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Abstract

Adjacency polytopes appear naturally in the study of nonlinear emergent phe-
nomena in complex networks. The “PQ-type” adjacency polytope, denoted ∇PQ

G

and which is the focus of this work, encodes rich combinatorial information about
power-flow solutions in sparse power networks that are studied in electric engi-
neering. Of particular importance is the normalized volume of such an adjacency
polytope, which provides an upper bound on the number of distinct power-flow
solutions.

In this article we show that the problem of computing normalized volumes for
∇PQ
G can be rephrased as counting D(G)-draconian sequences where D(G) is a cer-

tain bipartite graph associated to the network. We prove recurrences for all networks
with connectivity at most 1 and, for 2-connected graphs under certain restrictions,
we give recurrences for subdividing an edge and taking the join of an edge with a
new vertex. Together, these recurrences imply a simple, non-recursive formula for
the normalized volume of ∇PQ

G when G is part of a large class of outerplanar graphs;
we conjecture that the formula holds for all outerplanar graphs. Explicit formulas
for several other (non-outerplanar) classes are given. Further, we identify several
important classes of graphs G which are planar but not outerplanar that are worth
additional study.

Mathematics Subject Classifications: 52B20, 05A15, 05C30
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1 Introduction and background

Let G = (V (G), E(G)) be a simple graph on [N ] = {1, . . . , N}. We use e1, . . . , eN to
denote the standard basis vectors of RN . The PQ-type adjacency polytope of G is defined
to be

∇PQ
G = conv{(ei, ej) ∈ R2N | ij ∈ E(G) or i = j}

where conv(S) denotes the convex hull of elements of S. Its normalized volume, defined
by NVol(∇PQ

G ) = dim(∇PQ
G )! vol(∇PQ

G ) where vol(P ) is the relative volume of P , is always
a positive integer.

The study of PQ-type adjacency polytopes was introduced in [4], motivated by the
engineering problem known as power-flow study (or load-flow study). This study models
the balance of electric power on a network of power generation or delivery “buses”. Of
particular importance are the alternating current (AC) variations, which produce non-
linear equations that are notoriously difficult to analyze. In the AC model for a power
network with buses labeled as 1, . . . , N , the voltage on each bus is expressed as a complex
variable vi = xi + iyi whose absolute value represents the voltage magnitude and whose
argument encodes the phase of the AC experienced on the bus. The interaction among
buses is modeled by a graph G whose nodes represent the buses and whose edges repre-
sent the junctions. Kirchhoff’s circuit laws give rise to an idealized balancing condition
for the power injected, power generated, and power consumed on each bus, which can be
expressed as the system of nonlinear equations

Si =
N∑
j=1

Y ijvivj for i = 2, . . . , N, (1)

where Si = Pi+ iQi is a complex representation of the real and reactive power, Yij, known
as nodal admittance, describes the connection between the i and j buses, and Y ij and
vj denote the complex conjugate of Yij and vj respectively. By dropping the conjugate
constraints between vi and vi, we obtained the algebraic version of this system, known as
the algebraic power-flow equations. It was shown that the maximum number of nontrivial
complex solutions this system has is bounded by the normalized volume of ∇PQ

G .
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We take care to call the adjacency polytopes within this paper PQ-type, since a
related construction is sometimes called an adjacency polytope; see, for example, [2, 6, 7].
This alternate construction, motivated by counting equilibrium solutions to a network of
interconnected oscillators, relies on a particular change of variables that is not available
here. In engineering terms, this alternate construction arises from PV-type buses.

In this article we show that the normalized volume of ∇PQ
G can be described in terms

of sequences of nonnegative integers related to the Dragon Marriage Problem: a variant
of Hall’s Matching Theorem that has far-reaching applications and spawned the study of
generalized permutohedra [13, 14]. We establish this relationship in Section 2 and show
how it can be immediately exploited to compute normalized volumes of some PQ-type
adjacency polytopes when G is nontrivial.

We explore this connection more deeply in Section 3 where we establish several recur-
rences. Namely, we provide recurrences for all graphs with connectivity at most 1, that is,
any graph that is disconnected or has a cut-vertex. These directly imply a simple formula
for NVol(∇PQ

G ) whenever G is a forest.
Sections 3.1 and 3.2 consider two operations on a graph: subdivision of an edge e and

replacing e with the join of e and a new vertex. Under certain conditions, these operations
lead to the following two recurrences that are stated simply but nontrivial to prove.

Subdivision recurrence (see Theorem 20). Let G be a 2-connected graph and let e = uv
be an edge. Denote by G : e the graph obtained by subdividing e. If degG(u) = 2 and the
neighbors of u are neighbors of each other, then

NVol(∇PQ
G:e) = 2 NVol(∇PQ

G ) + NVol(∇PQ
G\e).

Triangle recurrence (see Theorem 28). Let G be any connected graph and let e = uv
be an edge with degG(u) = 2. If degG(v) = 2 or if the neighbors of u are neighbors of
each other, then

NVol(∇PQ
G4e) = 3 NVol(∇PQ

G ).

Section 3 concludes by applying the recurrences to establish a closed, non-recursive
formula for NVol(∇PQ

G ) for a large class of outerplanar graphs; we conjecture that this
formula holds for all outerplanar graphs. The final section addresses several classes of
graphs which are planar but not outerplanar. First, we give results for a complete bipartite
graph where one partite set has just two elements. Then we consider the classes of wheel
graphs and series-parallel graphs, which are natural points of further study and will likely
require a refinement of the techniques within this article or alternate techniques altogether.

2 Notation, background, and translating to draconian sequences

Before we prove our results, we will establish assorted notation that will be needed
throughout this work. Additional notation will be introduced as needed. First, if e is
an edge of G with endpoints u and v, we will write e = uv or e = vu whenever possible.
When additional clarity is helpful we may alternately write e = {u, v} or e = {v, u}.
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If X ⊆ V (G), then we use G − X to denote the graph obtained from deleting the
vertices of X as well as any edge that is incident to some vertex in X. If X = {v}, then
we will just write G− v. Similarly, if S is a set of edges, then we use G \ S to denote the
graph with the edges in S deleted; if S = {e}, then we just write G − e. If X ⊆ V (G),
then we use G[X] to denote the subgraph of G induced by X. Lastly, if H is a graph,
then we use G ∨ H to denote the join of G and H, that is, the graph with vertex set
V (G) ∪ V (H) and edge set

E(G) ∪ E(H) ∪ {uv | u ∈ V (G), v ∈ V (H)}.

For a positive integers M,N , let KN denote the complete graph on [N ] and let KM,N

denote the complete bipartite graph with partite sets [M ] and [N ] = {1, . . . , N}. Let
NG(v) denote the set of vertices of G adjacent to v. Keeping this notation in mind, we
may now begin in earnest.

In [14], Postnikov investigated the Dragon Marriage Problem, providing a generaliza-
tion of Hall’s Matching Theorem for bipartite graphs. In the Dragon Marriage Problem,
a small medieval village is home to n grooms and n+ 1 brides, some pairs of whom would
form compatible marriages. Suppose we know all pairs of compatible grooms and brides.
One day, a dragon arrives in the village and kidnaps a bride. What compatibility condi-
tions among the original set of grooms and brides will guarantee that those who remain
can still be entirely paired by compatible marriages? In graph-theoretic terms, and more
generally, consider an X, Y -bigraph G such that |Y | = |X| + 1. What are necessary and
sufficient conditions on G so that G − y has a perfect matching regardless of choice of
y ∈ Y ? The answer relies on the following.

Definition 1. Let G ⊆ KN,N . Call (a1, . . . , aN) ∈ ZN>0 a G-draconian sequence if
∑
ai =

N − 1 and, for any 1 6 i1 < i2 < · · · < ik 6 N ,

ai1 + · · ·+ aik <

∣∣∣∣∣
k⋃
j=1

NG(ij)

∣∣∣∣∣ . (2)

We will say that a sequence satisfying (2) satisfies the G-draconian inequality correspond-
ing to i1, . . . , ik.

Postnikov proved [14, Proposition 5.4 and Definition 9.2] that a matching that covers
X exists exactly when a G-draconian sequence exists. He then goes on to compute volumes
of certain polyhedra as sums over the set of G-draconian sequences. At the moment, it
may be completely unclear how draconian sequences are useful to us; the rest of this
section is dedicated to clarifying the connection.

Definition 2. Given a graph G ⊆ KM,N , let QG denote the root polytope

QG = conv{ei − ej | {i, j} ∈ E(G)} ⊆ RM × RN ,

where RN denotes the real vector space with standard basis vectors e1, . . . , eN .

the electronic journal of combinatorics 29(1) (2022), #P1.61 4



1 2

3

4
1

2

3

4

1

2

3

4

Figure 1: A graph G, left, and its corresponding bipartite graph D(G), right.

It turns out that we can describe ∇PQ
G as a root polytope for an appropriate choice of

graph.

Definition 3. Let G be a simple graph on [N ]. Define D(G) to be the subgraph of KN,N

with edges {i, i} for each i ∈ [N ] and {i, j} and {j, i} for each edge ij in G.

As an example, let G be the graph on [4] with edges 12, 23, 34, 24. Then D(G) is the
bipartite graph with vertices {1, 2, 3, 4, 1, 2, 3, 4} and edges 11, 12, 21, 22, 23, 24, 32, 33,
34, 42, 43, and 44. See Figure 1 for an illustration.

Identifying ei in RN with −eN+i in R2N is a unimodular equivalence; thus, we have
the following simple but important result.

Lemma 4. For all G, ∇PQ
G is unimodularly equivalent to QD(G).

We now list two more theorems from [14]. In the first,
∑

denotes the Minkowski sum
of polytopes and, given S ⊆ [N ], ∆S = conv{ei | i ∈ S}. Also, for a graph G on [N ], set

PD(G) =
N∑
i=1

∆NG(i)∪{i} ⊆ RN .

It is also written to reflect our particular context and does not quite capture the full
strength of the original statement. These two theorems are the last pieces needed to
prove the main result of this section: Theorem 8.

Theorem 5 ([14, Theorem 12.2]). Let G be a graph on [N ] for which D(G) is connected
and let

P−D(G) =
{
x ∈ RN | x+ ∆[N ] ⊆ PD(G)

}
.

Then
NVol(QD(G)) = |P−D(G) ∩ ZN |.

As written, Theorem 5 relies on D(G) being connected. Fortunately, the connectedness
of G is equivalent to the connectedness of D(G). We will use this fact occasionally so we
present it as a lemma, although its proof is straightforward enough that we omit it.

Lemma 6. For any simple graph G, G is connected if and only if D(G) is connected.
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Since we are primarily working with D(G) rather than G directly, we let D(G) denote
the set of D(G)-draconian sequences.

Theorem 7 ([14, Theorem 11.3]). Let G be any graph. Then |P−D(G) ∩ ZN | = |D(G)|.

Theorem 8. For any connected graph G on [N ], NVol(∇PQ
G ) = |D(G)|.

Proof. Lemma 6 assures us that D(G) is connected. By Lemma 4, we know NVol(∇PQ
G ) =

NVol(QD(G)). Applying Theorem 5 and Theorem 7 completes the proof.

To illustrate, let G be the graph on [4] with edges 12, 23, and 24. Here, we have
ND(G)(1) = {1, 2}, ND(G)(2) = {1, 2, 3, 4}, ND(G)(3) = {2, 3} and ND(G)(4) = {2, 4}.
Theorem 8 tells us that NVol(∇PQ

G ) = 8 since

D(G) ={(0, 3, 0, 0), (0, 2, 0, 1), (1, 1, 1, 0), (1, 1, 0, 1),

(1, 0, 1, 1), (0, 1, 1, 1), (0, 2, 1, 0), (1, 2, 0, 0)}.

It will be very helpful for us to explicitly state when a sequence is D(G)-draconian.
The main difference is recognizing that for every vertex i of G, degD(G)(i) = 1 + degG(i).

Definition (Definition 1, rephrased). Let G be a graph on [N ]. Call (a1, . . . , aN) ∈ ZN>0

a D(G)-draconian sequence if
∑
ai = N − 1 and, for any 1 6 i1 < · · · < ik 6 N ,

ai1 + · · ·+ aik <

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ =

∣∣∣∣∣{i1, . . . , ik} ∪
(

k⋃
j=1

NG(ij)

)∣∣∣∣∣
This translates our computation of normalized volume to a purely combinatorial com-

putation. The following simple observation will also be helpful at several points when
proving the results in Section 3.

Remark 9. The normalized volume of ∇PQ
G is invariant under permutation of vertices.

We now give a first nontrivial application of Theorem 8 to an infinite class of graphs.

Proposition 10. Let N > 2 and let M be any matching of size k in KN . Then

NVol(∇PQ
KN\M) =

(
2(N − 1)

N − 1

)
− 2k.

Proof. Note that since N > 2, KN \M is connected. First consider k = 0. The D(KN)-
draconian sequences are the weak compositions of N − 1 into N parts, of which there are(
2(N−1)
N−1

)
. When k > 0, the deletion of each edge uv in M prohibits two compositions:

those whose entries are all 0 except for one, which is N − 1 and located at position u or
v.

Proposition 10 refers to a very specific class of graphs. The next section proves results
that allow for much more flexibility.
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3 Draconian recurrences

One of the main purposes of this article is to establish several recurrences for NVol(∇PQ
G ),

using what we collectively call draconian recurrences. Certain specific recurrences will be
given their own names as we encounter them. For a simple first situation we consider the
disjoint union of two graphs G and H, which we denote G + H. Since Theorem 8 only
applies to connected graphs, we study their adjacency polytopes directly.

If P ⊆ Rn and Q ⊆ Rm are polytopes, each containing the origins 0n, 0m respectively,
then their free sum is

P ⊕Q = conv{(P × 0m) ∪ (0n ×Q)} ⊆ Rn+m.

When P and Q are lattice polytopes, there is a convenient product formula we may invoke.

Theorem 11 ([5, Theorem 2]). Given full-dimensional convex polytopes P ⊆ Rn and
Q ⊆ Rm, if both P and Q contain the origin of their respective ambient spaces, then

NVol(P ⊕Q) = NVol(P ) NVol(Q).

While Theorem 11 insists that P and Q are full-dimensional, we may replace them
with unimodularly equivalent polytopes P ′ ⊆ Rn′ ∼= aff(P ) and Q′ ⊆ Rm′ ∼= aff(P ).
Since unimodular equivalence preserves normalized volume, the conclusion of Theorem 11
remains true. This gives us the last piece we need to prove the following.

Proposition 12. If G and H are any two graphs, then

NVol(∇PQ
G+H) = NVol(∇PQ

G ) NVol(∇PQ
H ).

Proof. Let |V (G)| = M and |V (H)| = N . First consider when M = 1 or N = 1. Without
loss of generality we may assume N = 1 and that the vertices of G + H are labeled so
that the isolated vertex from H is labeled M + 1. This means, in particular, that ∇PQ

H

consists of a single point, hence NVol(∇PQ
H ) = 1.

Let A be the matrix whose columns are the vertices of ∇PQ
G . Partition A as

A =

[
A1

A2

]
where A1 consists of the first M rows of A and A2 consists of the last M rows of A. The
matrix of vertices of ∇PQ

G+H can then be written as

B =


A1 0M×1

01×` 1
A2 0M×1

01×` 1


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where 0k×n denotes the k × n all-zeros matrix and ` is the number of vertices of ∇PQ
G . It

is clear that there is a unimodular transformation f for which

f(B) =


A1 0M×1

01×` 0
A2 0M×1

01×` 1

 .
Let π(f(B)) be the projection that drops row M + 1 of f(B), that is,

π(f(B)) =

 A1 0M×1
A2 0M×1

01×` 1

 .
We now recognize π(f(B)) as a pyramid over∇PQ

G . It is well-known that a lattice polytope
and its pyramid have the same normalized volume (say, by implementing [1, Theorem
2.4, Corollary 3.24]). Since f is unimodular and since π is a transformation providing a
bijection between the lattices aff(f(B)) ∩ Z2(M+1) and aff(π(f(B))) ∩ Z2M+1, we have

NVol(∇PQ
G+H) = NVol(π(f(B))) = NVol(∇PQ

G ) = NVol(∇PQ
G ) NVol(∇PQ

H ).

This proves the case of M = 1 or N = 1.
Now assume M,N > 2. If (x1, . . . , x2M) ∈ ∇PQ

G , then, by construction,

M∑
i=1

xi = 1 and
2M∑

i=M+1

xi = 1,

and similar is true for (y1, . . . , y2N) ∈ ∇PQ
H . It follows that the polytopes

P = {(x2, . . . , xM , xM+2, . . . , x2M) | (x1, . . . , x2M) ∈ ∇PQ
G }

and
Q = {(y2, . . . , yN , yN+2, . . . , y2N) | (y1, . . . , y2N) ∈ ∇PQ

H }

are projections that are unimodularly equivalent to ∇PQ
G and ∇PQ

H , respectively. Thus,
NVol(∇PQ

G ) = NVol(P ) and NVol(∇PQ
H ) = NVol(Q). Here, P and Q contain the origins

of their respective ambient spaces, so

NVol(P ⊕Q) = NVol(P ) NVol(Q) = NVol(∇PQ
G ) NVol(∇PQ

H ).

Label the vertices of G + H using [M + N ] by adding M to every vertex label of H.
Let f : R2M+2N → R2M+2N be the map sending (x1, . . . , x2M+2N) to (xσ(1), . . . , xσ(2M+2N))
where

σ(i) =


i if i 6M or i > 2M +N + 1

i+M if M + 1 6 i 6M +N

i−N if M +N + 1 6 i 6 2M +N.
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Since f only permutes coordinates it is a unimodular transformation. Moreover, the
projection of f(∇PQ

G+H) obtained from dropping the first, (M + 1)th, (2M + 1)th, and

(2M +N)th coordinates is a lattice-preserving transformation sending ∇PQ
G+H onto P ⊕Q.

Therefore,
NVol(∇PQ

G+H) = NVol(f(∇PQ
G+H))

= NVol(P ⊕Q)

= NVol(P ) NVol(Q)

= NVol(∇PQ
G ) NVol(∇PQ

H ),

proving the result.

In light of Proposition 12, we will focus for the rest of this section on graphs that are
connected unless explicitly stated otherwise. Restricting to when G is connected allows
us to use Theorem 8 and therefore we study the sets D(G) directly rather than relying
on properties of their polytopes.

Recall that a graph G is k-connected if for any set X of vertices, |X| < k, the subgraph
G −X is connected. A cut-vertex (respectively, cut-edge) of G is a vertex (respectively,
edge) whose deletion from G increases the number of components. A block of a graph
G is an inclusion-maximal connected subgraph of G with no cut-vertex. Note that a
block of a simple graph G may be an isolated vertex, a cut-edge, or an inclusion-maximal
2-connected subgraph of G.

Theorem 13. Suppose G is a connected graph with cut-vertex v and B is a block con-
taining v. Setting B′ = G[(V (G) \ V (B)) ∪ {v}] we have

NVol(∇PQ
G ) = NVol(∇PQ

B ) NVol(∇PQ
B′ ).

Proof. By Remark 9 we may assume without loss of generality that the cut-vertex is 1,
that V (B) = [M ], and that V (B′) = {1,M + 1, . . . , N}. We claim that the map

f : D(B)×D(B′)→ D(G)

which sends
(
(c1, c2, . . . , cM), (c′1, c

′
M+1, . . . , c

′
N)
)

to

(d1, . . . , dN) = (c1 + c′1, c2, . . . , cM , c
′
M+1, . . . , c

′
N)

is a well-defined bijection.
For notational convenience set c = (c1, c2, . . . , cM) and c′ = (c′1, c

′
M+1, . . . , c

′
N). Since

c ∈ D(B) and c′ ∈ D(B′), we know
∑
ci = M − 1 and

∑
c′i = N −M . Thus, the sum of

entries in f(c, c′) is N − 1, one of the requirements for being D(G)-draconian. Now pick
any sequence 1 6 i1 < · · · < ik 6 N . If ik < M or M < i1, then the corresponding D(G)-
draconian inequality automatically holds. So, suppose there is some positive 1 6 ` < k
for which

i1 < · · · < i` 6M < i`+1 < · · · < ik.
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If 1 < i1, then

di1 + · · ·+ dij = ci1 + · · ·+ ci` + c′i`+1 + · · ·+ c′k

<

∣∣∣∣∣⋃̀
j=1

ND(B)(ij)

∣∣∣∣∣+

∣∣∣∣∣
k⋃

j=`+1

ND(B′)(ij)

∣∣∣∣∣− 1.

Since B and B′ share just a single vertex, we have that∣∣∣∣∣⋃̀
j=1

ND(B)(ij)

∣∣∣∣∣+

∣∣∣∣∣
k⋃

j=`+1

ND(B′)(ij)

∣∣∣∣∣− 1 6

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
Chaining these inequalities together, the D(G)-draconian inequality holds. A similar
argument holds if 1 = i1, only here we explicitly write di1 = c1 + c′1 and proceed as before.
In both cases the D(G)-draconian inequality holds, therefore f(c, c′) ∈ D(G).

Showing that f is injective is brief and straightforward, so we omit the details. What
requires slightly more work is showing that f is surjective. Let d = (d1, . . . , dN) ∈ D(G).
We claim that d = f(c, c′) where

c =

(
M − 1−

M∑
i=2

di, d2, . . . , dM

)
and c′ =

(
N −M −

N∑
j=M+1

dj, dM+1, . . . , dN

)
and c ∈ D(B), c′ ∈ D(B′). For notational convenience, we set

c1 = M − 1−
M∑
i=2

di and c′1 = N −M −
N∑

j=M+1

dj.

Since it is clear that d = f(c, c′), the majority of the work will be in showing that c ∈ D(B)
and c′ ∈ D(B′). The procedure is analogous for both, so we will only give the details for
showing c ∈ D(B).

By construction, the sum of entries in c is M − 1. Every inequality of the form

di1 + · · ·+ dik <

∣∣∣∣∣
k⋃
j=1

ND(B)(ij)

∣∣∣∣∣ (3)

with 1 < i1 < · · · < ik 6 M instantly holds since the neighbors of 2, . . . ,M are the same
in D(G) and D(B). It is also clear that 0 6 c1 since, otherwise, d2 + · · · + dM > M − 1,
which directly contradicts (3).

Now consider a sum of a subsequence of c of the form

c1 + di1 + · · ·+ dik .

By way of contradiction, suppose that this does not satisfy the corresponding D(B)-
draconian inequality, that is,

c1 + di1 + · · ·+ dik >

∣∣∣∣∣ND(B)(1) ∪

(
k⋃
j=1

ND(B)(ij)

)∣∣∣∣∣ .
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Since 1 < i1 < ik 6M , this inequality may be rewritten

c1 + di1 + · · ·+ dik >

∣∣∣∣∣ND(B)(1) ∪

(
k⋃
j=1

ND(G)(ij)

)∣∣∣∣∣ . (4)

We also now know that

c′1 + dM+1 + dM+2 + · · ·+ dN = N −M. (5)

Adding the corresponding sides of (4) and (5) and remembering that c1 + c′1 = d1 results
in

d1 +
k∑
j=1

dij +
N∑

r=M+1

dr >

∣∣∣∣∣ND(B)(1) ∪

(
k⋃
j=1

ND(G)(ij)

)∣∣∣∣∣+N −M.

Using the fact that B′ contains N −M + 1 vertices,

d1 +
k∑
j=1

dij +
N∑

r=M+1

dr >

∣∣∣∣∣ND(B)(1) ∪

(
k⋃
j=1

ND(G)(ij)

)∣∣∣∣∣+

∣∣∣∣∣
N⋃

r=M+1

ND(G)(r)

∣∣∣∣∣− 1.

Combining the first two summands on the right side counts the vertex 1 twice, resulting
in

d1 +
k∑
j=1

dij +
N∑

r=M+1

dr >

∣∣∣∣∣ND(B)(1) ∪

(
k⋃
j=1

ND(G)(ij)

)
∪

(
N⋃

r=M+1

ND(G)(r)

)∣∣∣∣∣ .
which is a contradiction to d being D(G)-draconian. Therefore the D(B)-draconian in-
equalities for c all hold, and c ∈ D(B). An analogous argument shows c′ ∈ D(B′), proving
f is a bijection. This implies |D(B)||D(B′)| = |D(G)|; applying Theorem 8 completes the
proof.

The next result follows quickly from induction and the recurrences proven thus far.

Corollary 14. If F is a forest on N vertices with k connected components, then we have
NVol(∇PQ

F ) = 2N−k.

Interestingly, Corollary 14 implies that any two trees with the same number of edges
will produce adjacency polytopes with the same normalized volume. This does not happen
for connected graphs in general: as we will show in Example 21, NVol(∇PQ

C3
) = 6, which is

not the volume obtained from a path with three edges. Moreover, even though two trees
with the same number of vertices produce adjacency polytopes with equal normalized
volumes, the polytopes themselves are not combinatorially equivalent. Recall that the
f -vector of a polytope P is the vector (f−1, f0, . . . , fdimP ) where fi is the number of
i-dimensional faces of P , using the convention f−1 = 1.
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Example 15. Let G1 and G2 be graphs on [4]. Let E(G1) = {12, 23, 34} and E(G2) =
{12, 13, 14}. One may verify the that the f -vector of ∇PQ

G1
is

(1, 10, 39, 77, 82, 46, 12, 1)

and the f -vector of ∇PQ
G2

is
(1, 10, 39, 78, 86, 51, 14, 1).

Thus the two polytopes are not combinatorially equivalent even though Theorem 8 guar-
antees that their normalized volumes are both 8.

Through the recurrences established so far, we may reduce our work to considering
only 2-connected graphs.

3.1 The subdivision recurrence

Given e ∈ E(G) let G : e denote the graph obtained by subdividing e. Since we are using
the convention V (G) = [N ], we will always assume that V (G : e) = [N + 1]. The main
result of this subsection is Theorem 20, which gives a recurrence for NVol(∇PQ

G:e) under
certain conditions. Establishing the recurrence requires multiple lemmas that have similar
flavors but are distinct enough to warrant presenting their proofs.

The next three lemmas describe how to produce D(G : e)-draconian sequences from
D(G)-draconian sequences and D(G\ e)-draconian sequences. We use the notation A]B
to denote the disjoint union of the sets A and B.

Lemma 16. Let G be any connected graph on [N ] and let e = uv be an edge. If c ∈ D(G),
then α(c) ∈ D(G : e) where α(c) = (c, 1). Moreover, α is an injection.

Proof. Let c ∈ D(G). By Remark 9 we may assume that e = {N − 1, N}. Showing that
α is an injection is routine, so we focus mainly on showing α(c) ∈ D(G : e).

Let c = (c1, . . . , cN). Since c1 + · · ·+ cN = N − 1, the sum of entries of α(c) is N . By
construction, ND(G)(i) = ND(G:e)(i) for i = 1, . . . , N − 2,

ND(G:e)(N − 1) =
(
ND(G)(N − 1) \ {N}

)
] {N + 1}

and
ND(G:e)(N) =

(
ND(G)(N) \ {N − 1}

)
] {N + 1}.

Pick a sequence 1 6 i1 < · · · < ik 6 N + 1. There are two cases to consider:

1. {N − 1, N,N + 1} 6⊆
⋃k
j=1ND(G:e)(ij) and

2. {N − 1, N,N + 1} ⊆
⋃k
j=1ND(G:e)(ij).

In the first case, we can deduce two things: that ik 6= N + 1 and that if N − 1 is one of
the indices i1, . . . , ik, then no other neighbor of N in G is one of the indices i1, . . . , ik (and
vice versa). Therefore, ∣∣∣∣∣

k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣
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and

ci1 + · · ·+ cik <

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
In the second case, if ik < N + 1, we immediately get

ci1 + · · ·+ cik <

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ <
∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
Otherwise, ik = N + 1 and∣∣∣∣∣

k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ >
∣∣∣∣∣{N + 1} ]

k−1⋃
j=1

ND(G)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k−1⋃
j=1

ND(G)(ij)

∣∣∣∣∣+ 1.

This time, we get

ci1 + · · ·+ cik = ci1 + · · ·+ cik−1
+ 1 <

∣∣∣∣∣
k−1⋃
j=1

ND(G)(ij)

∣∣∣∣∣+ 1 6

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
Since each case results in satisfying the D(G : e)-draconian inequalities, we have shown
that α(c) ∈ D(G : e).

Lemma 17. Let G be a 2-connected graph and let e = uv be any edge. If c ∈ D(G \ e),
then β(c) ∈ D(G : e) where β(c) = α(c) + eu − eN+1. Moreover, β is an injection.

Proof. Arguing that β is injective is routine, so its details are omitted. For what remains,
by Remark 9 we may assume that e = {N − 1, N}. We then want to show that, if
c = (c1, . . . , cN) ∈ D(G \ e), then

β(c) = (c1, . . . , cN−2, cN−1 + 1, cN , 0) ∈ D(G : e).

Note that, by Menger’s theorem and the fact that G is 2-connected, c exists since G \ e
is connected.

Set β(c) = (β1, . . . , βN+1). Let 1 6 i1 < · · · < ik 6 N + 1 and set ` = k if ik < N + 1
and ` = k − 1 if ik = N + 1. If N − 1 6= ij for any j, then

βi1 + · · ·+ βik = ci1 + · · ·+ ci` <

∣∣∣∣∣⋃̀
j=1

ND(G\e)(ij)

∣∣∣∣∣ 6
∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
Otherwise, N − 1 = ij for some j. In this case,∣∣∣∣∣⋃̀

j=1

ND(G\e)(ij)

∣∣∣∣∣ =

∣∣∣∣∣⋃̀
j=1

ND(G:e)(ij)

∣∣∣∣∣− 1 6

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣− 1.
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Together we have
βi1 + · · ·+ βik = ci1 + · · ·+ ci` + 1

<

∣∣∣∣∣⋃̀
j=1

ND(G\e)(ij)

∣∣∣∣∣+ 1

6

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ ,
and the D(G : e)-draconian inequality holds. Therefore β(c) ∈ D(G : e).

Lemma 18. Let G be a 2-connected graph with an edge e = uv such that degG(u) = 2
and the neighbors of u are neighbors of each other. If c ∈ D(G), then γ(c) ∈ D(G : e)
where γ(c) is formed by the following rule. Set γ′(c) = α(c)− eu + eN+1.

1. If c /∈ D(G \ e), then

(a) if γ′(c) ∈ D(G : e), then set γ(c) = γ′(c).

(b) If γ′(c) /∈ D(G : e), then set γ(c) = α(c) + eu − eN+1.

2. If c ∈ D(G \ e), then

(a) if γ′(c) ∈ D(G : e), then set γ(c) = γ′(c).

(b) If γ′(c) /∈ D(G : e), then set γ(c) = α(c) + ev − eN+1.

Additionally, γ is an injection.

Proof. As usual, Remark 9 allows us to assume e = {N−1, N} and degG(N−1) = 2. This
allows us to more specifically rewrite γ as follows: set γ′(c) = (c1, . . . , cN−2, cN−1−1, cN , 2).

1. If c /∈ D(G \ e), then

(a) if γ′(c) ∈ D(G : e), then set γ(c) = γ′(c).

(b) If γ′(c) /∈ D(G : e), then set γ(c) = (c1, . . . , cN−2, cN−1 + 1, cN , 0).

2. If c ∈ D(G \ e), then

(a) if γ′(c) ∈ D(G : e), then set γ(c) = γ′(c).

(b) If γ′(c) /∈ D(G : e), then set γ(c) = (c1, . . . , cN−1, cN + 1, 0).

Throughout the proof we will use the notation

γ′(c) = (γ′1, . . . , γ
′
N+1) and γ(c) = (γ1, . . . , γN+1).

First suppose c /∈ D(G \ e) and γ′(c) /∈ D(G : e), so that γ(c) = (c1, . . . , cN−2, cN−1 +
1, cN , 0). This places us in case 1(b). Let S be the set of all c ∈ D(G) satisfying these
conditions. To show that γ(c) is D(G : e)-draconian we first show that cN−1 6 1.
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Partition S into disjoint subsets S0 = {c ∈ S | cN−1 = 0} and S> = {c ∈ S | cN−1 >
0}. If c ∈ S0, then clearly c satisfies cN−1 6 1. For c ∈ S>, since cN−1 > 0 we know γ′i > 0
for all i, hence there must be some sequence 1 6 i1 < · · · < ik 6 N + 1 for which γ′(c)
violates the corresponding D(G : e)-draconian inequality. In fact, such a sequence cannot
contain both N − 1 and N + 1, since, otherwise, the proof of Lemma 16 implies

γ′i1 + · · ·+ γ′ik = ci1 + · · ·+ cik−1
+ 1 <

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣
and therefore the D(G : e)-draconian inequality corresponding to i1 < · · · < ik is satisfied.
Similarly, if ik < N + 1, then

γ′i1 + · · ·+ γ′ik 6 ci1 + · · ·+ cik ,

and the corresponding D(G : e)-draconian inequality is satisfied again due to the proof of
Lemma 16. Hence, any violation of a D(G : e)-draconian inequality by γ′(c) with c ∈ S>
requires ik = N + 1 and ij 6= N − 1 for any j < k.

Since degG(N − 1) = 2, and since we are assuming cN−1 > 0, we only need to show
that cN−1 6= 2. If it were possible that cN−1 = 2, then for any sequence 1 6 i1 < · · · <
ik−1 < ik = N + 1 not containing N − 1, we would have

γ′i1 + · · ·+ γ′ik = ci1 + · · ·+ cik−1
+ 2

= ci1 + · · ·+ cik−1
+ cN−1

<

∣∣∣∣∣
(
k−1⋃
j=1

ND(G)(ij)

)
∪ND(G)(N − 1)

∣∣∣∣∣ .
Notice that the set

T =

(
k−1⋃
j=1

ND(G)(ij)

)
∪ND(G)(N − 1)

contains both N and N − 1. On the other hand,

k⋃
j=1

ND(G:e)(ij)

contains N + 1 and all elements of T with the potential exception of the vertex in D(G :e)
corresponding to the neighbor of N − 1 other than N + 1, which is unique since we have
assumed degG(N − 1) = 2. From this we conclude

γ′i1 + · · ·+ γ′ik < |T | 6

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
Since we have verified that all other D(G : e)-draconian inequalities hold for γ′(c), this
would imply γ′(c) is a D(G : e)-draconian sequence, which is a contradiction. Therefore
cN−1 = 1.
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The remainder of our argument in establishing 1(b) applies to all elements of S.
Consider a sum of the form γi1 + · · ·+ γik with 1 6 i1 < · · · < ik 6 N + 1. If ik < N − 1,
then γij = cij and ND(G)(ij) = ND(G:e)(ij) for each j = 1, . . . , k, so that

γi1 + · · ·+ γik = ci1 + · · ·+ cik <

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
If ik = N − 1, then there are two subcases. First, if N ∈ ∪k−1j=1ND(G)(ij), then

k⋃
j=1

ND(G:e)(ij) =

(
k⋃
j=1

ND(G)(ij)

)
] {N + 1},

hence

γi1 + · · ·+ γik = ci1 + · · ·+ cik + 1 <

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣+
∣∣{N + 1}

∣∣ =

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
On the other hand, suppose N /∈ ∪k−1j=1ND(G)(ij). Without loss of generality, we assume
that the other neighbor of N − 1 in G is N − 2.

Since the neighbors of N − 1 in G are neighbors of each other, ik−1 < N − 2, hence
N − 1 /∈ ∪k−1j=1ND(G)(ij) as well. Since we now know cN−1 6 1, we have

γi1 + · · ·+ γik = ci1 + · · ·+ cik−1
+ cN−1 + 1

6 ci1 + · · ·+ cik−1
+ 2

<

∣∣∣∣∣
k−1⋃
j=1

ND(G)(ij)

∣∣∣∣∣+
∣∣{N − 1, N + 1}

∣∣
6

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
This completes the case for ik = N − 1.

If ik = N and ik−1 < N − 1, then

γi1 + · · ·+ γik = ci1 + · · ·+ cik <

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ 6
∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ ,
where the second inequality follows from recognizing that while N − 1 appears in the first
union it may not appear in the second, and that N + 1 appears in the second union but
does not appear in the first. If ik = N and ik−1 = N − 1, then

γi1 + · · ·+ γik = ci1 + · · ·+ cik + 1 <

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣+
∣∣{N + 1}

∣∣ =

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
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Finally, if ik = N + 1, then by the proof of Lemma 16,

γi1 + · · ·+ γik 6 ci1 + · · ·+ cik−1
+ 1 <

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
Therefore, γ(c) is D(G : e)-draconian when in case 1(b).

Now consider case 2(b), so that c ∈ D(G \ e) and γ′(c) /∈ D(G : e). Proving that
γ(c) = (c1, . . . , cN−1, cN+1, 0) ∈ D(G:e) follows the proof of Lemma 17 almost identically,
replacing N − 1 with N . For this reason, we omit the details.

To show that γ is an injection, we can restrict to comparing the sequences of 1(a) with
those of 2(a) and the sequences of 1(b) with those of 2(b). Fortunately, it is straightforward
to see that no sequence can arise simultaneously as γ(c) under the conditions of 1(a) and
γ(c′) under the conditions of 2(a). If this were possible, we would obtain c = c′, but c
cannot simultaneously be a member of and absent from D(G \ e).

For the remaining case, suppose γ(c) = γ(d) where γ(c) falls under the conditions of
1(b) and γ(d) falls under the conditions of 2(b). Let γ(d) = (γ′′1 , . . . , γ

′′
N+1). Since γ(d)

falls under the conditions of 2(b), we know d ∈ D(G \ e). In G \ e, the vertex N − 1 has
degree 1, hence γ′′N−1 ∈ {0, 1}. We cannot have γ′′N−1 = 0 since this would imply

0 = γ′′N−1 = γN−1 = cN−1 + 1,

that is, we would have cN−1 = −1, which contradicts c ∈ D(G).
If γ′′N−1 = 1, then we claim γ′(d) ∈ D(G : e) meaning γ(d) would not be obtained from

case 2(b). For ease of reference, we collect notation in terms of γ′′1 , . . . , γ
′′
N+1 needed to

complete the argument:

d = (γ′′1 , . . . , γ
′′
N−2, 1, γ

′′
N − 1),

c = (γ′′1 , . . . , γ
′′
N−2, 0, γ

′′
N),

γ(d) = (γ′′1 , . . . , γ
′′
N−2, 1, γ

′′
N , 0),

γ′(d) = (γ′′1 , . . . , γ
′′
N−2, 0, γ

′′
N − 1, 2).

Since d ∈ D(G \ e), all of the D(G : e)-draconian inequalities involving the first N
coordinates of γ′(d) are immediately satisfied. Consider, then, a sum involving the last
coordinate of γ′(d). Note that d ∈ D(G \ e) ⊆ D(G). If the sum involves the Nth and
the (N − 1)th coordinates of γ′(d) as well, then, since we know that α(d) ∈ D(G : e), we
may write

γ′′i1 + · · ·+ γ′′ik−3
+ 0 + γ′′N − 1 + 2 = γ′′i1 + · · ·+ γ′′ik−3

+ 1 + (γ′′N − 1) + 1

<

∣∣∣∣∣
(
k−3⋃
j=1

ND(G:e)(ij)

)
∪

(
N+1⋃
j=N−1

ND(G:e)(j)

)∣∣∣∣∣ .
If the sum involves the Nth coordinate of γ′(d) but not the (N − 1)th coordinate, then,
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this time, α(c) ∈ D(G : e) gives us

γ′′i1 + · · ·+ γ′′ik−2
+ γ′′N − 1 + 2 = γ′′i1 + · · ·+ γ′′ik−2

+ γ′′N + 1

<

∣∣∣∣∣
(
k−2⋃
j=1

ND(G:e)(ij)

)
∪ND(G:e)(N) ∪ND(G:e)(N + 1)

∣∣∣∣∣ .
A similar argument holds for when the sum involves the (N − 1)th coordinate of γ′(d)
but not the Nth coordinate.

Next, suppose the sum is of the form

γ′′i1 + · · ·+ γ′′ik−2
+ γ′′N−2 + 2 = γ′′i1 + · · ·+ γ′′ik−2

+ γ′′N−2 + 1 + 1.

Since α(d) ∈ D(G : e), we can say

γ′′i1 + · · ·+ γ′′ik−2
+ γ′′N−2 + 1 + 1 <

∣∣∣∣∣∣
(
k−2⋃
j=1

ND(G:e)(ij)

)
∪

 ⋃
j∈{N−2,N−1,N+1}

ND(G:e)(j)

∣∣∣∣∣∣ .
Note that ND(G:e)(N − 1) can be dropped from this union because

ND(G:e)(N − 1) ⊆ ND(G:e)(N − 2) ∪ND(G:e)(N + 1).

As a result, the desired inequality holds.
Finally, suppose the sum is of the form

γ′′i1 + · · ·+ γ′′ik−1
+ 2

where ik−1 < N − 2. Since d ∈ D(G), we know

γ′′i1 + · · ·+ γ′′ik−1
+ 2 <

∣∣∣∣∣
k−1⋃
j=1

ND(G)(ij)

∣∣∣∣∣+ 2.

Since ik−1 < N−2, we know neither N − 1 nor N + 1, which are elements of ND(G:e)(N +
1), are in the above union. Therefore,

γ′′i1 + · · ·+ γ′′ik−1
+ 2 <

∣∣∣∣∣
k−1⋃
j=1

ND(G)(ij)

∣∣∣∣∣+ 2 6

∣∣∣∣∣
(
k−1⋃
j=1

ND(G:e)(ij)

)
∪ND(G:e)(N + 1)

∣∣∣∣∣ .
The above completes the argument that all D(G:e)-draconian inequalities are satisfied

by γ′(d), i.e., γ′(d) ∈ D(G : e). This contradicts the assumption that γ(d) was obtained
from case 2(b), so γ′′N−1 6= 1. Both possible values of γ′′N−1 lead to a contradiction,
meaning no sequence obtained from case 1(b) can be obtained from case 2(b) and vice
versa. Therefore, γ is injective.
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Fix a particular edge e of a 2-connected graph G for which one of the endpoints has
degree 2 in G. Let AG(e), BG(e), and CG(e) be the set of D(G : e)-draconian sequences
constructed from α, β, and γ in Lemmas 16, 17, and 18, respectively.

Lemma 19. Let G be a 2-connected graph with an edge e = uv such that degG(u) = 2
and the neighbors of u are neighbors of each other. The sets AG(e), BG(e), and CG(e) are
pairwise disjoint.

Proof. We continue to use the convention that e = {N − 1, N} and degG(N − 1) = 2.
We will also make the assumption that the other neighbor of N − 1 in G is N − 2. By
comparing the values of cN+1, it is clear that AG(e)∩BG(e) = ∅ and AG(e)∩CG(e) = ∅.
Thus we only need to focus on BG(e)∩CG(e). In fact, since γ is an injection, we only need
to consider elements of CG(e) that fall under the conditions of 1(b) or 2(b) of Lemma 18.

Suppose that β(c) = γ(c′) where

c = (c1, . . . , cN) and c′ = (c′1, . . . , c
′
N)

are sequences with c ∈ D(G \ e) and c′ ∈ D(G). If γ(c′) were to be constructed by the
conditions of 1(b) in Lemma 18, it would follow that c = c′ since, in this case, β(c) = γ(c′)
implies

α(c) + eN−1 − eN+1 = α(c′) + eN−1 − eN+1

and α is injective. However, this causes a contradiction, as Lemma 17 requires c ∈ D(G\e)
while condition 1 of Lemma 18 requires c′ = c /∈ D(G \ e). Hence we may assume
c ∈ D(G \ e) and γ(c′) is constructed via condition 2(b) of Lemma 18.

Since both c, c′ ∈ D(G \ e), we know cN−1, c
′
N−1 6 1. By the definitions of β and γ,

we make several observations:

• ci = c′i for all i 6 N − 2;

• γ(c′)N−1 = cN−1 + 1, hence c′N−1 = 1; and

• β(c)N = c′N + 1.

We claim that, in fact, γ′(c′) = (γ′1, . . . , γ
′
N+1) ∈ D(G : e), contradicting that γ(c′) was

constructed via condition 2(b) of Lemma 18. Note that, based on our observations,

γ′(c′) = (c′1, . . . , c
′
N−2, c

′
N−1 − 1, c′N , 2) = (c1, . . . , cN−2, 0, cN − 1, 2).

Consider a sum of the form γ′i1 + · · ·+γ′ik with 1 6 i1 < · · · < ik 6 N+1. If ik 6 N−2,
then the neighbors of ij are the same in D(G) and D(G : e), hence

γ′i1 + · · ·+ γ′ik = ci1 + · · ·+ cik <

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
If ik = N − 1, then

γ′i1 + · · ·+ γ′ik = ci1 + · · ·+ cik−1
+ 0.
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As in the case when ik 6 N − 2, the neighbors of i1, . . . , ik−1 are the same in D(G) and
D(G : e), so that

γ′i1 + · · ·+ γ′ik <

∣∣∣∣∣
k−1⋃
j=1

ND(G)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k−1⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ 6
∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
If ik = N , then we have

γ′i1 + · · ·+ γ′ik = ci1 + · · ·+ cik−1
+ cN − 1

<

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣− 1

<

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
In the case ik = N + 1, we consider several subcases. If ik−1 = N , then

γ′i1 + · · ·+ γ′ik = ci1 + · · ·+ cik−1
− 1 + 2 <

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ ,
where the inequality holds by Lemma 16. If ik−1 = N − 1, then

γ′i1 + · · ·+ γ′ik = c′i1 + · · ·+ c′ik−1
− 1 + 2 <

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ ,
where the inequality again holds by Lemma 16. If ik−1 = N − 2, then

γ′i1 + · · ·+ γ′ik = c′i1 + · · ·+ c′ik−1
+ c′N−1 − 1 + 2

<

∣∣∣∣∣
(

k⋃
j=1

ND(G:e)(ij)

)
∪ND(G:e)(N − 1)

∣∣∣∣∣
=

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ ,
where the inequality follows from Lemma 16 and the last equality comes from recognizing
that ND(G:e)(N − 1) ⊆ ND(G:e)(N − 2) ∪ ND(G:e)(N + 1), hence ND(G:e)(N − 1) may be
freely dropped from the expression. Finally, if ik−1 < N − 2, then

γ′i1 +· · ·+γ′ik 6 ci1 +· · ·+cik−1
+2 <

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣+∣∣{N − 1, N + 1}
∣∣ 6 ∣∣∣∣∣

k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ .
With this, we have verified that all of the D(G : e)-draconian inequalities hold for

γ′(c′), giving us the desired contradiction. Therefore, BG(e)∩ CG(e) = ∅, completing the
proof.
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This result, together with the three lemmas preceding it, give AG(e)]BG(e)]CG(e) ⊆
D(G : e). It turns out that the reverse inclusion holds, establishing what we call the
subdivision recurrence.

Theorem 20 (Subdivision recurrence). Let G be a 2-connected graph with an edge e = uv
such that degG(u) = 2 and the neighbors of u are neighbors of each other. Then D(G :e) =
AG(e) ]BG(e) ] CG(e) and, consequently,

NVol(∇PQ
G:e) = 2 NVol(∇PQ

G ) + NVol(∇PQ
G\e).

Proof. Again without loss of generality we may assume e = {N−1, N} and degG(N−1) =
2. By Lemmas 16, 17, and 18,

AG(e) ∪BG(e) ∪ CG(e) ⊆ D(G : e).

For the reverse inclusion, we will show that, given d = (d1, . . . , dN+1) ∈ D(G : e), one of
the following conditions holds:

1. If dN+1 = 2, then (d1, . . . , dN−2, dN−1 + 1, dN) ∈ D(G).

2. If dN+1 = 1, then (d1, . . . , dN) ∈ D(G).

3. If dN+1 = 0, then one of the following is true:

(a) (d1, . . . , dN−2, dN−1 − 1, dN) ∈ D(G \ e);
(b) both (d1, . . . , dN−2, dN−1−2, dN , 2) /∈ D(G:e) and (d1, . . . , dN−2, dN−1−1, dN) ∈

D(G) \D(G \ e); or

(c) both (d1, . . . , dN−2, dN−1−1, dN−1, 2) /∈ D(G :e) and (d1, . . . , dN−2, dN−1, dN−
1) ∈ D(G \ e).

If the second condition holds, then d ∈ AG(e); if condition 3(a) holds, then d ∈ BG(e); if
any of the remaining conditions hold, then d ∈ CG(e).

First suppose dN+1 = 2 and let 1 6 i1 < · · · < ik 6 N . Set (c1, . . . , cN) =
(d1, . . . , dN−2, dN−1 + 1, dN). If ik < N − 1, then ND(G:e)(ij) = ND(G)(ij) for each j,
so the corresponding draconian inequality

ci1 + · · ·+ cik = di1 + · · ·+ dik <

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣
holds.

Otherwise, since d ∈ D(G : e),

ci1 + · · ·+ cik 6 di1 + · · ·+ dik + 2− 1

<

∣∣∣∣∣
(

k⋃
j=1

ND(G:e)(ij)

)
∪ND(G:e)(N + 1)

∣∣∣∣∣− 1
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=

∣∣∣∣∣
(

k⋃
j=1

ND(G)(ij)

)
] {N + 1}

∣∣∣∣∣− 1

=

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
Therefore, each D(G)-draconian inequality holds for (c1, . . . , cN), establishing the first
condition.

Next suppose dN+1 = 1 and let 1 6 i1 < · · · < ik 6 N . If ik < N − 1, then the
corresponding draconian inequality holds as in the case of dN+1 = 2. If ik > N − 1, then
we know from d ∈ D(G : e) that

di1 + · · ·+ dik + 1 <

∣∣∣∣∣
(

k⋃
j=1

ND(G:e)(ij)

)
∪ND(G:e)(N + 1)

∣∣∣∣∣
=

∣∣∣∣∣
(

k⋃
j=1

ND(G)(ij)

)
] {N + 1}

∣∣∣∣∣
=

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣+ 1.

Subtracting 1 from both sides establishes the corresponding D(G)-draconian inequality
for (d1, . . . , dN). Thus the second condition holds.

Establishing the last condition, where dN+1 = 0, requires the most care. Since
degG(N − 1) = 2, we know that dN−1 ∈ {0, 1, 2} and we will treat each case separately.

Suppose dN−1 = 0. Our aim will be to show that condition 3(c) holds. It is clear that
(d1, . . . , dN−2, dN−1 − 1, dN − 1, 2) /∈ D(G : e) since dN−1 − 1 < 0. Now, if dN = 0, then
there is a contradiction, since this and the 2-connectivity of G imply

N = d1 + · · ·+ dN−2 <

∣∣∣∣∣
N−2⋃
j=1

ND(G:e)(j)

∣∣∣∣∣ =

∣∣∣∣∣
N−2⋃
j=1

ND(G)(j)

∣∣∣∣∣ = N.

Thus, dN > 0.
Set (c1, . . . , cN) = (d1, . . . , dN−1, dN − 1) and consider the sum ci1 + · · · + cik . If

ik < N − 1, then the desired D(G)-draconian inequality holds using the same argument
as for the previous conditions. If ik = N − 1, then

ci1 + · · ·+ cik = di1 + · · ·+ dik−1
<

∣∣∣∣∣
k−1⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k−1⋃
j=1

ND(G\e)(ij)

∣∣∣∣∣ 6
∣∣∣∣∣
k⋃
j=1

ND(G\e)(ij)

∣∣∣∣∣ .
Lastly, if ik = N , then

ci1 + · · ·+ cik = di1 + · · ·+ dik − 1
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<

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣− 1

=

∣∣∣∣∣
(

k⋃
j=1

ND(G\e)(ij)

)
] {N + 1}

∣∣∣∣∣− 1

=

∣∣∣∣∣
k⋃
j=1

ND(G\e)(ij)

∣∣∣∣∣ .
Therefore, if dN−1 = 0, then condition 3(c) holds.

Next suppose dN−1 = 2. Condition 3(c) clearly cannot hold since this condition
requires dN−1 6 1, so we must show that either 3(a) or 3(b) holds. Suppose that condition
3(a) does not hold, that is, suppose (d1, . . . , dN−2, 1, dN) /∈ D(G \ e). Showing that this
sequence is in D(G) can be done directly repeating our by-now-usual strategies, so the
sequence is in D(G) \D(G \ e).

To show that (d1, . . . , dN−2, 0, dN , 2) /∈ D(G : e), observe that (d1, . . . , dN−2, 1, dN) /∈
D(G \ e) implies there is some inequality of the form

di1 + · · ·+ dik >

∣∣∣∣∣
k⋃
j=1

ND(G\e)(ij)

∣∣∣∣∣ (6)

with ik = N and ik−1 < N − 1. If N − 1 /∈
⋃k
j=1ND(G\e)(ij), then add 2 to both sides of

(6) to get

di1 + · · ·+ dik + 2 >

∣∣∣∣∣
k⋃
j=1

ND(G\e)(ij)

∣∣∣∣∣+ 2

=

∣∣∣∣∣
k⋃
j=1

ND(G\e)(ij)

∣∣∣∣∣+
∣∣{N − 1, N + 1}

∣∣
=

∣∣∣∣∣
k⋃
j=1

ND(G:e)(ij)

∣∣∣∣∣ ,
which would imply (d1, . . . , dN−2, 0, dN , 2) /∈ D(G : e). If N − 1 ∈

⋃k
j=1ND(G\e)(ij), then

add 2 to the left side of (6) and 1 =
∣∣{N}∣∣ to the right side; the conclusion is the same.

Thus, if condition 3(a) does not hold, then condition 3(b) does hold.
For the case of when dN−1 = 1, the first part of condition 3(b) clearly holds. Verifying

that (d1, . . . , dN−2, 0, dN) ∈ D(G) is now routine, so either condition 3(a) holds or 3(b)
holds.

We have shown that, regardless of value of dN+1, one of the three conditions holds,
hence d ∈ AG(e) ∪BG(e) ∪ CG(e) and D(G : e) = AG(e) ∪BG(e) ∪ CG(e). By Lemma 19,
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this union is disjoint, so

|D(G : e)| = |AG(e) ]BG(e) ] CG(e)|
= |AG(e)|+ |BG(e)|+ |CG(e)|
= 2|D(G)|+ |D(G \ e)|.

Applying Theorem 8, the result is proven.

Example 21. Consider C3 = ([3], {12, 13, 23}) and let e = 13; there are six D(C3)-
draconian sequences:

(2, 0, 0) (0, 2, 0) (0, 0, 2)
(1, 1, 0) (1, 0, 1) (0, 1, 1)

Subdividing e replaces the edge 13 with edges 34 and 14 to obtain C4. By the subdivision
recurrence, D(C4) = D(C3 : e) = AC3(e)]BC3(e)]CC3(e). Following the definitions of α,
β, and γ we obtain

AC3(e) = {(2, 0, 0, 1), (0, 2, 0, 1), (0, 0, 2, 1), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)}
BC3(e) = {(1, 2, 0, 0), (2, 1, 0, 0), (2, 0, 1, 0), (1, 1, 1, 0)}
CC3(e) = {(1, 0, 0, 2), (1, 0, 2, 0), (0, 1, 0, 2), (0, 0, 1, 2), (0, 1, 2, 0), (0, 2, 1, 0)}.

Notice that |D(C3)| = 3 · 21 and |D(C4)| = 4 · 22.

Computational evidence suggests that the subdivision recurrence holds even without
the condition that the neighbors of u are neighbors of each other. Indeed, Kohl [11] has
verified that the recurrence holds for all graphs under this more relaxed condition having
at most nine vertices. However, the subdivision recurrence does not necessarily hold if we
allow both endpoints of e to have degree larger than 2 in G. For example, if G = K1∨P3,
where P3 is the path on three vertices, and e is the edge of G whose endpoints each have
degree 3 in G, then one may show that NVol(∇PQ

G:e) = 50 whereas

2 NVol(∇PQ
G ) + NVol(∇PQ

G\e) = 2(18) + 16 = 52.

One important class of 2-connected graphs that the subdivision recurrence does not
directly cover is the class of cycles. The conclusion of the subdivision recurrence holds,
but to prove so requires a modified proof.

Corollary 22. For a cycle CN on N > 3 vertices and any edge e of CN ,

NVol(∇PQ
CN+1

) = 2 NVol(∇PQ
CN :e) + NVol(∇PQ

CN\e).

Consequently, NVol(∇PQ
CN

) = N2N−2.

Proof. We will prove this result by showing that the conclusion of the subdivision recur-
rence holds for CN using the same functions α, β, and γ as in Lemmas 16, 17, and 18,
respectively. Notice that none of the proofs of Lemmas 16, 17, 19, or Theorem 20 rely on
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the neighbors of u being neighbors of each other. In Lemma 18, the only time in which
this condition is invoked is in establishing γ(c) ∈ D(G : e) under case 1(b). Thus, by
adapting the proof of case 1(b) to CN we will have immediately established

NVol(∇PQ
CN+1

) = 2 NVol(∇PQ
CN

) + NVol(∇PQ
CN\e).

The formula NVol(∇PQ
CN

) = N2N−2 then follows from Corollary 14 and induction, whose
details we omit.

Without loss of generality we may assume that CN has vertex set [N ] and edges
{1, 2}, {2, 3},. . . ,{N − 1, N},{1, N}, and we will subdivide the edge e = {N − 1, N}. Let
c ∈ D(CN) so that γ′(c) /∈ D(CN : e) and c /∈ D(CN \ e). Setting c = (c1, . . . , cN), we have

γ(c) = (γ1, . . . , γN+1) = (c1, . . . , cN−2, cN−1 + 1, cN , 0).

Consider a sum of the form γi1 +· · ·+γik . If ik < N−1, then ND(CN )(ij) = ND(CN :e)(ij)
for each j, hence

γi1 + · · ·+ γik = ci1 + · · ·+ cik <

∣∣∣∣∣
k⋃
j=1

ND(CN )(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
j=1

ND(CN :e)(ij)

∣∣∣∣∣ .
When ik = N − 1 is when we have the most work to do. To begin, we may assume

that cij > 0 for all j < k since, once the desired inequalities for these cases hold, if we
were to check the inequality involving some i` < N − 1 for which ci` = 0, then we would
instantly obtain

γi1 + · · ·+ γik + γi` = γi1 + · · ·+ γik

<

∣∣∣∣∣
k⋃
j=1

ND(CN :e)(ij)

∣∣∣∣∣
6

∣∣∣∣∣
(

k⋃
j=1

ND(CN :e)(ij)

)
∪ND(CN :e)(i`)

∣∣∣∣∣ .
This allows us to assume for the rest of this case that cij > 0 for all j = 1, . . . , k − 1.

If i1 = 1, then

γi1 + · · ·+ γik = ci1 + · · ·+ cik + 1 <

∣∣∣∣∣
k⋃
j=1

ND(CN )(ij)

∣∣∣∣∣+ |{N + 1}| =

∣∣∣∣∣
k⋃
j=1

ND(CN :e)(ij)

∣∣∣∣∣ .
If i1 > 1, then partition the set I = {i1, . . . , ik} into nonempty subsets S1, . . . , Sr such that
each Si consists of consecutive integers and is maximal with that property with respect to
containment. Additionally, label the subsets so that min(S1) < min(S2) < · · · < min(Sr).
Define t to be the largest index satisfying

min(St)−max(St−1) > 2,
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or t = 1 if no such index exists. Note that we always have N − 1 ∈ St ∪ St+1 ∪ · · · ∪ Sr.
If t > 1, then let I<t = S1 ∪ · · · ∪ St−1 and I>t = St ∪ · · · ∪ Sr. Because min(I>t) −

max(I<t) > 2, we know ⋃
ij∈I<t

ND(G)(ij)

 ∩
 ⋃
ij∈I>t

ND(G)(ij)

 = ∅.

Since c ∈ D(CN),

ci1 + · · ·+ cik <

∣∣∣∣∣∣
⋃

ij∈I<t

ND(CN )(ij)

∣∣∣∣∣∣+ cmin(St) + · · ·+ cik

<

∣∣∣∣∣∣
⋃

ij∈I<t

ND(CN )(ij)

∣∣∣∣∣∣+

∣∣∣∣∣∣
⋃

ij∈I>t

ND(CN )(ij)

∣∣∣∣∣∣
=

∣∣∣∣∣
k⋃
j=1

ND(CN )(ij)

∣∣∣∣∣ .
Because of the two strict inequalities here, we may therefore say

γi1 + · · ·+ γik = ci1 + · · ·+ cik + 1

6

∣∣∣∣∣∣
⋃

ij∈I<t

ND(CN )(ij)

∣∣∣∣∣∣+ cmin(St) + · · ·+ cik

<

∣∣∣∣∣∣
⋃

ij∈I<t

ND(CN )(ij)

∣∣∣∣∣∣+

∣∣∣∣∣∣
⋃

ij∈I>t

ND(CN )(ij)

∣∣∣∣∣∣
=

∣∣∣∣∣
k⋃
j=1

ND(CN )(ij)

∣∣∣∣∣ .
If t = 1, then there are two additional subcases to consider: when one of c1, cN > 0

and when c1 = cN = 0. In both subcases, we will use the fact that for each ` = 1, . . . , r,∑
ij∈S`

cij ∈ {|S`|, |S`|+ 1},

that is, for a fixed `, the values of cij such that ij ∈ S` are all 1 or 2 with at most one of
them being 2. Indeed, if there were two 2s, then

∑
ij∈S`

cij > |S`|+ 2 =

∣∣∣∣∣∣
⋃
ij∈S`

ND(CN )(ij)

∣∣∣∣∣∣ ,
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contradicting c ∈ D(CN). We will moreover use fact that the case t = 1 means∣∣∣∣∣
k⋃
j=1

ND(CN )(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
j=1

ND(CN :e)(ij)

∣∣∣∣∣ = N − (i1 − 2).

Suppose that at least one of c1, cN is positive. This implies there is at least one ` ∈ [r]
for which

∑
ij∈S`

cij = |S`|. Therefore,

γi1 + · · ·+ γik = ci1 + · · ·+ cik + 1

6

(
r∑
i=1

|Si|+ 1

)
− 1 + 1

< N − (i1 − 2)

=

∣∣∣∣∣
k⋃
j=1

ND(CN :e)(ij)

∣∣∣∣∣ .
If c1 = cN = 0, then we claim that γ′(c′) ∈ D(CN : e), contradicting that we are in

case 1(b). Here, cN−1 > 0 since, otherwise,

c2 + · · ·+ cN−2 = N − 1 =

∣∣∣∣∣
N−2⋃
i=2

ND(CN )(i)

∣∣∣∣∣ ,
in which case c /∈ D(CN), a contradiction. Thus, the entries of γ′(c) are all nonnegative.

Let γ′(c) = (γ′1, . . . , γ
′
N+1) and consider a sum γ′i1 + · · ·+ γ′ik . If ik 6 N , then

γ′i1 + · · ·+ γ′ik 6 ci1 + · · ·+ cik <

∣∣∣∣∣
k⋃
j=1

ND(CN )(ij)

∣∣∣∣∣ 6
∣∣∣∣∣
k⋃
j=1

ND(CN :e)(ij)

∣∣∣∣∣ .
Otherwise, ik = N + 1. Since we are in the case c1 = cN = 0, we may assume i1 > 1 and
ik−1 < N . if ik−1 = N − 1, then α(c) ∈ D(CN : e) gives us

γ′i1 + · · ·+ γ′ik = ci1 + · · ·+ cik−1
− 1 + 2 <

∣∣∣∣∣
k⋃
j=1

ND(CN :e)(ij)

∣∣∣∣∣
right away. If ik−1 < N − 1, then neither N nor N + 1 is a neighbor of any of i1, . . . , ik−1
in either D(CN) or D(CN : e), so

γ′i1 + · · ·+γ′ik = ci1 + · · ·+ cik−1
+ 2 <

∣∣∣∣∣
k⋃
j=1

ND(CN )(ij)

∣∣∣∣∣+ |{N,N + 1}| 6

∣∣∣∣∣
k⋃
j=1

ND(CN :e)(ij)

∣∣∣∣∣ .
Therefore, γ′(c) ∈ D(CN : e), contradicting the fact that γ(c) arises from case 1(b). This
completes the case ik = N − 1.
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If ik = N , then consider ik−1. If ik−1 < N − 1, then we obtain the desired inequality
again from knowing α(c) ∈ D(CN : e). Otherwise ik−1 = N − 1, in which case

γi1 + · · ·+ γik = ci1 + · · ·+ cik + 1

<

∣∣∣∣∣
k⋃
j=1

ND(CN )(ij)

∣∣∣∣∣+ |{N + 1}|

=

∣∣∣∣∣
k⋃
j=1

ND(CN :e)(ij)

∣∣∣∣∣ .
Lastly, if ik = N + 1, then γik = 0, and by the previous cases we have

γi1 + · · ·+ γik = γi1 + · · ·+ γik−1
<

∣∣∣∣∣
k−1⋃
j=1

ND(CN :e)(ij)

∣∣∣∣∣ 6
∣∣∣∣∣
k⋃
j=1

ND(CN :e)(ij)

∣∣∣∣∣ .
This final inequality establishes γ(c) ∈ D(CN : e) for the case 1(b), which completes our
proof.

We close this subsection with an invitation to the reader.

Question 23. Under what conditions for a graph G and an edge e is there a “nice”
recurrence for NVol(∇PQ

G:e)?

3.2 The triangle recurrence

The framework which establishes the subdivision recurrence can be adapted to a different
operation. Given an edge e = uv of a graph G, let G4e denote the graph with edge set
E(G) ∪ {uw, vw} where w is a new vertex. We will continue to assume V (G) = [N ] and
V (G4e) = [N + 1]. As in Section 3.1, establishing a recurrence formula for D(G4e)
will require establishing several smaller results first. The first two of these have proofs
analogous enough to the proofs of Lemma 16 and Lemma 17, respectively, that we omit
their details.

Lemma 24. Let G be any connected graph on [N ] and e any edge. If c ∈ D(G), then
α4(c) ∈ D(G4e) where α4(c) = (c, 1). Moreover, α4 is injective.

Lemma 25. Let G be a connected graph on [N ] and let e = uv be any edge. If c ∈ D(G),
then β4(c) ∈ D(G4e) where

β4(c) = α4(c) + eu − eN+1.

Additionally, β4 is injective.

The next lemma is analogous to Lemmas 18, but this time its proof is different enough
for us to justify providing it. It will be helpful to introduce the analogues of AG(e) and
BG(e) here: let A

4
G (e) and B

4
G (e) be the D(G4e)-draconian sequences constructed with

α4 and β4 in Lemmas 24 and 25, respectively.
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Lemma 26. Let G be a connected graph on [N ] and let e = uv be any edge for which
degG(u) = 2. If c ∈ D(G), then γ4(c) ∈ D(G4e) where

γ4(c) =

{
α4(c) + ev − eN+1 if not in B

4
G (e)

α4(c)− eu + eN+1 otherwise.

Additionally, γ4 is injective.

Proof. That γ4 is injective is clear. For what remains, by Remark 9 we again assume
without loss of generality that e = {N−1, N}. We also assume that the other neighbor of
N−1 in G is N−2. So, if c = (c1, . . . , cN) ∈ D(G), then we must prove γ4(c) ∈ D(G4e)
where

γ4(c) = (γ41 , . . . , γ
4
N+1) =

{
(c1, . . . , cN−2, cN−1, cN + 1, 0) if not in B

4
G (e)

(c1, . . . , cN−2, cN−1 − 1, cN , 2) otherwise.

Note that, in both cases, the entries sum to N .
If γ4(c) = (c1, . . . , cN−2, cN−1, cN + 1, 0), then showing it is D(G4e)-draconian is

entirely analogous to the proof of Lemma 17. Otherwise, γ4(c) = (c1, . . . , cN−2, cN−1 −
1, cN , 2). Being in this case means that (c1, . . . , cN−1, cN + 1, 0) ∈ B4(e). Hence, we know
cN−1 > 1, so all entries of γ4 are nonnegative, and we also know

c′ = (c1, . . . , cN−2, cN−1 − 1, cN + 1) ∈ D(G). (7)

Consider a sum γ4i1 + · · ·+ γ4ik with 1 6 i1 < · · · < ik 6 N + 1. If ik 6 N , then

γ4i1 + · · ·+ γ4ik 6 ci1 + · · ·+ cik <

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ 6
∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣ .
If ik = N + 1 then there are four subcases to consider depending on the value of ik−1.

If ik−1 = N , then we may write the sum as

γ4i1 + · · ·+ γ4ik = ci1 + · · ·+ cik−2
+ (cN + 1) + 1.

By (7), we know that α4(c′) ∈ D(G4e). The above sum appears when verifying this
fact, so we know that

γ4i1 + · · ·+ γ4ik <

∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣ .
If ik−1 = N − 1, then

γ4i1 + · · ·+ γ4ik = ci1 + · · ·+ cik−2
+ cN−1 + 1 <

∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣ ,
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where the inequality again comes from knowing α4(c) ∈ D(G4e). If ik−1 = N − 2, then
again by applying α4, we may say

γ4i1 + · · ·+ γ4ik 6 ci1 + · · ·+ cik−1
+ cN−1− 1 + 2 <

∣∣∣∣∣
(

k⋃
j=1

ND(G4e)(ij)

)
∪ND(G4e)(N − 1)

∣∣∣∣∣ .
Noticing that

ND(G4e)(N − 1) ⊆ ND(G4e)(N − 2) ∪ND(G4e)(N + 1) ⊆
k⋃
j=1

ND(G4e)(ij)

we may drop ND(G4e)(N − 1) from the union, which establishes the desired inequality.
Lastly, if ik−1 < N − 2, then neither N − 1 nor N + 1 is a neighbor of ij in D(G4e) for
j 6 k − 1, so we may say

γ4i1 + · · ·+ γ4ik <

∣∣∣∣∣
k−1⋃
j=1

ND(G4e)(ij) ] {N − 1, N + 1}

∣∣∣∣∣ 6
∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣ .
In all cases, the required D(G4e)-draconian inequality holds. Therefore, we have shown
γ4(c) ∈ D(G4e) for all c ∈ D(G).

Let C
4
G (e) be the D(G4e)-draconian sequences constructed from γ4 in Lemma 26.

The proof of the following is completely analogous to the proof of Lemma 19.

Lemma 27. Let G be a graph having an edge e = uv with degG(u) = 2. The sets A
4
G (e),

B
4
G (e), and C

4
G (e) are pairwise disjoint.

As in Section 3.1, the previous four lemmas imply A
4
G (e)]B4G (e)]C4G (e) ⊆ D(G4e).

The reverse inclusion again holds under certain restrictions, establishing what we call the
triangle recurrence.. We present the proof below, deferring portions of it to two lemmas
afterward.

Theorem 28 (Triangle Recurrence). Let G be any connected graph and let e = uv be
an edge with degG(u) = 2. If degG(v) = 2 or if the neighbors of u are neighbors of each
other, then

NVol(∇PQ
G4e) = 3 NVol(∇PQ

G ).

Proof. As usual we assume V (G) = [N ], e = {N − 1, N}, and degG(N − 1) = 2. We will
further assume that the other neighbor of N − 1 in G is N − 2. Lemmas 24, 25, and 26
show that

A
4
G (e) ∪B

4
G (e) ∪ C

4
G (e) ⊆ D(G4e),

so we must show the reverse inclusion holds.
Let d = (d1, . . . , dN+1) ∈ D(G4e). As with the subdivision recurrence, there are three

statements we must establish:
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• If dN+1 = 0, then (d1, . . . , dN−2, dN−1 − 1, dN) ∈ D(G) or, if this is not the case,
then (d1, . . . , dN−2, dN−1, dN − 1) ∈ D(G);

• If dN+1 = 1, then (d1, . . . , dN) ∈ D(G); and

• If dN+1 = 2, then both (d1, . . . , dN−2, dN−1 + 1, dN + 1, 0) ∈ B
4
G (e) as well as

(d1, . . . , dN−2, dN−1 + 1, dN) ∈ D(G).

For ease of readability, the case dN+1 = 0 is deferred to Lemmas 31 and 32, where the
two different conditions on the vertices N − 1 and N are treated individually.

Suppose, then, that dN+1 = 1. Pick any D(G4e)-draconian sequence of the form
(d1, . . . , dN , 1). Let 1 6 i1 < · · · < ik 6 N . If ij 6= N − 1, N for all j, then the neighbors
of ij are the same in D(G4e) and D(G), so the corresponding D(G)-draconian inequality
instantly holds. Otherwise,

di1 + · · ·+ dik = di1 + · · ·+ dik + 1− 1

<

∣∣∣∣∣
(

k⋃
j=1

ND(G4e)(ij)

)
∪ND(G4e)(N + 1)

∣∣∣∣∣− 1

=

∣∣∣∣∣
(

k⋃
j=1

ND(G4e)(ij)

)
∪
{
N + 1

}∣∣∣∣∣− 1

=

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣
Thus (d1, . . . , dN) ∈ D(G).

Lastly, suppose dN+1 = 2. For this case we first show that (d1, . . . , dN−1+1, dN+1, 0) ∈
B
4
G (e). This can be rephrased as wanting to show (d1, . . . , dN−1 + 1, dN + 1, 0) = β4(c)

for some c, or, in yet other words, that (d1, . . . , dN−1, dN + 1) ∈ D(G).
Set d′ = (d′1, . . . , d

′
N) = (d1, . . . , dN−1, dN + 1) and consider 1 6 i1 < · · · < ik 6 N .

If ik < N − 1, then the D(G)-draconian inequality holds as usual. If ik = N − 1, then
observe

d′i1 + · · ·+ d′ik < di1 + · · ·+ dik + 2− 1

<

∣∣∣∣∣
(

k⋃
j=1

ND(G)(ij)

)
∪ {N + 1}

∣∣∣∣∣− 1

=

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
If ik = N , then repeat this argument but by inserting “+1 − 1” instead of “+2 − 1”. In
all cases, the D(G)-draconian inequality holds, so d′ ∈ D(G), as needed. In fact, showing
that (d1, . . . , dN−2, dN−1 + 1, dN) is D(G)-draconian has an entirely analogous argument.
Therefore, this completes the case for dN+1 = 2.

By Lemma 27,
D(G4e) = A

4
G (e) ]B

4
G (e) ] C

4
G (e).
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Figure 2: Two graphs G1 (left) and G2 (right).

Thus,
|D(G4e)| = |A4G (e)|+ |B4G (e)|+ |C4G (e)| = 3|D(G)|.

Finally, by Theorem 8, we obtain

NVol(∇PQ
G4e) = 3 NVol(∇PQ

G ).

Example 29. Let C3 be the 3-cycle as in Example 21 and again choose e = 13. The
D(G4e)-draconian sequences are formed from the disjoint union of the three sets

A
4
C3

(e) = {(2, 0, 0, 1), (0, 2, 0, 1), (0, 0, 2, 1), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)}
B
4
C3

(e) = {(3, 0, 0, 0), (1, 2, 0, 0), (1, 0, 2, 0), (2, 1, 0, 0), (2, 0, 1, 0), (1, 1, 1, 0)}
C
4
C3

(e) = {(1, 0, 0, 2), (0, 2, 1, 0), (0, 0, 3, 0), (0, 1, 0, 2), (0, 0, 1, 2), (0, 1, 2, 0)}

As in the case of the subdivision recurrence, by relaxing the requirement that e has
an endpoint of degree 2 in G, the result may no longer hold. The same example as
before, where G = K1 ∨ P3 and e is the edge whose endpoints each have degree 3 in G,
demonstrates this. The normalized volume of ∇PQ

G4e is 52 whereas a naive attempt to
apply the triangle recurrence would predict 54.

Although the conclusion of the triangle recurrence may not hold when the endpoints of
e do not have degree 2, there are cases when the conclusion still does hold. For example,
the graph G2 in Figure 2 cannot be constructed from G1 in a way that allows us to
combine the subdivision and triangle recurrences, yet we still have |D(G2)| = 3|D(G1)|.
Note that the conditions under discussion are local conditions; this will contrast with
global conditions that we examine in Section 3.3. This leads us to ask the following.

Question 30. Under what local conditions for a graph G and an edge e is there a “nice”
recurrence for NVol(∇PQ

G4e)?

To close this section, we state and prove the lemmas needed to complete the proof of
Theorem 28.

Lemma 31. Let G be any connected graph on [N ] for which e = uv with degG(u) = 2
and the neighbors of u are neighbors of each other. If (d1, . . . , dN , 0) ∈ D(G4e), then
(d1, . . . , dN)− eu ∈ D(G) or (d1, . . . , dN)− ev ∈ D(G).
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Proof. As usual we assume V (G) = [N ], e = {N − 1, N}, and degG(N − 1) = 2. We will
further assume that the other neighbor of N − 1 in G is N − 2.

We first show that if dN−1 > 1, then (d1, . . . , dN−2, dN−1 − 1, dN) ∈ D(G). For nota-
tional convenience, we will write

d′ = (d′1, . . . , d
′
N) = (d1, . . . , dN−2, dN−1 − 1, dN).

Consider a sum d′i1 + · · · + d′ik with 1 6 i1 < · · · < ik 6 N . If ik < N − 1, then the
neighbors of each ij is the same in D(G) and D(G4e), so

d′i1 + · · ·+ d′ik = di1 + · · ·+ dik <

∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
If ik = N − 1 or if both ik = N and ik−1 = N − 1 then we have

d′i1 + · · ·+ d′ik = di1 + · · ·+ dik − 1 <

∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣− 1 =

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣
since N + 1 is a neighbor of N − 1 in D(G4e) but not D(G).

Lastly, if ik = N but ik−1 < N − 1, recall that we have required N to be a neighbor
of both N − 1 and N − 2. Thus, the neighbors of N − 1 in D(G4e) are necessarily also
neighbors of N in D(G4e). Therefore,

d′i1 + · · ·+ d′ik 6 di1 + · · ·+ dik + dN−1 − 1

<

∣∣∣∣∣
(

k⋃
j=1

ND(G4e)(ij)

)
∪ND(G4e)(N − 1)

∣∣∣∣∣− 1

=

∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣− 1

=

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
Thus, d′ ∈ D(G) when dN−1 > 1.

If dN−1 = 0, then dN > 1 since we may not have dN−1 = dN = dN+1 = 0. We will
show that, in this case, (d1, . . . , dN−1, dN − 1) ∈ D(G). Again for notational convenience,
we will write

d′′ = (d′′1, . . . , d
′′
N) = (d1, . . . , dN−2, dN−1, dN − 1).

Consider a sum d′′i1 + · · ·+ d′′ik with 1 6 i1 < · · · < ik 6 N . If ik < N − 1, then, as for d′,

d′′i1 + · · ·+ d′′ik = di1 + · · ·+ dik <

∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
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If ik = N − 1, then since we know d′′N−1 = dN−1 = 0, we may say

d′′i1 + · · ·+ d′′ik = di1 + · · ·+ dik−1
<

∣∣∣∣∣
k−1⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k−1⋃
j=1

ND(G)(ij)

∣∣∣∣∣ 6
∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
Lastly, if ik = N , then

d′′i1 + · · ·+ d′′ik = di1 + · · ·+ dik − 1 <

∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣− 1 =

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
Thus, d′′ ∈ D(G). This completes the proof.

Lemma 32. Let G be any connected graph on [N ] for which e = uv with degG(u) =
degG(v) = 2. If (d1, . . . , dN , 0) ∈ D(G4e), then (d1, . . . , dN)−eu ∈ D(G) or (d1, . . . , dN)−
ev ∈ D(G).

Proof. As usual we assume V (G) = [N ], e = {N − 1, N}, and, this time, degG(N − 1) =
degG(N) = 2. If the neighbors of N − 1 are neighbors of each other, then we are done
by Lemma 31. So, we assume that the neighbors of N − 1 are nonadjacent. We also may
assume that the other neighbor of N − 1 in G is N − 2 and the other neighbor of N in G
is N − 3.

If (d1, . . . , dN−2, dN−1 − 1, dN) ∈ D(G), then we are done. Otherwise, we will show
d′ ∈ D(G), where

d′ = (d′1, . . . , d
′
N) = (d1, . . . , dN−1, dN − 1)

Consider a sum d′i1 + · · · + d′ik with 1 6 i1 < · · · < ik 6 N . First suppose dN−1 = 0.
Since we cannot have dN−1 = dN = dN+1 = 0 in a D(G4e)-draconian sequence, it must
be true that dN > 1, so that d′ consists of nonnegative integers.

If ik < N − 1, then

d′i1 + · · ·+ d′ik = di1 + · · ·+ dik <

∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣
since the neighbors of each ij are the same in G and G4e. If ik = N − 1, then d′ik = 0,
so that

d′i1 + · · ·+ d′ik = di1 + · · ·+ dik−1
<

∣∣∣∣∣
k−1⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k−1⋃
j=1

ND(G)(ij)

∣∣∣∣∣ 6
∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
Lastly, if ik = N , then

d′i1 + · · ·+ d′ik = di1 + · · ·+ dik − 1 <

∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣− 1 =

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
Thus, d′ ∈ D(G) when dN−1 = 0.
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Now suppose dN−1 > 0. Our assumption that (d1, . . . , dN−2, dN−1 − 1, dN) /∈ D(G)
implies dN > 0 as well. If dN−1 = 3, then

dN−1 + dN <
∣∣ND(G4e)(N − 1) ∪ND(G4e)(N)

∣∣ = 5

implies dN 6 1. We claim that this means (d1, . . . , dN−2, dN−1 − 1, dN) ∈ D(G), which is
a contradiction. Note that this means

(dN−1 − 1, dN) = (2, 0) or (dN−1 − 1, dN) = (2, 1).

In either situation, set du = (du1 , . . . , d
u
N) = (d1, . . . , dN−2, dN−1 − 1, dN) and consider

a sum of the form dui1 + · · ·+ duik . If ik < N − 1, then N + 1 is not a neighbor of any ij in
D(G4e), so

dui1 + · · ·+ duik = di1 + · · ·+ dik <

∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣ =

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
If ik = N − 1, then N + 1 is a neighbor of N − 1 in D(G4e), so

dui1 + · · ·+ duik = di1 + · · ·+ dik − 1 <

∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣− 1 =

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
For the same reason, this inequality holds when ik = N and ik−1 = N − 1. If ik = N
and ik−1 = N − 2, notice that the neighbors of N − 1 are in the union of the neighbors of
N − 2 and N in D(G4e). Therefore, it follows from the case in which ik−1 = N − 1 that

dui1 + · · ·+ duik 6 di1 + · · ·+ dik + dN−1 − 1

<

∣∣∣∣∣
k⋃
j=1

ND(G4e)(ij) ∪ND(G4e)(N − 1)

∣∣∣∣∣− 1

=

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
Lastly, if ik−1 < N − 2, then N − 1 is not a neighbor of any ij < N − 2 in D(G4e).
Moreover, for each ij < N − 2, its neighbors in D(G) are the same as its neighbors in
D(G4e). Putting this together with the fact that dN 6 1, we see

dui1 + · · ·+ duik 6 di1 + · · ·+ dik−1
+ 1

<

∣∣∣∣∣
k−1⋃
j=1

ND(G4e)(ij)

∣∣∣∣∣+
∣∣{N − 1}

∣∣
6

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
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Therefore, if dN−1 = 3, then du ∈ D(G), which is a contraction.
Now suppose that dN−1 = 2. Analogous to before, this implies dN 6 2, leading us to

the three cases

(dN−1 − 1, dN) = (1, 0) or (dN−1 − 1, dN) = (1, 1) or (dN−1 − 1, dN) = (1, 2).

If dN = 2, then an argument symmetric to the one in the previous paragraph draws
the same contradiction. If dN = 1, then an argument identical to that of the previous
paragraph holds. Finally, if dN = 0, then the desired inequalities hold since those not
involving the index N hold for the case of dN = 1, and each inequality involving an index
N can be obtained from adding dN = 0 to the left hand side and including ND(G)(N) in
the union on the right hand side. Therefore, du ∈ D(G) whenever dN−1 > 1, which is a
contradiction.

Knowing now that dN−1 = 1, set

d′′ = (d′′1, . . . , d
′′
N) = (d1, . . . , dN−2, 1, dN − 1)

and consider a sum d′′i1 +· · ·+d′′ik with 1 6 i1 < · · · < ik 6 N . If ik = N−2 or ik = N , then
the corresponding D(G)-inequalities hold via now-standard arguments. If ik = N − 1,
then there are two subcases to consider.

First suppose at least one of N,N − 1, or N − 2 does not appear in

k−1⋃
j=1

ND(G)(ij).

Without loss of generality, assume that N does not appear. We can therefore say

d′′i1 + · · ·+ d′′k−1 + 1 <

∣∣∣∣∣
k−1⋃
j=1

ND(G)(ij)

∣∣∣∣∣+
∣∣{N}∣∣ 6 ∣∣∣∣∣

k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
Otherwise suppose

{N − 2, N − 1, N} ⊆
k−1⋃
j=1

ND(G)(ij).

Since degG(N − 1) = degG(N) = 2, we know that this can only happen if ik−1 = N − 2
and ik−2 = N − 3. In particular, ij 6= N for all j and

NG(N) ⊆
k−1⋃
j=1

ND(G)(ij),

which implies from the case ik = N that

d′′i1 + · · ·+ d′′k−1 + 1 6 di1 + · · ·+ dk−1 + 1 + dN − 1

<

∣∣∣∣∣
k−1⋃
j=1

ND(G)(ij) ∪ND(G)(N)

∣∣∣∣∣
=

∣∣∣∣∣
k⋃
j=1

ND(G)(ij)

∣∣∣∣∣ .
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Figure 3: A graph G (gray) with its weak dual G(∗) superimposed (left, dashed) and with
its extended weak dual G(∗∗) superimposed (right, dotted).

This completes the proof.

3.3 Application: outerplanar graphs

Recall that a plane graph is a planar graph G together with a particular embedding of G
into the plane. Also recall that the weak dual of a plane graph G, denoted G(∗), is the
subgraph of the dual G∗ induced by the vertices corresponding to bounded faces of G.
We denote by Ek the empty graph on k vertices, that is, the disjoint union of k distinct
vertices. Further, given a bounded face F , let oG(F ) denote the number of edges of G
bounding both F and the outer face and let vF denote the vertex of G(∗) corresponding
to F . Let F(G) be the set of bounded faces of G.

Definition 33. Let G be a plane graph. The extended weak dual of G, denoted G(∗∗), is

G(∗∗) = G(∗) ∪

 ⋃
F∈F(G)

vF ∨ Eo(F )


Informally, G(∗∗) extends the weak dual of G by including an additional edge for each

edge of G that bounds the outer face. See Figure 3 for illustrations of a plane graph G
and its duals G(∗), G(∗∗).

Recall that a graph is outerplanar if it has a planar embedding such that every vertex
is incident to the outer face. It is known [9] that a graph is outerplanar if and only
if its weak dual is a forest. Putting together the results of Section 3 we can produce
a simple formula for NVol(∇PQ

G ) whenever G can be constructed inductively by using
the subdivision and triangle operations. The formula follows quickly from the following
theorem.

Theorem 34. Suppose G is a 2-connected outerplane graph obtained from CN by a se-
quence of applications of the subdivision recurrence and the triangle recurrence. Then

NVol(∇PQ
G ) = 21+S(G)

∏
F∈F(G)

degG(∗∗)(vF ),
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where
S(G) =

∑
F∈F

(degG(∗∗)(vF )− 3).

Proof. We will induct on the number of edges of G, which we will denote by |E|. If G
has 3 or 4 edges, then since G is 2-connected, G = C|E|, hence N = |E|. By Corollary 22,

NVol(∇PQ
G ) = 21+(deg

G(∗∗) (vF )−3) degG(∗∗)(vF )

as claimed. One may verify that this holds for C4 directly as well.
Now suppose |E| > 4. If G is of the form G = G′4e for some edge e of G′, then let

F0 be the unique face of F(G) \ F(G′). We can then say that

degG′(∗∗)(vF ) = degG(∗∗)(vF )

for all internal vertices vF of G′(∗∗), from which it follows that S(G) = S(G′). By the
triangle recurrence and the inductive assumption,

NVol(∇PQ
G ) = 3 NVol(∇PQ

G′ )

= (degG(∗∗)(vF0))2
1+S(G′)

∏
F∈F(G′)

degG′(∗∗)(vF )

= 21+S(G)
∏

F∈F(G)

degG(∗∗)(vF )

as desired.
Suppose instead that G is of the form G = G′ : e for some edge e of G′. Since G

is outerplanar, so is G′, and e is incident to a unique bounded face. Let B be the set
of cut-edges of G \ e and again let F0 be the unique face of F(G) \ F(G′). The graph
H = G \ (B ∪ {e}) is the disjoint union of k = degG(∗∗)(vF0) − 1 − |B| graphs, where
each component is a 2-connected subgraph of G. Notice as well that F(H) ⊆ F(G) with
|F(H)| = |F(G)| − 1 and that

degH(∗∗)(vF ) = degG(∗∗)(vF )

for all F ∈ F(H)∩F(G). By the subdivision recurrence, Corollary 14, and Proposition 12,
we obtain

NVol(∇PQ
G ) = NVol(∇PQ

G′:e)

= 2 NVol(∇PQ
G′ ) + NVol(∇PQ

G′\e)

= 2

21+S(G′)
∏

F∈F(G′)

degG′(∗∗)(vF )

+ 2|B|NVol(∇PQ
H )

=

21+S(G)(degG(∗∗)(vF0)− 1)
∏

F∈F(G)\{F0}

degG(∗∗)(vF )


+ 2|B|2ω

∏
F∈F(G)\{F0}

degG(∗∗)(vF )

(8)
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where
ω = k + S(G)− (degG(∗∗)(vF0)− 3)

= degG′(∗∗)(vF0)− 1− |B|+ S(G)− (degG(∗∗)(vF0)− 3)

= 1− |B|+ S(G).

Simplifying the final expression in (8) yields the claimed formula, completing the proof.

Theorem 34 is the final piece needed to compute NVol(∇PQ
G ) for any outerplane graph

whose 2-connected components satisfy the conditions of Theorem 34.

Corollary 35. Let G be any outerplane graph on [N ] such that each block with at least
three vertices is obtained from CN by a sequence of applications of the subdivision re-
currence and the triangle recurrence. Label the components of G by G1, . . . , Gk and let
Bi,1, . . . , Bi,bi be the blocks of Gi. Then

NVol(∇PQ
G ) =

k∏
i=1

bi∏
j=1

21+S(Bi,j)
∏

F∈F(Bi,j)

degBi,j
(∗∗)(vF ). (9)

The graphs satisfying the conditions needed in Corollary 35 form a proper, but large,
class of outerplane graphs. Experimental data suggests that the formula is, in fact, true
for all outerplane graphs, but a proof eludes the authors.

Conjecture 36. For any outerplane graph G, Equation (9) holds.

4 Beyond outerplanarity

Outerplanar graphs form a large class of graphs but are far from the class of planar
graphs, let alone all graphs. For example, even though there are about 56.7× 109 labeled
outerplanar graphs on 10 vertices, these account for only approximately 1.76% of all
labeled planar graphs on 10 vertices [10, Sequences A098000, A066537]. Because of the
difficulty in computing NVol(∇PQ

G ) for all graphs, a natural next step would be to consider
graphs that are not-quite-outerplanar. Toward this end, we use the following alternate
characterization of outerplanar graphs.

Theorem 37 ([3, Theorem 10.24]). A graph is outerplanar if and only if contains no
subdivision of K4 or K2,3 as a subgraph.

This is a direct analogue of Kuratowski’s theorem, allowing one to study graphs G
that contain no subdivision of K5 or K3,3 but may contain a subdivision of K4 or K2,3. In
this case, a formula for |D(G)| remains elusive, although we do have the following partial
result. We use the notation K0

M,N to denote the complete bipartite graph with partite
sets [0, . . . ,M − 1] and [M,M +N − 1].

Proposition 38. For all N > 3,

NVol(∇PQ
K2,N−2

) = 2N−4(N2 −N + 6)− 2.
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Proof. If (c1, . . . , cN) ∈ D(K2,N−2), then c1 + c2 = k for some 0 6 k 6 N − 1. All
possible choices of c1, c2 are part of a D(K2,N−2)-draconian sequence except for (c1, c2) ∈
{(N − 1, 0), (0, N − 1)} since these are the only two resulting in sequences not satisfying
the corresponding draconian inequalities. However, for the moment, we will include these
in our calculations for algebraic ease.

In order to satisfy the D(K2,N−2)-draconian inequalities we need the subsequence
c′ = (c3, . . . , cN) to be a weak composition of N − 1 − k using 0s, 1s, and 2s such that
there is at most one 2. This leads to two cases: if c′ contains a 2, then there must be
N − 3− k copies of 1 and k copies of 0. A simple counting argument gives

(N − 2)

(
N − 3

k

)
such possibilities. On the other hand if c′ does not contain any 2s, then there must be
N − 1 − k copies of 1 and k − 1 copies of 0. There are

(
N−2
k−1

)
such possibilities. Adding

the values from these two cases and summing over all k yields

N−1∑
k=0

(k + 1)

(
(N − 2)

(
N − 3

k

)
+

(
N − 2

k − 1

))
.

The reader may verify that this simplifies to 2N−4(N2 − N + 6). Subtracting the two
compositions where (c1, c2) ∈ {(N − 1, 0), (0, N − 1)} and applying Theorem 8 gives us
our final formula.

Question 39. What is NVol(∇PQ
KM,N

) for arbitrary M,N?

Notice that the formula in Proposition 38 cannot be written in the form of (9). Thus,
a general formula for planar graphs will require refining the techniques of Section 3 or
separate tools altogether.

A second important class of graphs which are planar but not outerplanar is the class
of wheel graphs WN = K1 ∨ CN . We conjecture the following.

Conjecture 40. For all N > 3,

NVol(∇PQ
WN

) = 3N − 2N + 1.

This conjecture has been verified for all 3 6 N 6 13. Wheels were examined in detail
in [7] within a related, but distinct, context from ∇PQ

WN
. We hope to uncover similarly rich

structure in the present setting. It may be useful to recognize that

3N − 2N + 1 = 2S(N + 1, 3) + S(N + 1, 2) + S(N + 1, 1),

where S(n, k) denotes the Stirling number of the second kind.

Remark 41. In the time since this article was first prepared, Conjecture 40 has been
proven by Ohsugi and Tsuchiya [12].
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Finally, we give another broad class of graphs which contains all outerplanar graphs
but not all planar graphs. Strictly speaking, these graphs will allow for repeated edges,
but as repeating an edge in G does not affect ∇PQ

G , we need not worry about that case.
Following [8], first consider the directed graphs formed in the following way. Begin

with a single edge and designate one vertex the source and another vertex the sink. This is
an example of a two-terminal series-parallel graph. All other two-terminal series-parallel
graphs are those formed by applying one of the following operations to two existing
two-terminal series-parallel graphs G and H with sources g and h and sinks g′ and h′,
respectively,

1. parallel composition: produce a new graph P(G,H) by identifying g with h and g′

with h′. The source of P(G,H) is g ∼ h and its sink is g′ ∼ h′.

2. series composition: produce a new graph S(G,H) by identifying g′ with h. The
source of S(G,H) is g and its sink is h′.

A graph G is a series-parallel graph if there are two vertices x, y such that, when des-
ignating x as the source and y as the sink, G can be obtained through a sequence of
applications of P(·, ·) and S(·, ·) when starting with a disjoint union of edges.

Series-parallel graphs are of interest in computer algorithms, as recognizing them is
difficult but not intractable. For our purposes, they are of interest because their recur-
sive structure suggests that they may be good candidates for computing NVol(∇PQ

G ). In
fact, we have already seen an example of a series-parallel graph: K2,N−2 is the parallel
composition of N − 2 copies of P3, each of which is a series composition of two edges.
We ask the following question broadly, and would be interested in seeing answers to even
nontrivial subclasses which are not outerplanar.

Question 42. What is NVol(∇PQ
G ) for a series-parallel graph G?
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