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Abstract

Adjacency polytopes appear naturally in the study of nonlinear emergent phe-
nomena in complex networks. The “PQ-type” adjacency polytope, denoted VZQ
and which is the focus of this work, encodes rich combinatorial information about
power-flow solutions in sparse power networks that are studied in electric engi-
neering. Of particular importance is the normalized volume of such an adjacency
polytope, which provides an upper bound on the number of distinct power-flow
solutions.

In this article we show that the problem of computing normalized volumes for
VEQ can be rephrased as counting D(G)-draconian sequences where D(G) is a cer-
tain bipartite graph associated to the network. We prove recurrences for all networks
with connectivity at most 1 and, for 2-connected graphs under certain restrictions,
we give recurrences for subdividing an edge and taking the join of an edge with a
new vertex. Together, these recurrences imply a simple, non-recursive formula for
the normalized volume of VCP;Q when G is part of a large class of outerplanar graphs;
we conjecture that the formula holds for all outerplanar graphs. Explicit formulas
for several other (non-outerplanar) classes are given. Further, we identify several
important classes of graphs G which are planar but not outerplanar that are worth
additional study.
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1 Introduction and background

Let G = (V(G), E(G)) be a simple graph on [N] = {1,...,N}. We use ey,...,ex to
denote the standard basis vectors of RY. The PQ-type adjacency polytope of G is defined
to be

Vel = conv{(e;, e;) € R®N | ij € E(G) or i = j}

where conv(.S) denotes the convex hull of elements of S. Its normalized volume, defined
by NVol(V§?) = dim(V§2)! vol(Va?) where vol(P) is the relative volume of P, is always
a positive integer.

The study of PQ-type adjacency polytopes was introduced in [4], motivated by the
engineering problem known as power-flow study (or load-flow study). This study models
the balance of electric power on a network of power generation or delivery “buses”. Of
particular importance are the alternating current (AC) variations, which produce non-
linear equations that are notoriously difficult to analyze. In the AC model for a power
network with buses labeled as 1,..., N, the voltage on each bus is expressed as a complex
variable v; = x; 4+ iy; whose absolute value represents the voltage magnitude and whose
argument encodes the phase of the AC experienced on the bus. The interaction among
buses is modeled by a graph G whose nodes represent the buses and whose edges repre-
sent the junctions. Kirchhoff’s circuit laws give rise to an idealized balancing condition
for the power injected, power generated, and power consumed on each bus, which can be
expressed as the system of nonlinear equations

N
S; = Z?ij?fﬁj fori=2,...,N, M)

j=1

where S; = P;+1@); is a complex representation of the real and reactive power, Y;;, known
as nodal admittance, describes the connection between the ¢ and j buses, and 715 and
v; denote the complex conjugate of Y;; and v; respectively. By dropping the conjugate
constraints between v; and v;, we obtained the algebraic version of this system, known as
the algebraic power-flow equations. It was shown that the maximum number of nontrivial
complex solutions this system has is bounded by the normalized volume of VZQ.
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We take care to call the adjacency polytopes within this paper PQ-type, since a
related construction is sometimes called an adjacency polytope; see, for example, [2, 6, 7].
This alternate construction, motivated by counting equilibrium solutions to a network of
interconnected oscillators, relies on a particular change of variables that is not available
here. In engineering terms, this alternate construction arises from PV-type buses.

In this article we show that the normalized volume of VZQ can be described in terms
of sequences of nonnegative integers related to the Dragon Marriage Problem: a variant
of Hall’s Matching Theorem that has far-reaching applications and spawned the study of
generalized permutohedra [13, 14]. We establish this relationship in Section 2 and show
how it can be immediately exploited to compute normalized volumes of some PQ-type
adjacency polytopes when G is nontrivial.

We explore this connection more deeply in Section 3 where we establish several recur-
rences. Namely, we provide recurrences for all graphs with connectivity at most 1, that is,
any graph that is disconnected or has a cut-vertex. These directly imply a simple formula
for NVol(V52) whenever G is a forest.

Sections 3.1 and 3.2 consider two operations on a graph: subdivision of an edge e and
replacing e with the join of e and a new vertex. Under certain conditions, these operations
lead to the following two recurrences that are stated simply but nontrivial to prove.

Subdivision recurrence (see Theorem 20). Let G be a 2-connected graph and let e = uv
be an edge. Denote by G : e the graph obtained by subdividing e. If deg.(u) = 2 and the
neighbors of u are neighbors of each other, then

NVol(Veit) = 2NVol(Vg?) + NVol(VEd).

Triangle recurrence (see Theorem 28). Let G be any connected graph and let e = uw
be an edge with deg,(u) = 2. If deg,(v) = 2 or if the neighbors of u are neighbors of
each other, then

NVol(Vgd,) = 3NVol(Vi2).

Section 3 concludes by applying the recurrences to establish a closed, non-recursive
formula for NVOI(VZQ) for a large class of outerplanar graphs; we conjecture that this
formula holds for all outerplanar graphs. The final section addresses several classes of
graphs which are planar but not outerplanar. First, we give results for a complete bipartite
graph where one partite set has just two elements. Then we consider the classes of wheel
graphs and series-parallel graphs, which are natural points of further study and will likely
require a refinement of the techniques within this article or alternate techniques altogether.

2 Notation, background, and translating to draconian sequences

Before we prove our results, we will establish assorted notation that will be needed
throughout this work. Additional notation will be introduced as needed. First, if e is
an edge of G with endpoints u and v, we will write e = uv or e = vu whenever possible.
When additional clarity is helpful we may alternately write e = {u,v} or e = {v, u}.
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If X C V(G), then we use G — X to denote the graph obtained from deleting the
vertices of X as well as any edge that is incident to some vertex in X. If X = {v}, then
we will just write G — v. Similarly, if S is a set of edges, then we use G\ S to denote the
graph with the edges in S deleted; if S = {e}, then we just write G —e. If X C V(G),
then we use G[X] to denote the subgraph of G induced by X. Lastly, if H is a graph,
then we use G V H to denote the join of G and H, that is, the graph with vertex set
V(G)UV(H) and edge set

E(G)UE(H)U{w | u e V(G),v € V(H)}.

For a positive integers M, N, let Ky denote the complete graph on [N] and let K,
denote the complete bipartite graph with partite sets [M] and [N] = {1,...,N}. Let
Ng(v) denote the set of vertices of G adjacent to v. Keeping this notation in mind, we
may now begin in earnest.

In [14], Postnikov investigated the Dragon Marriage Problem, providing a generaliza-
tion of Hall’s Matching Theorem for bipartite graphs. In the Dragon Marriage Problem,
a small medieval village is home to n grooms and n + 1 brides, some pairs of whom would
form compatible marriages. Suppose we know all pairs of compatible grooms and brides.
One day, a dragon arrives in the village and kidnaps a bride. What compatibility condi-
tions among the original set of grooms and brides will guarantee that those who remain
can still be entirely paired by compatible marriages? In graph-theoretic terms, and more
generally, consider an X, Y-bigraph G such that |Y| = |X|+ 1. What are necessary and
sufficient conditions on G so that G — y has a perfect matching regardless of choice of
y € Y7 The answer relies on the following.

Definition 1. Let G C Ky . Call (ay,...,an) € Z; a G-draconian sequence if Y a; =
N —1and, forany 1 <i; <ig <---<ip <N,

ail+---+&ik<

: (2)

UNG(%’)

We will say that a sequence satisfying (2) satisfies the G-draconian inequality correspond-
mg to i1, ..., 1.

Postnikov proved [14, Proposition 5.4 and Definition 9.2] that a matching that covers
X exists exactly when a GG-draconian sequence exists. He then goes on to compute volumes
of certain polyhedra as sums over the set of G-draconian sequences. At the moment, it
may be completely unclear how draconian sequences are useful to us; the rest of this
section is dedicated to clarifying the connection.

Definition 2. Given a graph G C K, 5, let Q¢ denote the root polytope
Qc = conv{e; — e5 | {i,j} € E(G)} CRM x RY,
where RY denotes the real vector space with standard basis vectors eq, ..., ex.
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Figure 1: A graph G, left, and its corresponding bipartite graph D(G), right.

It turns out that we can describe VZQ as a root polytope for an appropriate choice of
graph.

Definition 3. Let GG be a simple graph on [N]. Define D(G) to be the subgraph of Ky
with edges {i,i} for each i € [N] and {i,j} and {j,i} for each edge ij in G.

As an example, let G be the graph on [4] with edges 12, 23, 34, 24. Then D(G) is the
bipartite graph with vertices {1,2,3,4,1,2,3,4} and edges 11, 12, 21, 22, 23, 24, 32, 33,
34, 42, 43, and 44. See Figure 1 for an illustration.

Identifying e; in RY with —ey,; in R?Y is a unimodular equivalence; thus, we have
the following simple but important result.

Lemma 4. For all G, VZQ is unimodularly equivalent to Qp(q). O

We now list two more theorems from [14]. In the first, ) denotes the Minkowski sum
of polytopes and, given S C [N], Ag = conv{e; | i € S}. Also, for a graph G on [N], set

N
Ppiey =Y Angiuiy S RY.

i=1

It is also written to reflect our particular context and does not quite capture the full
strength of the original statement. These two theorems are the last pieces needed to
prove the main result of this section: Theorem 8.

Theorem 5 ([14, Theorem 12.2]). Let G be a graph on [N] for which D(G) is connected
and let
Phay={z€RY |2+ A C Po)} -
Then
NVol(Qpc)) = [Py N 27

As written, Theorem 5 relies on D(G) being connected. Fortunately, the connectedness
of G is equivalent to the connectedness of D(G). We will use this fact occasionally so we
present it as a lemma, although its proof is straightforward enough that we omit it.

Lemma 6. For any simple graph G, G is connected if and only if D(G) is connected. [

ot
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Since we are primarily working with D(G) rather than G directly, we let ®(G) denote
the set of D(G)-draconian sequences.

Theorem 7 ({14, Theorem 11.3]). Let G be any graph. Then |Pp ;) N ZN| = |D(G).

Theorem 8. For any connected graph G on [N], NVol(Vel) = |D(G)).

Proof. Lemma 6 assures us that D(G) is connected. By Lemma 4, we know NVol(V52) =

NVol(Qp(c)). Applying Theorem 5 and Theorem 7 completes the proof. ]

To illustrate, let G be the graph on [4] with edges 12, 23, and 24. Here, we have
ND(G)(l) = {1,2}, ND(G)(z) = {1,2,3,4}, ND(G)(?)) = {2,3} and ND(G)(4) = {2,4}.
Theorem 8§ tells us that NVOI(VZQ) = 8 since

9(G) ={(0,3,0,0),(0,2,0,1),(1,1,1,0), (1,1,0,1),
(1,0,1,1),(0,1,1,1),(0,2,1,0),(1,2,0,0)}.

It will be very helpful for us to explicitly state when a sequence is D(G)-draconian.
The main difference is recognizing that for every vertex i of G, degp (i) = 1 + degg(i).

Definition (Definition 1, rephrased). Let G be a graph on [N]. Call (ay,...,ay) € Z%
a D(G)-draconian sequence if Y a; = N — 1 and, for any 1 < iy < --+ <ip < N,

UND = [{i1,..., ik} U (UNG@))‘

j=1

This translates our computation of normalized volume to a purely combinatorial com-
putation. The following simple observation will also be helpful at several points when
proving the results in Section 3.

@i, + -+ a;, <

Remark 9. The normalized volume of VgQ is invariant under permutation of vertices.

We now give a first nontrivial application of Theorem 8 to an infinite class of graphs.

Proposition 10. Let N > 2 and let M be any matching of size k in Ky. Then

NVol(Vi2, 1) = (2(]@[__11)) — 2k,

Proof. Note that since N > 2, K \ M is connected. First consider k = 0. The D(Ky)-
draconian sequences are the weak compositions of N — 1 into N parts, of which there are
(2(]@[:11)). When k£ > 0, the deletion of each edge uv in M prohibits two compositions:
those whose entries are all 0 except for one, which is N — 1 and located at position u or

V. ]

Proposition 10 refers to a very specific class of graphs. The next section proves results
that allow for much more flexibility.
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3 Draconian recurrences

One of the main purposes of this article is to establish several recurrences for N Vol(VgQ),
using what we collectively call draconian recurrences. Certain specific recurrences will be
given their own names as we encounter them. For a simple first situation we consider the
disjoint union of two graphs GG and H, which we denote G + H. Since Theorem 8 only
applies to connected graphs, we study their adjacency polytopes directly.

If PCR"”and Q C R™ are polytopes, each containing the origins 0,,, 0,, respectively,
then their free sum is

P& Q = conv{(P x 0,)U (0, x Q)} CR"*™.
When P and @) are lattice polytopes, there is a convenient product formula we may invoke.

Theorem 11 ([5, Theorem 2|). Given full-dimensional convez polytopes P C R" and
Q CR™, if both P and Q) contain the origin of their respective ambient spaces, then

NVol(P & Q) = NVol(P) NVol(Q).

While Theorem 11 insists that P and @) are full-dimensional, we may replace them
with unimodularly equivalent polytopes P/ C R™ = aff(P) and @' C R™ = aff(P).
Since unimodular equivalence preserves normalized volume, the conclusion of Theorem 11
remains true. This gives us the last piece we need to prove the following.

Proposition 12. If G and H are any two graphs, then
NVol(V53 ;) = NVol(Ve?) NVol(V32).

Proof. Let |V(G)| = M and |V (H)| = N. First consider when M =1 or N = 1. Without
loss of generality we may assume N = 1 and that the vertices of G + H are labeled so
that the isolated vertex from H is labeled M + 1. This means, in particular, that VZQ
consists of a single point, hence NVol(Vi2) = 1.

Let A be the matrix whose columns are the vertices of VI;Q. Partition A as

Ay
o=
where A; consists of the first M rows of A and A, consists of the last M rows of A. The
matrix of vertices of Vgﬁ ; can then be written as

Ar o Oarsa
01X€ 1
142 Oﬁlxl
lel 1

B—
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where 0y, denotes the k x n all-zeros matrix and ¢ is the number of vertices of VgQ. It
is clear that there is a unimodular transformation f for which

f41 0A4x1

leé 0
B:
f( ) /42 Oﬁlxl

lef 1

Let 7(f(B)) be the projection that drops row M + 1 of f(B), that is,

f41 OA4X1
m(f(B)) =] A2 O
01x€ 1

We now recognize 7(f(B)) as a pyramid over V. It is well-known that a lattice polytope
and its pyramid have the same normalized volume (say, by implementing [1, Theorem
2.4, Corollary 3.24]). Since f is unimodular and since 7 is a transformation providing a
bijection between the lattices aff(f(B)) N Z*M+1) and aff(7(f(B))) N Z*M*!, we have

NVol(V5l ;) = NVol(n(f(B))) = NVol(Ve2) = NVol(Ve?) NVol(V52).

This proves the case of M =1 or N = 1.
Now assume M, N > 2. If (z1,...,29p) € VZQ, then, by construction,

M oM
Z%‘Zl and Z r; =1,
i=1

i=M+1
and similar is true for (y;,...,y2n) € VEQ. It follows that the polytopes

P = {(SL‘Q,...,.TM,Z'M+2,...,$2M) ‘ (xl,...,.%QM) S VICD;Q}

and
Q:{<927---7vayN+27---ayzN) ’ (3/17~--73/2N) € VZQ}

are projections that are unimodularly equivalent to VZQ and VEIQ, respectively. Thus,
NVol(Vg?) = NVol(P) and NVol(V}5?) = NVol(Q). Here, P and Q contain the origins
of their respective ambient spaces, so

NVol(P @ Q) = NVol(P) NVol(Q) = NVol(V2) NVol(V53).

Label the vertices of G + H using [M + N| by adding M to every vertex label of H.
Let f: RN — R2M+2N he the map sending (21, . .., Zan+an) 10 (To(1), - - -, To@m428))

where
7 fi<Mori>=2M-+ N +1

oi)=Ri+M HM+1<i<M+N
1— N ifM+N+1<i<2M+ N.
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Since f only permutes coordinates it is a unimodular transformation. Moreover, the
projection of f(VngH) obtained from dropping the first, (M + 1)th, (2M + 1)th, and
(2M + N)th coordinates is a lattice-preserving transformation sending VG Y onto POQ.

Therefore,
NVol(VG+H) NVol(f(V G+H>)

= NVOlEP ®Q)
= NVol(P) NVol(Q)

(Ved) NVol(V5?),
proving the result. O]

= NVol(V

In light of Proposition 12, we will focus for the rest of this section on graphs that are
connected unless explicitly stated otherwise. Restricting to when G is connected allows
us to use Theorem 8 and therefore we study the sets ©(G) directly rather than relying
on properties of their polytopes.

Recall that a graph G is k-connected if for any set X of vertices, | X| < k, the subgraph
G — X is connected. A cut-verter (respectively, cut-edge) of G is a vertex (respectively,
edge) whose deletion from G increases the number of components. A block of a graph
(G is an inclusion-maximal connected subgraph of G with no cut-vertex. Note that a
block of a simple graph GG may be an isolated vertex, a cut-edge, or an inclusion-maximal
2-connected subgraph of G.

Theorem 13. Suppose G is a connected graph with cut-vertex v and B is a block con-
taining v. Setting B' = G[(V(G) \ V(B)) U {v}] we have

NVol(VE2) = NVol(VER) NVol(VER).

Proof. By Remark 9 we may assume without loss of generality that the cut-vertex is 1,
that V(B) = [M], and that V(B') = {1,M +1,..., N}. We claim that the map

f:D(B) x (B = D(G)
which sends ((c1,¢2,...,cnm), (¢h, yyrs - Cy)) to

(di,...,dy) = (c1+ e, em s -5 )

is a well-defined bijection.

For notational convenience set ¢ = (ci1,¢a,...,cn) and ¢ = (¢}, 44, .., Cy). Since
ce®D(B)and ¢ € D(B'), we know Y ¢; =M —1and ) ¢, = N — M. Thus, the sum of
entries in f(c,c’) is N — 1, one of the requirements for being D(G)-draconian. Now pick
any sequence 1 < iy < -+ <1, < N. If i < M or M < iy, then the corresponding D(G)-
draconian inequality automatically holds. So, suppose there is some positive 1 < ¢ < k
for which

<< <M< Topg < oo < g
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If 1 < iy, then

diy + -+ di; = ciy + iy F ¢ T+ G
¢ k
< |UNow (@) + | I Nown(is)| - 1.
j=1 j=t+1
Since B and B’ share just a single vertex, we have that
U ND B') (45) UND(G ij)
Jj=t+1 j=1

Chaining these inequalities together, the D(G)-draconian inequality holds. A similar
argument holds if 1 = 41, only here we explicitly write d;; = ¢; + ¢} and proceed as before.
In both cases the D(G)-draconian inequality holds, therefore f(c, ) € ©(G).

Showing that f is injective is brief and straightforward, so we omit the details. What
requires slightly more work is showing that f is surjective. Let d = (dy,...,dyx) € D(G).
We claim that d = f(c, ¢’) where

M N
c:(M—l—Zdi,dg,...,dM> and ¢ = (N—M— > dj,dMH,...,dN)
=2

j=M+1

and ¢ € D(B), ¢ € D(B'). For notational convenience, we set

M N
Cle—l—ZdZ and CllzN—M— Zd]
i—2 j=M+1
Since it is clear that d = f(c, ¢’), the majority of the work will be in showing that ¢ € ©(B)
and ¢ € ©(B’). The procedure is analogous for both, so we will only give the details for
showing ¢ € ©(B).
By construction, the sum of entries in ¢ is M — 1. Every inequality of the form

k
diy + -+ diy, < || JNos) (i) (3)

j=1
with 1 <14 < --- < i, < M instantly holds since the neighbors of 2,..., M are the same

in D(G) and D(B). It is also clear that 0 < ¢; since, otherwise, dy —|— c+dy > M —1,
which directly contradicts (3).
Now consider a sum of a subsequence of ¢ of the form

Cl+di1+"'+dik-
By way of contradiction, suppose that this does not satisfy the corresponding D(B)-

draconian inequality, that is,
k
(U ND(B)(%’)) ‘ :
j=1
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Since 1 < 11 < i, < M, this inequality may be rewritten
k

U (U ND(G) (%)) | . (4)
j=1

¢y +dyyr +dye+ - +dy =N — M. (5)

Cl—l—d“—i-—l—d

We also now know that

Adding the corresponding sides of (4) and (5) and remembering that ¢; + ¢} = d; results

in
d1+2d + Z d, NDB) <UND ) + N — M.
r=M+1
Using the fact that B’ contains N — M + 1 vertices,
k N
dy + Zd% + Z d, U <U ND(G)(ij)> U Mo ()| - 1.
r=M+1 j=1 r=M+1

Combining the first two summands on the right side counts the vertex 1 twice, resulting

U <U ND(G)(ZJ)) U ( U ND(G)(T)) |

which is a contradiction to d being D(G)-draconian. Therefore the D(B)-draconian in-
equalities for ¢ all hold, and ¢ € ®(B). An analogous argument shows ¢ € ©(B’), proving
f is a bijection. This implies |D(B)||D(B’)| = |D(G)[; applying Theorem 8 completes the
proof. O]

d1+Zd + Z d,

r=M+1

The next result follows quickly from induction and the recurrences proven thus far.

Corollary 14. If F' is a forest on N wvertices with k connected components, then we have
NVol(V5?) = oN-k, O

Interestingly, Corollary 14 implies that any two trees with the same number of edges
will produce adjacency polytopes with the same normalized volume. This does not happen
for connected graphs in general: as we will show in Example 21, NVOI(VEY,?) = 6, which is
not the volume obtained from a path with three edges. Moreover, even though two trees
with the same number of vertices produce adjacency polytopes with equal normalized
volumes, the polytopes themselves are not combinatorially equivalent. Recall that the
f-vector of a polytope P is the vector (f_i, fo,..., faimp) Where f; is the number of
i-dimensional faces of P, using the convention f_; =
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Example 15. Let G; and G; be graphs on [4]. Let E(G) = {12,23,34} and E(G3) =
{12,13,14}. One may verify the that the f-vector of Vg? is

(1,10, 39, 77,82, 46,12, 1)

and the f-vector of Vg? is
(1,10,39,78,86,51,14,1).

Thus the two polytopes are not combinatorially equivalent even though Theorem 8 guar-
antees that their normalized volumes are both 8.

Through the recurrences established so far, we may reduce our work to considering
only 2-connected graphs.

3.1 The subdivision recurrence

Given e € E(G) let G : e denote the graph obtained by subdividing e. Since we are using
the convention V(G) = [N], we will always assume that V(G :e) = [N + 1]. The main
result of this subsection is Theorem 20, which gives a recurrence for NVOI(VE%) under
certain conditions. Establishing the recurrence requires multiple lemmas that have similar
flavors but are distinct enough to warrant presenting their proofs.

The next three lemmas describe how to produce D(G : e)-draconian sequences from
D(G)-draconian sequences and D(G\ e)-draconian sequences. We use the notation AW B
to denote the disjoint union of the sets A and B.

Lemma 16. Let G be any connected graph on [N| and let e = uv be an edge. If c € D(G),
then a(c) € D(G : e) where a(c) = (¢, 1). Moreover, « is an injection.

Proof. Let ¢ € D(G). By Remark 9 we may assume that e = {N — 1, N}. Showing that
« is an injection is routine, so we focus mainly on showing a(c) € D(G : e).

Let ¢ = (¢1,...,cn). Since ¢; + -+ - + ¢y = N — 1, the sum of entries of a(c) is N. By
construction, Np() (i) = Np(g.e) (i) for i =1,...,N — 2,

ND(G!E)(N - 1) - (ND(G)<N - 1) \ {N}) @ {N + 1}

and

ND(G;e)(N> = (ND(G)(N) \ {N — 1}) \) {N -+ 1}.
Pick a sequence 1 < i1 < --- < i < N + 1. There are two cases to consider:

L {N=LN,N+1} Z U, Np(eli;) and

2. {N=L N, N+1} C U\ Npe (i)

In the first case, we can deduce two things: that i, # N + 1 and that if N — 1 is one of
the indices iy, . .., i, then no other neighbor of N in G is one of the indices iy, . .., i (and
vice versa). Therefore,

k
U ND(G:@) (2])

J=1

k
UNb@ (i)
j=1
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and

k k
e+t e < (| UNowy ()| = [ Noo (i) -
j=1 j=1

In the second case, if 7, < N 4+ 1, we immediately get

k K
ci, + -+ e, < | JNpoy(i)] < || Noee (i5)] -

j=1 j=1
Otherwise, 7y = N + 1 and
k k—1 k—1
UNbco (i) = N+ 1w | Now (i) = | Noe ()| + 1.
j=1 j=1 j=1
This time, we get
k—1 k
ot bey = ot 1< | U N )] +1< U Mo (i)
j=1 j=1

Since each case results in satisfying the D(G : e)-draconian inequalities, we have shown
that a(c) € D(G :e). O

Lemma 17. Let G be a 2-connected graph and let e = uv be any edge. If ¢ € D(G \ e),
then B(c) € D(G : e) where B(c) = a(c) + e, — eny1. Moreover, 5 is an injection.

Proof. Arguing that § is injective is routine, so its details are omitted. For what remains,
by Remark 9 we may assume that e = {N — 1, N}. We then want to show that, if
c=(c1,...,cy) €D(G\ e), then

Bc) = (c1,...,en—2,¢n-1+ L,cn,0) € D(G :e).

Note that, by Menger’s theorem and the fact that G is 2-connected, ¢ exists since G \ e
is connected.

Set B(c) = (B1,...,Bny1)- Let 1 <ip <+ <y < N+landset £ =Fkif i, < N+1
and =k —1if 4, =N +1. If N —1# 1, foranyj,then

Biy+- -+ B, =ci, +-+c, < UNDG\e) i;) UND(Ge) i) -

Otherwise, N — 1 = i; for some j. In this case,

UND (G\e) Z] — 1.

7=1

UNDGe Z]

UND<G ) (i5)

7j=1
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Together we have
Biy +- -+ By =ciy +-+a,+1

V4
< |JNo@e ()| +1
j=1

I

k
< U ND(G:@) (1])
j=1

and the D(G : e)-draconian inequality holds. Therefore 3(c) € D(G : e). O

Lemma 18. Let G be a 2-connected graph with an edge e = uv such that degq(u) = 2
and the neighbors of w are neighbors of each other. If ¢ € ©(G), then v(c) € D(G : e)
where y(c) is formed by the following rule. Set v'(c) = a(c) — ey + eny1-

1. Ifc¢ D(G\ e), then
(a) if ¥'(c) € D(G :e), then set y(c) =
(b) If v'(c) ¢ D(G :e), then set v(c)
2. If ce ©(G \ e), then

(c).

/
alc) + e, —eni1.

(a) if ¥'(c) € D(G :e), then set y(c)
(b) If v'(c) ¢ D(G :e), then set v(c) =

Additionally, v is an injection.

¥'(c).

(¢)+ e, —enit-

Proof. As usual, Remark 9 allows us to assume e = { N —1, N} and deg,(/N—1) = 2. This
allows us to more specifically rewrite v as follows: set v'(¢) = (c1,...,cn_2,cn_1—1,¢n, 2).

1. If c ¢ D(G\ e), then
(a) if 7/(c) € D(G : e), then set y(c) = +'(c).
(b) If v/(c) € ©(G : e), then set v(c) = (c1,...,cn—2,cn-1 + 1, ¢cn, 0).
2. If ce ®(G\ e), then
(a) if v/(c) € D(G : e), then set v(c) = +'(c).
(b) If v/(¢) ¢ ©(G : €), then set y(c) = (c1,...,cn-1,¢cn + 1,0).
Throughout the proof we will use the notation
V()= (- Vngr) and y(e) = (1, -+ )
First suppose ¢ ¢ D(G \ e) and 7/(c) ¢ D(G : e), so that y(c) = (¢1,...,cn_2,cn-1 +

1,cn,0). This places us in case 1(b). Let S be the set of all ¢ € D(G) satisfying these
conditions. To show that v(c) is D(G : e)-draconian we first show that cy_; < 1.
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Partition S into disjoint subsets Sy = {c € S| ey—1 =0} and S~ ={c€ S | en_1 >
0}. If ¢ € Sy, then clearly ¢ satisfies cy—1 < 1. For ¢ € S5, since c¢y_1 > 0 we know 7/ > 0
for all 7, hence there must be some sequence 1 < i; < --- < i < N + 1 for which /()
violates the corresponding D(G : e)-draconian inequality. In fact, such a sequence cannot
contain both N — 1 and N + 1, since, otherwise, the proof of Lemma 16 implies

k

U Np(ciey (i5)

Jj=1

and therefore the D(G': e)-draconian inequality corresponding to i; < - -- < iy is satisfied.
Similarly, if i, < N + 1, then

A < N ERE ey o

and the corresponding D(G : e)-draconian inequality is satisfied again due to the proof of
Lemma 16. Hence, any violation of a D(G : e)-draconian inequality by +/(c) with ¢ € S<
requires i, = N + 1 and ¢; # N — 1 for any j < k.

Since degs(N — 1) = 2, and since we are assuming cy_; > 0, we only need to show
that cy_1 # 2. If it were possible that c¢y_; = 2, then for any sequence 1 < i3 < -+ <
ig_1 < 1, = N + 1 not containing N — 1, we would have

fy’:l++’yzlkzcll+..+clk71+2
=Cy + -+ Gy, T CN-

(UND(G)(%‘)> UNp)(N —1)].

J=1

<

Notice that the set -
T = (U ND(G)(Z’D) UNp@)(N = 1)
j=1
contains both N and N — 1. On the other hand,

K
U Nb(ce)(15)

=1

contains N + 1 and all elements of 7" with the potential exception of the vertex in D(G:e)
corresponding to the neighbor of N — 1 other than N + 1, which is unique since we have
assumed deg, (N — 1) = 2. From this we conclude

Vi + o+, <ITT<

k
U ND(G:@) (Z])
j=1

Since we have verified that all other D(G : e)-draconian inequalities hold for +/(c), this
would imply +/(¢) is a D(G : e)-draconian sequence, which is a contradiction. Therefore
CN—-1 = 1.
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The remainder of our argument in establishing 1(b) applies to all elements of S.
Consider a sum of the form ~;, +--- 4, with1 <7, <--- <4 < N+ 1. If 4 <N -1,
then v;, = ¢;; and Np(e)(i;) = Np(a:e)(i;) for each j =1,... &, so that

UND

If iy = N — 1, then there are two subcases. First, if N € U ./\/D(G (4;), then

UND(G ) (75) <UND ) W{N + 1},

7j=1

k
= U Noee (i)

j=1

Vit tv = e <

hence

k
U NG (i)] -

J=1

+{N+1}| =

U N (@)

J=1

VoY=t +1<

On the other hand, suppose N ¢ UYZ{Npg)(i;). Without loss of generality, we assume
that the other neighbor of N — 1 in G is N —2.

Since the neighbors of N — 1 in GG are neighbors of each other, i,,_1 < N — 2, hence
N-1¢ U?;%ND(G) (i;) as well. Since we now know cy_; < 1, we have

’711+"‘+’7ik = ¢y +"'+Cik_1+cN—1+1
<Cil +'..+Cik71+2

k—1

< UMb (i)

=1

k
< U ND(G’:e) (Z]) .
j=1

+[{N —1,N + 1}

This completes the case for 7, = N — 1.
If i, = N and 7,1 < N — 1, then

k
< U Npce) ()],

Jj=1

U No ())

Jj=1

Vit v = o <

where the second inequality follows from recognizing that while N — 1 appears in the first
union it may not appear in the second, and that N + 1 appears in the second union but
does not appear in the first. If ¢, = N and i;,_; = N — 1, then

k
U N (i)

J=1

k
U ND(G:@) (/L]) .

J=1

Yir to Y, =+t H1< +|{N+ 1} =
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Finally, if 7, = N + 1, then by the proof of Lemma 16,

k

U Noee (i)

J=1

’7i1+"'+7ik<Ci1+"'+cik_1+1<

Therefore, v(c) is D(G : e)-draconian when in case 1(b).

Now consider case 2(b), so that ¢ € ©(G \ e) and v'(c) ¢ ©(G : e). Proving that
v(c) = (c1,...,en—1,en+1,0) € D(G:e) follows the proof of Lemma 17 almost identically,
replacing N — 1 with N. For this reason, we omit the details.

To show that 7 is an injection, we can restrict to comparing the sequences of 1(a) with
those of 2(a) and the sequences of 1(b) with those of 2(b). Fortunately, it is straightforward
to see that no sequence can arise simultaneously as y(c¢) under the conditions of 1(a) and
v(¢’) under the conditions of 2(a). If this were possible, we would obtain ¢ = ¢/, but ¢
cannot simultaneously be a member of and absent from (G \ e).

For the remaining case, suppose v(c) = (d) where 7(c) falls under the conditions of
1(b) and y(d) falls under the conditions of 2(b). Let v(d) = (v{,...,7x41)- Since y(d)
falls under the conditions of 2(b), we know d € ©(G \ e). In G\ e, the vertex N — 1 has
degree 1, hence v4,_; € {0,1}. We cannot have v4,_; = 0 since this would imply

0= ’}/X[,l =7YN-1 =CN-1T 17

that is, we would have cy_; = —1, which contradicts ¢ € D(G).

If v%,_; = 1, then we claim /(d) € ©(G : e) meaning v(d) would not be obtained from
case 2(b). For ease of reference, we collect notation in terms of 7{,..., %, needed to
complete the argument:

= (W5 Lyw — 1),
=5 Va2 0,7%),
Y(d) = (%Y LY 0),
Y(d) = (15N, 0,78 — 1,2).

Since d € D(G \ e), all of the D(G : e)-draconian inequalities involving the first NV
coordinates of 7/(d) are immediately satisfied. Consider, then, a sum involving the last
coordinate of 7/(d). Note that d € D(G \ e) C ©(G). If the sum involves the Nth and
the (N — 1)th coordinates of 7/(d) as well, then, since we know that a(d) € D(G : e), we
may write

d
c

72/1+”'+7Z{;73+0+7K[_1+2:7£,1+'..+7£;,3+1+<’Y§</‘_1)+1

<OND(016)(%)> U ( U ND(G;e)(j)) ‘

j=N-1

<

If the sum involves the Nth coordinate of 7/(d) but not the (N — 1)th coordinate, then,
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this time, a(c) € D(G : e) gives us
Vi b Vi, PN T L E2Z =g e, R L

<

f—2
(U ND(G:e)(ij)> UND@G:e)(N) UNDGey(N +1)].

Jj=1

A similar argument holds for when the sum involves the (N — 1)th coordinate of 7/(d)
but not the Nth coordinate.
Next, suppose the sum is of the form

YotV , N 2=+, P F 1L

Since a(d) € D(G : e), we can say

k2
Yot Y, TN T1H1< (U ND(G:@(%’)) U U Np(Ge)(7)

j=1 je{N-2,N—1,N+1}

Note that N, D(G:e)(IN — 1) can be dropped from this union because
ND(G’:&)(N - 1) g ND(G:e)(N - 2) UND(G:6)<N + 1)

As a result, the desired inequality holds.
Finally, suppose the sum is of the form

Vi T Vi, 2
where i1 < N — 2. Since d € D(G), we know

k—1

i+l + 2 < U No i) +2.
j=1

Since i,_1 < N —2, we know neither N — 1 nor N + 1, which are elements of ND(G:G)(N—i—
1), are in the above union. Therefore,

k-1

UMb (i) +2 < :
j=1

Vi +F v F2<

k-1
<U N (Gie) (%>> UND@ie) (N +1)
j=1

The above completes the argument that all D(G':e)-draconian inequalities are satisfied
by +'(d), i.e., 7/(d) € D(G : e). This contradicts the assumption that v(d) was obtained
from case 2(b), so 7% _; # 1. Both possible values of %, _; lead to a contradiction,
meaning no sequence obtained from case 1(b) can be obtained from case 2(b) and vice
versa. Therefore, ~v is injective. O
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Fix a particular edge e of a 2-connected graph G for which one of the endpoints has
degree 2 in G. Let Ag(e), Bg(e), and Cg(e) be the set of D(G : e)-draconian sequences
constructed from «, 3, and v in Lemmas 16, 17, and 18, respectively.

Lemma 19. Let G be a 2-connected graph with an edge e = uwv such that degg(u) = 2
and the neighbors of u are neighbors of each other. The sets Ac(e), Ba(e), and Cq(e) are
pairwise disjoint.

Proof. We continue to use the convention that e = {N — 1, N} and deg,(N — 1) = 2.

We will also make the assumption that the other neighbor of N — 1 in G is N — 2. By

comparing the values of cy1, it is clear that Ag(e) N Bg(e) = @ and Ag(e) NCq(e) = .

Thus we only need to focus on B (e)NCq(e). In fact, since v is an injection, we only need

to consider elements of Cg(e) that fall under the conditions of 1(b) or 2(b) of Lemma 18.
Suppose that B(c) = v(¢') where

c=(c1,...,ey) and ¢ = (d},...,cy)

are sequences with ¢ € ®(G \ e) and ¢ € D(G). If (') were to be constructed by the
conditions of 1(b) in Lemma 18, it would follow that ¢ = ¢ since, in this case, 5(c) = v(¢)
implies
ale) +eny_1 —eny1 =ald) +en 1 —eny1

and « is injective. However, this causes a contradiction, as Lemma 17 requires ¢ € ©(G\e)
while condition 1 of Lemma 18 requires ¢ = ¢ ¢ ©(G \ e). Hence we may assume
c € D(G\ e) and () is constructed via condition 2(b) of Lemma 18.

Since both ¢, € D(G \ e), we know cy_1,¢y_; < 1. By the definitions of g and ~,
we make several observations:

o ¢ci=c, foralli <N —2;
e Y(d)n_1 =cn-1+ 1, hence ¢y_; = 1; and
o flc)y =y + 1.

We claim that, in fact, /() = (71,...,Yv41) € D(G : e), contradicting that v(c') was
constructed via condition 2(b) of Lemma 18. Note that, based on our observations,

V()= (), ..y o, vy — 1,0, 2) = (c1,- -, en_2,0,en — 1,2).

Consider a sum of the form ~; +---+v; with1 <4 <--- < < N+1 Ifip, < N-2,
then the neighbors of i; are the same in D(G) and D(G : e), hence

) (45)] -

’Vz{l—i_"'—i_rygkzcu ey <

If iy, = N — 1, then
’y’:l++,y7szcll+...+clk—l+0
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As in the case when i, < N — 2, the neighbors of 4y, ... i, are the same in D(G) and
D(G :e), so that

Ui

UNDGe Z]

7j=1

UND G:e) Z])

j=1

,y’zl + /y’lk

If i, = N, then we have

Vit Y = Gt G ey -
k

< U ND(G’) (Z]) —
j=1

k
< U ND(G:e) (Z]) .

j=1

In the case i, = N + 1, we consider several subcases. If i,_; = N, then

k
’72/1++’71/k :Ci1+”'+cik_1 —14+2< UND(G:e)(ij) ,

i=1

where the inequality holds by Lemma 16. If ¢y_; = N — 1, then

k
U ND(G:e) (Z]) )

j=1

VoA = A, —14+2<

1k—1

where the inequality again holds by Lemma 16. If 741 = N — 2, then

Vi b= b, ey — 142

< (UND(G:e)(ij)> UNDGe)(N —1)

j=1

k
= UND(G:e)@j) )
j=1

where the inequality follows from Lemma 16 and the last equality comes from recognizing
that Np(g.e)(N — 1) € Np(ae)(N = 2) U Npie)(N + 1), hence Npg.e)(N — 1) may be
freely dropped from the expression. Finally, if i;,_; < N — 2, then

k

U No@ (i)

7=1

k
U ND(G:e) (Z]) .

J=1

With this, we have verified that all of the D(G : e)-draconian inequalities hold for
7' ('), giving us the desired contradiction. Therefore, B (e) N Cq(e) = @, completing the
proof. O

ViAot S+t 2 < +}{N—1,N+1}\<
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This result, together with the three lemmas preceding it, give Ag(e)wBg(e) WCq(e) C
D(G :e). It turns out that the reverse inclusion holds, establishing what we call the
subdivision recurrence.

Theorem 20 (Subdivision recurrence). Let G be a 2-connected graph with an edge e = uv
such that degq(u) = 2 and the neighbors of u are neighbors of each other. Then ©(G:e) =
Ag(e) W Bg(e) W Cq(e) and, consequently,

NVol(Veid) = 2NVol(Vg?) + NVol(VEd).

Proof. Again without loss of generality we may assume e = {N—1, N} and deg(N—1) =
2. By Lemmas 16, 17, and 18,

Ac(e) UBg(e) UCq(e) CD(G:e).

For the reverse inclusion, we will show that, given d = (dy,...,dy4+1) € D(G : €), one of
the following conditions holds:

1. If dN-l—l = 2, then (dl, e 7dN—2>dN—1 + 1,dN) € @(G)
2. If dN+1 = ]_, then (dl,...,d]\[) GS(G)
3. If dyy1 = 0, then one of the following is true:

(a) (dl, L ,dN_Q,dN_l — 1,dN) S @(G\e),

(b) both (dl, .. 7dN_2, dN_1—2, dN, 2) ¢ @(Ge) and (dh C ,dN_Q, dN_l—l, dN) €
D(G)\D(G \e); or

(C) both (dl, N ,dN_Q,dN_l—l,dN—l,Q) §é @(Ge) and (dl, N ,dN_Q,dN_l,dN—
1) € D(G\ e).

If the second condition holds, then d € Ag(e); if condition 3(a) holds, then d € Bg(e); if
any of the remaining conditions hold, then d € Cg(e).

First suppose dyi1 = 2 and let 1 < 43 < -+ < iy < N. Set (c1,...,cy) =
(dl, vy dy_o,dy_1 + 1,dN). If i, < N — 1, then ND(G:e)(ij) = ND(G)(ij) for each j,
so the corresponding draconian inequality

Ci1+"‘+cik:di1+"'+dik<

k
U ND(G’:@) (Z])

i=1

k
U N (i)
j=1

holds.
Otherwise, since d € D(G : e),

K
<UND(G:6)(ij)> UNDGie) (N +1)

Jj=1

< -1
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Therefore, each D(G)-draconian inequality holds for (eq,...,cy), establishing the first
condition.

Next suppose dyy1 = 1l and let 1 <4 < -+ < 4 < N. If i < N — 1, then the
corresponding draconian inequality holds as in the case of dyy1 = 2. If 1 > N — 1, then
we know from d € ©(G : e) that

k
dil 4+ dik +1< (U ND(G:@)(%‘)) UND(G:e)(N + 1)

j=1

= (U ND(G)(%)) B {N + 1}

Jj=1
k
j=1

Subtracting 1 from both sides establishes the corresponding D(G)-draconian inequality
for (dy,...,dy). Thus the second condition holds.
Establishing the last condition, where dy,; = 0, requires the most care. Since
degs(N — 1) = 2, we know that dy_1 € {0,1,2} and we will treat each case separately.
Suppose dy_1 = 0. Our aim will be to show that condition 3(c) holds. It is clear that
(dy,...,dn_o,dn_1 — 1,dny — 1,2) ¢ D(G :e) since dy_; — 1 < 0. Now, if dy = 0, then
there is a contradiction, since this and the 2-connectivity of G imply

UND

N-2

UNDGe

N=d+ - +dyo<

Thus, dy > 0.

Set (c¢1,...,cn) = (dy,...,dn-1,dy — 1) and consider the sum ¢;, + -+ + ¢;, . If
i, < N — 1, then the desired D(G)-draconian inequality holds using the same argument
as for the previous conditions. If i, = N — 1, then

k-1

UNDGe Z] )

Cz‘1+"'+cik:di1+"'+dz‘k L

Lastly, if 7, = N, then
Ci1+“‘+cik:di1+"‘+dik_1
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k
< | JNpee (i) — 1

J=1

-1

= (U ND(G\e)(%’)) W{N + 1}

Jj=1

k
= U Nb@o (i)

J=1

Therefore, if dy_; = 0, then condition 3(c) holds.

Next suppose dy_1; = 2. Condition 3(c) clearly cannot hold since this condition
requires dy_1 < 1, so we must show that either 3(a) or 3(b) holds. Suppose that condition
3(a) does not hold, that is, suppose (di,...,dy_2,1,dx) ¢ D(G \ €). Showing that this
sequence is in D(G) can be done directly repeating our by-now-usual strategies, so the
sequence is in D(G) \ D(G \ e).

To show that (dy,...,dy_2,0,dNn,2) & ©(G : e), observe that (dy,...,dy_2,1,dy) ¢
D(G \ e) implies there is some inequality of the form

diy +---+di, 2 (6)

k
U N (i)
j=1

with iy = Nand iy < N —-1. f N—-1¢ UleND(G\e)(ij), then add 2 to both sides of
(6) to get

k
diy -+ di +2 > || Noer ()| +2
j=1

k
= U/\/'D(G\e)(ij) +‘{N—1,N+1}’

j=1

k
= U Noee (i)

j=1

which would imply (dy,...,dN—_2,0,dn,2) ¢ D(G:e). f N -1 ¢ U§:1ND(G\e)(ij)7 then
add 2 to the left side of (6) and 1 = }{N}‘ to the right side; the conclusion is the same.
Thus, if condition 3(a) does not hold, then condition 3(b) does hold.

For the case of when dy_; = 1, the first part of condition 3(b) clearly holds. Verifying
that (dq,...,dy_2,0,dy) € D(G) is now routine, so either condition 3(a) holds or 3(b)
holds.

We have shown that, regardless of value of dy.1, one of the three conditions holds,

hence d € Ag(e) UBg(e) UCq(e) and D (G :e) = Ag(e) UBg(e) UCq(e). By Lemma 19,
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this union is disjoint, so

D(G 1 e)| = |Ac(e) ¥ Ba(e) W Cqle)]
= [Aa(e)| +[Ba(e)] + [Cale)]
=219(G)[+|D(G\ e)].

Applying Theorem 8, the result is proven. O

Example 21. Consider C5 = ([3],{12,13,23}) and let e = 13; there are six D(C}3)-
draconian sequences:

(2,0,0) (0,2,0) (0,0,2)

(1,1,0) (1,0,1) (0,1,1)
Subdividing e replaces the edge 13 with edges 34 and 14 to obtain Cy. By the subdivision
recurrence, D (Cy) = D(Cs:e) = A, (e) ¥ B, (e) W Cey(e). Following the definitions of «,
[, and v we obtain

Acs(e) ={(2,0,0,1),(0,2,0,1),(0,0,2,1),(1,1,0,1),(1,0,1,1),(0,1,1,1)}
‘BC3(€) = {(172’070)7(271’0’ 0)7(2707]"0>7(]‘7171’0)}
603(6) :{(1707072>7(170727())7(0717072>7(0707172)7(071727())7(0727170)}'

Notice that |D(C3)| = 3 - 2! and |D(Cy)| = 4 - 2%

Computational evidence suggests that the subdivision recurrence holds even without
the condition that the neighbors of u are neighbors of each other. Indeed, Kohl [11] has
verified that the recurrence holds for all graphs under this more relaxed condition having
at most nine vertices. However, the subdivision recurrence does not necessarily hold if we
allow both endpoints of e to have degree larger than 2 in G. For example, if G = K,V Ps,
where Pj is the path on three vertices, and e is the edge of G whose endpoints each have
degree 3 in G, then one may show that NVol(Vge) = 50 whereas

2NVol(V?) + NVol(Vid ) = 2(18) + 16 = 52.

One important class of 2-connected graphs that the subdivision recurrence does not
directly cover is the class of cycles. The conclusion of the subdivision recurrence holds,
but to prove so requires a modified proof.

Corollary 22. For a cycle Cy on N > 3 vertices and any edge e of Cy,
NVol(Ved ) = 2NVol(Vi? ) + NVol(VZ2, ).
Consequently, NVol(Vgg) = N2N—2,

Proof. We will prove this result by showing that the conclusion of the subdivision recur-
rence holds for C'y using the same functions «, , and v as in Lemmas 16, 17, and 18,
respectively. Notice that none of the proofs of Lemmas 16, 17, 19, or Theorem 20 rely on
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the neighbors of v being neighbors of each other. In Lemma 18, the only time in which
this condition is invoked is in establishing v(c) € ©(G : e) under case 1(b). Thus, by
adapting the proof of case 1(b) to Cy we will have immediately established

NVol(V2 ) = 2NVol(V2) + NVol (Ve ).

The formula NVOI(VZ%) = N2V~2 then follows from Corollary 14 and induction, whose
details we omit.

Without loss of generality we may assume that Cy has vertex set [N] and edges
{1,2},{2,3},... {N —1,N} {1, N}, and we will subdivide the edge e = {N — 1, N}. Let
c € D(Cy) so that v'(c) ¢ ®(Cn:e) and ¢ ¢ D(Cx \ €). Setting ¢ = (¢4, ..., cy), we have

v(e) = (1, -, In+1) = (€1, .., en—2,cn—1 + 1, N, 0).

Consider a sum of the form v;, +- - -4;,. If i)y, < N—1, then Np(cy)(3;) = Npcy:e)(i5)
for each 7, hence

k
U ND(CN55) (%)

j=1

k
U ND(CN) (45)

j=1

Yo+t v =c e <

When i, = N — 1 is when we have the most work to do. To begin, we may assume
that ¢;; > 0 for all j < k since, once the desired inequalities for these cases hold, if we
were to check the inequality involving some iy < N — 1 for which ¢;, = 0, then we would
instantly obtain

Yir t o Yie T Yie = Vi T+ Vay

k
< | UNbewaliy)
j=1

k
< (U ND(CN:a(ij)) U ND(cyie) (ie)

j=1
This allows us to assume for the rest of this case that ¢;;, >0 forall j=1,...,k—1.
If 4y =1, then
k k
’}/Z'l “+ - +’yik = Ci1 + e + Cik + 1 < UND(CN)(ij) + |{N+ 1}| = UND(C'N:E)(ij) .
=1 j=1

If iy > 1, then partition the set I = {iy, ..., 4} into nonempty subsets Si, ..., .S, such that
each S; consists of consecutive integers and is maximal with that property with respect to
containment. Additionally, label the subsets so that min(S;) < min(Ss) < --- < min(S,).
Define t to be the largest index satisfying

min(S;) — max(S;—1) > 2,
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or t = 1 if no such index exists. Note that we always have N — 1€ S, U S,y U---US,.
Ift>1,thenlet I, =S;U---US;y and Is; = S;U---US,. Because min([s;) —
max (/o) > 2, we know

U Moo (@) | 0| U Moo iy) | = 2.
ijEI<t ijGI)t

Since ¢ € D(Cy),

ci+ - o < | | Nowew) (65)| + Cmingsy + -+ + iy

ij €l

<| U Noewm@)|+| | Noew i)

ij€I<t ijG])t

k
= [ JNbiew) (i))] -

Jj=1

Because of the two strict inequalities here, we may therefore say

Vip Y =y o + 1

< | U Noew i)| + cmingsy + -+ + ¢,

ij€l<y

< U Noew) (1) + U Npew)(i5)

ij61<z ije[;t

k
= [JNbiew (i) -

j=1

If t = 1, then there are two additional subcases to consider: when one of ¢i,cy > 0

and when ¢; = ¢y = 0. In both subcases, we will use the fact that for each £ =1,...,r,
Z Cij € {|S€|7 |S€| + 1}7
i‘jESg

that is, for a fixed ¢, the values of ¢;; such that ; € Sy are all 1 or 2 with at most one of
them being 2. Indeed, if there were two 2s, then

Z CZ‘]. > ’S£| +2= U ND(C’N)(ij) ’

;€S i;€Sy

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(1) (2022), #P1.61 26



contradicting ¢ € ®(Cy). We will moreover use fact that the case ¢ = 1 means

UND (CN) ZJ

7j=1

UND (Cne) (7))

7j=1

=N — (i — 2).

Suppose that at least one of ¢y, ¢y is positive. This implies there is at least one £ € [r]
for which 3°, g, ¢;; = S| Therefore,

Vi F Vi =y ey 1

< (Z|Si|+1)—1+1

i=1
<N — (i — 2)
k
- UND(CN¢6)<ij) :
j=1

If ¢, = ey = 0, then we claim that 7/(¢') € ©(Cy : e), contradicting that we are in
case 1(b). Here, cy_1 > 0 since, otherwise,

N-2

=2

in which case ¢ ¢ ©(Cy), a contradiction. Thus, the entries of 7/(c) are all nonnegative.
Let 7/(c) = (7, .-, 7ny41) and consider a sum v; + ---+ ;. If i <N, then

’71{1 +oet %k Ciy + o+ ¢y < U ND(CN ZJ

7=1

UND Cn:e) Z])

J=1

Otherwise, 7, = N + 1. Since we are in the case ¢; = ¢y = 0, we may assume 7; > 1 and
ir_1 < N.if i1 = N — 1, then a(c) € D(Cy : €) gives us

k

U ND(CNie) (Z])

Jj=1

Vit = e, —142<

right away. If i,_, < N — 1, then neither N nor N + 1 is a neighbor of any of 4y, ..., 4,1
in either D(Cy) or D(Cy : e), so

k
U N (i) |+ {N, N +T1}| <

J=1

ry£1+..'+77?k :Ci1+.“+cik—1+2<

) (45)] -

Therefore, 7/(c) € ®(C : €), contradicting the fact that v(c) arises from case 1(b). This
completes the case i, = N — 1.
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If i, = N, then consider 7;_,. If i1 < N — 1, then we obtain the desired inequality
again from knowing a(c) € ©(Cy : e). Otherwise ix_; = N — 1, in which case

Voo oY = o+ 1

k
< U ND(CN) (ZJ)

j=1

k
= U Nbeweo (i)

j=1

+ [{N + 1}

Lastly, if i, = N + 1, then ~;, = 0, and by the previous cases we have

k—1 k
7Z1++72k :’72'1—'_"'_{—’72'1@71 < UND(CN“?)(ij) < UND(CNZE)(ij> .
e =1

This final inequality establishes v(c) € ©(Cl : €) for the case 1(b), which completes our
proof. O]

We close this subsection with an invitation to the reader.

Question 23. Under what conditions for a graph G and an edge e is there a “nice”
recurrence for NVol(Vge)?

3.2 The triangle recurrence

The framework which establishes the subdivision recurrence can be adapted to a different
operation. Given an edge e = uv of a graph G, let GAe denote the graph with edge set
E(GQ) U {uw,vw} where w is a new vertex. We will continue to assume V(G) = [N] and
V(GAe) = [N + 1]. As in Section 3.1, establishing a recurrence formula for ©(GAe)
will require establishing several smaller results first. The first two of these have proofs
analogous enough to the proofs of Lemma 16 and Lemma 17, respectively, that we omit
their details.

Lemma 24. Let G be any connected graph on [N] and e any edge. If ¢ € D(G), then
a®(c) € D(GAe) where a®(c) = (¢, 1). Moreover, a® is injective. O

Lemma 25. Let G be a connected graph on [N] and let e = uv be any edge. If c € D(G),
then % (c) € D(GAe) where

B2(c) = a®(c) + ew — e
Additionally, 5° is injective. O

The next lemma is analogous to Lemmas 18, but this time its proof is different enough
for us to justify providing it. It will be helpful to introduce the analogues of Ag(e) and
Be(e) here: let Aé(e) and B2 (e) be the D(GAe)-draconian sequences constructed with
a® and B* in Lemmas 24 and 25, respectively.
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Lemma 26. Let G be a connected graph on [N| and let e = uv be any edge for which
dego(u) = 2. If c € D(G), then v (c) € D(GAe) where

5(0) a®(c) 4+ e, —eny1  if not in B (e)
C) =
7 a®(c) — e, +eyp1  otherwise.

Additionally, v* is injective.

Proof. That +* is injective is clear. For what remains, by Remark 9 we again assume
without loss of generality that e = {N —1, N}. We also assume that the other neighbor of
N—1inGis N—2. So, if c = (cy,...,cy) € D(G), then we must prove v (c) € D(GAe)
where

. . A
A A (c1,...,cn—2,cn—1,cy +1,0)  if not in B (e)
”YA(C):(% a---77N+1>:{ “

(¢1,...,cn—2,cny—1 — 1,¢n,2)  otherwise.

Note that, in both cases, the entries sum to N.

If v2(c) = (c1,...,en_2,cN-1,¢cn + 1,0), then showing it is D(GAe)-draconian is
entirely analogous to the proof of Lemma 17. Otherwise, v2(c) = (c1,...,cN_2,Cn_1 —
1,cn,2). Being in this case means that (ci,...,cy_1,cn +1,0) € B4 (e). Hence, we know
cy—1 = 1, so all entries of 7A are nonnegative, and we also know

C/: (Cl,...,CN_Q,CN_l —1,CN+1) GQ(G) (7)
Consider a sum %-? +"'+% with 1 <7 <--- <ip < N+ 1. If i <N, then

k
)| < U Np@ne (ij)]| -

i=1

Y+ Y S+t <

If i, = N 4 1 then there are four subcases to consider depending on the value of i;_;.
If 1,1 = N, then we may write the sum as

/yﬁ_f—+7$:cz1++02k_2+(c]\7+1>+1

By (7), we know that a®(¢') € D(GAe). The above sum appears when verifying this
fact, so we know that

k
Vi o+ < |UNo@ao ()]
j=1
If ip_1 = N — 1, then
k
fyﬁ_{_..-—}—’yl%:Ci1+-.-+0ik_2+CN_1—|—1< UND(GAS)(Z]) ,
j=1
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where the inequality again comes from knowing a®(c) € D(GAe). If iy_; = N — 2, then
again by applying o, we may say

VoA St te tov — 142 <

(UND(GAE)(ij)> UNDp@ae(N —1)

J=1

Noticing that
k
No@ney(N —1) C Npaey(N —2) UNpgae (N +1) C UND(GAe)(ij)
j=1

we may drop N p(Gae)(N — 1) from the union, which establishes the desired inequality.
Lastly, if i1 < N — 2, then neither N — 1 nor N + 1 is a neighbor of i; in D(GAe) for
J < k—1,s0 we may say

k-1 k
Vo < UND(GAe)(ij) W{N -1, N +1}| < UND(GAe)(ij) :
j=1 j=1

In all cases, the required D(GAe)-draconian inequality holds. Therefore, we have shown
72 (c) € D(GAe) for all c € D(Q). O

Let G5 (e) be the D(GAe)-draconian sequences constructed from 2 in Lemma 26.
The proof of the following is completely analogous to the proof of Lemma 19.

Lemma 27. Let G be a graph having an edge e = uv with degq(u) = 2. The sets A% (e),
BE(e), and CF(e) are pairwise disjoint. O

As in Section 3.1, the previous four lemmas imply A% (e) WBS (€)W C5 (e) € D(GAe).
The reverse inclusion again holds under certain restrictions, establishing what we call the
triangle recurrence.. We present the proof below, deferring portions of it to two lemmas
afterward.

Theorem 28 (Triangle Recurrence). Let G be any connected graph and let e = uv be
an edge with degg(u) = 2. If deg,(v) = 2 or if the neighbors of u are neighbors of each
other, then

NVol(Ved,) = 3NVol(Vi2).

Proof. As usual we assume V(G) = [N], e = {N — 1, N}, and deg,(N — 1) = 2. We will
further assume that the other neighbor of N — 1 in G is N — 2. Lemmas 24, 25, and 26
show that
A A A
A5(e) UBE(e) U €A (e) C D(GAe),

so we must show the reverse inclusion holds.
Let d = (dy,...,dny1) € D(GAe). As with the subdivision recurrence, there are three
statements we must establish:
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o If dyyy = 0, then (dy,...,dy_2,dy_1 — 1,dy) € D(G) or, if this is not the case,
then (dl, R ,dN_Q, dN—la dyn — 1) € @(G),

o If dN+1 = ]_, then (dl, e 7dN) c @(G), and

o If dy.y = 2, then both (dy,...,dy_o,dy_1 + 1,dy + 1,0) € B5(e) as well as
(dl, - ,dN_Q,dN_l + 1,dN) S @(G)

For ease of readability, the case dy;q = 0 is deferred to Lemmas 31 and 32, where the
two different conditions on the vertices N — 1 and N are treated individually.

Suppose, then, that dy,; = 1. Pick any D(GAe)-draconian sequence of the form
(dy,...,dn,1). Let 1 <iy <--- < < N. Ifi; # N —1,N for all j, then the neighbors
of i; are the same in D(GAe) and D(G), so the corresponding D(G)-draconian inequality
instantly holds. Otherwise,

di1+"'+dik:di1

-1

-1

UND(GAe)<ij)> U{N+1}

Thus (dy,...,dy) € D(G).

Lastly, suppose dy1 = 2. For this case we first show that (dy,...,dy_1+1,dy+1,0) €
BZ(e). This can be rephrased as wanting to show (di,...,dy_y + 1,dy +1,0) = 52(c)
for some ¢, or, in yet other words, that (di,...,dy_1,dy + 1) € D(G).

Set d' = (d,...,dy) = (di,...,dy-1,dn + 1) and consider 1 < i; < --- < i < N.
If 44 < N — 1, then the D(G)-draconian inequality holds as usual. If iy = N — 1, then

observe
di, +--+dy, <diy +---+d;, +2-1

< (U ND(G)@)) U{N +1}

-1

k
= UNow (5)] -
j=1

If i, = N, then repeat this argument but by inserting “+1 — 1”7 instead of “42 — 17. In
all cases, the D(G)-draconian inequality holds, so d’ € ©(G), as needed. In fact, showing

that (dy,...,dy_2,dy_1 + 1,dy) is D(G)-draconian has an entirely analogous argument.
Therefore, this completes the case for dy; = 2.
By Lemma 27,

D(GLe) = A5 (e) W B5(e) W5 (e).
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Figure 2: Two graphs G, (left) and Go (right).

Thus,
[D(GAe)| = |AG (e)| + Bg (e)] + €& (e)] = 3[D(G)].

Finally, by Theorem 8, we obtain
NVol(Va2,) = 3NVol(V52). O
Example 29. Let (5 be the 3-cycle as in Example 21 and again choose e = 13. The
D(G Ae)-draconian sequences are formed from the disjoint union of the three sets
Aéﬁ(e) ={(2,0,0,1),(0,2,0,1),(0,0,2,1),(1,1,0,1),(1,0,1,1),(0,1,1,1)}
Be, (e) = {(3,0,0,0),(1,2,0,0), (1,0,2,0), (2,1,0,0), (2,0,1,0), (1,1,1,0)}
(‘Za(e) ={(1,0,0,2),(0,2,1,0),(0,0,3,0),(0,1,0,2),(0,0,1,2),(0,1,2,0) }

As in the case of the subdivision recurrence, by relaxing the requirement that e has
an endpoint of degree 2 in G, the result may no longer hold. The same example as
before, where G = K; V P3 and e is the edge whose endpoints each have degree 3 in G,
demonstrates this. The normalized volume of Vg%e is 52 whereas a naive attempt to
apply the triangle recurrence would predict 54.

Although the conclusion of the triangle recurrence may not hold when the endpoints of
e do not have degree 2, there are cases when the conclusion still does hold. For example,
the graph G5 in Figure 2 cannot be constructed from G; in a way that allows us to
combine the subdivision and triangle recurrences, yet we still have |D(Gs)| = 3|D(Gy)|.
Note that the conditions under discussion are local conditions; this will contrast with
global conditions that we examine in Section 3.3. This leads us to ask the following.

Question 30. Under what local conditions for a graph G and an edge e is there a “nice”
recurrence for NVol(Ves,)?

To close this section, we state and prove the lemmas needed to complete the proof of
Theorem 28.

Lemma 31. Let G be any connected graph on [N] for which e = uv with degg(u) = 2
and the neighbors of w are neighbors of each other. If (di,...,dn,0) € D(GAe), then
(dy,...,dy) — e, € D(G) or (dy,...,dy) — e, € D(G).
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Proof. As usual we assume V(G) = [N], e = {N — 1, N}, and deg,(N — 1) = 2. We will
further assume that the other neighbor of N —1in G is N — 2.

We first show that if dy_1 > 1, then (dy,...,dy_2,dy_1 — 1,dy) € D(G). For nota-
tional convenience, we will write

d/ - (dll, cee ,di) - (dl, ce 7dN727dN71 - 17dN)-

Consider a sum dj, + ---+d; with 1 <i; < - <ip < N. If ip < N — 1, then the
neighbors of each i; is the same in D(G) and D(GAe), so

dgl 4t d;k =d;, +---+d; < UND(GAe ij)

7=1

If i, = N — 1 orif both i, = N and i;,_; = N — 1 then we have

U N (i)

J=1

k
U Nonre(ij)

J=1

diy +--+d, =djyy +---+dy, —1< —1=

since N + 1 is a neighbor of N — 1 in D(G/Ae) but not D(G).

Lastly, if i, = N but i1 < N — 1, recall that we have required N to be a neighbor
of both N — 1 and N — 2. Thus, the neighbors of N — 1 in D(GAe) are necessarily also
neighbors of N in D(GAe). Therefore,

diy +-+dj, <djy+---+diy, +dy_1—1

k
< (U ND(GAe)(ij)> UND(GAe)(N_ 1)

j=1

-1

k
= UND(GAe)(ij) -1

j=1
k
= UMb (i)
j=1

Thus, d € D(G) when dy_; > 1.

If dy_1 = 0, then dy > 1 since we may not have dy_1 = dy = dyy1 = 0. We will
show that, in this case, (dy,...,dy_1,dy — 1) € D(G). Again for notational convenience,
we will write

d"=(d},...,dy) = (di,...,dy_o,dy_1,dy — 1),
Consider a sum df + ---+d; with 1 <4 <--- <4 < N. If i, < N — 1, then, as for &/,

&y oo df = dy e dy, < UND«Me )

7j=1
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If iy, = N — 1, then since we know d%_; = dy_1 = 0, we may say

k
diy + -+ dy =diy + -+ diy UNDGAe i) UND )| < UMb (@)
Jj=1 Jj=1
Lastly, if 7, = N, then
k k
djy + - dl = diy -+ diy, = 1< || JNpeae (i) = 1= | N (i)] -

j=1 j=1

Thus, d” € ©(G). This completes the proof. ]

Lemma 32. Let G be any connected graph on [N] for which e = uv with degq(u) =
degn(v) =2. If(dy,...,dN,0) € D(GAe), then (dy,...,dy)—e, € D(G) or(dy,...,dy)—
e, € D(G).

Proof. As usual we assume V(G) = [N], e = {N — 1, N}, and, this time, deg,(N — 1) =
deg,(N) = 2. If the neighbors of N — 1 are neighbors of each other, then we are done
by Lemma 31. So, we assume that the neighbors of N — 1 are nonadjacent. We also may
assume that the other neighbor of N — 1 in G is N — 2 and the other neighbor of N in G
is N — 3.

If (dyi,...,dy_2,dy_1 — 1,dy) € D(G), then we are done. Otherwise, we will show
d € 9(G), where

d=(d},...,dy)=(di,...,dy_1,dy — 1)

Consider a sum d;, + -+ +d; with 1 <i; <--- < < N. First suppose dy_; = 0.
Since we cannot have dy_1 = dy = dyy1 = 0 in a D(GAe)-draconian sequence, it must

be true that dy > 1, so that d’ consists of nonnegative integers.
If 4, < N —1, then

d;1 4+t dgk =d;, +---+d; < UND(GAe (25)

7=1

UND

since the neighbors of each i; are the same in G and GAe. If i, = N — 1, then d; = 0,
so that

k-1

d§1+"'+d§k:dil+”‘+ in1 UND(GAe ZJ ( )(ij)

Lastly, if 7, = N, then

di 4t d, =diy 4 dy — 1< —1= (i)| -

’
U Nbocne(ij)
j=1

Thus, d' € ©(G) when dy_; = 0.
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Now suppose dy_1 > 0. Our assumption that (di,...,dy_2,dyv_1 — 1,dy) ¢ D(G)
implies dy > 0 as well. If dy_; = 3, then

dy—1+dy < ‘ND(GAe)(N - 1) UND(GA3)<N)| =5

implies dy < 1. We claim that this means (dy,...,dy_2,dy_1 — 1,dy) € D(G), which is
a contradiction. Note that this means

(dN 1 — 1 dN) (2 0) or (dN 1 — 1 dN) (2 1)

In either situation, set d* = (dY,...,d%) = (dy,...,dy_o,dn_1 — 1,dy) and consider
a sum of the form d, +---+d . If iy < N —1, then N + 1 is not a neighbor of any 4; in
D(GAe), so

di +---+di =d;, +---+d;, < UND(GAe i;)

7j=1

UND(G lj

7j=1

If i, = N — 1, then N + 1 is a neighbor of N — 1 in D(GAe), so

k
— 1= |[UNo@(iy)] -

j=1

’
U Nbcnre(ij)

J=1

Al A dt =diy o dy — 1<

For the same reason, this inequality holds when i, = N and iy = N — 1. If 4 = N
and i;_; = N — 2, notice that the neighbors of N — 1 are in the union of the neighbors of
N —2 and N in D(GAe). Therefore, it follows from the case in which i1 = N — 1 that

Qe+ dh <y 4ot dy iy — 1

k
< U Nbeae (i) UNpGag (N —1)

Jj=1

= UMb (i)

Jj=1

-1

Lastly, if 74—y < N — 2, then N —1 is not a neighbor of any i; < N — 2 in D(GAe).
Moreover, for each i; < N — 2, its neighbors in D(G) are the same as its neighbors in
D(GAe). Putting this together with the fact that dy < 1, we see

At dt <dy 4 dyy  + 1
k—1

< UND(GAe)(ij) +{N -1}

N

k
UNb@ (i)

=1
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Therefore, if dy_1 = 3, then d* € ©(G), which is a contraction.
Now suppose that dy_; = 2. Analogous to before, this implies dy < 2, leading us to
the three cases

(dN—l - 1,dN) = (1,0) or (dN—l - 1,dN) = (1, 1) or (dN—l - 1,dN) = (1,2)

If dy = 2, then an argument symmetric to the one in the previous paragraph draws
the same contradiction. If dy = 1, then an argument identical to that of the previous
paragraph holds. Finally, if dy = 0, then the desired inequalities hold since those not
involving the index N hold for the case of dy = 1, and each inequality involving an index
N can be obtained from adding dy = 0 to the left hand side and including Np(g)(N) in
the union on the right hand side. Therefore, d* € ©(G) whenever dy_; > 1, which is a
contradiction.
Knowing now that dy_1 =1, set

d" = (d},...,dY) = (dy,...,dy_o,1,dy — 1)

and consider a sum dj, +---+d} with 1 <i; <--- <ip < N. If i, = N—2ori, = N, then
the corresponding D(G)-inequalities hold via now-standard arguments. If i, = N — 1,
then there are two subcases to consider.

First suppose at least one of N, N — 1, or N — 2 does not appear in

k—1

U Now) (i)

j=1

Without loss of generality, assume that N does not appear. We can therefore say

k—1 k
di + -+ di + 1< || Noo (i) + (N} < U Npo (55)|-
j=1 j=1
Otherwise suppose
k-1
{N=2,N=1,N} C | Npo (i)
j=1

Since deg, (N — 1) = degn(N) = 2, we know that this can only happen if i1 = N — 2
and iy_o = N — 3. In particular, ¢; # N for all j and

k—1
Na(N) C U N (i),
j=1

which implies from the case i, = N that

dg’1+"'+dg—1+1<dz‘1+'--+dk—1+1+dN—1

k—1
< |JNo (i) u ND(G)(-]V)‘
j=1

k
- U ND(G) (’LJ) .
7=1
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Figure 3: A graph G (gray) with its weak dual G superimposed (left, dashed) and with
its extended weak dual G**) superimposed (right, dotted).

This completes the proof. n

3.3 Application: outerplanar graphs

Recall that a plane graph is a planar graph G together with a particular embedding of G
into the plane. Also recall that the weak dual of a plane graph G, denoted G™), is the
subgraph of the dual G* induced by the vertices corresponding to bounded faces of G.
We denote by Ej the empty graph on k vertices, that is, the disjoint union of k distinct
vertices. Further, given a bounded face F, let og(F) denote the number of edges of G
bounding both F and the outer face and let vy denote the vertex of G*) corresponding
to . Let F(G) be the set of bounded faces of G.

Definition 33. Let G be a plane graph. The extended weak dual of G, denoted G*), is

G(**) — G(*) U U vp V EO(F)
FeF(G)

(s

Informally, G** extends the weak dual of G by including an additional edge for each
edge of G that bounds the outer face. See Figure 3 for illustrations of a plane graph G
and its duals G*), G&).

Recall that a graph is outerplanar if it has a planar embedding such that every vertex
is incident to the outer face. It is known [9] that a graph is outerplanar if and only
if its weak dual is a forest. Putting together the results of Section 3 we can produce
a simple formula for NVOl(VEQ) whenever G' can be constructed inductively by using
the subdivision and triangle operations. The formula follows quickly from the following

theorem.

Theorem 34. Suppose G is a 2-connected outerplane graph obtained from Cx by a se-
quence of applications of the subdivision recurrence and the triangle recurrence. Then

NVol(V?) = 2175 T deggien (vr),
FeF (@)

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(1) (2022), #P1.61 37



where

S(G) =) (deggen (vr) — 3).

ey

Proof. We will induct on the number of edges of GG, which we will denote by |E|. If G
has 3 or 4 edges, then since G is 2-connected, G = C|g|, hence N = |E|. By Corollary 22,

NVol(VgQ) = Mg n OF)=3) deg . (VF)

as claimed. One may verify that this holds for C directly as well.
Now suppose |E| > 4. If G is of the form G = G'Ae for some edge e of G’, then let
Fo be the unique face of F(G) \ F(G'). We can then say that

deg g (Vp) = deggn (Vp)

for all internal vertices vy of '™ from which it follows that S(G) = S(G'). By the
triangle recurrence and the inductive assumption,

NVol(VE?R) = 3NVol(VER)
- (degG(**) (’UFO)>21+S(G,) H degG/(**) (UF)
FeF(G")
— 91+S(G)

degen (VF)
FEF(G)

as desired.

Suppose instead that G is of the form G = G’ : e for some edge e of G'. Since G
is outerplanar, so is G’, and e is incident to a unique bounded face. Let B be the set
of cut-edges of G'\ e and again let Fy be the unique face of F(G) \ F(G'). The graph
H = G\ (BU{e}) is the disjoint union of k = degg(vk,) — 1 — |B| graphs, where
each component is a 2-connected subgraph of G. Notice as well that F(H) C F(G) with
|F(H)| = |F(G)| — 1 and that
forall F' € F(H)NF(G). By the subdivision recurrence, Corollary 14, and Proposition 12,
we obtain

NVol(VE?) = NVol(VER )
= 2NVol(V(?) + NVol(Ve,)

=225 T deggien(vr) | +2PINVOI(V}?)
FeF(G") (8)

25D (deggen (o) = 1) J]  deggeen (vr)
FeF(G)\{Fo}

+ 2|B|2w H degg<**) (UF)
FeF(G\{Fo}
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where

w=k+S(G) — (degg (vR,) — 3)
= degG,(**>(UFO) —-1- |B| + S(G) - (degG<**>(vF0) - 3)
=1—|B|+ S(G).

Simplifying the final expression in (8) yields the claimed formula, completing the proof.
O

Theorem 34 is the final piece needed to compute NVOI(V(P;Q) for any outerplane graph
whose 2-connected components satisfy the conditions of Theorem 34.

Corollary 35. Let G be any outerplane graph on [N] such that each block with at least
three vertices is obtained from Cy by a sequence of applications of the subdivision re-
currence and the triangle recurrence. Label the components of G by Gy,...,Gy and let

Bii,...,B;p, be the blocks of G;. Then

k  b;
NVol(Ve?) = [TTT 27 ] degs, o (vr). 0 (9)

=1 j=1 FeF(Bi ;)

The graphs satisfying the conditions needed in Corollary 35 form a proper, but large,
class of outerplane graphs. Experimental data suggests that the formula is, in fact, true
for all outerplane graphs, but a proof eludes the authors.

Conjecture 36. For any outerplane graph G, Equation (9) holds.

4 Beyond outerplanarity

Outerplanar graphs form a large class of graphs but are far from the class of planar
graphs, let alone all graphs. For example, even though there are about 56.7 x 10° labeled
outerplanar graphs on 10 vertices, these account for only approximately 1.76% of all
labeled planar graphs on 10 vertices [10, Sequences A098000, A066537]. Because of the
difficulty in computing NVol(VgQ) for all graphs, a natural next step would be to consider
graphs that are not-quite-outerplanar. Toward this end, we use the following alternate
characterization of outerplanar graphs.

Theorem 37 ([3, Theorem 10.24]). A graph is outerplanar if and only if contains no
subdivision of K4 or Ky 3 as a subgraph.

This is a direct analogue of Kuratowski’s theorem, allowing one to study graphs G
that contain no subdivision of K5 or K33 but may contain a subdivision of K4 or Ky 3. In
this case, a formula for |D(G)| remains elusive, although we do have the following partial
result. We use the notation KJ(\)/L y to denote the complete bipartite graph with partite
sets [0,...,M — 1] and [M,M + N —1].

Proposition 38. For all N > 3,
NVol(VEQ )y = 2N "4(N2 = N 4+ 6) — 2.

Ko N_2
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Proof. If (c1,...,cn) € D(Kyn_2), then ¢; + ¢ = k for some 0 < k < N — 1. All
possible choices of ¢q, ¢ are part of a D(K; y_o)-draconian sequence except for (c1,c2) €
{(N —1,0),(0, N — 1)} since these are the only two resulting in sequences not satisfying
the corresponding draconian inequalities. However, for the moment, we will include these
in our calculations for algebraic ease.

In order to satisfy the D(Kj n_o)-draconian inequalities we need the subsequence
d = (cs3,...,cn) to be a weak composition of N — 1 — k using 0s, 1s, and 2s such that
there is at most one 2. This leads to two cases: if ¢ contains a 2, then there must be
N — 3 — k copies of 1 and k copies of 0. A simple counting argument gives

(N_2)<Nk—3)

such possibilities. On the other hand if ¢ does not contain any 2s, then there must be

N — 1 — k copies of 1 and k — 1 copies of 0. There are (]Z__f) such possibilities. Adding

the values from these two cases and summing over all £k yields
N-1

s (o-a (") (1)

The reader may verify that this simplifies to 2V=4(N? — N + 6). Subtracting the two
compositions where (c1,c2) € {(N — 1,0),(0, N — 1)} and applying Theorem 8 gives us
our final formula. ]

Question 39. What is NVOI(V%%{N) for arbitrary M, N7

Notice that the formula in Proposition 38 cannot be written in the form of (9). Thus,
a general formula for planar graphs will require refining the techniques of Section 3 or
separate tools altogether.

A second important class of graphs which are planar but not outerplanar is the class
of wheel graphs Wy = K1V Cy. We conjecture the following.

Conjecture 40. For all N > 3,
NVol(Vy;2 ) =3V — 2V + 1.

This conjecture has been verified for all 3 < N < 13. Wheels were examined in detail
in [7] within a related, but distinct, context from VE/?V. We hope to uncover similarly rich
structure in the present setting. It may be useful to recognize that

3V -2V 4+ 1=29(N+1,3) + S(N +1,2) + S(N + 1,1),

where S(n, k) denotes the Stirling number of the second kind.

Remark 41. In the time since this article was first prepared, Conjecture 40 has been
proven by Ohsugi and Tsuchiya [12].
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Finally, we give another broad class of graphs which contains all outerplanar graphs
but not all planar graphs. Strictly speaking, these graphs will allow for repeated edges,
but as repeating an edge in G does not affect VEQ, we need not worry about that case.

Following [8], first consider the directed graphs formed in the following way. Begin
with a single edge and designate one vertex the source and another vertex the sink. This is
an example of a two-terminal series-parallel graph. All other two-terminal series-parallel
graphs are those formed by applying one of the following operations to two existing
two-terminal series-parallel graphs G and H with sources ¢ and h and sinks ¢’ and A/,
respectively,

1. parallel composition: produce a new graph P(G, H) by identifying ¢ with h and ¢’
with A’. The source of P(G, H) is g ~ h and its sink is ¢’ ~ '

2. series composition: produce a new graph S(G, H) by identifying ¢’ with h. The
source of S(G, H) is ¢ and its sink is /.

A graph G is a series-parallel graph if there are two vertices z,y such that, when des-
ignating x as the source and y as the sink, G can be obtained through a sequence of
applications of P(-,-) and S(+,-) when starting with a disjoint union of edges.

Series-parallel graphs are of interest in computer algorithms, as recognizing them is
difficult but not intractable. For our purposes, they are of interest because their recur-
sive structure suggests that they may be good candidates for computing NVO](V2Q>. In
fact, we have already seen an example of a series-parallel graph: K, n_o is the parallel
composition of N — 2 copies of Pj, each of which is a series composition of two edges.
We ask the following question broadly, and would be interested in seeing answers to even
nontrivial subclasses which are not outerplanar.

Question 42. What is NVOI(VI;Q) for a series-parallel graph G?
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