace,

Young and Gibbs. Following Gibbsian thermodynamics and a seminal work of Scriven [16], Gurtin and Murdoch [17]

developed a phenomenological surface elasticity model that has been widely adopted for applications in nanomateri-

als, see [18–22] among others. The surface elasticity theory assumes that a surface possesses its own tensorial stress

which derives from the surface constitutive laws. That is, surface stresses are acquired as energetically conjugated

quantities to surface strains since the surface is endowed with its own thermodynamic structure. As a result, capillary

e↵ects are intrinsically accounted for in the surface elasticity theory. Surface e↵ects introduce a physical length-scale

that is otherwise lacking in classical continuum mechanics since the surface-to-volume ratio is proportional to the

inverse of the domain size. Numerous analytical [18–21] and computational [23–25] studies have demonstrated that

the size-dependent material response due to surface elasticity is physically meaningful and is also in agreement with

atomistic simulations [26–29]. From a computational perspective, the finite element modeling of surface tension for

fluids was carried by Saksono and Perić [30, 31] for quasi-static and dynamic problems, see also [32]. This formu-

lation is suitable for fluids in that the surface tension is accounted for but the surface elasticity is absent. To address

this issue, Yvonnet, et al. [23] introduced surface elasticity into the finite element method for solids though at small

strains in two dimensions only. Javili and Steinmann [33, 34] developed a finite element framework for continua with

2



boundary energies that accounted for surface elasticity as well as surface tension for two-dimensional [33] and three-

dimensional [34] solids at finite deformations. Henann and Bertoldi [35] employed this framework and established a

numerical procedure appropriate for modeling elastocapillary phenomena using the commercial finite element (FE)

package Abaqus and studied a variety of problems, see also [36]. A similar approach was adopted by Mora, et al. [37]

and an ad-hoc numerical code using the FEniCS finite element library has been provided. He and Park [38] presented

a computational methodology to capture elastocapillary, essentially equivalent to the classical Young–Laplace model,

that could be readily incorporated to commercial FE packages such as ANSYS and COMSOL, see also [39].

The surface elasticity theory has experienced a prolific growth in the past two decades [40] and the aforementioned

contributions are only given as a few examples among many others. This resurgence of interest in the mechanics of

solid surfaces can be largely attributed to the increasing number of applications involving nanoscale structures and

soft solids such as gels. From a theoretical standpoint also various extensions of the surface elasticity theory have also

been proposed. For example, Steigmann and Ogden [41] extended the theory to account for the flexural resistance of

the surface against the changes of its curvature. Another important extension is the interface elasticity theory [42, 43]

leading to thermo-mechanical interfaces [22, 44] and general interface models [45–47]. Also, surface viscoelasticity

has drawn a considerable attention and recently studied in [48–52].

Here, we employ a variational elastocapillary theory at finite deformations in that the Young–Laplace equation

does not explicitly appear in the governing equations. More precisely, unlike the commonly accepted approach that

introduces the surface tension in an ad-hoc manner via an external force on the surface, we capture the surface tension

via its energy representation as a constant energy density per surface area in the spatial configuration. This subtle point

allows for a more elegant approach to P–R instability wherein only internal energy densities enter into the picture.

This approach is particularly useful from a computational perspective in that it furnishes an appropriate framework

for the problem at hand and the nonlinear stability analysis for the P–R problem.

1.2. State of the art review of solid Plateau–Rayleigh instability

Capillary forces can trigger P–R instability in both fluids and soft solids. In fluids, surface tension overwhelms

cylindrical liquid columns and causes surface undulations with a well-defined wavelength along its length, creating

a periodic pattern. Eventually, the resulting waves in the liquid column grow and break up into regularly spaced

spherical droplets [53]. From an energetic consideration, this column-to-droplet transition is due to the vanishing

shear resistance of the bulk fluid, which facilitates a final configuration with minimal surface area attained under

constant volume, i.e. a sphere formation [54]. In the case of soft solids, the bulk elasticity will resist the surface

tension, playing a fundamental role in solid P–R instability characteristics [55, 56]. For example, Mora, et al. (2010)
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have given the first experimental evidence of solid P–R instability, demonstrating that agar gel fibers form cylindrical

bead patterns (contrary to spherical beads in fluid jets) without complete breakup [15]. The energetic competition

between bulk elastic deformations and capillary action determines the equilibrium pattern. This competition can be

quantified through a characteristic length scale, conceptually ` = �/µ, where � is the surface tension constant and µ

is the bulk shear modulus. For example, in sti↵ materials (µ ⇠ MPa), the dimension of length ` ranges in the order of

nanometers; consequently the bulk elasticity overwhelms the material behavior at macroscopic scales. On the other

hand, for soft solids (µ ⇠ Pa), surface tension can dominate the overall deformations in balance with the bulk elasticity

at relatively larger length scales, i.e., ` ⇠ mm, for example, see [37, 57].

The solid P–R instability has been investigated using numerical and theoretical approaches. Mora, et al. (2010)

performed a linear stability analysis for a slender elastic fiber, successfully predicting the bifurcation-onset strain in

close match their experiments [15]. Performing a weakly nonlinear stability analysis using hyperelastic solid models,

Ta↵etani and Ciarletta (2015) concluded that two dimensionless parameters (i) the axial stretch and (ii) the elastocap-

illary ratio `/R� control the onset and the amplitude growth, where R� is the radius of the soft fiber [58, 59]. Further

investigations, including recent nonlinear finite element simulations accounting for capillary forces, are carried out

to elucidate the e↵ect of electric field [39], active surface contraction [60], growth and swelling [61, 62], and hollow

tube geometry [35, 63–65] in P–R instability. Such approaches, however, have failed to quantify the selection of wave

number (or pattern) at the bifurcation-onset. In contrast to the experimental findings, the existing methods employing

quasi-static stability analysis predict infinite-wavelength for the pattern, suggesting global deformations rather than

periodic waves [66, 67]. Recently, Pandey, et al. (2020) performed a dynamic analysis using hyperelastic solids,

indicating that the pattern selection, i.e., the critical wavelength of cylinder-like formations, is due to a dynamical

process, similar to the selection of bead size in fluid P–R instabilities [68].

In the post-instability regime, fully nonlinear FE analysis predicts that solid column deforms into cylinders with

two distinct radii connected by a transition region with a finite width [69], in a close analogy to phase-separation-like

behavior of inflating hyperelastic, cylindrical balloons [70, 71]. Surprisingly, both cylinder radii remain constant under

increasing end stretches over several hundred percent strains [69]. Another fundamental di↵erence of P–R instabilities

in fluids and solids is that, while fluid beading develops as a supercritical (continuous) bifurcation, its solid counterpart,

in general, demonstrates a subcritical (discontinuous) behavior [59, 66, 67]. Recent work have derived e�cient, one-

dimensional models closely matching onset and amplitude evolution predicted by nonlinear finite element simulations

and weakly nonlinear analysis, even at localized deformations far away from the onset [72]. However, most studies in

the field of solid P–R problem have so far only focused on truly incompressible elastic cylinders and, in particular, on

the onset of the instability. Very recently, Tamim and Bostwick (2021) performed stability analysis assuming small
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strains for a compressible viscoelastic material concluding that, while viscous e↵ects stabilize the P–R instability,

compressibility destabilizes as it promotes an earlier bifurcation-onset [73].

1.3. Key features and novelties

Compared to earlier works on the topic, to the best of our knowledge, there are several important areas and

conclusions where this study makes an original contribution to. In summary, the key features and contributions of the

manuscript are:

• to study Plateau–Rayleigh instabilities of compressible soft solids. Thereby, we illustrate that compressibility

matters and, unlike the incompressibility limit, the form of the neo-Hookean free energy density matters when

the compressibility is accounted for,

• to show that - unlike the incompressibility limit - Plateau–Rayleigh instabilities can be avoided altogether for

compressible soft solids depending on the amount of stretch, Poisson’s ratio and the form of the free energy

density,

• to present the full equilibrium path, including stable-unstable states, of solid Plateau–Rayleigh instabilities

using an arc-length method, for the first time.

1.4. Notation and definitions

Direct notation is adopted throughout. Occasional use is made of index notation, the summation convention for

repeated indices being implied. The scalar product of two vectors a and b is denoted a · b = [a]i[b]i. The scalar

product of two second-order tensors A and B is denoted A : B = [A]i j[B]i j. The composition of two second-order

tensors A and B, denoted A·B, is a second-order tensor with components [A·B]i j = [A]is[B]s j. The surface quantities

are distinguished from their bulk counterparts by an accent on top. That is, quantities or operators {•̂} are the surface

counterparts of the bulk quantity or operator {•}, respectively, unless specified otherwise. The fourth-order identity

tensor is denoted as . Similarly, other fourth-order constitutive tensors are also written with the same font, such as

for the fourth-order tangent tensor. The tensor product of two second-order tensors A and B is a fourth-order tensor

= A⌦ B with [ ]i jkl = [A]i j [B]kl. The two non-standard tensor products of two second-order tensors A and B are

the fourth-order tensors [A⌦B]i jkl = Aik Bjl and [A⌦B]i jkl = Ail Bjk .

1.5. Organization of the manuscript

This manuscript is organized as follows. Section 2 lays the theoretical foundation for the study. First, the kine-

matics of the problem is formulated and the key concepts of di↵erential geometry required to describe the boundary
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motion are briefly reviewed in Section 2.1 followed by a generic three-dimensional framework suitable for a surface

tension theory that is concisely introduced in Section 2.2. The connection to Plateau–Rayleigh instabilities is estab-

lished via an eigenvalue analysis in Section 2.3. Thanks to the variational approach, the governing equations naturally

emerge in their weak forms that are immediately suitable for computational implementation elaborated in Section 2.4.

In particular, isogeometric analysis [74] is utilized since it inherently and elegantly accounts for the boundary. The

developed framework and its utility to capture P–R instabilities is elucidated via a series of numerical examples in

Section 3. The numerical examples are devised such that both computational and physical aspects of the problem are

covered. We thoroughly investigate the onset of instabilities as well as post-bifurcation behavior of compressible soft

solids. Section 4 concludes this work and provides an outlook for future work.

2. Theory

The objective of this section is to establish the governing equations of elasticity at finite deformations account-

ing for surface tension, wherein the boundary of a body is endowed with its own free energy density. We provide a

formulation such that the governing equations will be established in their integral forms immediately suited for com-

putational implementation. Another feature of the current approach is that the kinematic measures are formulated in

a unified and consistent manner fitting to IGA.

2.1. Preliminaries

Consider the deformation of a continuum body, as illustrated in Fig. 1 that occupies the material configuration

B0 ⇢ 3 at time t = 0 that is mapped to the spatial configuration Bt ⇢ 3 at any time t > 0 via the nonlinear

deformation map ' as

x = '(X, t) : B0 ⇥ + ! Bt and x̂ = '(X̂, t) : S0 ⇥ + ! St , (1)

with X and x identifying points in the material and spatial configurations, respectively. According to our convention,

the surface quantities are denoted as {•̂}. That is, the placement of particles on the surface are labeled X̂ and x̂ in the

material and spatial configurations, respectively, such that X̂ = X|S0 and x̂ = x|St , where S0 := @B0 and St := @Bt.

The boundary is material in the sense that the boundary is convected with the domain and remains perfectly bonded to

the bulk throughout deformations. The deformation gradient in the bulk, denoted F := Grad', is a linear deformation

map that relates an infinitesimal line element dX 2 TB0 to its spatial counterpart dx 2 TBt via the relation dx = F·dX

and therefore F = gi ⌦ Gi with its inverse defined as f := Gi ⌦ gi where Gi are the contravariant basis vectors in the
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Figure 1: Finite deformation of a continuum body (left). The continuum body that occupies the material configuration B0 ⇢ 3 at time t = 0 is
mapped to the spatial configuration Bt ⇢ 3 via the nonlinear deformation map '. The boundary points are convected via the same deformation
map ' as the bulk. Graphical illustration of the covariant basis vectors on Bt and St (right). The domains ⌦ and ⌦̂ indicate an arbitrary cutout
subdomain of Bt and St , respectively.

material configuration. The contravariant vectors Gi and gi form a dual basis to the covariant (natural) basis Gi and gi,

in the material and spatial configurations, respectively. That is Gi := @X/@⇠i and gi := @x/@⇠i such that Gi · G j = � j
i

and gi · g j = � j
i , where � j

i is the Kronecker delta. The properties F · f = i and f · F = I hold with I and i being

the (mixed-variant) bulk identity tensors in the material and spatial configurations, respectively, as I := Gi ⌦ Gi and

i := gi⌦ gi. See Fig. 1 (right) for a graphical illustration of the covariant basis vectors in the bulk and on the boundary.

The ratio of the volume element in the spatial configuration dv over its counterpart in the material configuration dV is

the Jacobian J := dv/dV = DetF.

The surface S0 or St in the material or spatial configurations, respectively, is a two-dimensional manifold in

the three-dimensional space 3 that can be parametrized in terms of two surface (curvilinear) coordinates ⇠̂↵. The

corresponding tangent vectors to the surface coordinate lines ⇠̂↵ are the covariant (natural) surface basis vectors Ĝ↵

and the surface deformation gradient rea dF̂ := ĝ↵ ⌦ Ĝ↵ with its inverse f̂ := Ĝ↵ ⌦ ĝ↵ possessing the properties

F̂ · f̂ = î and f̂ · F̂ = Î with Î and î being the surface identity tensors in the material and spatial configurations,

respectively. The surface contravariant vectors Ĝ↵ and ĝ↵ form a dual basis to the covariant (natural) basis Ĝ↵ and ĝ↵,

in the material and spatial configurations, respectively. That is Ĝ↵ := @⇠̂↵/@X̂ and ĝ↵ := @⇠̂↵/@x̂ such that Ĝ↵ ·Ĝ� = ��↵

and ĝ↵ · ĝ� = ��↵. Similarly to the bulk, we define the surface deformation gradient F̂ as the linear map between the

infinitesimal line element dX̂ 2 TS0 and dx̂ 2 TSt with dx̂ = F̂ · dX̂. In contrast to the bulk, the surface identities Î

and î are not equal since Î := Ĝ↵ ⌦ Ĝ↵ = I� N̂ ⌦ N̂ and î := ĝ↵ ⌦ ĝ↵ = i� n̂⌦ n̂ where N̂ and n̂ denote the unit vector

orthogonal to the surface in the material and spatial configurations, respectively. The ratios of area elements in the

spatial over the material configuration is defined by Ĵ, as Ĵ := da/dA which is the surface determinant of F̂ though,

in contrast to the bulk, F̂ is rank-deficient and thus, its determinant is non-standard.
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2.2. Generic framework accounting for elastocapillary

The objective of this section is to derive the governing equations of a continuum body accounting for surface

tension in a variationally consistent framework such that (i) it immediately allows for an elegant axi-symmetric for-

mulation, devoid of external contributions and (ii) it intrinsically results in governing equations in their (weak) integral

form directly suitable for computational implementation in that Young–Laplace equation does not explicitly appear

throughout the manuscript. This advantage is significant since the surface curvature and surface divergence operator

remain embedded in the framework without emerging in the derivations. In addition, the variational approach here

paves the way to extending the proposed framework to higher-gradient continua e.g. accounting for the flexural re-

sistance of the surface. In order to obtain the governing equations, the total energy functional is minimized. The

total energy functional  tot consists of the internal and external contributions denoted  int and  ext, respectively. To

minimize  tot, its first variation is set to zero as

 tot =  int +  ext , equilibrium ⌘ � tot .= 0 ) � tot = � int + � ext .= 0 . (2)

The (incremental) external energy here  ext is essentially minus (incremental) working. That is

� ext = ��W with �W =

Z

B0

b0 · �' dV +
Z

@B0

t0 · �' dA , (3)

in which W denotes working. Also, b0 and t0 are the external body force density and surface force density in the

material configuration, respectively. The arbitrary variation of motion, denoted as �', is a vector-valued test function

�' 2 H
1

0 (B0) that is vanishing where Dirichlet-type boundary conditions are imposed. This subtle detail plays a

crucial role in the current contribution in that it makes � ext identically vanish. More specifically, for the problem

of interest here, shown in Fig. 2, the external body forces are zero and therefore the first integral in Eq. (3) vanishes

identically. Thus, the workingW only depends on the external traction t0. Nonetheless, the second integral in Eq. (3)

vanishes too, since (i) �' is zero where displacements are prescribed on the two ends of the domain and (ii) t0 is zero

everywhere that a Neumann-type boundary condition is imposed. The latter immediately follows from the fact that

here, the surface tension is not treated on ad-hoc basis via an externally prescribed traction on the surface, but instead,

it is captured within the internal energy density of the surface. Henceforth, we impose � ext = 0 throughout the

derivations, and therefore we focus on the internal energy variation � int only. The internal energy  int is composed

of bulk and surface contributions. Let  denote the bulk free energy density per volume in the material configuration
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and  ̂ denote the surface free energy density per area in the spatial configuration. Therefore,  int reads

 int =

Z

B0

 dV +
Z

@B0

 ̂ dA . (4)

Therefore, from a variational perspective, equilibrium for the current problem reduces to

� int =

Z

B0

� dV +
Z

@B0

� ̂ dA ·
= 0 )

Z

B0

@ 

@'
· �' dV +

Z

@B0

@ ̂

@'
· �' dA ·

= 0 8�' 2H
1

0 (B0) . (5)

The arbitrary motion variations �' in the context of IGA can be expressed in their discretized form as �' = Ni �'i,

with Ni being the (NURBS) shape function associated with the control point i. Due to the arbitrariness of �'i, Eq. (5)

can be formally expressed as RI · �'I ·= 0 for all arbitrary �'I which immediately implies RI ·= 0 with RI = A Ri.

Here Ri the point-wise residual at point i associated with its global number I and A is the assembly operator. That is,

we seek for the solutions of

RI ·= 0 with RI :=
Z

B0

@ 

@'i dV +
Z

@B0

@ ̂

@'i dA . (6)

The residual vector is obviously composed of the residuals in the bulk and the residuals on the surface. Equation (6)

is the point of departure for the remaining discussions. Note that Eq. (6) is essentially a nonlinear system of equations

composed of DOFs relations, with DOFs being the number of degrees of freedom. For nonlinear problems at large

deformations, the deformation is computed incrementally. To solve the nonlinear system of equations (6), at each

increment, an iterative Newton–Raphson scheme is utilized. In doing so, the global residual R is set to zero at (the

end of) each increment. Therefore, the consistent linearization of the resulting system of equations at any iteration k,

reads

RI('k+1) ·= 0 and RI('k+1) = RI('k) + KIJ
���
k · �'

J
k
·
= 0 with KIJ =

@RI

@'J , (7)

where KIJ is the tangent sti↵ness at any 'k. Then the global deformation is updated at each iteration according to

'k+1 = 'k + �'k until the norm of the residual vector reaches zero, numerically speaking.

2.3. Plateau–Rayleigh instabilities

The procedure to capture P–R instabilities in the manuscript relies on an eigenvalues analysis. In doing so, at

each increment an eigenvalue analysis is carried out on the sti↵ness K. Plateau–Rayleigh instabilities occur as soon

as the sti↵ness matrix loses its positive-definiteness, which is equivalently captured when at least one eigenvalue of
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Figure 2: Geometry of the domain in the material (left) and spatial (right) configurations.

K becomes smaller or equal to zero. The eigenvector corresponding to the negative eigenvalue shows the associated

instability mode. Note that on the onset of P–R instability, we expect at least one eigenvalue to become negative

but we observe multiple negative eigenvalues as we progress further in the unstable regime. Figure 3 clearly shows

how the onset of P–R instability can be identified from the eigenvalues of the sti↵ness K, for any prescribed stretch

on the domain. For any prescribed stretch �, the critical value for (dimensionless) � := �/µR corresponds to the

first instance of observing an eigenvalue smaller or equal to zero, with � and µ being the surface tension and shear

modulus, respectively. The radius of the domain in the reference configuration is denoted R. Each point on the graph

shows the number of negative eigenvalues of K obtained via simulations corresponding to nearly incompressible neo-

Hookean hyperelastic solids, commonly studied in the literature on the subject. In this particular example, and for the

sake of clarity, we preclude post-bifurcation behavior by suppressing the perturbations. That is, we carry out a purely

perturbation-free eigenvalue analysis so that the computations can continue even in the unstable regime. Throughout

the stable regime, K remains symmetric and positive-definite and thus, all the eigenvalues of K are positive.

Having established the final format for the residual and the tangent sti↵ness, the last step is to set the free energy

densities  in the bulk and  ̂ on the surface. For the bulk free energy density  , however, various options are available

in literature. In particular, since this manuscript aims to study the influence of compressibility on P–R instability, we

investigate two options to portray a more complete picture. Two commonly used free energy densities for compressible

hyperelastic materials are

Quadratic :  (F) =
1
2
µ [ F : F � 3 � 2 log J ] +

1
2
�
⇥ 1

2 [J2 � 1] � log J
⇤
,

Logarithmic :  (F) =
1
2
µ [ F : F � 3 � 2 log J ] +

1
2
� log2 J ,

(8)

with the first and second Lamé parameters being � and µ, respectively. Obviously, the di↵erence amongst the energy
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Figure 3: Relationship between the eigenvalues of the sti↵ness K and the onset of P–R instability. For any prescribed stretch �, the critical value
for � := �/µR corresponds to the first instance of observing an eigenvalue smaller or equal to zero. Note that in this particular example, and for
the sake of clarity, we preclude post-bifurcation behavior via suppressing the perturbations. The simulations correspond to nearly incompressible
neo-Hookean hyperelastic solids, commonly studied in the literature on the subject.

densities is the penalty term in terms of J that resists to the volume change, and both energies render identical results

at the incompressibility limit. Figure 4 illustrates the behavior of the second term of both options (8). Table 1 and

Table 2 gather the free energy densities of interest together with their associated Piola stress P and tangent , wherein

the fourth-order tensors := I⌦ I, := F-t ⌦ F-1 and := F-t ⌦ F-t are defined to obtain more elegant tangents.

Table 1: The quadratic free energy density (8)1 together with its corresponding first and second derivatives with respect to F.

 (F) =
1
2
µ [ F : F � 3 � 2 log J ] +

1
2
�
⇥ 1

2 [J2 � 1] � log J
⇤
,

P :=
@ 

@F
= µ [F � F-t] +

1
2
� [J2 � 1] F-t ,

:=
@P
@F
= µ [ + ] � 1

2
� [J2 � 1] + � J2 .

While one can study various free energy densities in the bulk to investigate the influence of compressibility, the

surface free energy density is devoid of elasticity contributions and requires only to represent a constant surface

tension. As such, and since the surface free energy density per unit area in the current configuration is constant and

coincides with the surface tension �̂, the surface free energy density simply reads

 ̂ = �̂ Ĵ with �̂ : surface tension and Ĵ := D̂etF̂ = da/dA . (9)
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Figure 4: Comparing the penalty term of free energy densities (8) To have a meaningful comparison, µ = 0 is assumed for all the energies.

Table 2: The logarithmic free energy density (8)2 together with its corresponding first and second derivatives with respect to F.

 (F) =
1
2
µ [ F : F � 3 � 2 log J ] +

1
2
� log2 J ,

P :=
@ 

@F
= µ [F � F-t] + � log J F-t ,

:=
@P
@F
= µ [ + ] � � log J + � .

The corresponding surface Piola stress P̂ and its tangent ˆ read

 ̂ = �̂ Ĵ ) P̂ :=
@ ̂

@F̂
= �̂ Ĵ F̂-t ) ˆ :=

@P̂
@F̂

= �̂ Ĵ [ ˆ � ˆ ] , (10)

with ˆ := F̂-t ⌦ F̂-1 � [n̂⌦ n̂]⌦ [F̂-1 · F̂-t] and ˆ := F̂-t ⌦ F̂-t.

2.4. Isogeometric formulation and discretization

In this section, we provide a brief overview of b-splines, which are standard for smooth representation of geome-

tries in computer aided design and computer graphics software, and their implementation for bulk-boundary coupled

axisymmetric discretization using isogemetric finite element analysis (IGA). To define ith b-spline function Ni,p of

polynomial degree p, consider a non-decreasing set of real numbers in the knot vector ⌅={⇠1, ⇠2, . . . , ⇠n+p+1}, where
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n denotes the total number of basis functions. Using the know vector ⌅, b-spline basis functions are formed starting

with the lowest degree p = 0 (piecewise constants) [75, 76]

Ni,0(⇠) =

8>>>>>><
>>>>>>:

1 if ⇠i  ⇠ < ⇠i+1 ,

0 otherwise ,
(11)

and, the higher-order b-spline basis functions, i.e., with p > 0, are constructed using

Ni,p(⇠) =
⇠ � ⇠i

⇠i+p � ⇠i
Ni,p�1(⇠) +

⇠i+p+1 � ⇠
⇠i+p+1 � ⇠i+1

Ni+1,p�1(⇠) . (12)

A B-spline curve C of order p can be represented via linear combinations of Ni,p(⇠) with coe�cients stored in a matrix

Bi (of n⇥d), also referred to as the control points, using

C (⇠) =
nX

i=1

Ni,p(⇠)Bi (13)

in d. The control points in Bi are adopted in lieu of nodal coordinates in the standard finite element (FE) context.

However, b-splines are not interpolatory, whereas the nodal points (and fields) are generally interpolated in standard

FE. For practical application of boundary conditions in the numerical analysis, an interpolatory b-spline curve at the

ends is desired. To this end, we adopt open knot vectors and render physical domain with interpolated boundaries.

The continuity of the pth degree B-spline elements and their boundaries is of order p � 1, in the absence of repeated

knots in the knot vector, achieving the highest possible smoothness for a given polynomial degree. Further details can

be found in [76].

A b-spline surface can be constructed using the knot vector ⌅={⇠1, ⇠2, . . . , ⇠n+p+1} with the polynomial order p and

the knot vector H={⌘1, ⌘2, . . . , ⌘m+q+1} with the polynomial order q. The surface S (⇠, ⌘) is then represented as the

product of the univariate b-splines

S (⇠, ⌘) =
mX

j=1

nX

i=1

Ni,p(⇠)Nj,q(⌘)Bi, j , (14)

with the bidirectional control net Bi, j. Essential to the isogeometric analysis, the same b-spline basis functions are

used for the interpolation of the field variables, i.e., the bulk and the surface motion, ' and '̂, respectively. The
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interpolations of the displacement field can be written as

'h = Np
l (⇠b)'l in B (15)

'h = N̂p
m(⇠s)'m on @B , (16)

using the displacement field 'l at the lth bulk control point and 'm for the mth surface control point. Np
i is a b-spline

function of arbitrary degree p constructed from knot vectors defined in each parametric direction in two-dimensions.

The enforced two-dimensionality is due to the axisymmetric assumptions. The polynomial degrees p and the knot

vectors (parametric coordinates) of the bulk ⇠b = {⇠, ⌘} and of the surface ⇠s = {⇠} match at the boundary such

that Np⇥p
l (⇠b) = N̂p

l (⇠s) ⌦ N̂p
l (⇠s) making use of tensor product nature of multivariate b-splines. The (p+1) and

(p+1)⇥(q+1) Gauss integration points are used for boundary (axisymmetric curve) and bulk elements, respectively.

Remark on the advantages of IGA: Note that it is, in principle, possible to approach this problem using standard

FEM approaches such as the one adopted by Henann & Bertoldi [35] using Abaqus in combination with arclength

(Riks) method. We took a di↵erent path and implemented our own in-house code using isogeometric analysis due to

the various advantages that it provides. One advantage of IGA lies in its superior performance in approximating the

solution compared to the standard FEM due to its high-order regularity. This results in higher accuracy per-degrees-of-

freedom compared to FEM. Another advantage, when the domain is quasi-compressible, is that higher order elements

significantly reduce the volumetric locking issues, without recourse to the F-bar method for the underlying bulk

elements. Last but not least, one interesting example relevant to elastocapillary is accounting for flexural resistance of

the surface [41]. The calculation of surface curvature tensor requires solving higher order equations and demands at

least C1-continuity of the spatial discretization that can be readily achieved in IGA.

3. Results and discussions

For the incompressible limit, only volume preserving deformations in bulk are permissible, excluding the behav-

iors of a large class of compressible materials and their associated P–R instability, e.g., see [77] for compressible

behavior of hydrogels at relevant length-scales. The objective of this section is to quantify the role of compressiblity

on the onset and the post-bifurcation behaviors for the solid P–R instability. First, we carry out an in-depth instability

analysis of onset for the solid cylinder subjected to an increasing surface tension � and applied end-stretches �L in

Section 3.1. In this section, we present stability maps for stable-unstable behaviors considering two commonly used

compressible strain energy functional, logarithmic- and quadratic-type, detailed in Eq. (8), over a range of (instan-

taneous) Poisson’s ratios. Next, in Section 3.2, we focus on the post-instability behaviors and track the bifurcated
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branches after the onset using an arc-length-based numerical methodology. Although dynamic solutions [69] exist

capturing the post-instability behavior, the full equilibrium path with stable-unstable branches have not been pre-

sented before. Our results clearly show the discontinuous nature of the instability, requiring the boundary to relax so

as to follow the snap-back path.

Prior to and after the onset of the P–R instability, the deformations remain axisymmetric. The axial section of

the cylinder and the boundary conditions are shown in Fig. 2. The cylinder geometry has dimensions of R = 1

and L = 40. The end boundaries of the geometry is constrained in the longitudinal direction, but free to move in

the radial direction. We discretize this domain and its boundary with quadratic C1-continuous B-spline elements.

We first form the coarsest mesh, i.e., a single element, using the open knot vectors ⌅ = [0, 0, 0, 1, 1, 1] and H =

[0, 0, 0, 1, 1, 1] and the polynomial degrees p = q = 2. Then, we perform uniform knot insertions (h�refinement)

to obtain 25 ⇥ 1000 C1-continuous axisymmetric bulk elements. The surface is directly partitioned from the bulk

discretization with a matching curve parameterization. To this end, we construct 1000 C1-continuous axisymmetric

surface elements. In our simulations, the bulk material has the shear modulus µ = 1 and we define the (dimensionless)

elastocapillary number � := �/µR for later results. In the numerical simulations, depending on the study of interest,

we either apply surface tension � at fixed end-stretches or apply end-stretches at fixed surface tension.

3.1. E↵ect of compressibility on the onset of the solid P–R instability

In this section, we quantify the critical conditions for the mechanical stability of the compressible cylindrical

employing two di↵erent compressible strain energy functionals for various Poisson’s ratios. We first apply a pre-

stretch �L to the cylinder in the longitudinal direction. Then, the surface tension on the boundary is increased until

the onset of the instability. Figure 5 illustrates our numerical results pinpointing the critical surface tension � at end-

stretches �L 2 [0.6, 4] for the range of Poisson’s ratio ⌫ 2 [0, 0.499]. What stands out in this figure is the dominant

e↵ect of compressibility, i.e., both the Poisson’s ratio as well as the type of compressible constitutive relations. Toward

the incompressible limit, our results (e.g., for v = 0.499), as expected, approach the reported theoretical solution for

an incompressible solid cylinder [58] (with Lec/R = 40). This observation is valid for both strain energy densities of

logarithmic-type (Fig. 5A) and quadratic-type (Fig. 5B). As the Poisson’s ratio decreases, ⌫! 0, and the bulk becomes

increasingly compressible, the solid cylinder remains stable at large stretches. Interestingly, using the quadratic-type

strain energy model, we observe that the solid cylinder remains stable in parts where the simulations using logarithmic-

type strain energy predicts P–R instability. This emphasizes on the importance of the proper selection of the volumetric

part of the energy functional to study the P–R instability in compressible materials. At the compressible limit, both

logarithmic- and quadratic-type strain energies display a closely matching behavior. Closer inspection of Fig. 5 shows
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Figure 5: Stability maps obtained by increasing the surface tension, at fixed end-stretches, to the critical point where the P–R instability is detected
through an eigenvalue analysis. The critical curves are obtained for various Poisson’s ratios employing a logarithmic-type (A) and quadratic-type
(B) strain energy densities. The dashed (green) line is a closed-form solution, i.e., Eq. (39) in [59], for an incompressible cylinder domain.

that, for fully compressible cylinders, the solid P–R instability is suppressed for the applied end-stretches �L . 1 for

both logarithmic- and quadratic-type energy functional.

For each critical curve in Fig. 5, there exist a minimum critical elastocapillary number �, below which the cylin-

der remains stable independent of the applied overall stretch. There also exist a stretch �L that corresponds to the

minimum critical �. To this end, Fig. 6A&B illustrate the minimum critical � and the corresponding end-stretch �L,

respectively, over a range of compressibility, i.e., Poisson’s ratio, for both logarithmic- and quadratic-type strain

energy densities. For both energy types, we observe a decrease in the minimum critical � as the Poisson’s ra-
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Figure 6: The minimum points in each critical stability curve is determined over the range of compressibility. The shaded area corresponds to the
unstable P–R behavior. (A) Minimum critical elastocapillary number � for di↵erent Poisson’s ratios is illustrated. (B) The corresponding applied
stretch values can be compressive or tensile to achieve the minimum critical �.

tio decreases. This behavior can be considered as a destabilizing e↵ect of compressiblity. The minimum critical

� is located at (�L,�crit) = (2
1
3 ,
p

32) for a truly incompressible material, as predicted by weakly nonlinear sta-

bility analysis [58, 67]. Importantly, a sharp decrease in the critical � is observed in the quasi-compressible re-

gion where ⌫ 2 [0.4, 0.499]. For the quadratic-type energy, the sharp decrease further continues and it reaches a
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plateau at compressible regime (⌫ < 0.3). At the fully compressible limit, both strain energy types coincide at

(�L,�crit) ⇡ (0.64, 4.11). This is expected because the penalty term of free energy densities vanishes since the Lamé

parameter � = 0. Hence, the overall energy densities in Eq. (8) recover the same form for both the logarithmic- and

the quadratic-types. For the corresponding applied pre-stretches shown in Fig. 6B, we observe a steady decrease from

26% stretch at the incompressibility limit to 36% compression for at the fully compressible limit for both energy

density types.

Let us now consider the case where �L=1 (no applied-stretch) and study the stability of the compressible solid

cylinder subjected to an increasing surface tension. The stability map of the cylinder is illustrated in Fig. 7 for both

quadratic- and logarithmic type strain energies for various Poisson’s ratio. The critical curves divide the parameter
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Poisson’s ratio, ⌫
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Figure 7: Compressibility has a pronounced e↵ect on the onset of P–R instability. (A) The critical � over Poisson’s ratios ⌫ 2 [0, 0.499] is shown
for fixed boundaries, i.e., no-stretch case (�L=1). (B) The deformed geometry is plotted just before the instability initiates, i.e., at the onset. The
contraction in the lateral direction is due to the increasing surface tension. At the onset, the critical eigenvalue-eigenvector pair is obtained for the
minimum eigenvalue �eig ⇡ 10�12. This is a qualitatively representative behavior for all other critical points.

space into two distinct regions: stable and unstable (shaded area). Again, at the incompressibility limit, we approach

the theoretical solution of � = 6 reported in [15, 58]. As the domain becomes compressible, the critical � first

decreases reaching a minimum and then sharply increases. The results of this investigation show that compressibility

can have both stabilizing and destabilizing e↵ect on the onset of P–R instability at fixed stretches. Toward the fully

compressible regime, the required surface tension to trigger the P–R instability becomes far too large. This can be

explained by the fact that the P–R instability is due to a competition between the bulk and surface energies. The

surface tension applied on the boundary will deform the cylinder so as to minimize its surface area at fixed stretches

by shrinking the radius in the radial direction (see Fig. 7B). This deformation causes mainly a volumetric change in

the bulk. However, for fully compressible materials, the bulk shows no resistance against the surface-induced forces

and shrinks uniformly to a thinner cylinder so as to minimize the surface area. This explains why the P–R instability

is suppressed for fully compressible case at a fixed stretch. We have elucidated the influence of compressibility on the

17



onset of P–R instabilities. Moving forward, we illustrate the e↵ect of compressibility on the post-instability quantities.

3.2. Post-instability behavior of compressible P–R instability

So far our analysis has only determined the onset of the instability, resulting in critical curves shown in Figs. 5

to 7. In this section, we characterize the type of bifurcations and also quantify the evolution of the instability beyond

the critical points, from uniform cylinder geometry to the fully developed, beaded state. Recent theoretical stud-

ies [66] show that the solid P–R problem demonstrates a snap-through instability under increasing surface tension.

This behavior is associated with the softening of reaction forces, leading to non-convex force-displacement curves.

Similarly, we investigate the snap-back behavior of solid cylinders subjected to finite end-stretches at fixed surface

tension. To this end, the post-bifurcation analyses is challenged by the discontinuous (subcritical) characteristics of the

snap-back behavior and the simulation technique further requires a path-following nonlinear solution scheme, e.g., the

arc-length method. In this section, we combine our axisymmetric, surface-enriched isogeometric formulation with an

arclength solver employing the load parameter of applied end-stretch, �L. The path-following scheme first pinpoints

the bifurcation point at what overall end-stretch the onset of instability occurs. Then, using the critical eigenvector at

the onset, we use branch-switching to follow the equilibrium path [78]. Equipped with this e�cient, path-following

numerical scheme that can track stable-unstable states in the equilibrium path, in what follows, we will focus on the

post-instability behavior of solid P–R problem at fixed elastocapillary number �.

Figure 8A illustrates the critical curve for the Poisson’s ratio of ⌫ = 0.4 employing the quadratic-type strain energy

potential. In this stability diagram, the shaded area corresponds to the unstable state, where a beading formation is
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Figure 8: (A) The critical curve divides the domain into stable vs. unstable regions. The unstable domain is shown as shaded. The points
a � e corresponds to the simulations at fixed elastocapillary number � = 5. The points f gch are at constant overall stretch �L = 1. (B) The
three-dimensional deformed surface geometry, constructed from the axisymmetric solutions, are obtained at various stretch values at constant
elastocapillary number � = 5. The colorbar corresponds to the determinant of the surface deformation gradient.

observed in the post-bifurcation analysis. We present two possible scenarios. First, the points a�e in Fig. 8 correspond
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to the pre- and post-bifurcation behavior at constant elastocapillary number � = 5. Second, the points f gch correspond

to the simulation results at various elastocapillary values with fixed ends, i.e., no applied end-stretch �L=1.

The deformed geometry for both scenarios are shown in Fig. 8B, Figs. 9 and 10. The colormap in Figs. 9 and 10

Figure 9: Deformed shapes corresponding to the points abcde in Fig. 8. The amplitude of the cylinder-like beading remains constant under applied
stretch at the fixed elastocapillary number � = 5.

Figure 10: Deformed shapes corresponding to the points f gch in Fig. 8. The surface tension is increasing from f � g at fixed boundary conditions.
A cylinder-like beading forms, which is also observed in experiments using soft polymeric gels [15].

illustrates the normalized radial displacements uy/R. The following conclusions can be drawn from the present study.

As shown in Fig. 9, the amplitude of the P–R instability remain the same from b�d whereas the width of the cylinder-

like beading decreases with increasing end-stretch. Eventually, the cylinder-like beading formation vanishes and a

uniformly stretched cylinder is recovered (see Fig. 9e). The points a and e correspond to a homogeneous cylinder

geometry and both points lie outside of the shaded area, further verifying the phase diagram shown in Fig. 8. We

observe the separation of the cylinder into two distinct radii. This interesting result is attributed to a phase-separation-

like behavior [69]. The phase-separated radii (into rmax and rmin) and hence the amplitude (a = rmax�rmin) of the

cylinder-like beading remain constant at increasing end-stretches throughout the unstable domain (shaded area in

Fig. 8).

Let us now consider the second scenario, the points f gch are obtained at fixed domain length where the surface

is subjected to increasing surface tension (see Fig. 10). The deformations observed clearly indicates the energetic
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competition between the capillary forces and the hyperelasticity. The increase in surface tension deforms the cylinder,

resulting in experimentally observed cylinder-like beadings. This goemetry is also referred to as cylinders-on-a-string

(COAS) formations [68]. At vanishing shear modulus, e.g., the case of liquids, we expect the bulge to resemble a

spherical bead due to dominating surface tension.

The results of this investigation demonstrate a wide tunability of solid P–R instability characteristics (onset, am-

plitude, and width), achieved by varying the applied end-stretch and elastocapillary number �. Note that � can be

altered by exclusively varying the surface tension �, the shear modulus µ of the material, and the initial radius R of

the cylinder. The material behavior, in particular the type of the strain energy function, also plays a role in further

enriching the tunability of P–R characteristics. Although both strain energy types investigated displayed qualitatively

similar results (omitted for the sake of conciseness), the results obtained di↵ered quantitatively in the compressible

regime.

Next, we demonstrate the e↵ect of di↵erent compressible strain energies on the instability characteristics, specifi-

cally using the quadratic- and logarithmic-types in Fig. 11.

Figure 11AB illustrates the change in maximum and minimum radii of the cylinder undergoing shape changes

due to P–R instability for the quadratic-type and logarithmic-type strain energies, respectively. A non-monotonic

behavior in applied stretch �L is observed where, at times, the stretch is reversed and the domain is compressed so as

to follow the loading path. Hence, we expect, in experiments and dynamic solutions, the amplitude of the P–R waves

will snap to a finite value in an instance. The non-monoticity in loading is permitted in a path-following solution

scheme. Interested readers can refer to [78, 79] and the references therein. Notice that a displacement-controlled

solution strategy, in lieu of using the path-following scheme, is likely to lose numerical convergence just after the

onset and therefore fail to simulate this complex behavior. The loading paths, tracking the transient formation of

P–R instability, are illustrated for the logarithmic- (Fig. 11A) and quadratic-type (Fig. 11B) functional at a fixed

elastocapillary number � = 5 for the Poisson’s ratio ⌫ = 0.4. In our simulations, we first apply a pre-stretch of

�L = 0.6 to the cylinder and later on the surface tension is linearly increased to � = 5 on the boundary. In Fig. 11AB,

the arc-length load parameter �L monotonically increases until the first critical point (F) at state i. At this singularity

point, the critical eigenvector shown in Fig. 7B, corresponding to the zero eigenvalue within machine precision, favors

deforming the cylinder non-uniformly in the lateral direction. Hence, a secondary path branches o↵ the primary path

(shown in gray-dashed line in Fig. 11) at this critical point, resulting in an axisymmetric bulging deformations. The

primary path, corresponding to the uniform extension of the cylinder, becomes less favorable energetically. The path-

following algorithm switches to the secondary, yet still unstable state (dotted line), which is energetically preferred.

Proceeding the first critical point (F), the deformations snap-back at a minimum �L (•) at state ii and undergo a large
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Figure 11: The evolution of minimum and maximum radii (rmin and rmax) for simulations employing (A) quadratic and (B) logarithmic free energy
densities for ⌫ = 0.4. The deformed shapes are shown as insets for the limit points (ii) and (iii). The deformations are amplified in the lateral
direction by a factor of 10 for illustration purposes. For the bifurcation points (i) and (iv), the deformed shape is uniformly stretched cylinder. (C)
The evolution of amplitude for various elastocapillary number and di↵erent strain energy types. (D) The bifurcation point are located on the critical
curve whereas the limit points in the snap-back behavior are outside the critical curve.

amplitude growth forming a cylinder-like beading. Beyond this point, the path becomes stable and, surprisingly, the

maximum and minimum radii remain roughly constant even though the overall stretch is increasing. Finally, the P–R

instability eventually disappears when the applied stretch is large enough. Another snap-back behavior is observed

between states iii and iv. At state iv (F), a uniformly stretched cylinder is recovered. Further increase in stretch

contracts the radius of the cylinder without any bulging. The most interesting finding in Fig. 11 is that there is an

interval of applied end-stretches where two states, i.e., a uniformly stretched cylinder and a beaded cylinder, coexist.

Closer inspection of this figure reveals that the main deformations into cylinder-like bead formation take place during

the snap-back portions. This behavior is associated with subcritical behaviors and it is known that such instabilities

are highly sensitive to imperfections. Preexisting defects are expected to change the bifurcation-type instability into

a limit-point instability, which can be e�ciently tracked using the developed arclength method. A detailed study of

defect-sensitivity of elastic P–R instability is interesting and it will be presented in a separate work. For the sake of

conciseness, we restrict ourselves only to the homogeneous cylinder with perfect geometry.

Figure 11C illustrates the evolution of amplitude a calculated using a=rmax�rmin for various � values. The larger
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the elastocapillary number �, the larger the amplitude grows during P-R instability. Unique to solid P–R problem,

the amplitude remain constant between states Fi and Fiv. These states are located exactly on the critical curve

presented earlier in Fig. 9 for quadratic-type strain energy and v = 0.4. Figure 11D illustrates these critical points

F and the limit of snap-back behaviors (•) for both strain energy types. The bifurcation points F lie exactly on the

critical curves whereas the limit points are outside the unstable region. Hence, we expect a premature onset or delayed

disappearance under large end-stretches for the P–R in solid cylinders due to this metastable region. Notice that, as

the elastocapillary number increases, the gap between the bifurcation and snap-back limit points increases. Closer to

the minimum critical �, this gap is further reduced, i.e., snap-back behaviors with smaller intervals of unstable states

are observed.

4. Conclusion

A slender solid cylinder subjected to surface tension on the boundary snaps into cylinder-like-beaded pattern due

to an elastocapillary instability, i.e., the solid Plateau–Rayleigh instability. While a column of liquid breaks into

spherical beads to minimize its overall surface area, the bulk elasticity resist the surface forces in solid cylinders. For

surface stresses to deform the bulk, either the surface must be abundant or the bulk sti↵ness must be small enough to

lead to an elastocapillary length le = �/µ on the same order as the structural feature size. For thin fibers with shear

modulus ⇠ 10 Pa, the surface e↵ects should be considered in fibers with radius of O(1 mm). To model surface stresses

at such scales for soft fibers, we have implemented a surface-enriched isogeometric finite element framework at finite

strains. A generic, formulation based on kinematic-energetic coupling is presented for compressible hyperelastic

materials with boundaries in tension. Our framework is also capable of tracking structural stability and perform

post-bifurcation analysis under complex, non-monotonic loads. This study has shown that material compressibility

has significant e↵ects on the onset and amplitude growth of the solid P–R patterns. In particular, both the Poisson’s

ratio and the form of volumetric strain energy have an influence. We quantified the compressible P–R instability

characteristics comparing the two common type of compressible strain energies over a range of Poisson’s ratios.

Using a nonlinear path-following solution technique, we tracked the full equilibrium path including stable and unstable

states. After the onset, under increasing stretch the radii at both ends of the cylinder remained constant with a short

transition region. In potential experiments, we expect hysteresis in the loading and unloading path due to existence

of metastable regions. The presented axisymmetric elastocapillary formulation proves to be an e�cient and generic

tool to study elastocapillary instabilities in polymeric soft solids. Our next immediate plan is to extend the current

formulation to account for flexural resistance of the surface which is expected to introduce a bending length scale and

regularize the P–R patterns.

22



Acknowledgment

AJ gratefully acknowledges the support provided by the Scientific and Technological Research Council of Turkey
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