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The E1 and M1 contributions to 7Be(p, γ)8B at low energies are calculated in halo effective
field theory. The excited 7Be⋆ core is included as an explicit degree of freedom in a coupled-
channel calculation. The E1 transition is calculated up to next-to-next-to-leading order. The leading
contribution from M1 transition that gives significant contribution in a narrow energy region around
the 1+ resonance state of 8B is included. We compare our results with previous halo effective field
theory calculations that also included the 7Be⋆ as an explicit degree of freedom. We disagree with
these previous calculations in both the formal expressions and also in the analysis. Bayesian inference
of the data gives S17(0) = 21.0(7) eV b when combined with the expected theory error.
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I. INTRODUCTION

The Sun is the fuel for life on Earth. The fascinating
questions on how the Sun behaves and affects our lives
propelled many scientific endeavours and outcomes like
the impressive images of NASA’s Solar Dynamics Obser-
vatory (SDO) [1] released in June of 2020 after a decade
of observations [2]. Practically all of the energy released
by the Sun comes from nuclear reactions taking place at
its core, consuming hydrogen through the pp-chain and
CNO cycle [3–5]. The rate of these reactions allows the
determination of the age, stability, chemical composition,
and the fate of the Sun along its history line, as predicted
by the standard solar model (SSM) [6–8]. A few of the
reactions have neutrinos as by-product that travel with
practically no interaction until eventual detection in ded-
icated observatories. These are key reactions for convey-
ing information about the interior of the Sun, such as its
temperature that agrees with helioseismological measure-
ments to a precision better than 0.2% [6]. The first solar
neutrinos extensively measured and analysed were those
from the β+ decay of the 8B nucleus. Although with a
smaller flux compared to other solar reactions, 8B neu-
trinos carried the necessary energy [8] to be efficiently
detected prior to 2010. In recent years, the Borexino
experiment were able to detect solar neutrinos from elec-
tron capture of 7Be [9], proton-proton fusion [10] and pp-
chain [11], and from the CNO cycle [12], boosting solar
neutrino studies to an unprecedented level [13].

The radiative capture reaction 7Be(p, γ)8B played an
important role in uncovering the apparent loss of solar
neutrino flux. The energetic flux of 8B neutrinos de-
tected by the Super-Kamiokande [14] and Sudbury Neu-
trino Observatory [15] contrasted with the tight predic-
tions from the SSM, lending credit to the phenomenon of
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neutrino oscillations and subsequent Nobel Prizes in 2002
and 2015. From observations towards precision, ques-
tions like matter versus vacuum oscillations or mass hi-
erarchy of neutrino flavors can only be achieved if the
7Be(p, γ)8B cross section is known around the respec-
tive Gamow energy ∼ 20 keV to a precision better than
3% [13]. Despite recent high-quality data on this reac-
tion, and possible underestimation of the respective un-
certainties [16], experiments are difficult and currently
limited to energies above 100 keV. Thus, the required
information can only come from theoretical low-energy
extrapolations of data, which nowadays dominate the re-
spective uncertainties [13].

The 8B nucleus is a known example of nuclei with an
exotic structure that defies the well-established nuclear
shell model description of tight, stable nuclei. It con-
sists of a 7Be nucleus as a tight core, surrounded by a
proton barely bound by ∼ 100 keV. This is one order
of magnitude smaller than the few MeVs of one-nucleon
separation energy in a typical nucleus. One, two, and
even more of loosely-bound nucleons to a tight core and
related new phenomena became an important drive of
nuclear physics in recent years [17]. Most of its universal
aspects are captured by assuming the core and valence
nucleons as elementary degrees of freedom interacting via
short-range interactions [17–19]. Halo/cluster effective
field theory (halo EFT for short) relies on this dominant
cluster structure as starting point, combining few-body
techniques and quantum field theory to deliver a model-
independent and systematically-improvable perturbative
calculation in terms of a small ratio Q/Λ. The numera-
tor Q sets the momentum scale characteristic of shallow
binding energies while the denominator Λ is a high mo-
mentum breakdown scale associated with the tightness
of the core. By construction, halo EFT works better in
the lower energy domain, becoming a reliable tool for
theoretical low-energy extrapolations [20] (see [19] and
references therein).

Halo EFT has been applied to the 7Be(p, γ)8B reac-
tion in previous studies [21–24]. Zhang, Nollett, and

mailto:higa@if.usp.br
mailto:psp63@msstate.edu
mailto:grupak@ccs.msstate.edu


2

Phillips [21] assessed the dominant E1 capture at leading

order (LO) that includes the proton and the 3
2

−
ground

and 1
2

−
excited states of the 7Be core as degrees of free-

dom, with the initial interactions fixed by the s-wave
scattering lengths in the total spin S = 2 and S = 1
channels, and the final bound state given in terms of
asymptotic normalization coefficients (ANCs) obtained
from ab initio variational Monte Carlo calculation. Their
result for the astrophysical S factor was ∼ 10% smaller
than the recommended value of S17(0) = 20.8(16) eV b
from “Solar II” [3], though within their theoretical LO
uncertainties. A next-to-leading order (NLO) calcula-
tion, with nine adjustable parameters, was carried on
with a Bayesian analysis in subsequent works [23, 24],
with an improved agreement [S17(0) = 21.3(7) eV b] with
the recommended value. Note that the S17 value quoted
in Refs. [23, 24] only includes the errors from the fits.
The expected NLO 10% theory error in that calculation
was not included. Ryberg et al. [22] explored the LO
association between S17(0) and the charge radius of 8B.
With different values of ANCs as input, their S17(0) re-
sults were scattered between ∼ 17–20 eV b and found an
apparent linear correlation with the charge radius.

In the present work we perform a next-to-next-to-
leading order (NNLO) analysis of the 7Be(p, γ)8B cap-
ture reaction in the halo EFT framework. In contrast to
previous studies [21–24], we include the excitation of the
7Be core in a coupled-channel formalism [25, 26], extend-
ing the calculations done for the mirror-symmetric case
7Li(n, γ)8Li [27]. The same formal discrepancies raised
there about previous halo EFT calculations apply here
as well. In particular, the discrepancies are in the initial
state s-wave scattering and in the final p-wave bound
state. We also disagree with the power counting devel-
oped in earlier works. We estimate the two-body current
contribution to E1 transition to be two orders suppressed
in the perturbative expansion compared to previous esti-
mates [23, 24], entering at N3LO instead of NLO. Besides
the E1 capture, we include the leading M1 contributions
relevant at energies ∼ 600 keV around the 1+ resonance.
That allows us to perform EFT fits over a wider range
in energy. The fits in Refs. [23, 24] were restricted to en-
ergies below the resonance. Applying Bayesian analysis
on the most recent, high-quality capture data we obtain
S17(0) ∼ 21 eV b, in agreement with the recommended
value [3]. As in the 7Li(n, γ)8Li case [27], one also iden-
tifies an increasingly important d-wave contribution at
NLO towards higher energies while the dynamics of the
7Be excited state are noticeable only at NNLO.

The paper is organized as follows. Sec. II A defines the
strong and electromagnetic EFT Lagrangian from where
our interactions are obtained. We design two versions of
EFTs—one simpler, with only the proton and the ground
state of the 7Be core as nuclear degrees of freedom, and
another including the excited state of the core, to be com-
pared with each other throughout the paper. Secs. II B
and IIC provide details on how to incorporate the ex-
cited core in a coupled-channel formulation in s- and p-

waves, respectively. It is followed by a brief derivation
of the ANCs and their relations with the wave function
renormalization constants in EFT. One closes Sec. II pre-
senting basic elements of Bayesian analysis necessary for
fits of our EFT parameters to capture data. The perti-
nent Feynman diagrams and main expressions of our E1
and M1 capture reactions are given in Sec. III. Prelimi-
nary results are shown in Sec. IV with EFT parameters
determined from available scattering observables and ex-
perimentally determined and calculated ANCs, with the
purpose of setting up the power counting for this re-
action. The main results of this work are presented in
Sec. V where the EFT parameters were constrained by
the most recent and precise direct capture data [28–33]
using Bayesian inference. One finishes with a summary
and concluding remarks in Sec. VI.

II. FORMALISM

In this section we develop the formalism for calculat-
ing the radiative capture reaction 7Be(p, γ)8B. The gen-
eral formalism is very similar to the calculation in the
isospin mirror reaction 7Li(n, γ)8Li [27]. The dominant
contribution is from a E1 transition from an initial s-
wave state to a final p-wave bound state. There is a M1
transition from a p-wave resonance state that is impor-
tant around the resonance energy. The modification to
7Li(n, γ)8Li due to the Coulomb force needed in this cal-
culation can be obtained from the halo EFT calculations
of 3He(α, γ)7Be, 3H(α, γ)7Li [34, 35]. The derivation
below closely follows that in Ref. [27] with the Coulomb
expressions from Refs. [34, 35].

A. Interactions

We start the construction of the interactions by identi-
fying the low-energy degrees of freedom. The 8B ground
state is a shallow state with a binding energy B = 0.1364
MeV below the proton-7Be threshold [36, 37]. The spin-
parity assignments of the proton and ground state of 7Be

are 1
2

+
and 3

2

−
, respectively. Thus the 2+ ground state of

8B is a p-wave bound state. The 8B ground state can also
be represented as a p-wave bound state of the proton and

the 1
2

−
excited core of 7Be [23, 24, 38] that we denote as

7Be⋆. Capture from initial s-wave states through the E1
transition dominates with subleading contributions from
initial d-wave states that we describe later. Low-energy
capture data shows a prominent contribution from the
1+ resonance state of 8B. This can be described as a M1
transition between initial and final p-wave states.
Following the calculation of 7Li(n, γ)8Li [27], we con-

struct a theory without the 7Be⋆ core as an explicit de-
gree of freedom that we call EFTgs. We construct a
second theory with the 7Be⋆ core as an explicit degree
of freedom that we call EFT⋆. We will show later in
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Sec. IV that the two EFTs differ in their momentum de-
pendence only at NNLO. First we present the halo EFT
without 7Be⋆ contribution, EFTgs. The strong interac-
tion Lagrangian is similar to the one for 7Li(n, γ)8Li from
[20, 27, 39]:

L = N†
[︃
i∂0 +

∇2

2mp

]︃
N + C†

[︃
i∂0 +

∇2

2mc

]︃
C

+
∑︂
ζ

χ
(ζ)
[j]

†
[︃
∆(ζ) + h(ζ)

(︃
i∂0 +

∇2

2M

)︃]︃
χ
(ζ)
[j]

+

√︃
2π

µ

∑︂
ζ

[︃
χ
(ζ)
[j]

†
NTP

(ζ)
[j] C + h. c.

]︃
, (1)

where N represents the 1
2

+
proton with mass mp =

938.27 MeV and charge Zp = 1, C represents the 3
2

−

7Be core with mass mc = 6536.2 MeV [36, 37] and
charge Zc = 4, M = mp + mc is the total mass, and
µ = mpmc/M is the reduced mass. We use natural units
with ℏ = 1 = c. In the spectroscopic notation 2S+1LJ ,
the initial s waves are 3S1 and 5S2. The p-wave bound
state is a combination of 3P2 and 5P2. The 1+ 8B res-
onance is a combination of 3P1 and 5P1. The summa-
tion in ζ is over the s- and p-wave channels: 3S1,

5S2,
3P2,

5P2,
3P1,

5P1 [20, 27, 39]. The projectors in the

different ζ channels are given by P
(ζ)
[j] in Eq. (1), see Ap-

pendix A. There is a sum over the repeated subscript
[j] which is a single index or double indices as appro-
priate. We gauge the derivatives of the charged parti-
cles with minimal substitution to describe both Coulomb
interactions and E1 one-body transition operators. In
this theory the binding momentum γ =

√
2µB = 14.961

MeV, the inverse Bohr radius kC = αeZcZpµ = 23.956
MeV (with αe = e2/(4π) = 1/137 the fine structure con-
stant), and momentum p ≲ 40 MeV constitute the low
momentum scale Q ∼ γ ∼ kC ∼ p. The momentum
pR = 32.15 MeV associated with the 1+ resonance en-
ergy ER = 0.630(3) keV [40] is also considered to scale as
Q. The breakdown momentum scale of the theory can be
estimated from the binding momentum of the 7Be core
Λ ∼ 70 MeV into the constituents 3He-4He.
The M1 transition proceeds through the operators

gpµNN
T
(︂σ
2
·B
)︂
N + gcµNC

T (J ·B)C

+

[︃
iµNL22χ

(5P2)
ij

†
Bkχ

(5P1)
l Rijkl + h. c.

]︃
, (2)

where σ are the Pauli matrices, J are the angular mo-
mentum matrices for spin-3/2 particle, B = ∇ × A is
the magnetic field, µN = e/(2mp) the nuclear magne-
ton, gp = 2κp the proton gyromagnetic ratio, gc = 2κc/3
the 7Be gyromagnetic ratio, and L22 is a two-body cur-
rent coupling [39]. We include only the M1 capture
contribution from the dominant 5P1 → 5P2 channel.
We verified that M1 capture in the other channels are
subleading. The anomalous magnetic moments [41] are

κp = 2.792 847 34(3) and κc = −1.398(15), respectively.
We present our final results for the S-factor at thresh-
old to only 3-significant figures. There is an additional
M1 contribution from a magnetic photon coupling to the
charged particles “in flight” that we include [39].
The second halo EFT⋆ with explicit excited 7Be⋆ core

can be described with the Lagrangian [27]

L⋆ = N†
[︃
i∂0 +

∇2

2mp

]︃
N + C†

[︃
i∂0 +

∇2

2mc

]︃
C

+ C†⋆

[︃
i∂0 − E⋆ +

∇2

2mc

]︃
C⋆

+
∑︂
ζ,ζ′

χ
(ζ)
[j]

†
[︃
Π(ζζ′) + t(ζζ

′)

(︃
i∂0 +

∇2

2M

)︃]︃
χ
(ζ′)
[j]

+

√︃
2π

µ

∑︂
ζ

[︃
χ
(ζ)
[j]

†
NTP

(ζ)
[j] C

+ χ
(ζ)
[j]

†
NTP

(ζ)
[j] C⋆ + h. c.

]︃
, (3)

where the C⋆ field represents the excited 7Be⋆ core with
excitation energy E⋆ = 0.4291 MeV. The momentum
scale γ∆ =

√
2µE⋆ = 26.54 MeV is assumed to scale

as Q. The breakdown momentum for this theory would
be set by the binding momentum of the 7Be⋆ core as
Λ ∼ 60 MeV. Compared to Eq. (1), this theory has some
additional scattering channels 3S⋆

1 ,
3P ⋆

2 . We also include
mixing in the 3S1-

3S⋆
1 and 3P2-

3P ⋆
2 channels. This is

facilitated by the off-diagonal terms in the inverse free

dimer field χ
(ζ)
[j] propagators. We consider mixing only

in the spin S = 1 channels. The excited core does not
participate in the S = 2 channel. The capture in the spin
S = 2 channel is known to be about 4 times larger than
in the S = 1 channel [42, 43]. So we treat any possible
mixing between these two spin channels to be subleading
and do not consider in our calculation. The summation
over ζ is over the appropriate channels, with the projec-

tors P
(ζ)
[j] defined in Appendix A. The M1 contribution

in EFT⋆ is given by the operators in Eq. (2) and the
in-flight captures.
The E1 contribution to 7Be(p, γ)8B in EFTgs and

EFT⋆ follows a similar calculation as the 3He(α, γ)7Be
capture except for some trivial angular momentum al-
gebra. We use the 3He(α, γ)7Be expressions [34] with
appropriate modifications. The reader should refer to
Ref. [34] for technical details on evaluating the Feynman
diagrams we consider here. The M1 contribution with
Coulomb involves a new integral similar to the E1 inte-
grals that are included in Appendix C.

B. 3S1-
3S⋆

1 Coupled Channel

The coupled-channel s-wave scattering amplitude is a
2× 2 matrix. We write the Coulomb-subtracted scatter-
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ing matrix as

iA(ab)(p) = −i2π
µ
[C0(ηp)]

2ei2σ0D(ab)(E, 0) , (4)

where E = p2/(2µ) is the center-of-mass (c.m.) energy
and the superscripts are the row-column indices of the
amplitude matrix. We identify the 3S1 state as channel 1,
and the 3S⋆

1 state as channel 2. The Coulomb phase shift
is σl = arg Γ(l+1+ iηp) with the Sommerfeld parameter
ηp = kC/p. The parameter [C0(ηp)]

2, associated with the
probability of the Coulomb wave function at the origin,
is given by

Cl(ηp) =
2le−πηp/2|Γ(l + 1 + iηp)|

Γ(2l + 2)
. (5)

Following the 7Li(n, γ)8Li calculation in Ref. [27], we
write the inverse dimer propagator as

D−1 = D−10 − Σ , (6)

where D−10 is the inverse free dimer propagator and Σ
is the self-energy. Calculation of [D(E, 0)]−1 is simpler
than D(E, 0). We have the free inverse dimer propagator
from Eq. (3):

[D0(E, 0)]
−1 =

(︃
Π(11) Π(12)

Π(12) Π(22)

)︃
, (7)

where we only keep the couplings Π(ij) in a low momen-
tum expansion. In a single-channel calculation this would
correspond to keeping only the scattering length contri-
bution. The self-energy is

−Σ(E, 0) = −2π

µ

(︃
J0(−ip) 0

0 J0(−ip⋆)

)︃
, (8)

where p⋆ =
√︁
p2 − γ2∆ + i0+ and

J0(x) = − 2µ

∫︂
d3q

(2π)3
1

q2 + x2
2πηq

e2πηq − 1

= − µ

2π
λ+

kCµ

2π

[︃
1

D − 4
+ 1− 3γE

+2 ln
λ
√
π

2kC
− 2H(−ikC/x)

]︃
. (9)

H(x) = ψ(ix)+1/(2ix)− ln(ix) with the di-gamma func-
tion ψ(x). We regulate the loop integrals using dimen-
sional regularization in the power divergence subtraction
(PDS) scheme [44] that removes all divergences in space-
time dimensions D ≤ 4. λ is the renormalization scale.
With the RG conditions

Π(ij) =
1

aij
+ kC

[︃
− λ

kC
+

1

D − 4
+ 1− 3γE

+2 ln
λ
√
π

2kC

]︃
δij , (10)

where aijs have units of length [25], we arrive at

[D(E, 0)]
−1

=

(︃
1/a11 1/a12
1/a12 1/a22

)︃
+

(︃
2kCH(kC/p) 0

0 2kCH(kC/p⋆)

)︃
, (11)

which can be used to calculate the s-wave scattering ma-
trix A(p). More specifically, we calculate

A(11) =
2π

µ
[C0(ηp)]

2ei2σ0

{︄
− a−111 − 2kCH

(︃
kC
p

)︃

+ a−212

[︃
1

a22
+ 2kCH

(︃
kC
p⋆

)︃]︃−1}︄−1
, (12)

which reduces to the single-channel result for Π12 = 0.
For the off-diagonal contribution,

A(12) =
2π

µ
[C0(ηp)]

2ei2σ0

{︄
− a−112 + a12

[︃
1

a11

+2kCH

(︃
kC
p

)︃]︃[︃
1

a22
+ 2kCH

(︃
kC
p⋆

)︃]︃}︄−1
. (13)

Matching A11 to the effective range expansion (ERE)
at p≪ γ∆ we get

−a−111 − a−212

[︄
−a−122 − 2kCH

(︄
− ikC√︁

−p2 + γ2∆ − i0+

)︄]︄−1

≈ − 1

a11
+

a22a
−2
12

1 + 2a22kCH
(︂
−ikC

γ∆

)︂
+ i

a222a
−2
12 k

2
CH
′
(︂
−ikC

γ∆

)︂
γ3∆

[︂
1 + 2a22H

(︂
−ikC

γ∆

)︂]︂2 p2 + . . .

= − 1

a
(1)
0

+
1

2
r
(1)
0 p2 + . . . , (14)

which gives

a11 = a
(1)
0

1 + 2a22kCH
(︂
− ikC

γ∆

)︂
1 + a22

[︂
a
(1)
0 a−212 + 2kCH

(︂
− ikC

γ∆

)︂]︂ ,
a−212 = −r(1)0

iγ3∆

[︂
1 + 2a22kCH

(︂
− ikC

γ∆

)︂]︂2
2a222k

2
CH
′
(︂
− ikC

γ∆

)︂ . (15)

These expressions reduce to the ones without Coulomb
interactions in Ref. [27]. A mixed channel calculation
(without the Coulomb force) using nucleon-core contact
interaction in s-wave, instead of dimer-particle interac-
tion as we do here, was presented in Ref. [25]. See also
Ref. [26] where a coupled-channel calculation with the
Coulomb force was considered.
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In the S = 1 channel, the new measurement [45] of

a
(1)
0 = 17.34+1.11

−1.33 fm would make the scattering length
scale as 1/Q. We take all aij ∼ 1/Q which then gives

r
(1)
0 ∼ 1/Q for kC ∼ 24MeV ∼ Q. Irrespective of the

sign of a12, r
(1)
0 is negative, just as it is in the system with-

out Coulomb interactions [25, 27]. Though we started
with a theory with momentum-independent contact in-

teractions, an s-wave effective range r
(1)
0 is generated in

the coupled-channel calculation as there is a finite differ-
ence in the relative momentum in the scattering between
states with and without the excited core [27].

The calculations in Eqs. (14), (15) are in fact a match-
ing calculation of EFTgs to EFT⋆. Eqs. (10) and (15)

determine the strong-interaction couplings Π(ij) that ap-

pear in EFT⋆ from the ERE parameters a
(1)
0 , r

(1)
0 , whose

relations with the corresponding EFTgs couplings are
known [27, 46]. More specifically, it shows how the s-
wave scattering amplitude calculated in EFT⋆ is repro-
duced by EFTgs at p≪ γ∆.
In the analysis we present later, we use Eq. (15) to

constrain a11 by a
(1)
0 . Thus, a22 and a12 remain the only

free parameters to be fitted to determine the s-wave scat-
tering amplitudes in the coupled-channel calculation.

C. 3P2-
3P ⋆

2 Coupled Channel

The coupled-channel calculation for the p-wave bound
state is similar to the s-wave scattering calculation, and
follows the derivation in Ref. [27], with the additional
complexity of Coulomb interactions. We write the free
inverse dimer propagator as

[D0(E, 0)]
−1 =

(︃
Π(11) + Et(11) Π(12) + Et(12)

Π(12) + Et(12) Π(22) + Et(22)

)︃
, (16)

where we identify 3P2 as channel 1 and 3P ⋆
2 as chan-

nel 2. Here we keep the effective momentum contribu-
tions since p-wave bound state calculation requires both
a momentum-independent and a momentum-dependent
interactions at LO [47, 48] in halo EFT.

The p-wave self-energy term is given by

−Σ(E, 0) = −6π

µ3

(︃
J1(−ip) 0

0 J1(−ip⋆)

)︃
, (17)

where

J1(x) = − µkC
3π

(k2C − x2)H(−ikC/x)

− µkc
3π

(k2C − x2)α− µ

3π
β ,

α =
1

D − 4
− 4

3
+

3

2
γE − ln

λ
√
π

2kc
+

3λ

4kC
,

β = 4π2k3Cζ
′(−2) +

λk2C
4

− 3πλ2kC
4

+
πλ3

4
. (18)

The p-wave amplitude is

A(p) = −9[C1(ηp)]
2ei2σ1

2π

µ

p2

µ2
D(E, 0) . (19)

We use the RG conditions

µ2Π(11) = a−111 − k3C

[︃
3λ

2kC
+ 8π2ζ ′(−2) +

2

D − 4

+3γ − 8

3
− ln

πλ2

4k2C

]︃
− λ

k2C − 3πλkC + πλ2

2
,

µ2Π(22) = a−122 − kC
(︁
k2C − γ2∆

)︁ [︃ 3λ

2kC
+ 8π2ζ ′(−2)

+
2

D − 4
+ 3γ − 8

3
− ln

πλ2

4k2C

]︃
− λ

k2C − 3πλkC + πλ2

2
− 8π2ζ ′(−2)kCγ

2
∆

− 2kC
(︁
k2C − γ2∆

)︁
H

(︃
− ikC
γ∆

)︃
,

µ2Π(12) = a−112 , (20)

and

µt(11) =− r11 − 3λ− 2kC

[︃
2

D − 4
+ 3γ − 8

3
− ln

πλ2

4k2C

]︃
,

µt(22) =− r22 − 3λ− 2kC

[︃
2

D − 4
+ 3γ − 8

3
− ln

πλ2

4k2C

]︃

+
2i
(︁
k4C − γ2∆k

2
C

)︁
H ′
(︂
− ikC

γ∆

)︂
γ3∆

− 4kCH

(︃
− ikC
γ∆

)︃
,

µt(12) =− r12 , (21)

where aij are scattering volumes though we used the
same notation earlier for scattering lengths in the 3S1-

3S⋆
1

coupled-channels. The scattering volumes do not appear
in the cross section formula as we show below, and they
are not used outside of this subsection. At p ≪ γ∆, by
looking at A(11)(p), we get

9[C1(ηp)]
2(p3 cot δ1 − ip3)

≈ a22
a212

− 1

a11
+
p2
(︁
a212r11 − 2a22a12r12 + a222r22

)︁
2a212

− 2kC(k
2
C + p2)H(ηp)

= − 1

a
(1)
1

+
1

2
r
(1)
1 p2 − 2kC(k

2
C + p2)H(ηp) . (22)

As for the s wave, this relation is a matching calculation
of EFTgs to EFT⋆ for the p wave amplitude at low energy.
For the wave function normalization constant we get

Z−1 =
d

dE
[D(E, 0)]−1

⃓⃓⃓
E=−B

= − 1

µ

(︃
ρ11 r12
r12 ρ22

)︃
, (23)
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with

ρ11 = r11+
2ik2C

(︁
k2C−γ2

)︁
H ′
(︂
− ikC

γ

)︂
γ3

−4kCH

(︃
− ikC

γ

)︃
≈ r11 − 1.5538MeV ,

ρ22 = r22 −
2iγ2k2CH

′
(︂
− ikC

γ⋆

)︂
γ3⋆

−
2ik4CH

′
(︂
− ikC

γ∆

)︂
γ3∆

−
2iγ2∆k

2
CH
′
(︂
− ikC

γ⋆

)︂
γ3⋆

+
2ik2CH

′
(︂
− ikC

γ∆

)︂
γ∆

+
2ik4CH

′
(︂
− ikC

γ⋆

)︂
γ3⋆

+ 4kCH

(︃
− ikC
γ∆

)︃
− 4kCH

(︃
− ikC
γ⋆

)︃
≈ r22 + 5.0996MeV , (24)

and γ⋆ =
√︁
γ2 + γ2∆. We see from above that Z−1, and

consequently Z depends on three effective momenta r11,
r12, r22. The two ANCs C2

1,3P2
, C2

1,3P⋆
2
, discussed below,

are not sufficient to constraint the three rijs. If we as-
sume kC ∼ Q ∼ γ ∼ γ∆, and rij ∼ Λ, we can write
Z using only the effective momenta rijs. In our coupled-
channel calculation we simply fit the wave function renor-
malization constants Z11, Z12 to the ANCs without at-
tempting to interpret these in terms of the rijs [27].

D. Asymptotic Normalization Constant

Here we present a derivation of the relation between
the ANCs and the wave function renormalization con-
stants. We follow the convention from Refs. [49–54]. Sup-
pressing spin indices, the S-matrix projected onto l-th
partial wave is

Sl(p
2) = e2iσle2iδl

= 2ip Fl(p
2)
p2lΓ(l+1+iηp)

2

eπηpΓ(l+1)2
+ e2iσl , (25)

where δl is the Coulomb-subtracted partial wave phase
shift. The function Fl relates to the elastic scattering
amplitude via

Al(p
2) =

iπ

µp
e2iσl(e2iδl − 1)

= − 2π

µ

p2lΓ(l+1+iηp)
2e−πηp

Γ(l+1)2
Fl(p

2) . (26)

The generalization of the Landau-Smorodinsky K func-
tion, analytic around p ∼ 0, is obtained from Fl(p

2) [52–

54],

Kl(p
2) =

1

Fl(p2)
+ p2l+1dl(ηp) 2ηpH(ηp)

= p2l+1dl(ηp)
[︁
C2

0 (ηp)(cot δl − i) + 2ηpH(ηp)
]︁

≈ − 1

al
+ rl

p2

2
+ Pl

p4

4
+ · · · , (27)

where the last equality is the Coulomb ERE with the
conventions of Refs. [49–54]1. The function dl(η) is given
by

dl>0(η) = Πl
j=1

(︃
1 +

η2

j2

)︃
=

Γ(l+1+iη)Γ(l+1−iη)
Γ(l+1)2Γ(1+iη)Γ(1−iη)

=
Γ(2l + 2)2

22lΓ(l + 1)2
C2

l (η)

C2
0 (η)

. (28)

The poles of Sl due to physical bound states coincide
with the ones of Al as they are related to zeros of the
function F−1l =

[︁
Kl − p2l+1dl(ηp)2ηpH

]︁
. Close to the

bound-state momentum p ∼ iγ, Sl behaves as [53, 57]

Sl(p ∼ iγ) ∼ (−1)l+1ieiπηγ
|Cb|2

p− iγ

= (−1)leiπηγ
γ

µ

|Cb|2

(E +B)
, (29)

with B = γ2/(2µ), ηγ = −ikC/γ (Eq.(13) of Ref. [53]
has a misprint, see Ref. [57]), and Cb the ANC of the
bound-state wave function.
The residues of Al and Sl are related via

ResAl =
π

µγ
ResSl = (−1)leiπηγ

π

µ2
|Cb|2 . (30)

From Eqs.(29) and (30) one arrives at

|Cb|2 = − 2µγ2l
[︃
Γ(l+1 +ηγ)

Γ(l+1)

]︃2
×
{︃
d

dE

[︁
Fl(p

2)−1
]︁
E=−B

}︃−1
. (31)

The relation between the general form of Al and the sum
of on-shell Feynman diagrams derived from EFT is given
by

Al(p
2) =

[︂
ple−πηp/2Γ(l+1 +iηp)

]︂2 [︃
−2π

µ

Fl(p
2)

Γ(l+1)2

]︃

=

[︄(︃
p

µ

)︃l

e−πηp/2Γ(l+1 +iηp)

]︄2
×
[︃
2π

µ
D(l)(E, 0)

]︃
, (32)

1 Notice that the above ERE parameters al, rl, Pl differ from the
definitions used by others, Refs. [55, 56].
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where D(l)(p0,p) is the dressed dimer propagator. Com-
paring Eqs.(32) and (31) one gets

|Cb|2 =
γ2l

πµ2l−2 [Γ(l+1 +ηb)]
2

× 2π

µ

{︃
d

dE

[︂
D(l)(E, 0)

]︂−1 ⃓⃓⃓
E=−B

}︃−1
=

γ2l

πµ2l−2 [Γ(l+1 +ηb)]
2 2π

µ
Z . (33)

This relation between the ANC Cb and the wave func-
tion renormalization constant Z is valid for any partial
wave, up to a convention-dependent multiplicative fac-
tor. In EFT, different ways of defining the interaction
couplings lead to different multiplicative factors for the
dressed dimer propagator and, consequently, Z. This af-
fects the relation between the latter and the scattering
amplitude without any physical implication [46]. Here
we follow the same convention used in Refs. [27, 46].

E. Bayesian Analysis

In this subsection we list the relations essential for
drawing Bayesian inferences. If we represent the param-
eters of the theory by the vector θ and the data set by
D, then the probability for the parameters to be true
given the data and some proposition H is the posterior
probability distribution

P (θ|D,H) =
P (D|θ, H)P (θ|H)

P (D|H)
, (34)

where P (θ|H) is the prior distribution of the parameters
based on assumptions made in the proposition H. EFT
power counting estimates about the sizes of couplings
and parameters enter in the construction of P (θ|H). The
likelihood function is defined as

P (D|θ, H) =

N∏︂
i=1

1

σi
√
2π

exp

{︃
− [yi − µi(θ)]

2

2σ2
i

}︃

= exp

{︄
−

N∑︂
i=1

[yi − µi(θ)]
2

2σ2
i

}︄
N∏︂
i=1

1

σi
√
2π

≡ e−χ
2/2

N∏︂
i=1

1

σi
√
2π

, (35)

if the data set D has N results yi with measurement
errors σi. µi(θ) are the theory predictions. The likeli-
hood is maximized by minimizing the χ2. The evidence
P (D|H) is obtained from the marginalization of the like-
lihood over the parameters as

P (D|H) =

∫︂ ∏︂
i

dθiP (D|θ, H)P (θ|H) , (36)

which ensures that we have a normalized posterior dis-
tribution:

∫︁ ∏︁
i dθiP (θ|D,H) = 1.

Parameter estimation does not require calculation of
the evidence, an overall normalization to the posterior,
in Eq. (34). Markov Chain Monte Carlo (MCMC) algo-
rithms such as Metropolis-Hastings can be used to gen-
erate P (D|θ, H)P (θ|H). Given the posterior we can es-
timate functions of the parameters f(p;θ) as

⟨f(p)⟩ =
∫︂ ∏︂

i

dθif(p;θ)P (θ|D,H) . (37)

Similarly the posterior of a single parameter θi is

P (θi|D,H) =

∫︂ ∏︂
j ̸=i

dθjP (θ|D,H) . (38)

The evidence is needed when we want to compare the-
ories. Suppose we have two theories MA and MB , then
we can quantify the relative support for the theories by
the data as

P (MA|D,H)

P (MB |D,H)
=
P (D|MA, H)

P (D|MB , H)
× P (MA|H)

P (MB |H)
, (39)

where the first factor on the right hand side of the equa-
tion is the ratio of evidences of the corresponding theories
and the second factor is the prior odds. We set the prior
odds to one if the theories we compare are expected to
reproduce the data with similar accuracy with the given
prior knowledge. In our analysis the two EFTs we com-
pare have the exact same momentum dependence up to
NLO, and at NNLO they receive similar sized corrections
so we expect the prior odds to be 1. This is in contrast
to the comparison done in Ref. [35] where the two the-
ories had different accuracy at LO and the higher order
corrections moved the EFTs closer to data at different
rates. The current theory comparison is simpler.
We calculate the evidences using Nested Sampling

(NS) [58]. There are various implementations of NS, see
review article by Brewer [59]. We use MultiNest [60]
implemented in Python [61] and Diffusive Nested Sam-
pling [62] to compute the evidences which also generates
the posterior distribution for the parameters.
The 7Be(p, γ)8B calculation presented here is very sim-

ilar to the 7Li(n, γ)8Li one in Ref. [27] once the Coulomb
interactions are added using the formalism developed for
3He(α, γ)7Be [34]. There is one crucial difference between
the 7Li(n, γ)8Li and 7Be(p, γ)8B calculations. In the for-
mer, the energy of the excited 7Li⋆ core is smaller than
the binding energy of the 8Li ground state. This in prin-
ciple requires that the excited core be included explicitly
in the 7Li(n, γ)8Li calculation, though in practice the mo-
mentum dependence in EFTgs and EFT⋆ are the same
up to NNLO corrections. In the latter 7Be(p, γ)8B calcu-
lation, the energy of the excited 7Be⋆ core E⋆ ∼ 429 keV
is larger than the binding energy of the 8B ground state
B ∼ 136 keV. Thus at energies E ∼ B ≪ E⋆ below the
excitation of the 7Be⋆ core, one expects that EFTgs that
doesn’t include the 7Be⋆ core explicitly might be suffi-
cient. At higher energies E ≳ E⋆ such as to describe
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the resonance M1 capture, one should include the 7Be⋆

explicitly as the resonance energy is above the excita-
tion energy of 7Be⋆. We restate that the expressions for
7Be(p, γ)8B E1 transition in EFTgs and EFT⋆ have the
same momentum dependence up to NLO , though, the
latter contains explicit 7Be⋆ contributions in the ANCs
as shown later in Eq. 54. We use Bayesian evidences to
compare these two EFTs over a range of capture energies
to quantify the contribution of the excited 7Be⋆ core.

Having described the general framework for the
Coulomb and strong interaction, it is appropriate to dis-
cuss how our results differ from previous EFT calcula-
tions [21–24, 38] in the treatment of the short distance
physics. The differences in the EFT power countings
is discussed later in Sections V and VI. Here we briefly
explain the differences in the bound and scattering state
construction, independent of the power counting. A more
detailed comparison is given in Sect. 3.1 of Ref. [27].

Previous EFT calculations consider mixing in the 5P2,
3P2 and 3P ⋆

2 bound state p-wave channels. However,
this mixing is implemented using a single auxiliary dimer
field unlike the coupled channel construction presented
here. Once this single auxiliary dimer field is integrated
out of the theory, it generates proton-core interactions
that are not the most general set allowed by low en-
ergy symmetries. For example, the mixing in 3P2-

3P ⋆
2

can be expressed in terms of the couplings h(3P2) and

h(3P⋆
2 ) (using notation from Ref. [24]) of the elastic 3P2

and 3P ⋆
2 channels, respectively. Such modeling of short-

distance physics without any underlying symmetry is pre-
cisely what one would like to avoid in an EFT. Previous
EFT calculations describe the wave function renormal-
ization constant involving mixing between three separate
channels in terms of a single effective momenta r1. How-
ever, the amplitude mixing three channels would in gen-
eral contain 6 independent matrix elements (due to Her-
miticity) that would correspond to 6 scattering volumes
and 6 effective momenta at low energy. This would re-
quire 6 effective momenta to describe the wave function
renormalization constants. Further, the renormalization
condition in earlier calculations, for instance Eq. (46) of
Ref. [24], ignores mixing in the amplitudes allowed by the
interactions, such as factors of h(5P2)h(3P2) in the exter-
nal states from Table II of Ref. [24]. These mixing terms
would leave the wave function renormalization constants
RG scale dependent. In contrast, in the couple-channel
calculation we present, we mix only the 3P2 and 3P ⋆

2

bound state channels, and write the RG scale invariant
wave function renormalization constant using 3 effective
momenta. The formalism presented here allows for a
5P2-

3P2-
3P ⋆

2 coupled-channel calculation. However, as
discussed earlier, the rational for treating 5P2 as a sin-
gle channel at LO is physically motivated by the large
branching ratio of the S = 2 spin channel.

In the s-wave scattering state calculation, Zhang et al.
in their latest work [24] model the proton-core short dis-
tance interaction using a single dimer field. This makes
the 3S1-

3S⋆
1 coupling to be the geometric mean of the cou-

plings in the 3S1 and 3S⋆
1 channels i.e. scattering length

a11 becomes a function of a12 and a22 though there is no
underlying symmetry to expect such a result.

III. CAPTURE CALCULATION

(a1) (a2)

(a3)

FIG. 1. E1 capture without initial state strong interactions.
Double solid line represents a 7Be or 7Be⋆ core as appropri-
ate, single solid line a proton, wavy line a photon, and ⊗
represents the final 8B bound state. The gray rectangles rep-
resent Coulomb interactions between the charged particles.
The photons are minimally coupled to the charged particles.

(b1) (b2)

(b3)

FIG. 2. E1 capture with initial state strong interactions. The
dashed line with the gray blog represents initial state s-wave
strong and Coulomb interactions. The rest of the notation is
the same as in Fig. 1.

The E1 capture to the 8B ground state is given by the
diagrams in Figs. 1, 2. The excited 7Be⋆ core contributes
only in the spin S = 1 channel, and only in Fig. 2. The
S = 2 channel contribution in EFTgs and EFT⋆ has the
same expression.

The E1 squared amplitude for capture in the S = 2
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(c4)

1+

(d1)

1+

(c1)

1+

(c2)

1+

(c3)

1+

FIG. 3. M1 capture through the resonant 1+ state. The
dashed line with the gray blog represents p-wave interaction
in the 1+ resonance channel, • represents magnetic photon
coupling and ■ the two-body current. The rest of the notation
is the same as in Fig. 1.

channel can be written as

|M(5P2)
E1 |2 = (2j + 1)

(︃
Zcmp

M
− Zpmc

M

)︃2
64παM2

µ[︄ ⃓⃓⃓⃓
⃓X(p)− A0(a

(2)
0 , p)

C0(ηp)
[B(p, γ) + J0(−ip)]

⃓⃓⃓⃓
⃓
2

+ 2|Y (p)|2
]︄
2π

µ
Z(5P2) , (40)

where j = 2 and the s-wave contribution from Fig. 1 is
given by

X(p) = C0(ηp)+
2γ

3
Γ(2+kC/γ)

∫︂ ∞
0

d r rW− kC
γ , 32

(2γr)

× ∂

∂r

F0(ηp, pr)

pr
, (41)

whereas the d-wave contribution is

Y (p) =
2γ

3
Γ(2 + kC/γ)

∫︂ ∞
0

d r rW− kC
γ , 32

(2γr)

×
(︃
∂

∂r
+

3

r

)︃
F2(ηp, pr)

pr
. (42)

The regular Coulomb wave functions are

Fl(ηp, ρ) = Cl(ηp)2
−l−1(−i)l+1Miηp,l+1/2(i2ρ) , (43)

with conventionally defined Whittaker functionsMk,µ(z)
and Wk,µ(z). The initial state strong interactions in
Fig. 2 are given by the s-wave amplitude

A0(a
(2)
0 , p) =

2π

µ

[C0(ηp)]
2

− 1

a
(2)
0

− 2kCH(ηp)
, (44)

with the scattering length a
(2)
0 = −3.18+0.55

−0.50 fm [45]. The
loop contribution from (b1), (b2) in Fig. 2 is B(p, γ) and
the contribution from (b3) is J0(−ip). The linear combi-
nation B(p, γ) + J0(−ip) is finite, and it is presented in
Appendix C. The wave function renormalization constant
in the 5P2 channel is

2π

µ
Z(5P2) = − 2π

[︄
r
(5P2)
1 + i

k2C(k
2
C − γ2)

γ3
H ′
(︃
−ikC

γ

)︃

− 4kCH

(︃
−ikC

γ

)︃]︄−1
≈ − 2π

r
(5P2)
1 − 1.5538MeV

, (45)

where r
(5P2)
1 is the p-wave effective momentum in the 5P2

channel. In the above we expanded the ERE around the
binding momentum γ instead of p = 0 [34, 63]. In EFTgs,
the capture from initial 3S1 state to the 2+ ground state
is given by a similar expression as the above Eq. (40) with

the replacements a
(2)
0 → a

(1)
0 for the scattering length

in the 3S1 channel, and r
(5P2)
1 → r

(3P2)
1 for the effective

momentum in the 3P2 channel. The total E1 cross section
is

σE1(p) =
1

16πM2

k0
p

1

8

[︂
|a|2|M(5P2)|2

+(1− |a|2)|M(3P2)|2
]︂
, (46)

where k0 = (γ2 + p2)/(2µ) is the radiative photon
c.m. energy. Setting the Clebsch-Gordan coefficient
a = 1/

√
2 describes the 2+ 8B ground state as a p3/2

proton state [64].
The M1 capture cross section from Fig. 3 is given by

σM1(p) =
1

16πM2

k0
p

1

8
|b|2(2j + 1)

k2µ3

p2
8παeM

2

m2
p

|A1(p)|2

[C1(ηp)]2
2π

µ
Z(5P2)

µ2

432π4
|L22(p)|2 ,

L22(p) ≡
2π

µ

{︃
9π√
40

[︃
3gc + gp + 4µmp

(︃
Zc

m2
c

+
Zp

m2
p

)︃]︃
× C(p)

µ2
− β22

}︃
, (47)

where the divergence in the integral C(p) is regulated
by the two-body current coupling L22 ∼ −2πβ22/µ that
subtracts the divergent pieces up to an overall renormal-
ization constant β22 ∼ Λ. C(p) is the regulated C(p)
without the divergences, see Appendix C. The Clebsch-
Gordan coeeficient b =

√︁
5/6 corresponds to making the

1+ resonance a p1/2 proton state [64]. The M1 contri-
bution is peaked near the momentum p ∼ pR and we
expect the renormalized combination |L22(pR)| ∼ 1 from
the power counting.
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The 5P1 scattering amplitude is

A1(p) =
2π

µ

ei2σ1

p cot δ1 − ip

=
2π

µ
9C2

1 (ηp)e
i2σ1p2

[︄
− 1

a
(5P1)
1

+
1

2
r
(5P1)
1 p2

−2kc(k
2
c + p2)H

(︃
kc
p

)︃]︃−1
, (48)

where the scattering volume a
(5P1)
1 and effective momen-

tum r
(5P1)
1 are tuned to reproduce the 1+ resonance en-

ergy ER = p2R/(2µ) = 0.630(3)MeV and width ΓR =
0.0357(6)MeV [40] similar to the M1 contribution in
7Li(n, γ)8Li [39]. Near the resonance momentum pR, the
p-wave phase shift δ1(p) in the incoming channel increases
rapidly through π/2 from below. Thus we impose the
conditions [39]

cot δ1|E=Er
= 0 ,

d cot δ1
dE

|E=Er ≡ − 2

Γr
< 0 , (49)

which produce a Breit-Wigner form near the resonance

cot δ1(E) ≈ cot δ1(Er) + (E − Er) cot
′ δ1(Er)

= − 2

Γr
(E − Er) ,

2π

µ

ei2σ1

p cot δ1 − ip
≈ 2π

µpr

ei2σ1(−Γr/2)

E − Er + iΓr/2
. (50)

Imposing the conditions in Eq. (49) on the ERE in

Eq. (48) gives a
(5P1)
1 = −108.13 fm3, r

(5P1)
1 = −111.23

MeV for the central values.
The S-factor in EFTgs is then

S17(p) =
p2

2µ
e2πηp [σE1(p) + σM1(p)] . (51)

In EFT⋆, the E1 capture in the S = 2 channel is the
same as Eq. (40). In the S = 1 channel, the squared
amplitude is slightly modified to

|M(3P2)
E1,⋆ |2 = (2j + 1)

(︃
Zcmp

M
− Zpmc

M

)︃2
64παM2

µ

×
[︂
|A(3P2)

⋆ (p)|2 + 2|Y (p)|2
]︂ 2π
µ
Z(3P2) , (52)

where

A(3P2)
⋆ (p) = X(p)− A(11)(p)

C0(ηp)
[B(p, γ) + J0(−ip)]

−A(12)(p)

C0(ηp)
[B(p⋆, γ⋆) + J0(−ip⋆)]

√
Z(3P⋆

2 )

√
Z(3P2)

. (53)

The M1 cross section at this order of the calculation is
given by Eq. (47). Thus the total c.m. cross section and

S-factor in EFT⋆ are:

σE1,⋆(p) =
1

16πM2

k0
p

1

8

[︂
|a|2|M(5P2)

E1 |2

+(1− |a|2)|M(3P2)
E1,⋆ |2

]︂
,

S17,⋆(p) =
p2

2µ
e2πηp [σE1,⋆(p) + σM1(p)] , (54)

with |a|2 = 1/2.

IV. EFT POWER COUNTING

Filippone
Hammache
Hammache B
Baby

Junghans BE1

Junghans BE3

Strieder

EFTgs ANC All

EFTgs no d-wave

EFTgs ANC diagram-A

0

20

40

60

80

100

120

S
17
(e
V
b
)

10 20 30 40 50
p (MeV)

FIG. 4. S-factor for 7Be(p, γ)8B in EFTgs. The grid lines
are at the 7Be⋆ inelasticity γ∆ = 26.5 MeV and the 1+ res-
onance momentum pR = 32.2 MeV. The dot-dashed (black)
curve includes diagrams with only s-wave contributions and
no initial state strong interactions, the short-dashed (blue)
curve includes all diagrams except d-wave contributions, and
the long-dashed (red) curve includes full contributions from
all diagrams. Results were fitted to ANCs as explained in the
text.

At low energy, proton-7Be scattering in the entrance
channel in 7Be(p, γ)8B is peripheral due to the Coulomb
repulsion. It is expected that the capture to the 8B
ground state can still proceed without initial-state short-
range strong interaction as it is a very loosely bound
state with the bound-state wave function extending over
a large spatial distance ∼ 1/γ. This is borne out by a
direct calculation, in EFTgs, from Eq. (46) at threshold
(numerically evaluated at c.m. energy E0 = 50 eV in this
work)

S17/C
2
1,ζ ≈ 35.6(1− a0 0.002 66 fm

−1

+ 0.0657 + . . . ) eV b fm , (55)

in either channel ζ = 5P2,
3P2. The first term is the

s-wave contribution from Fig. 1 that contains no initial
state strong interaction, the second term is the leading
contribution from Fig. 2 with s-wave scattering length
a0 (written in fm units above), and the last term is the



11

d-wave contribution from Fig. 1. These numbers are con-
sistent with the values in Ref. [42] except our strong inter-
action contribution (second term) is a factor of 2 larger
which comes from squaring the amplitude and keeping
the linear a0 term. The relative contributions of the
three terms above agree with the result from Zhang et
al. [24] though they disagree with the overall value a lit-
tle. The d-wave contribution in Eq. (55) is consistent
with a NNLO contribution, and increases in size at higher
momentum, as we show, to be counted as NLO.

In Fig. 4 we use the EFTgs expressions for E1 capture
from Eq. (51) without assuming any specific power count-
ing. The M1 capture contributes only in a narrow region
that will be added later. The E1 cross section depends

on s-wave scattering lengths a
(2)
0 = −3.18+0.55

−0.50 fm, a
(1)
0 =

17.34+1.11
−1.33 fm [45], and p-wave effective momenta r

(5P2)
1 ,

r
(3P2)
1 that we constrain from the measured ANCs [43, 65]
using the relation in Eqs. (33), (45) along with the nor-
malization of the sates defined in Eqs. (46), (55). We

use Z(5P2) = 19.6(8) [r
(5P2)
1 = −40.3(17)MeV], Z(3P2) =

4.6(4) [r
(3P2)
1 = −177(16)MeV]. The dot-dashed curve

is the s-wave contribution from Fig. 1. Adding the ini-
tial state interactions, short-dashed curve, from Fig. 2
has a small effect. However, the d-wave contribution
shown by the long-dashed curve is more substantial. A
natural-sized s-wave effective range r0 ∼ 1/Λ in either
spin channels has a negligible effect. From Eq. (55), we
can estimate the branching ratio for capture to the 5P2

channel to be about 80% that is mostly determined by

Z(5P2)/Z(3P2) ∼ 4. We develop a power counting based
on these observations.

Filippone
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Baby
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Strieder

EFTgs ANC LO
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EFTgs ANC NNLO
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FIG. 5. S-factor for 7Be(p, γ)8B in EFTgs. The grid lines
are explained in Fig. 4. The LO, NLO, and NNLO curves
are identified in the legends. Results were fitted to ANCs in
perturbation as explained in the text.

The initial state strong interactions from Fig. 2 scale
as 2πa0(B + J0)/µ. For p ≲ Q, the linear combina-
tion 2π(B + J0)/µ is of order Q2/Λ [34], instead of
the naive expectation 2π(B + J0)/µ ∼ Q that only
holds true in the absence of Coulomb interactions [27].

In the S = 2 channel, the s-wave scattering length

is natural sized |a(2)0 | ∼ 3 fm ∼ 1/Λ making initial

state strong interactions 2πa
(2)
0 (B + J0)/µ ∼ Q2/Λ2 a

NNLO effect. The larger scattering length in the S = 1

channel a
(1)
0 ∼ 17 fm ∼ 1/Q makes this contribution

2πa
(2)
0 (B + J0)/µ ∼ Q/Λ. However, the S = 1 channel

branching ratio is around 0.2. Thus, all contributions
in this channel are one order higher in the perturbation
making initial state strong interactions a NNLO contri-
bution in this spin S = 1 channel as well [34].
The contribution of the s-wave effective range r0 in

Eq. (44) is also a subleading effect. The effective range
contribution r0p

2/2 ∼ Q2/Λ is smaller than the scat-
tering length 1/a0 in either spin channels. Moreover
we find, similar to α-α, 3He(α, γ)7Be, 3H(α, γ)7Li [34,
35, 66], cancellations in the linear combination r0p

2/2−
2kCH(ηp) suppressing effective range contributions fur-
ther [66]. A general analysis of effective range contribu-
tions in shallow systems with Coulomb interactions was
done in Refs. [67, 68]. In our fits we drop the 2kCH(ηp)
term in A0 of Eq. (44), and similar contributions to
A11, A12 in Eqs. (12), (13) that would contribute be-
yond NNLO.
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FIG. 6. S-factor for 7Be(p, γ)8B in EFT⋆. The plots used

r
(1)
0 = −30 fm and a22 = −30 fm that were varied by 95%
and had negligible effect on the final result. A positive a22 =
30 fm also had a negligible effect. The curves follow the same
notation as in Fig. 4.

We propose the following power counting in EFTgs:
The s-wave contribution in the S = 2 channel without
initial state strong interaction from Fig. 1 constitutes the
LO contribution. At NLO, we include the d-wave con-
tribution in S = 2 and the s-wave capture in S = 1
without initial state strong interaction from Fig. 1. Con-
tributions from initial state strong interactions in both
the spin S = 1, 2 channels from Fig. 2 enter at NNLO.
The d-wave contribution in S = 1 channel contributes at
NNLO as well.

The perturbative calculation is shown in Fig. 5. In this
calculation we use the zed-parametrization [63] where the
exact wave function renormalization is produced at NLO.
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This is achieved by defining the corresponding p-wave
ERE around the bound-state pole instead of at momen-
tum p = 0 [39, 63]. The 20% jump from LO to NLO even
at threshold is due to the inclusion of S = 1 channel at
NLO which is absent entirely at LO in the power count-
ing. We get for the S-factor at threshold 13.40(1)(4.02)
eV b, 17.4(6)(1.7) eV b, and 17.6(7)(5) eV b at LO, NLO,
and NNLO, respectively, where the first set of errors are
from the input and the second set are the theory errors
(with Q/Λ ∼ 0.3). The NNLO result compares well with
18.0(19) eV b evaluated in Ref. [43] using the same ANCs.

The nearly identical NLO and NNLO EFT results
above can be understood from Eq. (55). In the S = 2
channel, the s-wave strong interaction contribution for

a natural sized a
(2)
0 is numerically smaller than the as-

sumed NNLO estimate. The S = 1 channel initial
state s-wave strong interaction and the d-wave contri-
bution enters at NNLO. However, the large scatter-

ing length in this channel a
(1)
0 ∼ 17 fm competes and

nearly cancels the d-wave contribution in Eq. (55) with

−a(1)0 0.002 66 fm−1 + 0.0657 ≈ 0.02 relative to the lead-
ing contribution in this channel which is already a NLO
term. Thus these contributions are about 0.7% of the
LO piece coming from the S = 2 channel. This behavior
persists at higher momenta as well.

In Fig. 6 we plot the result for 7Be(p, γ)8B in EFT⋆

from Eq. (54) without the resonant M1 contribution.
The calculated ANC value C2

1,3P⋆
2
= 0.1215(36) fm−1 [24]

was used to determine the wave function normalization
Z(3P⋆

2 ) = 7.72(110). We use Eq. (15) to substitute a

a12 > 0 by r
(1)
0 for convenience here, though a a12 < 0

would work as well. We estimate r
(1)
0 ∼ 1/Q ∼ a22 over a

large range to generate the curves without assuming any
specific power counting. We get results similar to those
in Fig. 4, and we interpret them in a similar manner.

The proposed power counting in EFT⋆ is: The s-wave
contribution in S = 2 channel without initial state strong
interaction from Fig. 1 constitutes the LO contribution.
At NLO, we include the d-wave contribution in S = 2 and
the s-wave capture in S = 1 without initial state strong
interaction from Fig. 1. Contributions from initial s-wave
strong interactions in both the spin S = 1, 2 channels
from Fig. 2 and pure Coulomb initial d-wave in S = 1
enter at NNLO. At this order, EFT⋆ has three additional
parameters: the wave function renormalization constant

Z(3P⋆
2 ) and two scattering lengths |a22| ∼ |a12| ∼ 1/Q.

In addition, when we apply the EFT⋆ at momenta above
the 1+ resonance 8B state, we include a two-body current
coupling for the M1 transition.

V. RESULTS AND ANALYSIS

In this section, we estimate the S-factor at threshold
S17(0) by constraining the EFT parameters from cap-
ture data. We perform the analysis using data at en-
ergy E ≤ 500 keV (momentum p ≤ 28.6 MeV) that is

below the resonance energy ER = 630 keV (momentum
pR = 32.2MeV). In this low-energy region, named region
I, both EFTgs and EFT⋆ are applicable and the corre-
sponding fits will be refered to as EFTgs I and EFT⋆ I,
respectively. We also perform the analysis using capture
data up to energy E ≤ 1 MeV (momentum p ≤ 40.5
MeV) where we include the M1 contribution to describe
the resonance contribution. We call this larger energy
(momentum) region as region II. In region II, only EFT⋆

is applicable that we refer to as EFT⋆ II fits. However,
we find the differences between EFTgs and EFT⋆ thresh-
old S-factors to be very small as the differences are a
NNLO effect. This agrees with previous work [69, 70]
that also found the excited core contributions to be small.
The data, especially at higher momentum, though, favors
EFT⋆ in the evidence calculation.

In EFTgs, the fit parameters are r
(5P2)
1 , r

(3P2)
1 in region

I. In EFT⋆, the fit parameters are r
(5P2)
1 , Z(3P2), Z(3P⋆

2 ),
a22, a12 in region I, and also β22 in region II for the
M1 resonance capture. In the analysis we use data from
Filippone et al. [28], Hammache et al. [29, 30], Baby et
al. [31], Junghans et al. [32], and Strieder et al. [33].
We draw Bayesian inferences for the S-factor using the
capture data.

An advantage of the Bayesian method over χ2 fits is
that it allows a natural framework to impose EFT power
counting estimates of the parameters in the data fitting
procedure. Details of the method we use are in Ref. [35].
In the review by Adelberger et al. [3], the χ2 fit of the
theory curve by Descouvemont [71] to data necessitated
inflating the measurement errors to get a smaller reduced
χ2 value with a significant p-value because the global
data sets from different experiments were not compati-
ble. In the Bayesian framework, the overall normalization
of data can be estimated using the published common-
mode-error in a straightforward manner [21, 23, 24, 35].

In the Bayesian fits, we multiply the data from the
same measurements by a scale factor s that is drawn
from a prior distributed normally with a mean ⟨s⟩ = 1
and standard deviation s.d., following the treatment of
systematic errors in Chapter 6 of Ref. [72]. The s.d.s
are set to the published common-mode-errors, see also
Refs. [16, 23, 24, 73]. We use for data from Filippone
et al. [28] s.d. = 11.9/100, Hammache et al. [29] s.d. =
9.0/100, Hammache et al. [30] s.d. = 5.0/100, Baby et
al. [31] s.d. = 2.2/100, Junghans et al. [32] s.d. = 2.7/100
for set BE1 and s.d. = 2.3/100 for set BE3, Strieder et
al. [33] s.d. = 8.3/100, and we label the scaling factors
si for i = 1, 2, . . . , 7 in that order, respectively. These
values agree with Cyburt et al. in Ref. [16, 73] except
for the Hammache et al. [29] data set where they use a
12.2% error in the analysis. Zhang et al. [23] use simi-
lar errors in their Bayesian analysis except they do not
assign common-mode-error to the Hammache et al. [29]
data set, and do not use the Strieder et al. [33] data.
The particular value of s.d. that we use in the prior dis-
tribution does not affect the quality of the fit as long
as it is comparable with the estimates from the exper-
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iments. We get the same threshold S-factor within the
errors from the fits.

We draw the effective momentum r
(5P2)
1 from an uni-

form prior U(−100MeV, 1.5MeV) consistent with the

power counting estimate and the requirement Z(5P2) ≥ 0.
We know from the 7Li(n, γ)8Li calculation that there is a
strong correlation between the wave function renormal-
ization constants in the spin S = 2 and S = 1 chan-
nels [27]. For example, in the EFT without explicit
7Li⋆ core, a single parameter family of effective momenta

r
(5P2)
1 , r

(3P2)
1 describes the capture cross section. We find

a similar behavior in 7Be(p, γ)8B where the capture data
is not sensitive to the individual p-wave effective mo-
menta and the corresponding wave function renormal-
ization constants. Therefore we fix the wave function
renormalization constants in the spin S = 1 channel by
drawing them from a normal distribution as determined
by the mean experimental [65] and calculated ANCs [24]
(and their errors). Alternatively, constraining the wave
function renormalization constants from the known ANC
ratios, say taking Z(3P2) = Z(5P2)C2

1,3P2
/C2

1,5P2
, gives

similar fits. Note that we impose these constraints so that
the S = 1, 2 spin channels have the hierarchy assumed in
the construction of the EFT power counting. The theory
expressions themselves can fit the capture data just as
well without these EFT assumptions but then one can-
not reliably apply the power counting estimates.
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FIG. 7. S-factor for 7Be(p, γ)8B in EFTgs fitted in the mo-
mentum region I, p ≤ 28.6 MeV (E ≤ 500 keV). The LO,
NLO, and NNLO curves are identified in the legends. At
LO and NLO, EFT I and EFT⋆ I have the same momentum
dependence. The inset shows the posterior distribution for
S17(0) in eV b units at NNLO.

In EFT⋆ we also fit a22 ∼ U(−50 fm, 50 fm) and
a12 ∼ U(−50 fm, 50 fm) at NNLO. For the M1 capture
we choose the prior β22 ∼ U(−500MeV, 0). Near the
narrow resonance momentum p ∼ pR, L22(p) in Eq. (47)
is nearly constant, and both positive and negative val-
ues for β22 are compatible. We find some evidence from
the capture data for a negative β22 that goes into our
prior selection but β22 < 0 is not crucial for the analy-
sis. The range of the priors for the EFT couplings were

chosen wide enough to accommodate the power count-

ing estimates r
(5P2)
1 ∼ Λ, a22 ∼ 1/Q, a11 ∼ 1/Q and

β22 ∼ Λ. We notice that if one restricts |r(1)0 | ∼ 1/Q,
then a22, a12 values are further constrained. In our fits,
we let the capture data determine a22, a12 without this
constraint to explore the entire parameter space (given
by the uniform priors). This doesn’t violate the power
counting estimate. However, in future one could impose

the additional EFT assumption |r(1)0 | ∼ 1/Q to derive
more restrictive priors for a22, a12.

We note that the normally distributed priors for the
scale factors sis, chosen for convenience, are technically
incorrect in that they allow for negative values for pos-
itive parameters. However, the cumulative prior proba-
bility for negative values is much smaller than a percent.
For example, a 30% s.d. translates to a prior cumulative
probability of about 0.04% for a negative value of a posi-
tive parameter. A posteriori the fits give expected values
for the parameters and never pick the unphysical nega-
tive values in Table II. We also verified the robustness of
our fits by using a prior for r

(5P2)
1 normally distributed

around the prediction from ANC [43, 65] with a 30% er-
ror. The sensitivity of the fits on the priors is found to
be insignificant compared to the measurement and theory
errors.

The results from the fits to data in region I in EFTgs

are shown in Fig. 7. The curves show the mean values
from the posterior distribution. The inset (also in Figs. 8,
9) shows the posterior distribution for the S-factor at
threshold, and indicates the median and the interval con-
taining 68% of the posterior. The solid (blue) curve is a
Gaussian fitted to the mean and s.d. of the distribution.
We use Eq. (51) without the M1 contribution and present
the results up to NNLO. This calculation has a single

fitting parameter r
(5P2)
1 (or Z(5P2)) at LO, and an addi-

tional parameter Z(3P2) at NLO and NNLO, as shown in
Table I. We show the median and the interval that con-
tains 68% of the posterior distribution of the parameters.
The fitted parameter has a size consistent with the power

counting. The p-wave effective momentum r
(5P2)
1 has a

posterior that is normally distributed which is reflected in
the symmetric error bands. It shows about 30% variation
in going from LO to NLO. We expect this order of varia-
tion even in the low momentum region I fit. The EFTgs

result has a non-zero NLO contribution at threshold from
the S = 1 spin channel. Thus when one goes from LO to

NLO fits to the same data, the r
(5P2)
1 has to be adjusted

for this NLO contribution. The NNLO contribution is
small as discussed earlier and so the variation from NLO
to NNLO parameters is small. The Z(5P2) value is larger
than the ANC estimate to match the capture data, as
expected from Fig. 5. We find that the posteriors of the
scaling factors sis are normally distributed and just show
their mean values and s.d.s in Table II. Their sizes are as
expected given the common-mode-error values. The data
sets that have higher S-factor values are scaled down and
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TABLE I. The median and the interval containing 68% of the posterior of the EFT parameters. For comparison, the expected

sizes of parameters from the ANCs are: Z(5P2) = 19.6(8), Z(3P2) = 4.6(4), Z(3P⋆
2 ) = 7.7(11). L22 is evaluated at p = pR.

Theory Z(5P2) Z(3P2) Z(3P⋆
2 ) a22(fm) a12(fm) |L22|

EFTgs/EFT⋆ I LO 35.8+0.5
−0.5 — — — — —

EFTgs/EFT⋆ I NLO 24.6+0.5
−0.5 4.6+0.4

−0.4 — — — —
EFTgs I NNLO 23.8+0.4

−0.4 4.7+0.4
−0.4 — — — —

EFT⋆ I NNLO 24.2+0.7
−0.7 4.6+0.4

−0.4 7.6+1.1
−1 −2+16

−15 23+19
−60 —

EFT⋆ II LO 36.4+0.4
−0.4 — — — — 2.45+0.02

−0.02

EFT⋆ II NLO 22.4+0.5
−0.5 6.1+0.5

−0.5 — — — 3.08+0.03
−0.04

EFT⋆ II NNLO 26+0.5
−0.5 4.6+0.4

−0.4 7.7+1.2
−1.1 7+29

−44 −8+48
−32 2.94+0.03

−0.03

the ones that have lower S-factor values are scaled up in
the fits.

The results for EFT⋆ in region I are shown in Fig. 8.
The curves show the mean values from the posterior dis-
tribution of the S-factor. We use Eq. (54), again without
the M1 contribution. The momentum dependence in this
theory is the same as in EFTgs up to NLO. At NNLO,
initial state strong interactions in the s-wave necessitate

fitting parameters a22, a12. We also fit Z(3P⋆
2 ) due to

the mixing with the 3P ⋆
2 channel at this order in the ex-

pansion. As discussed earlier, initial state s-wave strong
interactions are small and as a result a22, a12 are not
well constrained by capture data, Table I. However, it
also implies that these uncertainties have small effect on
the S-factor at threshold. The scattering length a22 is
consistent with zero with large errors and the posterior
for a12 is bi-modal, however, the threshold S17(0) calcu-
lated from marginalization over all the fit parameters is
normally distributed as shown in the inset in Fig. 8.
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FIG. 8. S-factor for 7Be(p, γ)8B in EFT⋆. Notation is the
same as in Fig. 7.

The EFTgs I and EFT⋆ I fits give very similar results.
If we compare the evidences for the two fits in region I at
NNLO, we get [61] ln[P (EFT|D,H)/P (EFT⋆|D,H)] ≈
0.7(3) that slightly favors EFTgs I with 2 parameters
over EFT⋆ I with 5 parameters. However, the non-zero
evidence is within the expected systematic error when
comparing evidence calculations by different NS meth-

ods [35, 61, 62].
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FIG. 9. S-factor for 7Be(p, γ)8B in EFT⋆ fitted in the mo-
mentum region II, p ≤ 40.5 MeV. Notation is analogous to
the one in Fig. 7. The bottom panel shows scaled data which
is to be interpreted carefully as explained in the text.

Fig. 9 shows our fits, mean values of the S-factor poste-
rior, in region II of EFT⋆ expression in Eq. (54) including

the M1 contribution. We fit r
(5P2)
1 , Z(3P2), Z(3P⋆

2 ), a22,
a12 and β22 to capture data. The fitted values in Table I
agree with the power counting estimates. As in region
I fits of EFT⋆, the posterior for a12 is bi-modal. There
is a correlation with a22 whose posterior also shows a
bi-modal distribution. Each modes are consistent with
|a12| ∼ |a22| ∼ 1/Q but the capture data is not suffi-
cient to determine these parameters more precisely. The
marginalized S17(0) is insensitive to this as seen in the
posterior in the inset of Fig. 9. The curves are generated
from the posterior of the fits instead of just the central
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TABLE II. Mean and standard deviation of the posterior of the scaling factors si for the 7 data sets: Filippone [28], Ham-
mache [29], Hammache [30], Junghans BE1 [32], Junghans BE3 [32, 40] and Strieder [33], respectively.

Theory s1 s2 s3 s4 s5 s6 s7
EFTgs/EFT⋆ I LO 1.03(3) 1.09(6) 1.04(3) 1.0(2) 0.94(1) 0.98(1) 1.14(3)
EFTgs/EFT⋆ I NLO 1.06(3) 1.05(6) 1.07(3) 1.01(2) 0.95(1) 0.97(1) 1.18(3)
EFTgs I NNLO 1.06(3) 1.04(6) 1.07(3) 1.01(2) 0.95(1) 0.97(1) 1.18(3)
EFT⋆ I NNLO 1.05(3) 1.05(6) 1.07(3) 1.01(2) 0.95(1) 0.97(1) 1.18(3)
EFT⋆ II LO 1.01(2) 1.10(6) 1.05(3) 0.94(1) 0.94(1) 0.96(1) 1.10(2)
EFT⋆ II NLO 0.99(2) 1.01(6) 1.06(3) 0.99(1) 0.92(1) 0.93(1) 1.13(2)
EFT⋆ II NNLO 1.03(2) 1.05(6) 1.08(3) 0.99(1) 0.95(1) 0.96(1) 1.15(2)

values. However, to give a rough estimate, in the bottom
panel of the figure, we present an “artist’s” illustration of
the fit where we scaled the data by the values shown in
Table II, and added the errors from fits to the measure-
ment errors in quadrature. It gives a sense of what the
data sets would look like if they were scaled according to
the respective scaling factors sis.

In Fig. 10, we compare the EFT⋆ II fit to the predic-
tions from Descouvemont using the Minnesota nuclear
interaction [71] that was used in the analysis in Solar
II [3]. We scaled Descouvemont’s numbers by 0.859 to
match the EFT result at threshold. We also compare
our resonance M1 contribution to a R-matrix calculation
using the parameters used by Junghans et al. [40]. The
R-matrix curve was used in one of the Solar II analy-
ses [3]. The errors from the fits in the EFT results are
displayed. These comparisons show that the EFT results
have reasonable agreement with known results.

The S-factor at threshold for the various EFT fits are
shown in Table III. We also list the first two energy
derivatives calculated numerically. These values are as
expected due to the peripheral nature of the capture reac-
tion, Eq. (55). The NLO result contains the s-wave cap-
ture without strong interaction in either channel and d-
wave capture from S = 2 channel. As a consequence the
derivative ratio S′12(0)/S17(0) is close to the one expected
from Eq. (55) expressed by Baye [42]. The same holds
for S′′17(0)/S17(0). NNLO brings in short range interac-
tions in s-waves. However, as discussed earlier in Sec. IV,
NNLO and NLO results are expected to be similar. A
direct calculation (using EFTgs I NNLO parameters)
where we do not include any initial state strong inter-
action in EFT gives: S′17(0)/S17(0) = −1.79(3)MeV−1,
S′′17(0)/S17(0) = 31.9(6)MeV−1 in close agreement with
results with initial state strong interaction contributions
in Table III. Though we disagree with the treatment of
the short range interaction in Ref. [23] that goes beyond
mere power counting arguments about how the perturba-
tion should be organized—when they fit their form that
has at least 5 more parameters than ours, say at NLO,
to the same low energy data set it gives the same result
as ours which is mostly Coulomb capture. It is not un-
reasonable since we fit to the same data. However, we
speculate it is also indicative of the peripheral nature of
the capture process. From our power counting perspec-
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FIG. 10. S-factor for 7Be(p, γ)8B from EFT⋆ II fits at NNLO.
The top panel compares the EFT result with numbers from
Descouvemont [71] scaled by a factor of 0.859. The dot-
dashed (black) curve is the EFT E1 contribution and the solid
(red) curve is the total EFT E1+M1 contribution at NNLO.
The bottom panel compares the EFT M1 numbers with the
R-matrix calculation from Junghans et al. [40].

tive, short range interaction even if put incorrectly, are
NNLO or higher effect. Thus when these short range in-
teraction couplings are confronted with capture data in
a parameter fit, these couplings take values such that the
dominant contribution is the one from the s- and d-wave
Coulomb capture without initial state strong interaction.

In Fig. 11, we see a quadratic approximation using the
first two energy derivatives gives an accurate description
of the S-factor near the Gamow peak at E ∼ 20 keV. The
first derivative values in Table III are comparable to the
ones from Solar II [3]. Our second derivatives are about a
factor of 3 larger. However, we checked that reducing the
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TABLE III. S17 and its first two energy derivatives at E0 = 50× 10−3 keV. The first set of errors are from the fits. The second
set is the estimated LO 30%, NLO 10% and NNLO 3% EFT errors, respectively, from higher order corrections.

Theory S17 (eV b) S′
17/S17 (MeV−1) S′′

17/S17 (MeV−2)
EFTgs/EFT⋆ I LO 24.4(0.3)(7.3) −2.44(0.05)(0.73) 35.8(0.7)(10.8)
EFTgs/EFT⋆ I NLO 21.1(0.3)(2.1) −1.87(0.04)(0.19) 32.4(0.6)(3.2)
EFTgs I NNLO 20.7(0.3)(0.6) −1.79(0.04)(0.05) 31.9(0.6)(1)
EFT⋆ I NNLO 20.9(0.4)(0.6) −1.82(0.08)(0.05) 31.9(0.8)(1)
EFT⋆ II LO 24.8(0.3)(7.4) −2.44(0.04)(0.73) 35.8(0.6)(10.8)
EFT⋆ II NLO 19.8(0.2)(2) −1.91(0.03)(0.19) 32.7(0.5)(3.3)
EFT⋆ II NNLO 21.2(0.3)(0.6) −1.89(0.04)(0.06) 31.9(0.6)(1)

Direct calculation
EFTgs I NNLO scaled 1.10

EFT* I NNLO scaled 1.05
EFT* II NNLO scaled 1.00

0.95

1.00

1.05

1.10

1.15

1.20

1.25

S
17
/S
17
(0
)

0 5 10 15 20 25 30
E (keV)

FIG. 11. Taylor series approximation of S17(E) up to the
quadratic term in E. The dot-dashed (black) curve is the
EFTgs I NNLO fit normalized to 1.1 times the threshold value,
the dashed (blue) curve is the EFT⋆ I NNLO fit normalized
to 1.05 times the threshold value, and the long-dashed (red)
curve is the EFT⋆ II NNLO fit normalized to the threshold
value. The data-points (red circles) are the numerical evalu-
ations scaled appropriately for the three fits.

second derivatives by a factor of 3 has very little effect
on the S17 value at the Gamow peak. We still get the
curves well within the errors in the numerical evaluations
indicated in Fig. 11. For example, reducing S′′17(0)/S17 ∼
30MeV−2 to around S′′17(0)/S17 ∼ 10MeV−2 changes the
relative contribution of the quadratic term to S-factor at
E = 30 keV from 1.4% to 0.5%, respectively. We tabulate
some S-factor values at various momenta (energies) in
Table IV of Appendix B.

We find the S17(0) posterior to be normally distributed
in the fits, and therefore we just show the mean and
s.d. of the distribution in Table III. The theory error
is estimated to be about 3% in the NNLO E1 capture
calculation and about 30% in the LO M1 capture cal-
culation. At threshold, M1 contribution is negligible
so we estimate theory errors as 3% from the E1 con-
tribution. The error associated with the s-wave scat-
tering lengths a

(1)
0 , a

(2)
0 can also be included in this

3% estimate using Eq. (55) as a guideline. Within the
context of Bayesian analysis, theory errors can be es-
timated [74, 75]. This can be addressed in the future.
There does not seem to be a disagreement with the con-
servative EFT error estimates in the systems studied so

far [74, 75] to invalidate the power counting. We ex-
pect similar results for 7Be(p, γ)8B system. The recom-
mended value from Solar II [3] is S17(0) = 20.8(16) eV b.
The 3 EFT evaluations of S17(0) at NNLO are consis-
tent with this value and with each other within the er-
rors. The current calculation has a smaller but compa-
rable theory error than the earlier evaluation [3]. The
S-factor has been measured near the Gamow peak at
Borexino [76] S17(19

+6
−5 keV) = 19.0(18) eV b with an ex-

trapolated value S17(0) = 19.5(19) eV b. The EFT cal-
culations are in agreement with this result as well. Av-
eraging the 3 fits, adding the fitting errors in quadrature
and then including the estimated NNLO theory error in
quadrature to that gives S17(0) = 21.0(7) eV b.

VI. CONCLUSIONS

We present a model independent calculation of the
7Be(p, γ)8B using halo EFT. The S-factor for this re-
action at threshold is estimated to a precision of 3%
from the combined experimental and theoretical error.
We present EFT calculations with and without the ex-
cited 7Be⋆ core. The dominant E1 contribution is sup-
plemented by the M1 capture through the 1+ resonance
state of 8B for fitting the theory expressions to capture
data over a wider energy region including the resonance.
The E1 capture was calculated in a theory without

(EFTgs) and also with (EFT⋆) the excited 7Be⋆ core
as an explicit degree of freedom. In the latter theory,
the 7Be⋆ core was explicitly accounted for in a coupled-
channel formalism [25–27]. Similar to the 7Li(n, γ)8Li
case [27], we show that both theories have the same mo-
mentum dependence up to NLO. They differ in the in-
terpretation of the final bound state in terms of short
distance physics, c.f. Eqs.(22)–(24). At NNLO, the two
theories differ in their momentum dependence due to ini-
tial state strong interactions. Our formal expressions for
E1 capture disagree with the ones from previous halo
EFT studies [21–24] in similar ways as shown for the
7Li(n, γ)8Li case [27]. The M1 contribution is negligible
except near the resonant energy of the 1+ excited state
of 8B. We include the LO M1 capture which is identi-
cal in both the theories, and has negligible effect on the
S-factor at threshold.



17

Based on the analysis of Sec. IV, with particular atten-
tion to the relatively small contribution of the channel
with spin S = 1 compared to S = 2, we establish the
following power counting. The LO contribution consists
of direct (i.e., without initial state strong interactions,
see for example, Fig. 1) E1 capture from the initial 5S2

state. NLO corrections come from direct E1 captures
from the initial d-wave in the spin S = 2 channel and ini-
tial s-wave in the spin S = 1 channel. Initial state strong
interactions enter only at NNLO in both channels—the
loop contribution from Fig. 2 due to rescattering scales as
a0Q

2/Λ with Coulomb interactions [34, 66–68], in con-
trast with the non-Coulomb case [27]. In the S = 1
spin channel, the unaturally large a0 ∼ 1/Q is compen-
sated by a Q/Λ suppression of this channel relative to
S = 2, which has a natural a0 ∼ 1/Λ. Another NNLO
correction comes from direct E1 capture from initial d-
wave in the spin S = 1 channel. That makes evident
the peripheral nature of this capture reaction. Two-
body current contribution in E1 capture is estimated
to scale as k0a0LE1 [34, 35] with photon momentum
k0 = (p2 + γ2)/(2µ) ∼ Q3/Λ2. In the S = 2 channel the

s-wave scattering length scales as a0 = a
(2)
0 ∼ 1/Λ. Thus

two-body current contributes at next-to-next-to-next-to-
leading order (N3LO) as Q3/Λ3. In the S = 1 channel,

the scattering length is larger a0 = a
(1)
0 ∼ 1/Q so the

two-body current contributes as Q2/Λ2. However, this
spin channel starts one order higher in perturbation thus
making the two-body current contribution also a N3LO
effect. The effective range corrections to s-wave initial
state strong interactions are also a N3LO effect. M1 cap-
ture is included at LO, and mostly contributes around the
1+ resonance energy ∼ 600 keV. Thus the estimated the-
ory error at threshold is dominated by the Q3/Λ3 ∼ 0.03
correction at N3LO from the E1 transition.

The present calculation has only 2 free parameters up
to NLO when fitted to capture data below 500 keV. At
NNLO, EFTgs still has 2 fit parameters and EFT⋆ has 5.
In contrast, previous EFT calculations [23, 24] need 7 (9
with unconstrained s-wave scattering lengths) at NLO
for capture below 500 keV. Their power counting were
set to include short-distance two-body currents and ef-
fective ranges for E1 transition, a scenario slightly diffi-
cult to conciliate with the extremely peripheral nature of
this reaction. We emphasize that our disagreement with
previous EFT calculations is not about just the power
counting but also about the construction of the strong
interaction operators themselves. We include an extra
two-body M1 current when analysing capture data above
500 keV to describe the 1+ resonance contribution.
We constrain our halo EFT parameters at each or-

der with “modern” direct capture data [28–33] using
Bayesian analysis. That allows us to take into account
common-mode-errors due to normalization of different
data sets in a straightforward way. The fits were sep-
arated into two different energy ranges. Region I com-
prises data with energies E ≤ 500 keV, thus, below the
1+ resonance energy ER = 630 keV. Both versions of

halo EFT, EFTgs and EFT⋆, were fitted in this region.
There is no strong evidence in the capture data to prefer
one theory over the other in this energy region. In other
words, both EFT⋆ and EFTgs describe data equally well
at E ≲ E⋆ though EFTgs does it with 3 fewer parame-
ters. Region II includes data with E ≤ 1MeV. In region
II, which includes energies above the threshold for the ex-
cited 7Be⋆ core, only EFT⋆ is fitted, with the addition of
the M1 capture, Eq. (47). Figs. 7-9 present our results for
S17 as function of the c.m. momentum, confronted with
data. The fitted EFT parameters summarized in Table I
are consistent with the ones fixed from the ANCs. More
importantly, the parameter estimates are consistent with
the power counting. Table III presents our results for
S17(0), with the corresponding NNLO posterior distri-
butions given by the insets in Figs. 7-9. S17 for a range
of momenta (energies) are included in Table IV of Ap-
pendix B.

The non-resonant EFT results agree with the evalua-
tion by Descouvemont [71] once it is scaled to match our
S-factor at threshold. The resonant contribution in the
EFT also agrees with the R-matrix evaluation by Jung-
hans et al. [40]. We provide the first two energy deriva-
tives of the S-factor for a low-energy Taylor series extrap-
olation to the Gamow peak energy. The NNLO EFT
result for S17(0) averaged over the three fits (EFTgs I,
EFT⋆ I, and EFT⋆ II) gives S17(0) = 21.0(7) eV b,
in agreement with the Solar II recommended value of
20.8(1.6) eV b [3] but with a much reduced theory error.
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Appendix A: Projectors

The following are from Ref. [27, 39] that we include for
reference. For each partial wave we construct the cor-
responding projection operators from the relative core-
nucleon velocity, the spin-1/2 Pauli matrices σi’s, and
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the following spin-1/2 to spin-3/2 transition matrices

S1 =
1√
6

(︃
−
√
3 0 1 0

0 −1 0
√
3

)︃
,

S2 = − i√
6

(︃√
3 0 1 0

0 1 0
√
3

)︃
,

S3 =
2√
6

(︃
0 1 0 0
0 0 1 0

)︃
, (A1)

which satisfy

SiS
†
j =

2

3
δij −

i

3
ϵijkσk ,

S†i Sj =
3

4
δij −

1

6

{︁
J
(3/2)
i , J

(3/2)
j

}︁
+
i

3
ϵijkJ

(3/2)
k , (A2)

where J
(3/2)
i ’s are the generators of the spin-3/2. We

construct the Clebsch-Gordan coefficient matrices

Fi = − i
√
3

2
σ2Si ,

Qij = − i√
8
σ2
(︁
σiSi + σjSi

)︁
, (A3)

for projections onto spin channels S = 1 and S = 2,
respectively. Then in coordinate space the relevant pro-
jectors that appear in the Lagrangians involving the 7Be
ground state in Eqs. (1), (3) are [20, 39]

P
(3S1)
i = Fj ,

P
(5S2)
ij = Qij ,

P
(3P1)
i =

√︃
3

2
Fx

(︄ →
∇
mc

−
←
∇
mp

)︄
y

ϵixy ,

P
(3P2)
ij =

√
3Fx

(︄ →
∇
mc

−
←
∇
mp

)︄
y

Rxyij ,

P
(5P1)
i =

√︃
9

5
Qix

(︄ →
∇
mc

−
←
∇
mp

)︄
x

,

P
(5P2)
ij =

1√
2
Qxy

(︄ →
∇
mc

−
←
∇
mp

)︄
z

Txyzij . (A4)

The tensors

Rijxy =
1

2

(︃
δixδjy + δiyδjx − 2

3
δijδxy

)︃
,

Txyzij =
1

2

(︂
ϵxziδyj + ϵxzjδyi + ϵyziδxj + ϵyzjδxi

)︂
, (A5)

ensures total angular momentum j = 2 is picked.

The new projectors to describe the interactions in

Eq. (3) with the excited 7Be⋆ core are

P
(3S⋆

1 )
i = − i√

2
σ2σi ,

P
(3P⋆

1 )
i = −i

√
3

2
σ2σx

(︄ →
∇
mc

−
←
∇
mp

)︄
y

ϵixy ,

P
(3P⋆

2 )
ij = −i

√︃
3

2
σ2σx

(︄ →
∇
mc

−
←
∇
mp

)︄
y

Rxyij . (A6)

For the external states we introduce the photon vector

(ε
(γ)
i ) and ground state 8B 2+ spin-2 (εij) polarizations,

obeying the following polarization sums [78, 79],

∑︂
pol.

ε
(γ)
i ε

(γ)∗
j = δij −

kikj
k2

,

∑︂
pol. ave.

εijε
∗
lm =

Rijlm

5
. (A7)

Appendix B: Numerical S-factor values

We tabulate the numerical values of the S-factor at
some momenta (and energies) in Table IV. Near the res-
onance momentum pR = 32.15 MeV where the M1 con-
tribution is noticeable, we provide a finer momenta mesh
points. For the EFT I NNLO and EFT⋆ I NNLO fits,
the S-factor only contains contribution from E1 tran-
sition and they are applicable below pR. For EFT⋆ II
NNLO fit, we list the E1 and M1 contributions sepa-
rately. We present the central values of different quan-
tities to 4-significant figures. The c.m. momentum p is
converted to c.m. energy E = p2/(2µ) with µ ≈ 820.49
MeV.

Appendix C: Coulomb Integrals

The combination B(p) + J0(p) that appear in Fig. 2
can be evaluated as

B(p) + J0(p) =
µ

3π

ip3 − γ3

p2 + γ2
+ kCB

′(p) + ∆B(p)

− kCµ

2π

[︃
2H(ηp) + 2γE − 5

3
+ ln 4π

]︃
. (C1)
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TABLE IV. S-factor as a function of c.m. momentum/energy from the NNLO Bayesian fits. Only the mean and the standard
deviation of the posterior distribution of S17 are shown. Theory errors are not included.

p (MeV) E (keV) EFTgs I E1 S17 (eV b) EFT⋆ I E1 S17 (eV b) EFT⋆ II E1 S17 (eV b) EFT⋆ II M1 S17 (eV b)
0.2864 0.05 20.72(27) 20.92(39) 21.21(27) 0.000 180 4(34)

2.3 3.224 20.60(27) 20.81(39) 21.09(27) 0.000 203 1(38)
4.3 11.27 20.34(27) 20.54(38) 20.81(27) 0.000 261 7(49)
6.3 24.19 19.99(26) 20.17(37) 20.43(26) 0.000 373 7(69)
8.3 41.98 19.61(26) 19.79(35) 20.01(25) 0.000 576 3(100)

10.3 64.65 19.28(25) 19.43(34) 19.63(25) 0.000 941(17)
12.3 92.19 19.01(25) 19.16(32) 19.31(24) 0.001 604(29)
14.3 124.6 18.86(25) 18.98(30) 19.09(24) 0.002 826(51)
16.3 161.9 18.81(24) 18.91(28) 18.97(23) 0.005 131(92)
18.3 204.1 18.88(25) 18.95(27) 18.95(23) 0.009 605(170)
20.3 251.1 19.06(25) 19.11(25) 19.03(23) 0.018 65(33)
22.3 303 19.36(25) 19.36(25) 19.20(23) 0.038 07(68)
24.3 359.8 19.76(26) 19.72(25) 19.45(23) 0.083 76(150)
26.3 421.5 20.26(27) 20.18(28) 19.77(23) 0.2086(37)
28.3 488.1 20.87(28) 20.72(33) 20.16(24) 0.6578(120)

29.05 514.3 — — 20.31(25) 1.134(20)
29.8 541.2 — — 20.47(26) 2.191(39)

30.55 568.7 — — 20.63(31) 5.134(91)
31.3 597 — — 20.80(57) 17.48(31)

31.55 606.6 — — 20.85(87) 30.04(53)
31.8 616.2 — — 20.91(150) 53.75(95)

31.95 622.2 — — 20.95(190) 72.56(130)
32.15 630 — — 20.99(220) 84.3(15)
32.3 635.8 — — 21.02(200) 74.65(130)

32.55 645.7 — — 21.08(130) 47.04(83)
33.05 665.6 — — 21.19(60) 18.41(33)
33.55 685.9 — — 21.31(40) 9.402(170)
34.05 706.5 — — 21.43(33) 5.777(100)
35.3 759.4 — — 21.73(29) 2.620(46)

36.55 814.1 — — 22.04(28) 1.617(28)
37.8 870.7 — — 22.38(29) 1.167(20)
40.3 989.7 — — 23.10(31) 0.7813(140)
42.3 1090 — — 23.75(34) 0.6491(110)
44.3 1196 — — 24.46(37) 0.5788(100)
46.3 1306 — — 25.24(40) 0.5411(93)
48.3 1422 — — 26.10(44) 0.5231(89)
50.3 1542 — — 27.03(49) 0.5181(88)

The function B′(p) is given by the double integral

B′(p) =
µ

6π2(p2 + γ2)

∫︂ 1

0

dx

∫︂ 1

0

dy
1√︁

x(1− x)
√
1− y

×
(︃
xp2 ln

[︃
π

4k2C
(−yp2 + (1− y)γ2/x− i0+)

]︃
+p2 ln

[︃
π

4k2C
(−yp2 − (1− y)p2/x− i0+)

]︃
+xγ2 ln

[︃
π

4k2C
(yγ2 + (1− y)γ2/x− i0+)

]︃
+γ2 ln

[︃
π

4k2C
(yγ2 − (1− y)p2/x− i0+)

]︃)︃
, (C2)

which is reduced to a single integral before evaluating
numerically. The function ∆B(p) is obtained from

Bab(p) = − 3

µ

∫︂
d3r

[︄
G

(1)
C (−B; r′, r)

r′

]︄ ⃓⃓⃓
r′=0

×
∂G

(+)
C (E; r, 0)

∂ra

rb
r
, (C3)

where[︄
G

(1)
C (−B; r′, r)

r′

]︄ ⃓⃓⃓
r′=0

=

[︄
G

(1)
C (−B; r, r′)

r′

]︄ ⃓⃓⃓
r′=0

= − µγ

6πr
Γ (2 + kC/γ)W− kC

γ , 32
(2γr) , (C4)

and

G
(+)
C (E; r, 0) = − µ

2πr
Γ(1 + iηp)W−iηp,

1
2
(−i2pr) . (C5)
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The integral Bab(p) is divergent at r = 0. However,
when combined with the contribution from J(p)δab it is
finite. Thus we make the substitution (rb/r)[∂/∂ra] =
(rarb/r

2)[∂/∂r] → (δab/3)[∂/∂r] in the integral and ac-
cordingly Bab(p) ≡ B(p)δab. The finite piece ∆B(p)
is obtained numerically from B(p) after subtracting the
zero and single photon contributions i.e. removing terms
up to order α2

e [34].

The 1-loop magnetic moment contribution from Fig. 3
(c1), (c2) is given by the integral

Cab(p, γ) =

∫︂
d3m

(2π)3
d3l

(2π)3
d3q

(2π)3
maqb

×Gc(−B,m, l)GC(E, l, q)

= 9

∫︂
d3r

rarb
r2

G
(1)
C (−B, r′, r)

r′
G

(1)
C (E, r, r′′)

r′′

⃓⃓⃓
r′=0=r′′

= 3δab

∫︂
d3r

G
(1)
C (−B, r′, r)

r′
G

(1)
C (E, r, r′′)

r′′

⃓⃓⃓
r′=0=r′′

= −δab
iµ2γp

3π
Γ(2 + iηp)Γ(2 +

kC
γ

)

×
∫︂ ∞
0

drW− kC
γ , 32

(2γr)W−iηp,
3
2
(−i2pr)

≡ C(p, γ)δab . (C6)

The function C(p, γ) is evaluated as

C(p, γ) = µ2

[︃
λ

2π
+

1

3π

ip3 − γ3

p2 + γ2

]︃
+
kCµ

2

3π

[︃
1

D − 4
+

2

3
+ γE − ln

πλ2

k2C

]︃
+ kCC

′(p, γ) + ∆C(p, γ) , (C7)

and

C ′(p, γ) =
µ2

6π2(p2 + γ2)

∫︂ 1

0

dx

∫︂ 1

0

dy

√︃
x

1− x

1√
1− y

×
[︃
p2 ln

−yp2 − (1− y)p2/x− i0+

4k2c

+ p2 ln
−yp2 + (1− y)γ2/x− i0+

4k2c

+ γ2 ln
yγ2 − (1− y)p2/x− i0+

4k2c

+γ2 ln
yγ2 + (1− y)γ2/x− i0+

4k2c

]︃
. (C8)

∆C(p, γ) is evaluated from C(p, γ) by subtracting the
zero and single photon contributions similar to ∆B(p, γ).
The divergences in C(p, γ) are regulated by the two-body
current coupling L22. The regulated C(p, γ) is defined as

C(p, γ) =
µ2

3π

ip3 − γ3

p2 + γ2
+ kCC

′(p, γ) + ∆C(p, γ) . (C9)
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