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Hardware verification of modern electronic systems has been identified as a major bottleneck due to the
increasing complexity and time-to-market constraints. One of the major objectives in hardware verification is
to drastically reduce the validation and debug time without sacrificing the design quality. Assertion-based
verification is a promising avenue for efficient hardware validation and debug. In this paper, we provide a
comprehensive survey of recent progress in assertion-based hardware verification. Specifically, we outline
how to define assertions using temporal logic to specify expected behaviors in different abstraction levels.
Next, we describe state-of-the art approaches for automated generation of assertions. We also discuss test
generation techniques for activating assertions to ensure that the generated assertions are valid. Finally, we
present both pre-silicon and post-silicon assertion-based validation approaches that utilize simulation, formal
methods as well as hybrid techniques. We conclude with a discussion on utilizing assertions for verifying
both functional and non-functional requirements.
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1 INTRODUCTION

We are dependent on computing systems to provide us a comfortable lifestyle. Such systems consist
of hardware, software as well as application-specific input/output capabilities. Hardware is the
brain behind these computing systems to provide performance, reliability, energy efficiency as
well as security requirements. Even simple Internet-of-Things (IoT) devices include one or more
System-on-Chip (SoC) hardware that consists of millions of transistors. Due to the increasing
complexity of modern electronic systems, functional validation is widely acknowledged as a major
challenge in SoC design methodology.

As shown in Figure 1, according to the 2020 Wilson research group functional verification
study [52], 51% of development effort (cost) in both ASIC and FPGA-based systems were spent on
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Fig. 1. Average project time spent in functional verification. In 2020, the average verification effort is about
51% of the overall development effort (cost and time) [52].

verification. In spite of such a huge investment in verification, the study also reveals that a vast
majority of systems fail the first time (only 32% of electronic systems have their first silicon success).
To address this fundamental bottleneck in terms of both verification/debug time and final product
quality, the semiconductor industry employs advanced and effective verification techniques into
their existing SoC design methodology.
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Fig. 2. ASIC functional verification trend. In 2020, more than 75% ASIC designs utilized assertion-based
validation [52].

The study also highlights that both ASIC (Figure 2) and FPGA (Figure 3) verification use an
effective combination of code coverage, functional coverage, assertion-based verification (ABV), and
validation using constrained-random test patterns. These figures provide two important insights:
(i) a vast majority of ASIC designs (more than 75%) and almost 50% of FPGA design projects used
assertion-based validation in 2020, and (ii) there is a steady increase in the adoption of assertion-
based validation over the years. These observations suggest that ABV is a critical component
today for functional validation, and is expected to remain critical in the foreseeable future. The
remainder of this section is organized as follows. First, we provide an overview of traditional
hardware design methodology. Next, we outline the sources of potential bugs and vulnerabilities
during hardware design flow. Finally, we outline assertion-based validation for detecting these
bugs and vulnerabilities.

1.1 Overview of Hardware Design Flow

Figure 4 shows a typical hardware design methodology. There are multiple abstraction levels
including pre-silicon (before fabrication) and post-silicon (after fabrication). Depending on the
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Fig. 3. FPGA functional verification trend. Almost 50% FPGA designs utilized assertion-based validation in
2020 [52].

complexity and types of hardware designs, it starts at different abstraction levels. In this figure, the
high-level architecture of the design is specified in Transaction Level Modeling (TLM). SystemC
TLM is a widely used form of architecture specification for processors as well system-on-chip (SoC)
designs. TLM abstraction is ideal for architectural exploration as well as specification validation [32,
34, 35]. The TLM specification can be used to generate RTL (Register Transfer Level) models, which
is closer to actual silicon by adding interfacing and timing on top of the TLM models. VHDL and
Verilog are typically used to write RTL models of the design. Pre-silicon validation can be done for
RTL designs to verify the behaviour or to ensure that the RTL implementation satisfies the TLM
specification. Assertions can be added in both TLM and RTL designs to perform assertion-based
validation. The RTL implementation can be synthesized to gate-level netlist. Synthesized assertions
(if any) will work as post-silicon checkers. A typical VLSI design flow consists of many more
steps including layout and fabrication. The fabricated design (silicon) can be used for post-silicon
validation. The checkers in silicon can also be used for in-field debugging of the final product.

Validation reuse is a critical consideration in SoC design methodology to save overall validation
effort (cost and time). For example, test patterns generated for activating gate-level assertions can
be used for activating post-silicon checkers. Similarly, pre-silicon assertions can be synthesized
to post-silicon checkers. Clearly, synthesizing all the assertions will provide 100% coverage at
post-silicon. Unfortunately, it can lead to violation of design constraints such as area, power and
performance budget. There are promising approaches to synthesize profitable pre-silicon assertions
to trade-off post-silicon coverage versus harwdare overhead [48].

1.2 Sources of Hardware Bugs and Vulnerabilities

The goal of SoC hardware validation is to ensure that the implementation satisfies both functional
behaviors and non-functional (e.g., energy, security, etc.) requirements. There are a wide variety of
validation objectives including detection of functional bugs, timing errors, security vulnerabilities,
etc. These errors and vulnerabilities can come from a wide variety of sources, including:

o The design goes through various phases including specification, synthesis, integration, fabri-
cation, etc. Many parties and tools are involved in the long process of hardware design. This
can lead to errors and vulnerabilities due to design mistakes and/or buggy CAD tools.

e With the ever-increasing complexity and decreasing size of hardware designs, the outsourcing
and integration of hardware Intellectual Property (IP) has become a new trend. However,
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Fig. 4. Hardware Design Flow

such IPs from potentially untrusted third-party vendors and untrusted manufacturers can
introduce errors and vulnerabilities.

e The running environments of these devices are heterogeneous and possibly connected and
unprotected. Vulnerabilities in one device may open a backdoor to other devices. In addition,
undetected errors, unverified hidden states/transitions, and soft errors in hardware can lead
to more vulnerabilities during run-time.

These errors and vulnerabilities in hardware cannot be detected by tools in the software domain,
such as anti-virus tools. They are also hard to fix after deployment. Firmware patching or built-
in re-configurable primitives can mask some of the vulnerabilities, but may not fix all of them.
Therefore, a highly automated and scalable hardware validation scheme is a must to detect and
remove as many bugs and vulnerabilities as possible.

1.3 Overview of Assertion-based Verification

One problem in hardware validation is how to increase the controllability and observability to
reveal internal errors and bugs. Controllability represents the ability to control internal signal, and
observability represents the ability to see the state of the design. The embedded assertions can catch
any unexpected behavior which increases the observability of internal activities inside the design.
For example, an assertion can check that the output of an adder is equal to the sum of its inputs
even though the implementation is inside the execution stage of a CPU. Any bug in the design that
violates the predefined properties in assertions can be easily detected. The observability of internal
states enables faster localization of errors, which reduces the overall validation time significantly.
There are several approaches to generate tests to activate assertions that can reveal the internal
states. As shown in Figure 5, ABV can improve both controllability and observability, and enable
faster debug. When an assertion fails during simulation, it will provide enough information to the
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Fig.5. Overview of Assertion Based Verification (ABV) in hardware designs. It can be applied across abstraction
levels and validated using both simulation and formal methods. ABV improves observability and controllability.
As a result, it provides drastic reduction in overall verification and debug effort.

designer to start fixing the problem. In contrast, in the absence of assertions, it may take hours or
days to even find out the reason for a failure. As a result, effective use of assertions can drastically
reduce the verification and debug time.

Example 1: Listing 1 shows two sample assertions in the arbiter design. Assertions can be clas-
sified as immediate and concurrent based on their embedding in the design. For example, assert
(req2==ack2) is an immediate assertion in Listing 1, and it gets activated immediately after the
execution of the statement “ack2=req2” if ack2 is not equal to req2. Similarly, assert property(ack1
[-> = ack2) is a concurrent assertion in Listing 1 since it runs concurrently with other modules, and
it gets activated when both ack1 and ack2 become true at the same time. o

Assertions can be utilized for pre-silicon validation as well as post-silicon debug. Assertions can
be embedded at different abstraction levels including Transaction-Level Model (TLM) and Register-
Transfer Level (RTL). Compared to RTL models, TLM is more abstract and faster in simulation.
Therefore, TLM is more suitable for the validation of large designs and hardware/software co-design.
There are many challenges in applying assertion-based validation. Here we outline four major
considerations.

(1) How to generate enough assertions that are able to both validate the correct functionality of
the design and capture all the potential vulnerabilities. It is the main challenge in assertion-
based validation due to the complex validation space. For example, to validate the correct
behavior of the design, all the states and transitions of its finite state machine should be
considered. However, the number of such transitions could be enormously large considering
the number of unrolled cycles.

(2) How to generate effective test patterns to reveal vulnerabilities in the design, i.e., activate
the assertions if such vulnerabilities exist. Traditional test generation approaches using
random/constrained-random tests are not effective to activate a given assertion. Automated
test generation approaches, such as using formal methods, can lead to state explosion for
large designs.

(3) How to reuse assertions across different abstraction levels. Since the design at different
abstraction levels is maintained by a different group of engineers, management of assertions



as well as design modifications are typically manual in nature. Reuse of assertions across
different abstraction levels is promising to minimize the wasted efforts.

(4) What subset of assertions should be embedded in the silicon. The assertions/checkers take
additional area and power overhead in the silicon. To meet the constraints of different
parameters and also to ensure the correct behavior of the design, it is a major challenge to
select a small subset of assertions that will be embedded in the silicon without negatively
impacting post-silicon debug.

Listing 1. Examples of concurrent and immediate assertions

module arb(clk, rst, reql, req2, ackl, ack2);
input clk, rst, reql, req2;
output ackl, ack2;
reg state, ackl, ack2;
always @ (posedge clk or posedge rst)
if (rst)
state <= 0;
else
state <= ackl;
always @ («)
if (state) begin
ackl = reql & ~req2;
ack2 = req2;
assert(req2 == ack2) \\ Immediate Assertion
end
else begin
ackl = reql;
ack2 = req2 & ~reql;
end
assert property(ackl|->~ack2) \\ Concurrent Assertion
endmodule

The outline of the paper is as follows. Section 2 provides a background on temporal logic to
illustrate the expressive power of assertions. Section 3 describes a wide variety of applications of
assertions including functional validation as well as validation of non-functional requirements.
Section 4 briefly introduces the methodology of this survey paper. Section 5 covers some state-
of-the-art topics and methods in automated assertion generation. Section 6 presents different
test generation techniques for activating assertions. Section 7 surveys assertion-based pre-silicon
verification techniques. Section 8 describes assertion-based post-silicon debug methods. Finally,
Section 9 shows a few directions for future research in assertion-based verification and concludes
this paper.

2 TEMPORAL LOGIC

In this section, we briefly describe temporal logic [88] to highlight the expressive power of assertions.
Temporal logic is widely used in property checking based formal verification as well as assertion-
based validation. Temporal logic is succinct but expressive enough to represent most properties that
a finite-state system needs to satisfy. Therefore, temporal logic is also the standard formal language
to define assertions. Note that properties and assertions possess the same representation capability
since they capture the behavior using temporal logic. To express different types of properties, a
variety of temporal logic have been proposed. For example, Linear-time Temporal Logic (LTL) is
able to describe a property along with a single execution. However, it lacks the ability to express
other possible executions, and Computation Tree Logic (CTL) is proposed to solve the problem.



Property Specification Language (PSL) [1] and System Verilog Assertions (SVA) [2] are very popular
assertion specification languages. Both PSL and SVA support LTL and CTL extended temporal
assertions. In this section, we introduce three types of logic in LTL and CTL.

2.1 Propositional logic

Propositional logic allows us to reason about the truth or falsehood of logical expressions. A
proposition is evaluated to be either true or false. Multiple propositions can be connected using
logical operators to form a propositional formula. Table 1 shows a few commonly used logical
operators. The table is sorted by the order of precedence, with ‘=’ having the highest precedence.
Propositional formulas by themselves do not have a notion of timing. If assertions are written using
propositional formulas only, they can be thought of as combinational assertions.

Table 1. Basic Logical Operators

Connective | Operation Example
- not =P is false if P is true.
A and P A Q is true if both P and Q are true. False otherwise.
\Y% or P Vv Q is true if either P or Q is true. False otherwise.
— implication P — Q is false when P is true and Q is false. True otherwise
=3 equivalent | P & Q is true if P and Q have same truth values. False otherwise.

Example 2: Consider the sample RTL module in Listing 1 for property generation using temporal
logic. The logic of the design is represented in the truth table as shown in Table 2. The first three
columns of the table represent the inputs: state, reql and req2, and the next 2 columns represent
the outputs: ackl and ack2. According to the truth table, ack1 and ack2 should not be activated
together. In other words, ack1 and ack2 cannot have value 1 at the same time. This property can be
represented logically using the implication operation such as (ackl — —ack2). Another equivalent
form of representing the property is (—ack1 V —ack2). O

Table 2. Truth table for RTL module in Listing 1

Input Output
state | reql | req2 | ackl | ack2

o|lo|—R|r|lOo|Oo|IRr|O

[=) Nl Ral Nl Ll
(=) Nl N I Kl el

OIHR | O|R(O[=|O| -
O OO RO

2.1.1 Conjunctive Normal Form (CNF). Every propositional formula can be converted to Con-
junctive Normal Forms (CNF). Many proofs assume that the propositional formula is given in CNF.
Given below is the generic form of CNF [38]:

(A1 VALY . VARL)ANAn V. VAR A A(Am VoV Agn,) or /\ \/Al-j
i



Here all A;; terms are called literal. These are proposition or a negation of proposition. In CNF,
conjunction (V) of the literals form a clause. For example, here (A1; V A1z V ... V Ayp,) is a clause.
Disjunction (A) of the clauses forms the complete propositional formula in CNF.

2.1.2  Disjunctive Normal Form (DNF). Similar to CNF, every propositional formula can also be
written as a Disjunctive Normal Form (DNF). The generic form of DNF is as follows:

(All /\AIZ A ... /\Alm) \Y (A21 A ... /\Agnz) V..V (Aml A ... /\Amnm) or \/ /\A’J
iJ

Similar to CNF, all A;; terms are literals. In DNF, the disjunction of the literals forms a clause.
Conjunction of the clauses forms the complete propositional formula in CNF.

2.2 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) extends the propositional logic by introducing the notion of timing
[16].1t can be used to describe a sequence of transitions along a path. Some of the temporal operators
that are used to describe these transitions are given in Table 3, where p and g are propositions
which can contain both logic operators and temporal operators. Each proposition is either true
or false at a given time. For example, F p represents that eventually, p will be true at some future
state, as shown in Figure 6(a), where each node represents a state. Another example would be p
U q which represents that p is true at every preceding state before g is true, which is shown in
Figure 6(b). Assertions with LTL is more powerful than combinational assertions. For example,
the property (work U done) can ask a system to continuously work until the job is done, and the
“always” operator G can be combined with “not” operator - to ensure that some vulnerabilities
never occur in a system.

Table 3. Basic temporal operators in LTL [39, 85]

Op. | Semantics Description
Xp next p is true in the next state of the path.
Gp always p is true at every state on the path.
Fp | eventually p is true at some future state on the path.
pUgq until q is true at some future state, and at every preceding state on path, p is true.
p p p p q
O I O e O OSSO
(@) Fp b)pUg

Fig. 6. The state diagram of two example temporal operators in LTL.

2.3 Computational Tree Logic (CTL)

Computation tree logic (CTL) [46] is a branching-time logic, where the future of a state is not
determined. To deal with the many possible paths in the future, CTL introduces two types of path
qualifiers in Table 4. While “Ap” represents that all possible execution paths from the current state
should have the property p, “Ep” represents that there exists at least one path such that p is true.
The temporal operator in CTL is composed of a path qualifier and a temporal operator from LTL.
For example, AF p represents that for all paths from the current state, there must exist one state



Table 4. Path Quantifiers in CTL [85]

Op. | Semantics
A p | pis true in all the paths starting from the current state.
E p | pis true in some path starting in the current state.

A LA

) AFp (b) EGp

Fig. 7. The state diagram of two example temporal operators in CTL.

that p is true, as shown in Figure 7(a). Figure 7(b) shows the state diagram of EG p, which means
that there exists at least one path that p is true for each state along the path.

CTL has the restriction that each LTL operator must be immediately preceded by a path qualifier,
e.g., EG(AF p). CTL" is a super-set of both LTL and CTL, and removes this restriction. Although
CTL* offers better expressiveness than LTL and CTL, there are still some limitations in CTL*, such
as the ability of counting. For example, it cannot express that p should be true for two states before
q is true in a path. Researchers have proposed QCTL (quantified CTL) [44] that adds the ability of
counting. There are more different variations of temporal logic to solve different problems, but they
are beyond the scope of this paper. Section 5 will provide examples of assertions using temporal

logic.

3 APPLICATIONS OF ASSERTIONS

While assertions are commonly used for the validation of functional behaviors, assertions are also
used for the validation of non-functional requirements. In this section, we explore different use
cases of assertions.

3.1 Functional Validation and Debug

Assertions are widely used for functional validation of TLM and RTL models. In this section, we
explore seven use cases of assertion-based functional validation.

3.1.1  Control Logic Verification. Components such as buffers, memories, buses and routers
on an interconnection network are managed by arbiters and other complex control logic. While
directed tests can cover high-level specifications, assertions are used to cover corner cases to
ensure all problematic scenarios are detected. For example, ensuring that resources are de-allocated
before allocating to another component or checking the correctness of all arbitration schemes (e.g.,
round-robin, priority, least-recently-used, etc.) can be monitored using assertions [94]. Turumella
et al. explored how assertions can be used to verify the control logic of an enterprise-class chip-
multi-threaded SPARC™ microprocessor [105].

3.1.2  Finite State Machine Verification. Finite state machines (FSM) are widely used to model
systems in different areas such as communication protocols and sequential circuits. The most
common errors in finite state machines are deadlock and unreachable states. Deadlocks refer to a
state where once entered, no combination of inputs will allow to transition to another state. On the



other hand, unreachable states can never be entered irrespective of the input patterns. Undefined
states in FSMs have been known to cause security vulnerabilities as well [109]. Formal verification
is one potential solution to capture these errors. However, unbounded and complex properties can
make formal verification inefficient. A better way is to capture the intended behavior with multiple
assertions. In [70], authors showed how assertions can be used to verify the control block of a
UART transmitter that is implemented as an FSM.

3.1.3 Data Integrity Verification. Network-on-chip (NoC) components, bus bridges, direct-
memory access controllers and schedulers are some of the main components responsible for
data communication between SoC modules. Assertions can be used to check the integrity of data
along the complete data route and detect lost or corrupt packets immediately. Assertions writ-
ten for data integrity verification typically combine end-to-end simulation-based verification and
pseudo-random simulation environments that are guided by assertion coverage information [79, 94].
Kakoee et al. presented a NoC verification framework that discussed inter-core as well as intra-core
assertion-based verification [63].

3.1.4  Design Interface Verification. When all modules in an SoC are integrated together, verify-
ing their interoperability is critical. While individual modules function as desired, inter-module
communication and interface protocol compliance are common failure points [94]. Assertion based
protocol monitors are added to catch any malfunctions as soon as possible. A major challenge in
writing such assertions is that interface assertions are specific to the architecture of the design and
are susceptible to interface description changes. Therefore, the best practice is to code the assertions
as the design matures to a level when unit interfaces are reasonably stable. This minimizes the
maintenance overhead. Pellauer explored interface assertions in Bluespec System Verilog [87].
Turumella et al’s work captured inter-module interface assertions in the SPARC™ microprocessor
as well [105].

3.1.5 Architectural Coherence Verification. Some of the functionality in an SoC can span multiple
SoC components. For example, a cache coherence protocol works across components in the memory
hierarchy as well as the NoC IP. Such architectural properties that span across multiple units can
be checked using global assertions. Michael et al. [30] discussed a PSL that is ideal for specifying
architectural and global assertions. Proper usage of these assertions is useful in finding bugs after
all the components are integrated with the SoC.

3.1.6  FPGA Debugging with Assertions. The increase in the transistor count and advanced fea-
tures found in state-of-the-art FPGAs have made SoC designers choose FPGAs over ASICs. Research
by the Garner group revealed that FPGA has a 30:1 edge over ASICs in terms of preference when
starting a new design [51]. FPGA SoCs provide flexibility (reconfigurability) but pose additional
challenges in test and debug. In fact, debug complexity has become a major bottleneck in pushing
FPGA SoCs forward. ABV emerges as a promising solution to this problem. Curreri et al. [41]
proposed a high-level synthesis technique to synthesize ANSI-C assertions into an FPGA which
enabled verification and debugging of circuits generated from high-level synthesis tools. Their
approach can be used to debug while operating the design at full speed in the final system.

3.1.7 Assertion-based Validation of Mixed-signal Designs. While the use cases discussed so
far falls in the digital domain, the assertion community has made progress in assertion-based
verification in analog and mixed-signal (AMS) domain as well. The tools that were already matured
in the digital domain were extended to fit the requirements for verification of AMS systems. One of
the major challenges in achieving this goal is the continuous nature of signals in the analog domain.
Sammane et al. [10] proposed a method to model an AMS design in terms of a system of recurrence
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test the SystemC model.

equations and apply ABV techniques using the symbolic trace of the equations. An extension to
SVA regular expressions that are suitable for continuous-time domain was presented in [58]. This
work has contributed to the work of the Accellera committee standardizing Verilog-AMS. Several
other methods have also been proposed to address AMS system verification [9, 62, 78, 107]. In this
paper, we primarily focus on the assertion-based validation of digital systems.

3.2 Validation of Non-Functional Requirements

We can observe from the use cases in functional validation that assertions define certain properties
and check whether they hold or not to guarantee the functional correctness of a design. This
analogy can be used to validate other non-functional requirements such as task deadlines, energy
and thermal budgets as well as to detect security vulnerabilities.

3.2.1 Detecting timing violations. Embedded systems have different timing constraints depending
on the application. Systems that do not run performance-critical applications have soft deadlines
where violating a small fraction of deadlines is acceptable. On the other hand, real-time systems
have hard deadlines which should not be violated. Assertions can be used to detect violations in
both scenarios. Most safety-critical applications run on real-time operating systems (RTOS). Such
RTOS-based systems are sensitive to transient faults that can cause scheduling dysfunctions leading
to deadline violations. Therefore, detecting faults that can change task execution times/execution
flows is critical. Tarillo et al. [102] proposed an assertion based method for fault detection in RTOS.
Their work was tested on an assertion-based hardware scheduler that monitors the RTOS in a
32-bit RISC Plasma microprocessor. Mueller et al. [81] discussed how to use PSL-based assertions to
check violations in RTOS and how the assertions can be reused and verified at different abstraction
levels. Their verification library provided checkers with well-defined interfaces. Figure 8 shows
an overview of their verification architecture. Several other works also proposed assertion based
solutions to detect timing violations [40, 66, 108].

3.2.2 Detecting energy and thermal constraint violations. The resource-constrained nature of
embedded systems introduces more challenges in addition to ensuring performance guarantees. It
is not always beneficial to run at the maximum possible frequency to finish a given task early since



it can increase energy consumption. Therefore, the goal is to find optimum points of operation such
that the performance-energy trade-off is optimized. In other words, how can a system offer the
desired performance without severely degrading battery life. An increase in energy consumption
translates to an increase in device temperature as well. As high SoC temperature can have a
severe impact, the temperature should be controlled such that it does not exceed a certain threshold.
Dynamic Voltage Scaling is widely used for both energy optimization and temperature management.
Similar to the usage of assertions in detecting timing violations, assertion-based verification is used
to detect energy and temperature budget violations as well. Wang el at. [90] proposed one such
method for temperature and energy-constrained scheduling in multitasking systems. In order to
define constraints/thresholds, an important part of the design process is to estimate and analyse
power consumption at different abstraction levels. Savithri et al. [96] proposed an assertion-based
technique for transistor-level dynamic power estimation. In [8], Ahuja et al. proposed an assertion-
based electronic system-level power estimation technique for a specific class of design that is modal
in nature. In their work, assertions written to verify the reachability of modes is used to generate
directed test cases, which are given as inputs to the power estimation framework.

3.2.3  Security vulnerability detection. While there is a vast literature on using assertions for
functional verification, there is some initial effort in mitigating security vulnerabilities using
assertions. In Section 3.1.2, we discussed how to do functional verification of FSMs using assertions.
In the context of security, assertions can be used to ensure that an unspecified transition in an FSM
does not allow a user to access a higher privilege level. Similarly, assertions can be used to detect
a wide variety of other security vulnerabilities. Witharana et al. [109] outlined several classes of
security vulnerabilities that can be detected using assertions such as permissions and privileges,
unauthorized resource accesses, illegal states and transitions in FSMs, numeric exceptions, buffer
errors, malicious implants and spectre attacks.

4 SURVEY METHODOLOGY

This paper provides a comprehensive survey on four challenging areas of assertion-based verifica-
tion: automated generation of assertions, test generation for activating assertions, assertion-based
pre-silicon verification, and post-silicon debug using synthesized checkers. An overview of our
survey methodology is shown in Figure 9.

e Automated generation of assertions: Traditional approach for ABV is to write assertions
manually. However, writing temporal assertions with high functional coverage is very diffi-
cult. Also, any specification change may require rewriting or reevaluating those assertions.
Automation helps with these problems. We consider a wide variety of assertions that can
capture functional behaviors using Property Specification Language (PSL) [1], SystemVerilog
Assertions (SVA) [2] and Open Verification Library (OVL) [3]. Section 5 surveys various
assertion generation techniques.

e Test generation for activation of assertions: It is a major challenge to ensure that the
generated assertions are valid. In other words, we need to make sure that an assertion gets
activated when the assertion condition fails during execution. Therefore, the designers need
to develop test vectors or for the assertion to fail. Manual development of test vectors can be
time consuming and error prone. Section 6 surveys automated test generation techniques for
activation assertions.

e Assertion-based pre-silicon verification: Assertions are widely used for pre-silicon vali-
dation for two reasons: (i) it is beneficial to capture as many bugs as possible in the early stages
of the design flow, and (ii) once assertion-based validation is complete, the assertions can be
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Fig. 9. Overview of assertion-based verification (ABV) survey methodology.

deleted from the design. Section 7 surveys different pre-silicon assertion-based verification
techniques.

o Post-silicon debug using hardware monitors: It is desirable to map (synthesize) the
pre-silicon assertions and retain them in silicon to provide functional coverage during post-
silicon debug. Unfortunately, it may not be feasible to synthesize all pre-silicon assertions
due to area, power and performance constraints. Section 8 surveys different approaches for
assertion-based post-silicon validation and debug.

Due to the increasing importance of assertions, there are a large number of publications in assertion-
based validation. This survey mainly includes major publications in the last 20 years that focuses
on digital hardware design. In other words, assertions for software verification as well as assertion-
based validation of analog and mixed signal systems are beyond the scope of this survey.

5 AUTOMATED GENERATION OF ASSERTIONS

There are mainly two types of approaches to define assertions: language-based and library-based
[45]. Language-based approaches have their own syntax for writing assertions. Property Speci-
fication Language (PSL) [1] and System Verilog Assertions (SVA) [2] are two popular assertion
specification languages. Both PSL and SVA support LTL and CTL extended temporal assertions.
Other language examples that support temporal logic include ForSpec [12] and SALT [15]. There
are several languages that support RTL assertions. However, SystemC is the standard language
for modeling TLM assertions [57, 101]. Figure 16 shows the standard language-based assertions to
embed assertions in both TLM and RTL models.

In library-based approaches, assertion support is given to existing languages. One such example
is Accellera Open Verification Library (OVL) [3]. OVL supports SystemVerilog, Verilog, VHDL
and PSL. OVL is widely used in ARM processor in two ways: (i) assertions in OVL are embedded
in the design, and users can enable them, or (ii) a standalone piece of verification IP containing
OVL assertions are provided, such as AMBA checkers [53]. The following is an example of a



Verilog-instantiated OVL code and SVA code that check for the case where grantl and grant2 are
not mutually exclusive (example is taken from [54]):

// OVL
assert_always mutex (clk, reset_n,
I'(grant1 & grant2));

// SVA

property mutex;
@(posedge clk) disable iff (!reset_n)
(!(grant1 & grant2));

endproperty

assert property (mutex);

The pros and cons of these two approaches are summarized in Table 5. For example, library-based
assertions can be used across various designs that have common functional properties but have
different languages and implementation details. Although library-based approaches save time in
assertion development for common types of assertions, they are not generic enough to cover all
possible cases. On the other hand, assertions defined using language-based approaches, such as
SVA, are directly embedded into the designs and testbenches. There are two advantages of this
scheme. First, the intent of the designer is easier to integrate into the design and documentation
in the design phase. It would be hard for a library-based approach to capture during the debug
phase. Second, the assertions embedded in the design as well as testbench are allowed to monitor
all signals and modules, which is impossible for reused library-based assertions.

Table 5. The comparison between language-based and library-based methods in defining assertions.

Approach pros cons
Language-based | Directly embedded into the design and testbench | Language specific
Library-based Vendor and language independent Limited scenarios

Example 3: The property (ackl — —ack2) for the RTL module in Listing 1 can be converted to an
RTL assertion. Since the property needs to be checked concurrently, a concurrent assertion such
as assert property (ack1 |-> lack2) can be added to the design. The implication operator(|— >) in
SVA has two expressions. The left expression of the implication is called antecedent and the right
expression is called consequent (antecedent|— > consequent). If the antecedent expression fails, the
implication will be true vacuously without checking the consequent. If the antecedent is true, only
the consequent will be evaluated. The assertion will fail if the antecedent was true and consequent
was false as shown in Table 6. There are two types of implications in SVA: overlapping(|— >) and
non-overlapping(| =>). For overlapping implications, if the antecedent is true then the consequent
will be evaluated in the same clock cycle. However, for non-overlapping implications, the consequent
will be evaluated in the next clock cycle. Since the sample property should hold in the same clock
cycle, the assertion is written using overlapping implication. O

Table 6. Assertion States

ackl | ack2 | assert property(ack1 |->!ack?2)
1 1 Fail

1 0 True

0 1 True (Vacuously)

0 0 True (Vacuously)




Generation of meaningful assertions is a major challenge for design verification. In traditional
verification flow, assertions are written manually by verification engineer [54]. However, writing
temporal assertions manually is very difficult. Furthermore, the number of assertions must remain
reasonable while giving high functional coverage. If there are too many assertions, it will degrade
simulation performance. On the other hand, functional coverage can suffer if the number of asser-
tions is small. This problem is further aggravated by frequent design specification and architectural
changes. In such cases, the verification engineer may need to rewrite the majority of the assertions
or re-validate the existing ones. Thus the automated generation of concise assertions with high
coverage is desirable. There are two ways of automated assertion generation: generate assertions
by static analysis of design (specification), or dynamic analysis of simulation traces for assertion
generation.

Assertion
Assertion Generation
Schema & Rules &
Constraints Knowledge
Base

Assertion Generator

Fig. 10. Template-driven assertion generation using static analysis of specification [59].

5.1 Static Analysis of Specification

Template-driven assertion generation is one of the earlier attempts to automate assertion generation
[59]. Figure 10 gives an overview of the process. The generation starts by selecting a schema
(template). This schema can be directly used from the schema library without any modification.
User can also add new schema or modify existing ones. A process model containing design constructs
and constraints is then created by analyzing the schema. As the process models are generated from
schema rather than being hard-coded, it increases the applicability of them. This approach has been
successfully utilized for the generation of both interface (boundary) assertions and interconnects
assertions. Interface assertions applied to input/output ports of the design. These assertions can
be used to ensure that each port is exercised and can also check for illegal value combinations. In
contrast, interconnect assertions monitor internal ports for value propagation. All the ports that do
not generate value propagation are flagged as disconnected. Schema-driven assertion generation
requires the design (HDL description) for analysis, making it a white-box approach. This is a
limiting factor if the HDL code is not available. Also, there is no formal mechanism to measure
the effectiveness of a schema for a particular design. There are various efforts that try to address
these challenges. [110] analyzes the syntax and extract properties from a RTL design then generate
assertions based on the extracted properties. In contrast, it [59], [110] uses model checking for
assertion verification.

5.2 Dynamic Analysis of Simulation Traces

Vasudevan et al. proposed GoldMine for assertion generation of RTL designs [60, 106]. GoldMine
generates assertions using static analysis and data mining. It can generate both propositional
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Fig. 11. Assertion generation using both static and dynamic analysis in Goldmine [106].

and temporal assertions. Figure 11 shows the assertion generation procedure. The data generator
simulates the design under test with random inputs to produce behavioral data of the system. The
static analyzer extracts design constraints like cone-of-influence, topographical variable ordering,
etc. The core assertion miner (A-MINER) uses decision tree-based supervised learning [28] to
analyze the simulation traces and design constraints. A-Miner finally produces a set of candidate
assertions. However, these candidate assertions are generated as a result of random input vector, not
all possible inputs. The formal verifier is used to filter the candidate assertions. Authors have used
SMV [77] as their formal verification engine. Finally, the A-Val evaluates and ranks the assertions
using support and confidence metric. Similar to [59], GoldMine is a white-box approach. GoldMine
tries to avoid incorrect assertion generation using formal verification. However, as both simulation
and verification are done on the same RTL design and not with a golden model, incorrect RTL
implementation can result in incorrect assertions. Furthermore, formal techniques such as model
checking are prone to state explosion issue, limiting their applicability on large designs.

Example 4: The Listing 2 shows the functional assertions generated for the RTL design shown in
Listing 1. For example, the first property indicates that ackl must be false if both state and rec2 are
true at the same time. O

Listing 2. Assertions Generated by GoldMine [106]

assert property ((state==1 & req2==1) |->(ackl == 0))
assert property ((reql==1 & state==0) |->(ackl == 1))
assert property ((reql==0) |-> (ackl==0))

assert property ((reql==1 & req2==0) |->(ackl == 1))
assert property ((reql==1 & state==0) |->(ack2 == 0))
assert property ((req2==1 & state==1) |->(ack2 == 1))
assert property ((req2==0) |-> (ack2==0))

assert property ((req2==1 & reql==0) |->(ack2 == 1))

One of the major limitations of [106] is that it cannot guarantee the correctness of the generated
assertions. Liu et al. solved this issue by generating assertions from transaction-level models (TLM)
rather than RTL [72]. This assumes that the TLM specification can be used as a golden reference
model. Besides, the TLM assertions can be used as templates for RTL assertions. If no assertion
can be generated at RTL for each of the TLM assertion, it indicates inconsistency between RTL
design and TLM specification. Figure 12 shows the framework for this approach. The first step
is to collect simulation traces for data mining. Symbolic simulation is used here unlike concrete
simulation as in [106]. Symbolic simulation facilitates generation of fewer, but more comprehensive
assertions. For example, consider the assertion generated from the concrete simulation trace [72]:
read_mem1(100) — write_mem2(100). This means reading 100 from mem1 will be followed by
writing 100 to mem?2. Similarly, using a different address of 200 will generate another assertion:
read_mem1(200) — write_mem2(200). Both of these assertions essentially convey the same



message. Using symbolic simulation instead will produce a much more concise and meaningful
assertion: read_mem1(A) — write_mem2(A). Here A is a symbolic variable denoting the address.
After running symbolic simulations, the function call and event traces are collected for data mining.
In [106], decision tree-based supervised learning is used for data mining. However, authors have
found that sequential pattern mining is more suitable for TLM designs. After this data mining step,
we have a set of candidate assertions. An additional post-processing step is employed to convert
symbols to their corresponding function calls and events.

Both cycle-accurate and system-level GoldMine generates assertion in bit level [72, 106]. Since
assertions are generated for each bit of a word, they are repetitive and can be very large. Such a
large number of assertions can be cumbersome for verification engineers. Moreover, the simulation
would be extremely slow in the presence of so many assertions. They also make the simulation
slower. Furthermore, each of these assertions provides very little functional coverage. To overcome
these problems, Liu et al. proposed an approach for word-level feature discovery [71]. According to
the discovered word-level targets and features, RTL code is instrumented. Next, the updated RTL is
used to generate assertions. This will lead to a reduction of redundant assertions.

Sequential pattern mining
TLM for TLM designs
Model
- . Association mining D
= RTL ” Analysis for RTL designs
Model
A )

L . -
(Simulation) Simulation Traces |

Fig. 12. Automated assertion generation of TLM and RTL designs using GoldMine [72].

The methods described so far do not utilize any coverage related feedback. Thus, an assertion
generated by these methods can be redundant and may not improve the functional coverage at
all. Furthermore, the method described in [106] uses decision tree which makes the nodes closer
to the leaf produce over-constrained (contains a large number of propositions) assertions. Such
over-constraining reduces readability and increases simulation time. Sheridan et al. proposed a
coverage guided mining approach to circumvent this issue [97]. This method utilizes association
rule mining with a greedy set covering and formal verification. Figure 13 provides an overview
of this approach. In each iteration, the association rule mining selects assertions that have higher
coverage than a threshold and adds them to the candidate assertion set. This ensures that only
beneficial assertions (from a functional coverage perspective) are kept as a candidate. After each
iteration, the threshold is lowered. Similar to [106], formal verification is carried out to ensure the
correctness of candidate assertions. Association rule mining is known to produce more concise
rules than decision tree-based algorithms [4]. However, due to their exhaustive nature, they do
not scale well with design size. Using coverage threshold-based selection criteria for the assertion
helps overcome this scalability issue. According to the authors’ experimental results, each assertion
generated using this approach covers 6.14 times more input space compared to [106]. Also, the
number of propositions per assertion is 2.75 times less.

Recently Danese et al. proposed an approach name A-Team for template-based assertion mining
[43]. This method mainly focuses on two problems of the existing assertion mining techniques:
i) low flexibility due to pre-defined templates, and ii) redundant, over-constrained assertions.
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Methodology of A-Team is depicted in Figure 14. It consists of three stages. In the first step, Apriori
[5] algorithm is used for mining high frequency atomic propositions. Temporal behavior is not
considered in this step. The second step is the mining of LTL assertions. Atomic propositions that
were mined during the first step are now composed into LTL assertions. These compositions follow
the template given by the user. The final step involves the evaluation of the mined assertions. In this
step, each assertion is evaluated against fault coverage. The assertions that do not improve the fault
coverage are discarded. Furthermore, a minimization is applied to remove redundant assertions.
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Fig. 14. Template-based assertion mining in A-TEAM [43].



6 TEST GENERATION FOR ACTIVATION OF ASSERTIONS

Since assertions capture complex functional behaviors, it may be hard to activate such assertions
using random or constrained-random test patterns. Running too many test patterns implies longer
simulation time. A major challenge is how to generate efficient test vectors such that a small set
of test vectors can cover all the assertions in the design. The remainder of the section surveys
existing test generation techniques for maximizing assertion coverage, including simulation-based
approach using random/constrained random tests, directed test generation using formal methods,
and a combination of these two approaches.

6.1 Simulation using Random or Constrained-Random Tests

Traditional test generation approaches for assertion activation is simulation-based. Most of simulation-
based testing use random or constrained-random test vectors. However, these approaches cannot
guarantee that assertions with complex conditions can be activated in a reasonable time. Pal et
al. [86] presented a new approach to improve random testing in the RTL level by introducing bias
random test generation. In their work [86], the authors propose to use assertions that are only
defined for an interface of a module. In other words, they restrict the test generation for assertions
with only input/output signals of a module and consider the design as a black box. The results
of [86] show that a significant improvement in time for assertion activation compared to using
random tests.

Generating test vectors for properties defined by assertions can be utilized to increase the coverage
by capturing most of the hard-to-detect cases. Ferro et al [50] use simulation of PSL properties in
transaction level. Their framework uses combinatorial testing to select the most suitable stimuli
that have the ability to capture all the corner cases. Unlike random testing, combinatorial testing
provides a set of test vectors containing all combinations of inputs specified by the designer. Tong et
al. [103] introduce a test generator to activate assertions by using compact automata. They perform
a state space search in assertion based automata prior to test generation to identify failures and
acceptance nodes. This gives a significant advantage in computation time.

6.2 Directed Test Generation using Formal Methods

While random/constrained-random tests can easily cover assertions with simple (easy-to-activate)
conditions, they are not suitable for a vast majority of assertions with complex (hard-to-activate)
behaviors. Formal methods can enable automated generation of directed tests to address the
limitation of random/constrained-random tests [31, 36, 47, 68, 76, 89]. Tong et al. [104] propose a
test generation technique for assertion coverage using model checking. The researchers restrict the
assertions that only refer to primary inputs. However, this restriction can cause a major drawback
for this approach since this approach cannot handle complex assertions which might have complex
communications or interactions with internal signals. Earlier approaches of using formal methods
require converting the design into a netlist. Recent test generation methods utilize the word-level
structure of transition relation which enables the use of Satisfiability Modulo Theories (SMT).
Mukherjee et al. [82] highlight the idea of efficient test generation exploiting the word-level
structure and SMT solvers.

6.3 Test Generation using Concolic Testing

Concolic testing is a combination of both simulation and symbolic execution. It tries to combine
the advantages of both simulation (random tests) and formal methods (directed tests). While it is
fast to generate random tests, even millions of random tests may not cover complex assertions (e.g.,
with rare variables). While formal methods can provide a directed test for a given assertion, formal



methods face the inherent challenge of state space explosion when handling large designs and
complex assertions. Concolic testing overcomes the state explosion problem by discovering only
one path at a time. While this makes concolic testing scalable, this can lead to a path explosion
problem. To overcome the path explosion problem, there are many heuristic solutions. Concolic
testing has been successfully used in activating software assertions [69]. Recent efforts utilize
concolic testing for test generation using RTL models [6, 7, 73, 75]. Authors in [74] use concolic
testing to activate hardware assertions in RTL models. They have converted the assertions to branch
statements and used concolic testing with heuristics to activate the assertions. Figure 15 shows an
overview of assertion activation using concolic testing that uses a synergistic combination of path
simulation and symbolic execution of constraints.

Design
Input Test Simulate Path
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Test Covered ?
Suld s .Solve Select Alternative Path
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Fig. 15. Assertion activation using concolic testing [74]

7 ASSERTION-BASED PRE-SILICON VERIFICATION

Pre-silicon verification uses assertions to effectively verify a specification using simulation, formal/semi-
formal verification as well as hybrid methods. Assertions can be utilized in the design under verifi-
cation (DUV) to verify functional behavior and improve observability for faster error detection
and localization. During pre-silicon validation, assertions are embedded into the design in differ-
ent stages of the design cycle for various validation purposes, e.g., hardware/software co-design,
system-level design and IP-level design. They are implemented either using the same language

as the design or as a separate and reusable library as discussed in Section 5. In this section, we
first discuss the embedding of assertions at different abstraction levels. Next, we discuss three
approaches for assertion-based verification of pre-silicon models.

7.1 Embedding of Assertions at Different Abstraction Levels

A typical SoC design consists of multiple stages, from high-level specification, transaction-level
modeling [29], register-transfer level modeling, gate-level netlist, all the way to the post-silicon
stage after fabrication. There are three stages that are explored in the literature for assertion-based
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validation, i.e., TLM, RTL and post-silicon (shown in Figure 16). From left to right, the model
contains more details and is more close to the real design. As a result, the ideal validation should
be applied to the post-silicon stage to match the exact behavior of the design. However, there
are two major challenges of applying validation in post-silicon stage. First, the validation and
debug complexity is drastically higher compared to pre-silicon models. For example, it may take
days or weeks to simulate traces of few minutes of silicon execution. Second, the observability
in post-silicon is very limited. The available information of the design is limited to the primary
input/output and limited traces from debug infrastructures, such as JTAG and trace buffer. On the
other hand, the pre-silicon models provide a higher level of abstraction by hiding unnecessary
details to validate specific functionalities. The validation in the pre-silicon stage can utilize both
simulation and formal methods, and it has the distinct advantage of 100% observability of internal
signals. The application of assertions in these stages and their difference are summarized below.

Fig. 16. Assertions are beneficial for both pre-silicon (TLM and RTL) models and post-silicon execution. The
TLM model typically utilize SystemC assertions. The RTL model supports both PSL and SVA assertions. The
assertions can be used (synthesized) as hardware monitors (checkers) during post-silicon execution.

Hardware
Monitor

Both pre-silicon stages in Figure 16 (TLM and RTL) provide some abstraction to the exact behavior
in silicon. RTL contains more detailed information compared to TLM, such as interface and timing.
As a result, validation in RTL models is closer to silicon. Prior to introduction of validation in
TLM models, assertion-based validation in RTL models used to be the de-facto approach. While
RTL validation is still viable for medium-size designs, the ever increasing complexity and time-to-
market pressure of System-on-Chips (SoCs) requires the validation to be applied to more abstract
models. In recent years, TLM validation becomes the standard for system-level design, such as
hardware/software co-design, system exploration and verification.

In TLM designs, communication is modeled by channels [55], and transaction requests are
handled by interfaces of these channels. There are different types of interfaces, such as bidirectional
versus unidirectional, and blocking versus non-blocking. For example, Figure 17 shows the TLM
structure of a router design, whose main function is to analyze and distribute the packets received
from the master to target slaves [33]. The TLM structure abstracts the communication components
as unidirectional non-blocking channels (FIFOs). Compared to RTL models, TLM tries to minimize
the amount of information that needs to be processed during simulation, e.g., omitting the details
of individual signals. As a result, TLM provides a fast platform to explore architecture alternatives
and hardware/software co-design [57].

7.2 Dynamic Verification using Simulation

Assertions can be added either by a designer during the design time or by a verification engineer
during the verification stage. These assertions are capable of verifying the functional correctness as
well as hard-to-check conditions. Dynamic verification means simulate the design using test patterns
and verify coverage of assertions. Figure 18 shows an overview of dynamic verification. Assertions
provide two distinct advantages during dynamic verification. First, it provides a mechanism to
capture expected functional behaviors. Next, it significantly improves observability. If we try to
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Fig. 17. The TLM structure of the router. [33]

verify a design without assertions, test patterns need to be complex since it can take longer to
understand that a specific functionality has been activated. In contrast, coverage of assertions can
quickly indicate the activation of the functionality without the need for propagation to the primary
(observable) outputs.
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Fig. 18. Overview of dynamic verification using simulation

Assertions can be added in different layers of abstraction including TLM and RTL models. At the
RTL level, simulation of design happens according to the rising or falling edge of a clock. Dahan
et al. [42] proposed the use of RTL level PSL based assertion verification. They translate the PSL
assertions to Verilog assertions and use dynamic simulation to verify the assertions. Authors in [95]
automatically transform transaction-level description to RTL assertions. These assertions can be
either PSL or VHDL models.

In contrast to the RTL level, TLM models the asynchronous events. TLM level has a higher
abstraction hence when writing assertions at TLM level designers do not need to pay attention to all
the tedious details like communication between components at the RTL level. Therefore, assertion
checking at TLM is more effective than the RTL level. Chen et al. [33] proposed a mechanism to
maintain the consistency between TLM and RTL models using assertion based dynamic verification.
If a test vector can activate a TLM assertion, the counterpart of test can activate counterparts of
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corresponding RTL assertions. Recent efforts [18, 19] reuse RTL assertions in the TLM model to
dynamically verify the SystemC TLM specification.

While assertion-based validation of TLM/RTL models is applicable for all designs, there are efforts
to explore assertion-based verification specific application scenarios. The paper [105] describes how
dynamic ABV is used on the complex enterprise design of a 32-thread SPARC™ CMT microprocessor.
It overcame most of the design verification challenges such as exhaustive property checking. The
paper [64] uses SVA based assertion verification to debug wireless systems using transaction level
modeling. They emphasize that the use of assertions have reduced the network traffic as well.
Dynamic ABV can be used to ensure security requirements in a general-purpose processor [17]. In
this work, security requirements were harvested using the architectural specification.

7.3 Formal Verification using Model Checking

While simulation is scalable for large designs, it does not provide any mathematical guarantees
about the correctness of the design. Formal verification is widely used to prove the functional
correctness of hardware models. There are a wide variety of formal verification methods including
theorem proving, model checking, satisfiability solving, and equivalence checking. Model (property)
checking is most suitable in the context of assertion-based verification since assertions can be
viewed as properties.

The utilization of assertions in formal verification has improved the controllability. When
the number of required test cases are exponential to verify a functional scenario, it creates low
controllability. Low controllability is a disadvantage in dynamic verification. For example, we
need 2% test vectors to completely verify a 32-bit adder. Most importantly, it may not be feasible
to simulate an exponential number of testcases (with respect to input size) for large designs. In
contrast, formal verification of an assertion does not involve any simulation at all. It performs
static analysis based on mathematical reasoning to prove that a specific assertion is valid. In case
of failure, it will provide a counterexample, so that a verification engineer can debug and either fix
the design (if the design is buggy) or the assertion (if the assertion is coded incorrectly). As a result,
formal verification of assertions can improve both observability and controllability.

The paper [21] uses real-time assertion verification based on temporal properties represented
as PSL assertions. Moreover, they use formal methods to check the properties. One disadvantage
in this method is that circuit overhead increases with the number of nested PSL operators. In the
paper [105], the authors use formal verification of assertions. Debugging the CMT processor is hard
and challenging because of the multi-threaded architecture. Since the hardware is shared, it is really
hard to detect a bug or functional error. However, using formal verification of assertions authors
have managed to improve the observability of the design and drastically reduce the verification
effort.

7.4 Hybrid Verification

While formal verification can provide mathematical guarantees, it has the inherent disadvantage of
state space explosion. Therefore, it is not applicable to large designs without suitable abstraction.
On the other hand, simulation is scalable but cannot provide correctness guarantees. Clearly,
an effective combination of simulation and formal methods would be ideal for assertion-based
verification. Rather than using dynamic verification and formal verification separately, the current
trend is to utilize both dynamic and static verification of assertions to improve the functional
verification of a DUV. In [20], authors use TLM based assertions. First, they use automatic test
pattern generation (ATPG) technique to verify the assertions. Then they separately apply a model
checker to a set of properties to improve the functional verification.
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7.5 Coverage Analysis

In assertion-based verification, high-quality assertions often relate to high coverage. There are
three important coverage metrics associated with assertions: how many assertions got activated
(assertion coverage), how code coverage is impacted by the covered assertions, and the coverage of
the design functionality achieved by the assertions (functional coverage).

Assertion Coverage: As shown in Figure 19, a list of functional behaviors can be derived from
the specification. Designers typically write assertions based on these behaviors and embed them
in the implementation. Once the implementation is simulated using the generated vectors, the
coverage analysis will provide feedback in terms not-activated assertions (more tests needed) or
not-covered behaviors (more assertions needed). Assertion coverage focuses on how to efficiently
activate assertions using test generation techniques. While activation of the assertions guarantees
the validity of the assertions, assertion coverage does not imply whether we have checked all the
design (functional) behaviors. Therefore, we need to utilize complementary metrics such as code
coverage and functional coverage.
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Fig. 19. Coverage Analysis Flow

Coverage Analysis

Code Coverage: Code coverage provides an idea of how many lines of code got executed due to
the addition of specific assertions. This includes coverage of specific statements, branches, as well
as paths during simulation. Code coverage can be used as a metric to identify whether a design
has enough assertions. Jayakumar et al. [61] explore the connection between coverage estimation
and vacuity detection to compute state coverage. GoldMine[106] uses the conditional coverage
which examines an individual path conditions in a RTL design and represent what percentage of
conditions covered in a design block. Recent efforts [33, 105] also use the code coverage as a metric
to identify whether the number of assertions are enough. Athavale et al. [13] defines a correctness
based coverage metric. This work uses a combination of static and dynamic RTL code analysis to
identify the covered RTL statements.

24



Listing 3. Cover and Assert Properties in SVA

sequence s1;
@(posedge clk) a ##1 b;
endsequence

sequence S2;
@(posedge clk) c;

endsequence

property p;
sl |-> s2;
endproperty

// Checker assertion
assert property (p);

// Coverage assertion
cover property (p);

Functional Coverage: While code coverage does not guarantee the coverage of functional be-
haviors, functional coverage gives an objective measure of covering design behaviors. Assertions
can be used in two ways: checker (to monitor the expected behavior) or coverage (to count if it is
activated). Functional coverage of a design can be obtained by the coverage assertion. SVA and
PSL languages support both assertion types whereas OVL only support the checker assertion [94].
lustrative Examples of SVA checker and coverage assertions are shown in Listing 3. There are
various efforts in effective utilization of coverage assertions [70, 105]. Knuppel et al. [67] proposes
a methodology that considers the degree of incomplete specifications by means of mutation analy-
sis. This feedback can be used to modify the specification. Fedeli et al. [49] performs properties
incompleteness evaluation using functional verification. It defines a witness coverage metric for
properties using both static and dynamic verification using a fault model targeting functional
specification. Specifically, the witness coverage is calculated using input witnesses of the properties
extracted from the golden design. Although we have discussed coverage analysis in the context of
pre-silicon assertion-based validation, some of these concepts are also useful for coverage analysis
of post-silicon checkers.

Example 5: Assertions can be activated both vacuously and non-vacuously. Table 7 shows the test
vectors for each case of the assertion (assert property(ack1 [-> lack2)) in the Listing 1. In this example,
we cannot generate a test pattern (shown as NULL) to activate the scenario of both ack1 and ack2
as true. We should be able to generate a test to activate the scenarior, if we insert a vulnerability to
make both ack1 and ack2 as true. We can insert To non-vacuously activate the assertion ack1 and
ack?2 should be 1 and 0, respectively. The test pattern <rst=1, req1=1, req2=1> is able to activate the
assertion non-vacuously. O

Table 7. Test Vectors

ackl | ack2 | assert property(ackl |->!ack2) | Test Vector

1 1 Fail NULL

1 0 True <rst=1, reql=1, req2=1>
0 1 True (Vacuously) <rst=1, req1=0, req2=1>
0 0 True (Vacuously) <rst=1, req1=0, req2=0>
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8 POST-SILICON DEBUG USING HARDWARE MONITORS

Although most assertions are defined in the pre-silicon stage, they can also be synthesized to the
post-silicon stage in the form of coverage monitors. Despite the extensive validation efforts in the
pre-silicon stage, assertions are still critical in the post-silicon stage for several reasons. First, the
behaviors of silicon and the simulation/emulation are different due to asynchronous interfaces,
potential manufacture errors, soft errors during run-time, etc. Next, pre-silicon validation may
not be able to capture all possible scenarios. Critical properties still need to be enforced before
any catastrophe happens. Finally, monitors can improve observability during post-silicon debug.
Monitors provide a more straightforward and accurate way to test a property during runtime
compared to other design-for-debug features, such as trace buffer.

Example 6: During synthesis, the assertion shown in the sample RTL module in Listing 1 can be
converted to a hardware monitor with a trigger. The trigger for the assertion assert property(ack1 |->
lack2) will be (ackl & ack?2). The trigger will be true when both ack1 and ack2 are 1 at the same
clock cycle. This is similar to the behaviour of assertion failure. As shown in Listing 4, the flag value
will be either 1 or 0 depending on the trigger condition. During post-silicon debug, only input and
output ports will be observable. One way to observe the flag wire is mapping it to an output port.
However this method is not practical for complex designs. One practical way to observe the internal
states is using an Embedded Trace Buffer (ETB) with suitable signal selection [14, 80, 91-93]. As
shown in the Listing 4, when the flag is 1 required states are sent to the ETB via the ETB_bus
wire. o

Listing 4. Assertion Checker for Post-Silicon Debug

//assert property(ackl [-> lack2)

wire flag;

wire [31:0]ETB_bus;

assign flag = (ackl & ack2) ? 1 : 0;
assign ETB_bus = flag ? {ackl, ack2} : 0;

In spite of the usefulness of hardware monitors, we cannot add an arbitrary number of monitors
compared to the pre-silicon stage, since each monitor will introduce extra area, power and energy
overhead. To balance the trade-off between observability and design overhead, Farahmandi et
al. [48] combined both advantages of monitors and trace buffer. Monitors whose results can be easily
analyzed from the trace buffer are omitted. Only the hard-to-detect ones are synthesized. They also
proposed an observability-aware trace signal selection algorithm to cover as many monitors as
possible by the trace buffer. In this way, high observability is achieved with low hardware overhead.

Hardware checkers are assertions that are incorporated into the design for runtime monitoring.
We have seen that assertions are used to detect deviation from expected behavior. They can be
converted into permanent circuitry which is then used for online monitoring or performing self-
tests. These checkers are written in synthesizable hardware description languages, as opposed to
PSL or SVA. Some of the usages of such assertion checker are depicted in Figure 20. Assertion
checkers can be used in the verification stage when the design is under emulation. These checkers
are temporary and only present during verification. Assertion checkers can also be used in post-
silicon debug as a debug interface as well as for self testing. These checkers are synthesized and
added to the design, which remains there during the lifespan of the device. The remainder of
this section outlines two components of post-silicon debug using assertions: checker creation and
checker utilization.
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Fig. 20. Usage scenarios for hardware assertion checkers [22].

8.1 Creation of Assertion Checkers (Hardware Monitors)

Checkers can be included in both the pre-silicon and post-silicon phase. In pre-silicon, there are
mainly two types of assertion checkers: built-in checkers and post-processing checkers. Built-in
checkers are included in the RTL model whereas post-processing checkers evaluate trace files
after the simulation [65]. Built-in checkers are always active and monitor the behaviour in every
simulated cycle which simplify the debugging and identify the bugs effectively. One more advantage
of built-in checkers is that a checker can be used to identify different deviations irrespective of
the intended use. However, these checkers slow down the simulation speed. For the majority
of the built-in checkers, the impact of the speed of simulation was negligible but for complex
checkers impact was high. As a solution post-processing checkers were introduced [65] for complex
assertions where the checkers were separated from the model. Post processing checkers will use the
dumped trace file of the simulation and identify whether any deviation from the intended design
has occurred.

In post-silicon verification and when adding checkers to the circuit, one key challenge is to
determine which assertions should be added to the design as hardware checkers. The simplest
approach is to include all of them. While it maximizes the observability and run-time debug
capability, the power, performance and area concerns are the limiting factors. Designers must strike
a balance between these trade-offs. We will look into the existing checker selection methodologies
in this section.

One approach for checker selection is static synthesis using different ranking algorithms. The
work [48] presents a framework that can be used to reduce the number of hardware checkers in
post-silicon validation while using the debug infrastructure. [48] uses the on-chip trace buffer and
rank the assertions based on the difficulty in detecting the assertions. Then assertions that are hard-
to-detect are synthesized in the design ignoring the easy-to-detect assertions. Similarly in [98-100],
the authors rank the assertions based on the ability to detect bit flips and synthesize highly ranked
assertions for post-silicon validation to identify electrical bugs. The ranking mechanism checks
whether the destination signals of assertions point to flip-flops and then rank those assertions as a
high priority.

Another approach is the dynamic synthesis of checkers using FPGA [56]. The work [56] intro-
duces Time-Multiplexed Assertion Checking (TMAC) where the assertion checkers are included in
a re-configurable embedded block (FPGA) in a time-multiplexed manner. This gives the capability
to add a large number of checkers with a low area overhead.

There are different methodologies to improve the post-silicon debug without changing the
number of checkers included. Works [83], [84] present that efficient post-silicon debugging can
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be achieved by clustering the assertion checkers. When the assertions are clustered, it is easy to
select and control assertions in debug mode whereas individual assertion control and integration
will require more energy. The overhead of incorporating checkers in the design can be reduced by
selecting an efficient synthesis mechanism. The process of converting assertions into hardware
checkers involves transforming the PSL statements into RTL models suitable for use in the circuit
under verification. The paper [23] present MBAC hardware checker generator that utilize the
limited resources and produce assertion circuits which are resource-efficient, synthesizable and
behaviorally correct. In works [24, 25], automata-based assertion checker synthesis is used to
generate more resource efficient checkers.

The book [27] presents several debugging improvements introduced for checkers. These enhance-
ments are reporting signal dependencies, monitoring activities, signalling assertion completion,
automatically create counters on assert statements and hardware assertion threading. In [26, 37],
debugging enhancements such as increasing the observability and the coverage information given
by checkers were introduced. These enhancements were achieved by extracting the failures using
dependency graphs, monitoring activities of automata-based assertion checkers and monitoring
assertion completion. In [26], assertion threading was used to closely monitor which start condition
has caused an error. Assertion threading can separate different parallel activities and identify which
activity has caused an error from chains of events.

8.2 Utilization of Assertion Checkers (Hardware Monitors)

Checkers are mostly used to identify functional correctness in a design. Functional errors occur
when the actual design implementation has some deviations from specification. However prior
work shows that checkers can also be used to identify security vulnerabilities, electrical bugs and
thermal effects in a circuit.

Hardware Trojan is a major security vulnerability in SoC designs. Hardware Trojans are additional
hardware maliciously implanted in a circuit to gain unauthorized access or privileges over an
original design. [11] use hardware checkers to identify Trojans. They introduce assertion checkers
in programmable logic block to identify Trojans inside a circuit during run-time. In [17], researchers
combine hardware checkers with code coverage in order to efficiently detect malicious implants
and rare-event triggers.

Electrical bugs and thermal effects are not easy to detect in pre-silicon validation because of the
difficulties in accurately modelling them. Electrical bugs are most commonly shown as bitflips in
the post-silicon phase [99]. Therefore in [98-100], researchers have used hardware checkers to
identify bit-flips in flip-flops so that the electrical errors can be minimized. They prioritize checkers
that are able to detect bitflips in flip-flops by examining whether the designated signal points to a
flip-flop.

9 CONCLUSION AND FUTURE DIRECTIONS

Assertion-based verification is one of the promising verification techniques used in the industry
for hardware designs. Using assertions will improve the controllability and observability which
will help faster localization of errors and reduce debug time. There are different abstraction lev-
els, verification levels and verification techniques associated with assertions. This paper surveys
assertion-based verification across different abstract levels and verification levels. Moreover, this
paper systematically reviews the most recent progress in assertion-based hardware verification. It
includes assertion generation techniques, test generation for covering these assertions, hardware
checkers and different verification schemes.

Although assertions have been widely used in pre-silicon validation, how to fully utilize existing
design-for-debug infrastructure to reduce the number of assertions for post-silicon debug, remains
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an open research problem. Future research efforts, especially on IoT devices, need to take all
parameters into consideration, including area, power and performance.

The vast majority of existing work deals with assertion-based verification of functional behaviors.
As a result, these assertions are written to hold properties that are always true. A recent work [109]
utilizes assertions to detect security vulnerabilities and introduce the notion of SoC security
assertions. The security assertions are introduced for eight classes of vulnerabilities. Their results
show that normal assertions are not good enough to detect all the vulnerabilities and there is a
need for dedicated security assertions. Future research in assertion-based verification can focus on
defining and utilizing assertions for functional behaviors as well as non-functional requirements
such as security, energy and thermal constraints.
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