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The E1 and M1 contributions to 7Be(p, 'y)BB at low energies are calculated in halo effective
field theory. The excited "Be* core is included as an explicit degree of freedom in a coupled-
channel calculation. The E1 transition is calculated up to next-to-next-to-leading order. The leading
contribution from M1 transition that gives significant contribution in a narrow energy region around
the 17 resonance state of ®B is included. We compare our results with previous halo effective field
theory calculations that also included the "Be* as an explicit degree of freedom. We disagree with
these previous calculations in both the formal expressions and also in the analysis. Bayesian inference
of the data gives S17(0) = 21.0(7) eV b when combined with the expected theory error.
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I. INTRODUCTION

The Sun is the fuel for life on Earth. The fascinating
questions on how the Sun behaves and affects our lives
propelled many scientific endeavours and outcomes like
the impressive images of NASA’s Solar Dynamics Obser-
vatory (SDO) [I] released in June of 2020 after a decade
of observations [2]. Practically all of the energy released
by the Sun comes from nuclear reactions taking place at
its core, consuming hydrogen through the pp-chain and
CNO cycle [8H5]. The rate of these reactions allows the
determination of the age, stability, chemical composition,
and the fate of the Sun along its history line, as predicted
by the standard solar model (SSM) [6H8]. A few of the
reactions have neutrinos as by-product that travel with
practically no interaction until eventual detection in ded-
icated observatories. These are key reactions for convey-
ing information about the interior of the Sun, such as its
temperature that agrees with helioseismological measure-
ments to a precision better than 0.2% [6]. The first solar
neutrinos extensively measured and analysed were those
from the 81 decay of the 8B nucleus. Although with a
smaller flux compared to other solar reactions, B neu-
trinos carried the necessary energy [§] to be efficiently
detected prior to 2010. In recent years, the Borexino
experiment were able to detect solar neutrinos from elec-
tron capture of "Be [9], proton-proton fusion [10] and pp-
chain [1I], and from the CNO cycle [12], boosting solar
neutrino studies to an unprecedented level [13].

The radiative capture reaction "Be(p,)®B played an
important role in uncovering the apparent loss of solar
neutrino flux. The energetic flux of ®B neutrinos de-
tected by the Super-Kamiokande [I4] and Sudbury Neu-
trino Observatory [I5] contrasted with the tight predic-
tions from the SSM, lending credit to the phenomenon of
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neutrino oscillations and subsequent Nobel Prizes in 2002
and 2015. From observations towards precision, ques-
tions like matter versus vacuum oscillations or mass hi-
erarchy of neutrino flavors can only be achieved if the
"Be(p,7)®B cross section is known around the respec-
tive Gamow energy ~ 20 keV to a precision better than
3% [13]. Despite recent high-quality data on this reac-
tion, and possible underestimation of the respective un-
certainties [16], experiments are difficult and currently
limited to energies above 100 keV. Thus, the required
information can only come from theoretical low-energy
extrapolations of data, which nowadays dominate the re-
spective uncertainties [13].

The 8B nucleus is a known example of nuclei with an
exotic structure that defies the well-established nuclear
shell model description of tight, stable nuclei. It con-
sists of a “Be nucleus as a tight core, surrounded by a
proton barely bound by ~ 100 keV. This is one order
of magnitude smaller than the few MeVs of one-nucleon
separation energy in a typical nucleus. One, two, and
even more of loosely-bound nucleons to a tight core and
related new phenomena became an important drive of
nuclear physics in recent years [17]. Most of its universal
aspects are captured by assuming the core and valence
nucleons as elementary degrees of freedom interacting via
short-range interactions [I7HI9]. Halo/cluster effective
field theory (halo EFT for short) relies on this dominant
cluster structure as starting point, combining few-body
techniques and quantum field theory to deliver a model-
independent and systematically-improvable perturbative
calculation in terms of a small ratio @/A. The numera-
tor @ sets the momentum scale characteristic of shallow
binding energies while the denominator A is a high mo-
mentum breakdown scale associated with the tightness
of the core. By construction, halo EFT works better in
the lower energy domain, becoming a reliable tool for
theoretical low-energy extrapolations [20] (see [19] and
references therein).

Halo EFT has been applied to the "Be(p,v)®B reac-
tion in previous studies [21H24]. Zhang, Nollett, and
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Phillips [2T] assessed the dominant E1 capture at leading

order (LO) that includes the proton and the 3~ ground

and 5 excited states of the "Be core as degrees of free-
dom, with the initial interactions fixed by the s-wave
scattering lengths in the total spin § = 2 and § =1
channels, and the final bound state given in terms of
asymptotic normalization coefficients (ANCs) obtained
from ab initio variational Monte Carlo calculation. Their
result for the astrophysical S factor was ~ 10% smaller
than the recommended value of S17(0) = 20.8(16)eV b
from “Solar II” [3], though within their theoretical LO
uncertainties. A next-to-leading order (NLO) calcula-
tion, with nine adjustable parameters, was carried on
with a Bayesian analysis in subsequent works [23] 24],
with an improved agreement [S17(0) = 21.3(7) eV b] with
the recommended value. Note that the S17 value quoted
in Refs. [23] 24] only includes the errors from the fits.
The expected NLO 10% theory error in that calculation
was not included. Ryberg et al. [22] explored the LO
association between S;7(0) and the charge radius of B.
With different values of ANCs as input, their S;7(0) re-
sults were scattered between ~ 17-20eV b and found an
apparent linear correlation with the charge radius.

In the present work we perform a next-to-next-to-
leading order (NNLO) analysis of the "Be(p,v)®B cap-
ture reaction in the halo EFT framework. In contrast to
previous studies [2IH24], we include the excitation of the
"Be core in a coupled-channel formalism [25] 26], extend-
ing the calculations done for the mirror-symmetric case
"Li(n,~)8Li [27]. The same formal discrepancies raised
there about previous halo EFT calculations apply here
as well. In particular, the discrepancies are in the initial
state s-wave scattering and in the final p-wave bound
state. We also disagree with the power counting devel-
oped in earlier works. We estimate the two-body current
contribution to E1 transition to be two orders suppressed
in the perturbative expansion compared to previous esti-
mates [23, 24], entering at N3LO instead of NLO. Besides
the E1 capture, we include the leading M1 contributions
relevant at energies ~ 600 keV around the 17 resonance.
That allows us to perform EFT fits over a wider range
in energy. The fits in Refs. [23] [24] were restricted to en-
ergies below the resonance. Applying Bayesian analysis
on the most recent, high-quality capture data we obtain
S17(0) ~ 21eVb, in agreement with the recommended
value [3]. As in the "Li(n,~)8Li case [27], one also iden-
tifies an increasingly important d-wave contribution at
NLO towards higher energies while the dynamics of the
"Be excited state are noticeable only at NNLO.

The paper is organized as follows. Sec. [[TA] defines the
strong and electromagnetic EFT Lagrangian from where
our interactions are obtained. We design two versions of
EFTs—one simpler, with only the proton and the ground
state of the "Be core as nuclear degrees of freedom, and
another including the excited state of the core, to be com-
pared with each other throughout the paper. Secs. [[IB]
and [[TC] provide details on how to incorporate the ex-
cited core in a coupled-channel formulation in s- and p-

waves, respectively. It is followed by a brief derivation
of the ANCs and their relations with the wave function
renormalization constants in EFT. One closes Sec. [l pre-
senting basic elements of Bayesian analysis necessary for
fits of our EFT parameters to capture data. The perti-
nent Feynman diagrams and main expressions of our E1
and M1 capture reactions are given in Sec. [[TI] Prelimi-
nary results are shown in Sec. [[V] with EFT parameters
determined from available scattering observables and ex-
perimentally determined and calculated ANCs, with the
purpose of setting up the power counting for this re-
action. The main results of this work are presented in
Sec. [V] where the EFT parameters were constrained by
the most recent and precise direct capture data [28433]
using Bayesian inference. One finishes with a summary
and concluding remarks in Sec. [VI]

II. FORMALISM

In this section we develop the formalism for calculat-
ing the radiative capture reaction “Be(p,~)®B. The gen-
eral formalism is very similar to the calculation in the
isospin mirror reaction "Li(n,~)8Li [27]. The dominant
contribution is from a E1 transition from an initial s-
wave state to a final p-wave bound state. There is a M1
transition from a p-wave resonance state that is impor-
tant around the resonance energy. The modification to
"Li(n,~)8Li due to the Coulomb force needed in this cal-
culation can be obtained from the halo EFT calculations
of 3He(a, ) Be, 3H(a,~)"Li [34, B5]. The derivation
below closely follows that in Ref. [27] with the Coulomb
expressions from Refs. [34, [35].

A. Interactions

We start the construction of the interactions by identi-
fying the low-energy degrees of freedom. The ®B ground
state is a shallow state with a binding energy B = 0.1364
MeV below the proton-"Be threshold [36] [37]. The spin-
parity assignments of the proton and ground state of "Be
are %Jr and 2, respectively. Thus the 2% ground state of
8B is a p-wave bound state. The 8B ground state can also
be represented as a p-wave bound state of the proton and
the 1 excited core of "Be [23] 24} [38] that we denote as
"Be*. Capture from initial s-wave states through the E1
transition dominates with subleading contributions from
initial d-wave states that we describe later. Low-energy
capture data shows a prominent contribution from the
17 resonance state of 8B. This can be described as a M1
transition between initial and final p-wave states.

Following the calculation of "Li(n,~)8Li [27], we con-
struct a theory without the "Be* core as an explicit de-
gree of freedom that we call EFTg. We construct a
second theory with the "Be* core as an explicit degree
of freedom that we call EFT,. We will show later in



Sec. [Vl that the two EFTs differ in their momentum de-
pendence only at NNLO. First we present the halo EFT
without “Be* contribution, EFTg. The strong interac-
tion Lagrangian is similar to the one for “Li(n, v)®Li from

[20, 27, 39]:
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where N represents the 3

938.27 MeV and charge Z, = 1, C represents the
"Be core with mass m. = 6536.2 MeV [36, 37] and
charge Z. = 4, M = mj, + m, is the total mass, and
= mym./M is the reduced mass. We use natural units
with # = 1 = ¢. In the spectroscopic notation 25+1L,
the initial s waves are 257 and °S,. The p-wave bound
state is a combination of ®P, and ®P,. The 17 8B res-
onance is a combination of 3P, and °P;. The summa-
tion in ( is over the s- and p-wave channels: 357, 5Ss,
3Py, 5Py, 3P, 5Py [20, 27, 39]. The projectors in the
different ¢ channels are given by P[(j? in Eq. , see Ap-
pendix [A] There is a sum over the repeated subscript
[7] which is a single index or double indices as appro-
priate. We gauge the derivatives of the charged parti-
cles with minimal substitution to describe both Coulomb
interactions and E1 one-body transition operators. In
this theory the binding momentum v = /2uB = 14.961
MeV, the inverse Bohr radius k¢ = aeZ.Zpu = 23.956
MeV (with o, = €?/(47) = 1/137 the fine structure con-
stant), and momentum p < 40 MeV constitute the low
momentum scale Q ~ v ~ k¢ ~ p. The momentum
pr = 32.15 MeV associated with the 1T resonance en-
ergy Fr = 0.630(3) keV [40] is also considered to scale as
Q. The breakdown momentum scale of the theory can be
estimated from the binding momentum of the "Be core
A ~ 70 MeV into the constituents 3He-*He.
The M1 transition proceeds through the operators

proton with mass m, =
3=

o
gouxNT (5 - B) N+ gounC(J - B)C
5 T 5
+ |:i/1'NL22X7(ij2) Bsz( Pl)Rijkl +h.c|, (2)

where o are the Pauli matrices, J are the angular mo-
mentum matrices for spin-3/2 particle, B = V x A is
the magnetic field, pxy = e/(2m,) the nuclear magne-
ton, g, = 2k, the proton gyromagnetic ratio, g. = 2k./3
the “Be gyromagnetic ratio, and Lgs is a two-body cur-
rent coupling [39]. We include only the M1 capture
contribution from the dominant P, — ®P» channel.
We verified that M1 capture in the other channels are
subleading. The anomalous magnetic moments [41] are

Kp = 2.79284734(3) and k. = —1.398(15), respectively.
We present our final results for the S-factor at thresh-
old to only 3-significant figures. There is an additional
M1 contribution from a magnetic photon coupling to the
charged particles “in flight” that we include [39].

The second halo EFT, with explicit excited "Be* core
can be described with the Lagrangian [27]
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where the C, field represents the excited "Be* core with
excitation energy E 0.4291 MeV. The momentum
scale yo = \/2/¢E 26.54 MeV is assumed to scale
as ). The breakdown momentum for this theory would
be set by the binding momentum of the "Be* core as
A ~ 60 MeV. Compared to Eq. (| . this theory has some
additional scattering channels 357, 3Py. We also include
mixing in the 35;-3SF and P»- 3P2 channels. This is

facilitated by the off-diagonal terms in the inverse free

dimer field Xg]) propagators. We consider mixing only

in the spin S = 1 channels. The excited core does not
participate in the S = 2 channel. The capture in the spin
S = 2 channel is known to be about 4 times larger than
in the S = 1 channel [42] [43]. So we treat any possible
mixing between these two spin channels to be subleading
and do not consider in our calculation. The summation
over ( is over the appropriate channels, with the projec-

tors P[(? defined in Appendix The M1 contribution

in EFT, is given by the operators in Eq. and the
in-flight captures.

The E1 contribution to "Be(p,7)®B in EFT, and
EFT, follows a similar calculation as the *He(a,~)"Be
capture except for some trivial angular momentum al-
gebra. We use the *He(a, ) Be expressions [34] with
appropriate modifications. The reader should refer to
Ref. [34] for technical details on evaluating the Feynman
diagrams we consider here. The M1 contribution with
Coulomb involves a new integral similar to the E1 inte-
grals that are included in Appendix [C]

B. 328:;-38} Coupled Channel

The coupled-channel s-wave scattering amplitude is a
2 x 2 matrix. We write the Coulomb-subtracted scatter-



ing matrix as

iA) (p) = _’%T[Co(np)]%”"OD(“b)(E,0), (4)

where E = p?/(2u) is the center-of-mass (c.m.) energy
and the superscripts are the row-column indices of the
amplitude matrix. We identify the 3S; state as channel 1,
and the 355 state as channel 2. The Coulomb phase shift
is oy = argT'(I + 1 +1n,) with the Sommerfeld parameter
np = kc/p. The parameter [Cy(n,)]?, associated with the
probability of the Coulomb wave function at the origin,
is given by

2le=™w/2|D(1 + 1 + iny)|

Cilnp) = T(20 +2)

()

Following the “Li(n,v)%Li calculation in Ref. [27], we
write the inverse dimer propagator as

, (6)

where Dy 1 is the inverse free dimer propagator and ¥
is the self-energy. Calculation of [D(E,0)]~! is simpler
than D(E,0). We have the free inverse dimer propagator

from Eq. :
_ H(ll) H(12)
t= (H(w) H(22)) ) (7)

where we only keep the couplings I1(%) in a low momen-
tum expansion. In a single-channel calculation this would
correspond to keeping only the scattering length contri-
bution. The self-energy is

= N B
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H(z) = ¢(iz)+1/(2ix) — In(iz) with the di-gamma func-
tion ¢(x). We regulate the loop integrals using dimen-
sional regularization in the power divergence subtraction
(PDS) scheme [44] that removes all divergences in space-

time dimensions D < 4. ) is the renormalization scale.
With the RG conditions
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where a;;s have units of length [25], we arrive at
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which can be used to calculate the s-wave scattering ma-
trix A(p). More specifically, we calculate
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which reduces to the single-channel result for I1I;5 = 0.
For the off-diagonal contribution,
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Matching A;1 to the effective range expansion (ERE)
at p < ya we get
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These expressions reduce to the ones without Coulomb
interactions in Ref. [27]. A mixed channel calculation
(without the Coulomb force) using nucleon-core contact
interaction in s-wave, instead of dimer-particle interac-
tion as we do here, was presented in Ref. [25]. See also
Ref. [26] where a coupled-channel calculation with the
Coulomb force was considered.



In the S = 1 channel, the new measurement [45] of

a(()l) = 17347121 fm would make the scattering length
scale as 1/Q. We take all a;; ~ 1/Q which then gives

rél) ~ 1/Q for k¢ ~ 24MeV ~ Q. Irrespective of the
sign of a19, rél) is negative, just as it is in the system with-
out Coulomb interactions [25, 27]. Though we started
with a theory with momentum-independent contact in-
teractions, an s-wave effective range rél) is generated in
the coupled-channel calculation as there is a finite differ-
ence in the relative momentum in the scattering between
states with and without the excited core [27].

The calculations in Egs. , are in fact a match-
ing calculation of EF Ty to EFT,. Egs. and
determine the strong-interaction couplings IT1¢*/) that ap-
pear in EFT, from the ERE parameters aél), 7"(()1), whose
relations with the corresponding EFT,s couplings are
known [27, 46]. More specifically, it shows how the s-
wave scattering amplitude calculated in EFT, is repro-
duced by EFTgs at p < ya.

In the analysis we present later, we use Eq. to
constrain aj; by agl). Thus, as2 and a12 remain the only
free parameters to be fitted to determine the s-wave scat-
tering amplitudes in the coupled-channel calculation.

C. 3P,-3PJ Coupled Channel

The coupled-channel calculation for the p-wave bound
state is similar to the s-wave scattering calculation, and
follows the derivation in Ref. [27], with the additional
complexity of Coulomb interactions. We write the free
inverse dimer propagator as

1 H(ll) +Et(11) H(12) +Et(12)
PoE.01 = (1 T e 11§ ) + (10

where we identify 3P, as channel 1 and 3Py as chan-
nel 2. Here we keep the effective momentum contribu-
tions since p-wave bound state calculation requires both
a momentum-independent and a momentum-dependent
interactions at LO [47] 48] in halo EFT.

The p-wave self-energy term is given by
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where a;; are scattering volumes though we used the
same notation earlier for scattering lengths in the 35;-3 S5}
coupled-channels. The scattering volumes do not appear
in the cross section formula as we show below, and they
are not used outside of this subsection. At p < ya, by
looking at AM)(p), we get
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As for the s wave, this relation is a matching calculation
of EF Ty to EFT, for the p wave amplitude at low energy.
For the wave function normalization constant we get
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and 7. = /7% + 4. We see from above that Z~1, and
consequently Z depends on three effective momenta 11,
712, r92. The two ANCs C’1 3Py 012,3P2*’ discussed below,
are not sufficient to constraint the three r;;s. If we as-
sume k¢ ~ Q ~ v ~ ya, and r;; ~ A, we can write
Z using only the effective momenta r;;s. In our coupled-
channel calculation we simply fit the wave function renor-
malization constants Z1;1, Z15 to the ANCs without at-
tempting to interpret these in terms of the r;;s [27].

D. Asymptotic Normalization Constant

Here we present a derivation of the relation between
the ANCs and the wave function renormalization con-
stants. We follow the convention from Refs. [49-54]. Sup-
pressing spin indices, the S-matrix projected onto [-th
partial wave is

Sl (pQ) — eQiG'L e2i5l
PO(+140m,)° | 9,

_9; 2
= 2ip F;(p®) T T (14 1)2 e,

(25)

where §; is the Coulomb-subtracted partial wave phase
shift. The function Fj relates to the elastic scattering
amplitude via
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The generalization of the Landau-Smorodinsky K func-
tion, analytic around p ~ 0, is obtained from F;(p?) [52+
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where the last equality is the Coulomb ERE with the
conventions of Refs. [49—54]|H The function d;(n) is given
by

B 7*\ _ T+1+inD(i+1—in)
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The poles of S; due to physical bound states coincide
with the ones of A; as they are related to zeros of the
function F,' = [K; — p*"'dy(n,)2n,H]. Close to the
bound-state momentum p ~ ivy, S; behaves as [53}, 57]
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with B = v*/(2u), 1,
has a misprint, see Ref. [5

bound-state wave function.
The residues of A; and S; are related via

= —ikc/v (Eq.(13) of Ref. [53]
7), and Cp the ANC of the
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From Eqs. and one arrives at

T(l14+1+n,)]°
2 _ 21 y

o P S

The relation between the general form of A; and the sum
of on-shell Feynman diagrams derived from EFT is given
by

Al(pQ) = [pleﬂr"l’/zr(ﬂrl +i77p)r { 2; 1“23—15 ]
2
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1 Notice that the above ERE parameters a;, 7, P; differ from the
definitions used by others, Refs. [53] [56].



where ’D(l)(po, p) is the dressed dimer propagator. Com-
paring Eqs. and one gets

21

2 7
|Cs| —W

2 [ d -1 !
220 2 IpO(E ‘
. i {dE[ ( ’0)} E=-B

21
Y 2 2T

[C(I+1 +))2

This relation between the ANC C}, and the wave func-
tion renormalization constant Z is valid for any partial
wave, up to a convention-dependent multiplicative fac-
tor. In EFT, different ways of defining the interaction
couplings lead to different multiplicative factors for the
dressed dimer propagator and, consequently, Z. This af-
fects the relation between the latter and the scattering
amplitude without any physical implication [46]. Here
we follow the same convention used in Refs. [27] [46].

E. Bayesian Analysis

In this subsection we list the relations essential for
drawing Bayesian inferences. If we represent the param-
eters of the theory by the vector 8 and the data set by
D, then the probability for the parameters to be true
given the data and some proposition H is the posterior
probability distribution

P(D|6, H)P(0|H)
P(D|H)

where P(6|H) is the prior distribution of the parameters
based on assumptions made in the proposition H. EFT
power counting estimates about the sizes of couplings
and parameters enter in the construction of P(6|H). The
likelihood function is defined as

SNETE uz-w)]?}
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if the data set D has N results y; with measurement
errors ;. (;(0) are the theory predictions. The likeli-
hood is maximized by minimizing the x2. The evidence
P(D|H) is obtained from the marginalization of the like-
lihood over the parameters as

N
pP(DIo,H) =[]

(35)

P(D|H):/Hd@iP(Dw,H)P(O\H), (36)

which ensures that we have a normalized posterior dis-
tribution: [ [],d0;P(6|D,H) = 1.

Parameter estimation does not require calculation of
the evidence, an overall normalization to the posterior,
in Eq. (34). Markov Chain Monte Carlo (MCMC) algo-
rithms such as Metropolis-Hastings can be used to gen-
erate P(D|6, H)P(6|H). Given the posterior we can es-
timate functions of the parameters f(p;0) as

@) = [ [Taosworenm. @)
Similarly the posterior of a single parameter 6; is

P(0;|D,H) = /H d0;P(8|D,H). (38)

J#i
The evidence is needed when we want to compare the-
ories. Suppose we have two theories M4 and Mp, then

we can quantify the relative support for the theories by
the data as

P(Ma|D, H)
P(MB|D7H)

 P(DIMaH) | P(MalH)
= POy ) POLlE) )

where the first factor on the right hand side of the equa-
tion is the ratio of evidences of the corresponding theories
and the second factor is the prior odds. We set the prior
odds to one if the theories we compare are expected to
reproduce the data with similar accuracy with the given
prior knowledge. In our analysis the two EFTs we com-
pare have the exact same momentum dependence up to
NLO, and at NNLO they receive similar sized corrections
so we expect the prior odds to be 1. This is in contrast
to the comparison done in Ref. [35] where the two the-
ories had different accuracy at LO and the higher order
corrections moved the EFTs closer to data at different
rates. The current theory comparison is simpler.

We calculate the evidences using Nested Sampling
(NS) [68]. There are various implementations of NS, see
review article by Brewer [59]. We use MultiNest [60]
implemented in Python [6I] and Diffusive Nested Sam-
pling [62] to compute the evidences which also generates
the posterior distribution for the parameters.

The "Be(p,v)®B calculation presented here is very sim-
ilar to the “Li(n, v)®Li one in Ref. [27] once the Coulomb
interactions are added using the formalism developed for
3He(a,y)"Be [34]. There is one crucial difference between
the "Li(n,~)8Li and "Be(p, v)®B calculations. In the for-
mer, the energy of the excited “Li* core is smaller than
the binding energy of the 8Li ground state. This in prin-
ciple requires that the excited core be included explicitly
in the "Li(n, v)3Li calculation, though in practice the mo-
mentum dependence in EFTg and EFT, are the same
up to NNLO corrections. In the latter “Be(p,v)®B calcu-
lation, the energy of the excited "Be* core E, ~ 429 keV
is larger than the binding energy of the 8B ground state
B ~ 136keV. Thus at energies £ ~ B < F, below the
excitation of the "Be* core, one expects that EFTg that
doesn’t include the "Be* core explicitly might be suffi-
cient. At higher energies £ 2 E, such as to describe



the resonance M1 capture, one should include the "Be*
explicitly as the resonance energy is above the excita-
tion energy of "Be*. We restate that the expressions for
"Be(p,v)®B E1 transition in EFTys and EFT, have the
same momentum dependence up to NLO , though, the
latter contains explicit "Be* contributions in the ANCs
as shown later in Eq. 54, We use Bayesian evidences to
compare these two EFTs over a range of capture energies
to quantify the contribution of the excited “Be* core.

Having described the general framework for the
Coulomb and strong interaction, it is appropriate to dis-
cuss how our results differ from previous EFT calcula-
tions [2IH24, [38] in the treatment of the short distance
physics. The differences in the EFT power countings
is discussed later in Sections [V] and [VI} Here we briefly
explain the differences in the bound and scattering state
construction, independent of the power counting. A more
detailed comparison is given in Sect. 3.1 of Ref. [27].

Previous EFT calculations consider mixing in the °P,,
3P, and 3Py bound state p-wave channels. However,
this mixing is implemented using a single auxiliary dimer
field unlike the coupled channel construction presented
here. Once this single auxiliary dimer field is integrated
out of the theory, it generates proton-core interactions
that are not the most general set allowed by low en-
ergy symmetries. For example, the mixing in 3P,-3Py
can be expressed in terms of the couplings h@p,) and
h@pgy (using notation from Ref. [24]) of the elastic * P,
and 3Py channels, respectively. Such modeling of short-
distance physics without any underlying symmetry is pre-
cisely what one would like to avoid in an EFT. Previous
EFT calculations describe the wave function renormal-
ization constant involving mixing between three separate
channels in terms of a single effective momenta 1. How-
ever, the amplitude mixing three channels would in gen-
eral contain 6 independent matrix elements (due to Her-
miticity) that would correspond to 6 scattering volumes
and 6 effective momenta at low energy. This would re-
quire 6 effective momenta to describe the wave function
renormalization constants. Further, the renormalization
condition in earlier calculations, for instance Eq. (46) of
Ref. [24], ignores mixing in the amplitudes allowed by the
interactions, such as factors of hsp,yh(sp,) in the exter-
nal states from Table II of Ref. [24]. These mixing terms
would leave the wave function renormalization constants
RG scale dependent. In contrast, in the couple-channel
calculation we present, we mix only the *P, and Py
bound state channels, and write the RG scale invariant
wave function renormalization constant using 3 effective
momenta. The formalism presented here allows for a
°Py-3Py-3 Py coupled-channel calculation. However, as
discussed earlier, the rational for treating °P, as a sin-
gle channel at LO is physically motivated by the large
branching ratio of the S = 2 spin channel.

In the s-wave scattering state calculation, Zhang et al.
in their latest work [24] model the proton-core short dis-
tance interaction using a single dimer field. This makes
the 351-2S} coupling to be the geometric mean of the cou-

plings in the S; and 3S7 channels i.e. scattering length
a11 becomes a function of a1s and age though there is no
underlying symmetry to expect such a result.

III. CAPTURE CALCULATION

(a1) (a2)

FIG. 1. E1 capture without initial state strong interactions.
Double solid line represents a "Be or "Be* core as appropri-
ate, single solid line a proton, wavy line a photon, and ®
represents the final 8B bound state. The gray rectangles rep-
resent Coulomb interactions between the charged particles.
The photons are minimally coupled to the charged particles.

FIG. 2. E1 capture with initial state strong interactions. The
dashed line with the gray blog represents initial state s-wave
strong and Coulomb interactions. The rest of the notation is
the same as in Fig. [T}

The E1 capture to the 8B ground state is given by the
diagrams in Figs. The excited "Be* core contributes
only in the spin S = 1 channel, and only in Fig. 2] The
S = 2 channel contribution in EFTgs and EFT, has the
same expression.

The E1 squared amplitude for capture in the S = 2
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FIG. 3. M1 capture through the resonant 17 state. The
dashed line with the gray blog represents p-wave interaction
in the 17 resonance channel, ® represents magnetic photon
coupling and B the two-body current. The rest of the notation
is the same as in Fig.

channel can be written as

2 2
CP)2 o Zcmp_meC 64mraM
MG = (24 1) (Zae - e ) AT
2
AO(G‘O ’p) .
X(p) — ———F———=[B(p,7v) + Jo(—ip
| ) = St 3P B ) + Jo(ip)]
Loy (p))? %”z“”l’z), (40)

where j = 2 and the s-wave contribution from Fig. [1| is
given by

2
X(p) = Colug)+ 304k /) [ droW a4 (230)
0 vz
QFO(%»ZW)
" Br pr , (41)

whereas the d-wave contribution is
o0

2
FT@+he/r) [ dreW e o(2yr)
0 vz

><<8T+ > (Zp’pr). (42)

The regular Coulomb wave functions are

Ey(np, p) = Co(mp)2” 71 (=) My, 141 /2(i2p), (43)

with conventionally defined Whittaker functions My, ,,(2)
and Wy ,(2). The initial state strong interactions in
Fig. [2] are given by the s-wave amplitude

2m [Co(np))?
Ho= <2> — 2k H ()’

Y(p) =

-AO (a’(()z)vp) - (44)

with the scattering length a(()z) = —3.1870:5> fm [45]. The
loop contribution from (b1), (b2) in Fig. [2is B(p,~) and
the contribution from (bs) is Jo(—ip). The linear combi-
nation B(p,v) + Jo(—ip) is finite, and it is presented in
Appendix|[C] The wave function renormalization constant
in the P, channel is

27772(5132) — _9r rng) + ZkQC(k% - ’YQ)H/ (_ch)
iz 7 gl
B .
— dkcH (—ic>
Y
2m
N o— — , (45)
r"P2) _ 1 5538 MeV
where 7“§5 ) is the p-wave effective momentum in the ® P,

channel. In the above we expanded the ERE around the
binding momentum ~ instead of p = 0 [34},[63]. In EF T,
the capture from initial 3S; state to the 2+ ground state
is given by a similar expression as the above Eq. with

the replacements aém — aél) for the scattering length

in the 3S; channel, and 7’§5P2) — 7’( 2) for the effective

momentum in the 3 P, channel. The total E1 cross section
is

I kol
ow1(P) = Tz 5 [P IMOT
+(1 = a)MOPIR] (46)
where ko = (72 + p?)/(2u) is the radiative photon

c.m. energy. Setting the Clebsch-Gordan coefficient
= 1/\/§ describes the 2t 8B ground state as a D32
proton state [64].
The M1 capture cross section from Fig. |3|is given by

1 k2 8o, M?
omi(p) = 167 M2 D 8| | (27 +1) D2 Tf,
IAl( )\ Py K F e
- 2 Ze Z
i 2 (o, )
C
X M(f) —ﬁzz} ) (47)

where the divergence in the integral C(p) is regulated
by the two-body current coupling Las ~ —2m/322 /1 that
subtracts the divergent pieces up to an overall renormal-
ization constant oy ~ A. C(p) is the regulated C(p)
without the divergences, see Appendix [C] The Clebsch-
Gordan coeeficient b = 1/5/6 corresponds to making the
1" resonance a py/o proton state [64]. The MI contri-
bution is peaked near the momentum p ~ pr and we
expect the renormalized combination |Lzo(pg)| ~ 1 from
the power counting.



The °P; scattering amplitude is

o €i201
A =
1(p) I pcotdy —ip
_ 2T 2012 1 L¢Py o
- 7901 (7710)6 'p 70,55]31) + 5 1 p
e\
a2+ ()] (49
p
where the scattering volume af P1) and effective momen-
5
tum rg P1) are tuned to reproduce the 17 resonance en-

ergy Er = p%/(2p) = 0.630(3) MeV and width T'r =
0.0357(6) MeV [40] similar to the M1 contribution in
"Li(n,~)8Li [39]. Near the resonance momentum pgr, the
p-wave phase shift 4, (p) in the incoming channel increases
rapidly through 7/2 from below. Thus we impose the
conditions [39]

cotd1|p=p, =0,

dcot &1 2

g =——<0 49
5 |E=E. <0 (49)

which produce a Breit-Wigner form near the resonance

cot 61(F) ~ cot 61 (E,) + (E — E,.) cot’ §1(E,.)

2
= _F(E - ET) )
i
2r e o 2m e (-T,/2)

- ~ . 50
w peotdy —ip  up. E— E,. +il,./2 (50)
Imposing the conditions in Eq. on the ERE in

Eq. gives af ) = —108.13fm?, { ™) = —111.23
MeV for the central values.
The S-factor in EF Ty is then

&@=%me@+mm» (51)

In EFT,, the E1 capture in the S = 2 channel is the
same as Eq. (40). In the S = 1 channel, the squared
amplitude is slightly modified to

3p, . Zcm Zyme ? 64maM>
MG = (2 1) (Do - Bee ) 007

(CP2)/ N2 2 21 (3Py)
x AT @) + 2y )] SE 20 (52)
where
3Pz) _ A(ll)(p> .
« (p)=X(p) - W[B(Pa v) + Jo(—ip)]
A(12)(p) ) Z(Py)
—W[B(p*ﬁ*) + JO(_ZP*)}W . (53)

The M1 cross section at this order of the calculation is
given by Eq. . Thus the total c.m. cross section and

10

S-factor in EFT, are:

1 /{50 1 5p.
7w1.:() = Jgrarz 5 [P IME P
3P,
+(1 = JaP)ME ]
p2
Si7.(p) = ﬂe%n” [or1+(p) +omi(p)] . (54)
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FIG. 4. S-factor for "Be(p,v)®B in EFTgs. The grid lines
are at the "Be* inelasticity ya = 26.5 MeV and the 17 res-
onance momentum pr = 32.2 MeV. The dot-dashed (black)
curve includes diagrams with only s-wave contributions and
no initial state strong interactions, the short-dashed (blue)
curve includes all diagrams except d-wave contributions, and
the long-dashed (red) curve includes full contributions from
all diagrams. Results were fitted to ANCs as explained in the
text.

At low energy, proton-’Be scattering in the entrance
channel in "Be(p, v)®B is peripheral due to the Coulomb
repulsion. It is expected that the capture to the B
ground state can still proceed without initial-state short-
range strong interaction as it is a very loosely bound
state with the bound-state wave function extending over
a large spatial distance ~ 1/+. This is borne out by a
direct calculation, in EFTgg, from Eq. at threshold
(numerically evaluated at c.m. energy Fy = 50 eV in this
work)

S17/CF ; =~ 35.6(1 — ap0.002 66 fm "
+0.0657 +...)eVbfm, (55)

in either channel ¢ = °P,, 3P,. The first term is the
s-wave contribution from Fig. [1| that contains no initial
state strong interaction, the second term is the leading
contribution from Fig. [2] with s-wave scattering length
agp (written in fm units above), and the last term is the



d-wave contribution from Fig.[l] These numbers are con-
sistent with the values in Ref. [42] except our strong inter-
action contribution (second term) is a factor of 2 larger
which comes from squaring the amplitude and keeping
the linear ag term. The relative contributions of the
three terms above agree with the result from Zhang et
al. [24] though they disagree with the overall value a lit-
tle. The d-wave contribution in Eq. is consistent
with a NNLO contribution, and increases in size at higher
momentum, as we show, to be counted as NLO.

In Fig. 4] we use the EFT,, expressions for E1 capture
from Eq. without assuming any specific power count-
ing. The M1 capture contributes only in a narrow region
that will be added later. The E1 cross section depends

on s-wave scattering lengths a(()z) = —3.187050 fm, a(()l) =
17.3471-23 fm [45], and p-wave effective momenta r10P2),

T§3p2) that we constrain from the measured ANCs [43], [65]

using the relation in Egs. , along with the nor-
malization of the sates defined in Egs. , . We

use Z072) = 19.6(8) [r{ ™) = —40.3(17) MeV], ZC72) =

4.6(4) [T§SP2) = —177(16) MeV]. The dot-dashed curve
is the s-wave contribution from Fig. Adding the ini-
tial state interactions, short-dashed curve, from Fig. [2]
has a small effect. However, the d-wave contribution
shown by the long-dashed curve is more substantial. A
natural-sized s-wave effective range ro ~ 1/A in either
spin channels has a negligible effect. From Eq. , we
can estimate the branching ratio for capture to the ® Py
channel to be about 80% that is mostly determined by
Z(SPZ)/Z(3P2) ~ 4. We develop a power counting based
on these observations.
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FIG. 5. S-factor for "Be(p,v)®B in EFTgs. The grid lines
are explained in Fig. @ The LO, NLO, and NNLO curves
are identified in the legends. Results were fitted to ANCs in
perturbation as explained in the text.

The initial state strong interactions from Fig. [2| scale
as 2mag(B + Jo)/p. For p < Q, the linear combina-
tion 27(B + Jo)/p is of order Q?/A [34], instead of
the naive expectation 2m(B + Jy)/pn ~ @ that only
holds true in the absence of Coulomb interactions [27].

11

In the § =
is natural sized \agf)\ ~ 3fm ~ 1/A making initial
state strong interactions 27ra(()2)(B + Jo)/pu ~ Q*/A% a
NNLO effect. The larger scattering length in the S =1
channel aél) ~ 17fm ~ 1/@Q makes this contribution

27ra82)(B + Jo)/p ~ Q/A. However, the S = 1 channel
branching ratio is around 0.2. Thus, all contributions
in this channel are one order higher in the perturbation
making initial state strong interactions a NNLO contri-
bution in this spin S = 1 channel as well [34].

The contribution of the s-wave effective range r¢ in
Eq. is also a subleading effect. The effective range
contribution 79p?/2 ~ Q?/A is smaller than the scat-
tering length 1/ag in either spin channels. Moreover
we find, similar to a-a, 3He(a, ) Be, 3H(c,~)"Li [34,
35, [66], cancellations in the linear combination rop?/2 —
2kc H (n,) suppressing effective range contributions fur-
ther [66]. A general analysis of effective range contribu-
tions in shallow systems with Coulomb interactions was
done in Refs. [67, 68]. In our fits we drop the 2kcH (n,)
term in Ay of Eq. (44), and similar contributions to
Ai1, A2 in Egs. (12)), that would contribute be-
yond NNLO.

2 channel, the s-wave scattering length
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FIG. 6. S-factor for "Be(p,7)®*B in EFT,. The plots used
rél) = —30fm and a22 = —30fm that were varied by 95%
and had negligible effect on the final result. A positive azs =
30 fm also had a negligible effect. The curves follow the same
notation as in Fig. [

We propose the following power counting in EFT,q:
The s-wave contribution in the S = 2 channel without
initial state strong interaction from Fig. [T] constitutes the
LO contribution. At NLO, we include the d-wave con-
tribution in S = 2 and the s-wave capture in S = 1
without initial state strong interaction from Fig.[l} Con-
tributions from initial state strong interactions in both
the spin S = 1, 2 channels from Fig. [2] enter at NNLO.
The d-wave contribution in S = 1 channel contributes at
NNLO as well.

The perturbative calculation is shown in Fig.[5] In this
calculation we use the zed-parametrization [63] where the
exact wave function renormalization is produced at NLO.



This is achieved by defining the corresponding p-wave
ERE around the bound-state pole instead of at momen-
tum p = 0 [39,63]. The 20% jump from LO to NLO even
at threshold is due to the inclusion of S = 1 channel at
NLO which is absent entirely at LO in the power count-
ing. We get for the S-factor at threshold 13.40(1)(4.02)
eVb, 17.4(6)(1.7) eV b, and 17.6(7)(5) eV b at LO, NLO,
and NNLO, respectively, where the first set of errors are
from the input and the second set are the theory errors
(with @Q/A ~ 0.3). The NNLO result compares well with
18.0(19) eV b evaluated in Ref. [43] using the same ANCs.

The nearly identical NLO and NNLO EFT results
above can be understood from Eq. . In the § = 2
channel, the s-wave strong interaction contribution for

a natural sized a(()2) is numerically smaller than the as-
sumed NNLO estimate. The S = 1 channel initial
state s-wave strong interaction and the d-wave contri-
bution enters at NNLO. However, the large scatter-
ing length in this channel agl) ~ 17 fm competes and
nearly cancels the d-wave contribution in Eq. with

—al” 0.00266 fm=! + 0.0657 ~ 0.02 relative to the lead-
ing contribution in this channel which is already a NLO
term. Thus these contributions are about 0.7% of the
LO piece coming from the S = 2 channel. This behavior
persists at higher momenta as well.

In Fig. |6| we plot the result for "Be(p,v)®B in EFT,
from Eq. (54) without the resonant M1 contribution.
The calculated ANC value C7, . = 0.1215(36) fm ™" [24]

was used to determine the wave function normalization
ZCP) = 7.72(110). We use Eq. to substitute a
a1z > 0 by 7’(()1) for convenience here, though a a5 < 0
would work as well. We estimate r(()l) ~ 1/Q ~ ass over a
large range to generate the curves without assuming any
specific power counting. We get results similar to those
in Fig. 4] and we interpret them in a similar manner.

The proposed power counting in EFT, is: The s-wave
contribution in S = 2 channel without initial state strong
interaction from Fig. [I] constitutes the LO contribution.
At NLO, we include the d-wave contribution in S = 2 and
the s-wave capture in S = 1 without initial state strong
interaction from Fig.[I] Contributions from initial s-wave
strong interactions in both the spin S = 1, 2 channels
from Fig. [2] and pure Coulomb initial d-wave in S = 1
enter at NNLO. At this order, EFT, has three additional
parameters: the wave function renormalization constant
2ZCP3) and two scattering lengths laga| ~ |a12] ~ 1/Q.
In addition, when we apply the EFT, at momenta above
the 17 resonance 8B state, we include a two-body current
coupling for the M1 transition.

V. RESULTS AND ANALYSIS

In this section, we estimate the S-factor at threshold
S17(0) by constraining the EFT parameters from cap-
ture data. We perform the analysis using data at en-
ergy E < 500 keV (momentum p < 28.6 MeV) that is
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below the resonance energy Er = 630keV (momentum
pr = 32.2MeV). In this low-energy region, named region
I, both EFT,s and EFT, are applicable and the corre-
sponding fits will be refered to as EF T, I and EFT, I,
respectively. We also perform the analysis using capture
data up to energy E < 1 MeV (momentum p < 40.5
MeV) where we include the M1 contribution to describe
the resonance contribution. We call this larger energy
(momentum) region as region II. In region II, only EFT,
is applicable that we refer to as EFT, II fits. However,
we find the differences between EFTgs and EFT, thresh-
old S-factors to be very small as the differences are a
NNLO effect. This agrees with previous work [69] [70]
that also found the excited core contributions to be small.
The data, especially at higher momentum, though, favors
EFT, in the evidence calculation.

(CP) (PP2)
1

In EFT,y, the fit parameters are r Ty in region

I. In EFT,, the fit parameters are rfPZ), 2,’(3132)7 Z(SPS)7
a2z, a12 in region I, and also [2o in region II for the
M1 resonance capture. In the analysis we use data from
Filippone et al. [28], Hammache et al. [29, 30], Baby et
al. [BI], Junghans et al. [32], and Strieder et al. [33].
We draw Bayesian inferences for the S-factor using the
capture data.

An advantage of the Bayesian method over x?2 fits is
that it allows a natural framework to impose EFT power
counting estimates of the parameters in the data fitting
procedure. Details of the method we use are in Ref. [35].
In the review by Adelberger et al. [3], the x? fit of the
theory curve by Descouvemont [71] to data necessitated
inflating the measurement errors to get a smaller reduced
x? value with a significant p-value because the global
data sets from different experiments were not compati-
ble. In the Bayesian framework, the overall normalization
of data can be estimated using the published common-
mode-error in a straightforward manner [21] 23], 24) [35].

In the Bayesian fits, we multiply the data from the
same measurements by a scale factor s that is drawn
from a prior distributed normally with a mean (s) = 1
and standard deviation s.d., following the treatment of
systematic errors in Chapter 6 of Ref. [72]. The s.d.s
are set to the published common-mode-errors, see also
Refs. [16], 23], 24] [73]. We use for data from Filippone
et al. [28] s.d. = 11.9/100, Hammache et al. [29] s.d. =
9.0/100, Hammache et al. [30] s.d. = 5.0/100, Baby et
al. [31] s.d. =2.2/100, Junghans et al. [32] s.d. =2.7/100
for set BE1 and s.d. = 2.3/100 for set BE3, Strieder et
al. [33] s.d. = 8.3/100, and we label the scaling factors
s; for @ = 1,2,...,7 in that order, respectively. These
values agree with Cyburt et al. in Ref. [I6] [73] except
for the Hammache et al. [29] data set where they use a
12.2% error in the analysis. Zhang et al. [23] use simi-
lar errors in their Bayesian analysis except they do not
assign common-mode-error to the Hammache et al. [29]
data set, and do not use the Strieder et al. [33] data.
The particular value of s.d. that we use in the prior dis-
tribution does not affect the quality of the fit as long
as it is comparable with the estimates from the exper-



iments. We get the same threshold S-factor within the
errors from the fits. 5p
We draw the effective momentum rg ») from an uni-

form prior U(—100MeV,1.5MeV) consistent with the

power counting estimate and the requirement Z CP2) >,
We know from the 7Li(n,v)8Li calculation that there is a
strong correlation between the wave function renormal-
ization constants in the spin S = 2 and S = 1 chan-
nels [27]. For example, in the EFT without explicit
"Li* core, a single parameter family of effective momenta

T§5P2)7 rfpg) describes the capture cross section. We find
a similar behavior in "Be(p,y)®B where the capture data
is not sensitive to the individual p-wave effective mo-
menta and the corresponding wave function renormal-
ization constants. Therefore we fix the wave function
renormalization constants in the spin S = 1 channel by
drawing them from a normal distribution as determined
by the mean experimental [65] and calculated ANCs [24]
(and their errors). Alternatively, constraining the wave
function renormalization constants from the known ANC
ratios, say taking ZCP2) = Z(QP2)C’123P2/C125P2, gives
similar fits. Note that we impose these constraints so that
the S = 1,2 spin channels have the hierarchy assumed in
the construction of the EFT power counting. The theory
expressions themselves can fit the capture data just as
well without these EFT assumptions but then one can-
not reliably apply the power counting estimates.

120 .
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1000 = EFTg/EFT, I LO § = Filippone
---- EFT4/EFT, INLO ® Hammache
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FIG. 7. S-factor for "Be(p,v)®B in EF Ty, fitted in the mo-
mentum region I, p < 28.6 MeV (E < 500keV). The LO,
NLO, and NNLO curves are identified in the legends. At
LO and NLO, EFT I and EFT, I have the same momentum
dependence. The inset shows the posterior distribution for
S17(0) in €V b units at NNLO.

In EFT, we also fit aze ~ U(—50fm,50fm) and
a1z ~ U(=501fm,50fm) at NNLO. For the M1 capture
we choose the prior oo ~ U(—500MeV,0). Near the
narrow resonance momentum p ~ pg, Loz (p) in Eq.
is nearly constant, and both positive and negative val-
ues for PBos are compatible. We find some evidence from
the capture data for a negative (2o that goes into our
prior selection but Sz < 0 is not crucial for the analy-
sis. The range of the priors for the EFT couplings were
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chosen wide enoygh to accommodate the power count-
ing estimates rYPZ) ~ A, azn ~ 1/Q, a1 ~ 1/Q and
B22 ~ A. We notice that if one restricts |ré1)| ~ 1/Q,
then ago, a1 values are further constrained. In our fits,
we let the capture data determine ass, a2 without this
constraint to explore the entire parameter space (given
by the uniform priors). This doesn’t violate the power
counting estimate. However, in future one could impose
the additional EFT assumption |r(()1)| ~ 1/Q to derive
more restrictive priors for ass, ais.

We note that the normally distributed priors for the
scale factors s;s, chosen for convenience, are technically
incorrect in that they allow for negative values for pos-
itive parameters. However, the cumulative prior proba-
bility for negative values is much smaller than a percent.
For example, a 30% s.d. translates to a prior cumulative
probability of about 0.04% for a negative value of a posi-
tive parameter. A posteriori the fits give expected values
for the parameters and never pick the unphysical nega-
tive values in Table[[ll We also verified the robustness of
our fits by using a prior for ri P2) normally distributed
around the prediction from ANC [43] [65] with a 30% er-
ror. The sensitivity of the fits on the priors is found to
be insignificant compared to the measurement and theory
errors.

The results from the fits to data in region I in EFTg
are shown in Fig. The curves show the mean values
from the posterior distribution. The inset (also in Figs.
@[) shows the posterior distribution for the S-factor at
threshold, and indicates the median and the interval con-
taining 68% of the posterior. The solid (blue) curve is a
Gaussian fitted to the mean and s.d. of the distribution.
We use Eq. without the M1 contribution and present
the results up to NNLO. This calculation has a single

fitting parameter T§SP2) (or Z(sz)) at LO, and an addi-

tional parameter ZCP2) at NLO and NNLO, as shown in
Table [ We show the median and the interval that con-
tains 68% of the posterior distribution of the parameters.
The fitted parameter has a size consistent with the power

counting. The p-wave effective momentum rfPQ) has a
posterior that is normally distributed which is reflected in
the symmetric error bands. It shows about 30% variation
in going from LO to NLO. We expect this order of varia-
tion even in the low momentum region I fit. The EFT
result has a non-zero NLO contribution at threshold from
the S = 1 spin channel. Thus when one goes from LO to

NLO fits to the same data, the rgspz) has to be adjusted
for this NLO contribution. The NNLO contribution is
small as discussed earlier and so the variation from NLO
to NNLO parameters is small. The Z CP2) value is larger
than the ANC estimate to match the capture data, as
expected from Fig. [5l We find that the posteriors of the
scaling factors s;s are normally distributed and just show
their mean values and s.d.s in Table[[Il Their sizes are as
expected given the common-mode-error values. The data
sets that have higher S-factor values are scaled down and
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TABLE 1. The median and the interval containing 68% of the posterior of the EFT parameters. For comparison, the expected
sizes of parameters from the ANCs are: ZCT2) =19.6(8), ZCP) = 4.6(4), 2CP = 7.7(11). Lao is evaluated at p = pg.

the mixing with the 3P channel at this order in the ex-

40}

Theory zCP2) ZCP) ASEY azz2(fm) a12(fm) |L22|
EFT,s/EFT, I LO 35.870-3 — — — — —
EFT,/EFT, I NLO 24.6702 4.6%04 — — — —
EFTg I NNLO 23.870- 4.7154 — — — —
EFT, I NNLO 242707 461074 7.6711 —t16 23719 —
EFT, II LO 36.4704 — — — — 2.457002
EFT, II NLO 22.470-2 6.1752 — — — 3.0870-0%
EFT, 1I NNLO 26102 4.6%07% 7713 739 -8+ 2.947002

the ones that have lower S-factor values are scaled up in  ods [35] [61], [62].

the fits.

The results for EFT, in region I are shown in Fig. 120l(a) \ \

The curves show the mean values from the posterior dis- - Eﬁ ” INCL)O ' o . E‘gfnprggghe

tribution of the S-factor. We use Eq. , again without 100r 277 Eert INNLO ' » Hammache B

the M1 contribution. The momentum dependence in this o~ ' ¢ Baby

1% = 8ol | v Junghans BE1 ]
theory is the same as in EFTy up to NLO. At NNLO, > ' ZJUV_‘Qha”S BE3
initial state strong interactions in the s-wave necessitate 2 6o} \ Strieder

fitting parameters aso, aj2. We also fit ZCP) due to (,‘)': \

1

pansion. As discussed earlier, initial state s-wave strong
interactions are small and as a result ase, a1 are not
well constrained by capture data, Table [ However, it
also implies that these uncertainties have small effect on
the S-factor at threshold. The scattering length asy is
consistent with zero with large errors and the posterior
for ajo is bi-modal, however, the threshold S17(0) calcu-
lated from marginalization over all the fit parameters is
normally distributed as shown in the inset in Fig.

120 | |
1 1
100F - EFTg/EFT, I LO ! ; m Filippone
---- EFT4/EFT, INLO \ ® Hammache
—— EFT, INNLO 1 ? » Hammache B
~ 80t ! | ¢ Baby
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2 60 ! A Stri
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“ a0p 205 209 213 ' i:
S51(0) ' g
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FIG. 8. S-factor for “Be(p,v)®B in EFT,. Notation is the
same as in Fig. [7]

The EFTg I and EFT, I fits give very similar results.
If we compare the evidences for the two fits in region I at
NNLO, we get [61] In[P(EFT|D,H)/P(EFT4|D, H)] ~
0.7(3) that slightly favors EFTys I with 2 parameters
over EFT, I with 5 parameters. However, the non-zero
evidence is within the expected systematic error when
comparing evidence calculations by different NS meth-

0y

0
120/(b) ]
m Filippone scaled —— EFT, IINNLO
100} @ Hammache scaled

» Hammache B scaled

1

1

1

1

1

1
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1
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1
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FIG. 9. S-factor for "Be(p,v)®B in EFT, fitted in the mo-
mentum region II, p < 40.5 MeV. Notation is analogous to
the one in Fig.[7] The bottom panel shows scaled data which
is to be interpreted carefully as explained in the text.

Fig.[0]shows our fits, mean values of the S-factor poste-
rior, in region II of EFT, expression in Eq. including
the M1 contribution. We fit r§°P2), ZCP) ZCP) | gy
a1z and [Bog to capture data. The fitted values in Table |I|
agree with the power counting estimates. As in region
I fits of EFT,, the posterior for a5 is bi-modal. There
is a correlation with ags whose posterior also shows a
bi-modal distribution. Each modes are consistent with
la1a| ~ |aga| ~ 1/Q but the capture data is not suffi-
cient to determine these parameters more precisely. The
marginalized S17(0) is insensitive to this as seen in the
posterior in the inset of Fig.[9] The curves are generated
from the posterior of the fits instead of just the central
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TABLE II. Mean and standard deviation of the posterior of the scaling factors s; for the 7 data sets: Filippone [28], Ham-
mache [29], Hammache [30], Junghans BE1 [32], Junghans BE3 [32] [40] and Strieder [33], respectively.

Theory S1

S3

S4

EFT../BFT, 1 LO 1.03(3)
EFT,./EFT, I NLO 1.06(3)
EFT,. I NNLO 1.06(3)
EFT, I NNLO 1.05(3)
EFT, II LO 1.01(2)
EFT, II NLO 0.99(2)
EFT, II NNLO 1.03(2)

1.09(6)
1.05(6)
1.04(6)
1.05(6)
1.10(6)
1.01(6)
1.05(6)

1.04(3)
1.07(3)
1.07(3)
1.07(3)
1.05(3)
1.06(3)
1.08(3)

1.0(2)
1.01(2)
1.01(2)
1.01(2)
0.94(1)
0.99(1)
0.99(1)

0.94(1)
0.95(1)
0.95(1)
0.95(1)
0.94(1)
0.92(1)
0.95(1)

values. However, to give a rough estimate, in the bottom
panel of the ﬁgure we present an “artist’s : illustration of
the fit where we scaled the data by the values shown in
Table [l and added the errors from fits to the measure-
ment errors in quadrature. It gives a sense of what the
data sets would look like if they were scaled according to
the respective scaling factors s;s.

In Fig. we compare the EFT, II fit to the predic-
tions from Descouvemont using the Minnesota nuclear
interaction [71] that was used in the analysis in Solar
IT [3]. We scaled Descouvemont’s numbers by 0.859 to
match the EFT result at threshold. We also compare
our resonance M1 contribution to a R-matrix calculation
using the parameters used by Junghans et al. [40]. The
R-matrix curve was used in one of the Solar II analy-
ses [3]. The errors from the fits in the EFT results are
displayed. These comparisons show that the EFT results
have reasonable agreement with known results.

The S-factor at threshold for the various EFT fits are
shown in Table [[ITl We also list the first two energy
derivatives calculated numerically. These values are as
expected due to the peripheral nature of the capture reac-
tion, Eq. . The NLO result contains the s-wave cap-
ture without strong interaction in either channel and d-
wave capture from S = 2 channel. As a consequence the
derivative ratio S75(0)/S17(0) is close to the one expected
from Eq. expressed by Baye [42]. The same holds
for S7-(0)/S17(0). NNLO brings in short range interac-
tions in s-waves. However, as discussed earlier in Sec.[[V]
NNLO and NLO results are expected to be similar. A
direct calculation (using EFT, I NNLO parameters)
where we do not include any initial state strong inter-
action in EFT gives: S},(0)/S17(0) = —1.79(3) MeV 1,

1-(0)/S17(0) = 31.9(6) MeV~! in close agreement with
results with initial state strong interaction contributions
in Table Though we disagree with the treatment of
the short range interaction in Ref. [23] that goes beyond
mere power counting arguments about how the perturba-
tion should be organized—when they fit their form that
has at least 5 more parameters than ours, say at NLO,
to the same low energy data set it gives the same result
as ours which is mostly Coulomb capture. It is not un-
reasonable since we fit to the same data. However, we
speculate it is also indicative of the peripheral nature of
the capture process. From our power counting perspec-

120{a)
B Descouvemont '04 scaled
100l — EFT, Il NNLO

--=.- EFT, I NNLO E1

817 (eV b)

108(b)

EFT, I NNLO M1
Junghans R-matrix

80 °

10 20 30 40 50
p (MeV)

FIG. 10. S-factor for "Be(p, v)®B from EFT, II fits at NNLO.
The top panel compares the EFT result with numbers from
Descouvemont [71] scaled by a factor of 0.859. The dot-
dashed (black) curve is the EFT E1 contribution and the solid
(red) curve is the total EFT E14+M1 contribution at NNLO.
The bottom panel compares the EFT M1 numbers with the
R-matrix calculation from Junghans et al. [40].

tive, short range interaction even if put incorrectly, are
NNLO or higher effect. Thus when these short range in-
teraction couplings are confronted with capture data in
a parameter fit, these couplings take values such that the
dominant contribution is the one from the s- and d-wave
Coulomb capture without initial state strong interaction.

In Fig. we see a quadratic approximation using the
first two energy derivatives gives an accurate description
of the S-factor near the Gamow peak at E ~ 20 keV. The
first derivative values in Table [[T]] are comparable to the
ones from Solar IT [3]. Our second derivatives are about a
factor of 3 larger. However, we checked that reducing the



16

TABLE III. Si7 and its first two energy derivatives at Eo = 50 x 1073 keV. The first set of errors are from the fits. The second
set is the estimated LO 30%, NLO 10% and NNLO 3% EFT errors, respectively, from higher order corrections.

Theory S17 (VD) Si7/S17 (MeV™) S17/S17 (MeV™2)
EFT,./EFT, 1 LO 24.4(0.3)(7-3) —2.44(0.05)(0.73) 35.8(0.7)(10.8)
EFT,./EFT, I NLO 21.1(0.3)(2.1) —1.87(0.04)(0.19) 32.4(0.6)(3.2)
EFT,. I NNLO 20.7(0.3)(0.6) —1.79(0.04)(0.05) 31.9(0.6)(1)
EFT, I NNLO 20.9(0.4)(0.6) —1.82(0.08)(0.05) 31.9(0.8)(1)
EFT, II LO 24.8(0.3)(7.4) —2.44(0.04)(0.73) 35.8(0.6)(10.8)
EFT, II NLO 19.8(0.2)(2) —1.91(0.03)(0.19) 32.7(0.5)(3.3)
EFT, II NNLO 21.2(0.3)(0.6) —1.89(0.04)(0.06) 31.9(0.6)(1)

1.25 e Direct calculation far [74], [75] to invalidate the power counting. We ex-
1200 - EFTgs | NNLO scaled 1.10 pect similar results for “Be(p,v)®B system. The recom-

R TR :I",‘\I",‘\ILI%SSCQE‘LE'_OOESO mended value from Solar 1T [3] is S17(0) = 20.8(16) eV b.
o 118 ’ The 3 EFT evaluations of S17(0) at NNLO are consis-
AL R S S b tent with this value and with each other within the er-
\v;1 05 } {_ """""""""""""""""" LSRRI rors. The current calculation has a smaller but compa-
« wold - g ‘} ------------------ { __________ rable theory error than the earlier evaluation [3]. The

: i R - ___ S-factor has been measured near the Gamow peak at
0.95 - Borexino [76] S17(197¢keV) = 19.0(18) eV b with an ex-
0 5 10 15 20 25 30 trapolated value S17(0) = 19.5(19)eV b. The EFT cal-
E (keV) culations are in agreement with this result as well. Av-
eraging the 3 fits, adding the fitting errors in quadrature
) o and then including the estimated NNLO theory error in
FIG. 11. Taylor series approximation of Si17(F) up to the

quadratic term in E. The dot-dashed (black) curve is the
EFTgs I NNLO fit normalized to 1.1 times the threshold value,
the dashed (blue) curve is the EFT, I NNLO fit normalized
to 1.05 times the threshold value, and the long-dashed (red)
curve is the EFT, II NNLO fit normalized to the threshold
value. The data-points (red circles) are the numerical evalu-
ations scaled appropriately for the three fits.

second derivatives by a factor of 3 has very little effect
on the Sy7 value at the Gamow peak. We still get the
curves well within the errors in the numerical evaluations
indicated in Fig. For example, reducing S7,(0)/S17 ~
30MeV 2 to around S, (0)/S17 ~ 10 MeV ~2 changes the
relative contribution of the quadratic term to S-factor at
E = 30keV from 1.4% to 0.5%, respectively. We tabulate
some S-factor values at various momenta (energies) in
Table [[V] of Appendix

We find the S17(0) posterior to be normally distributed
in the fits, and therefore we just show the mean and
s.d. of the distribution in Table [T} The theory error
is estimated to be about 3% in the NNLO E1 capture
calculation and about 30% in the LO M1 capture cal-
culation. At threshold, M1 contribution is negligible
so we estimate theory errors as 3% from the E1 con-
tribution. The error associated with the s-wave scat-
tering lengths aél), a(()2 can also be included in this
3% estimate using Eq. as a guideline. Within the
context of Bayesian analysis, theory errors can be es-
timated [(4, [75]. This can be addressed in the future.
There does not seem to be a disagreement with the con-
servative EFT error estimates in the systems studied so

quadrature to that gives S17(0) = 21.0(7) eV b.

VI. CONCLUSIONS

We present a model independent calculation of the
"Be(p,v)®B using halo EFT. The S-factor for this re-
action at threshold is estimated to a precision of 3%
from the combined experimental and theoretical error.
We present EFT calculations with and without the ex-
cited "Be* core. The dominant E1 contribution is sup-
plemented by the M1 capture through the 17 resonance
state of 8B for fitting the theory expressions to capture
data over a wider energy region including the resonance.

The E1 capture was calculated in a theory without
(EFTgs) and also with (EFT,) the excited "Be* core
as an explicit degree of freedom. In the latter theory,
the "Be* core was explicitly accounted for in a coupled-
channel formalism [25-27]. Similar to the Li(n,~)3Li
case [27], we show that both theories have the same mo-
mentum dependence up to NLO. They differ in the in-
terpretation of the final bound state in terms of short
distance physics, c.f. Eqs.f. At NNLO, the two
theories differ in their momentum dependence due to ini-
tial state strong interactions. Our formal expressions for
E1l capture disagree with the ones from previous halo
EFT studies [21H24] in similar ways as shown for the
"Li(n,~)8Li case [27]. The M1 contribution is negligible
except near the resonant energy of the 17 excited state
of 8B. We include the LO M1 capture which is identi-
cal in both the theories, and has negligible effect on the
S-factor at threshold.



Based on the analysis of Sec.[[V] with particular atten-
tion to the relatively small contribution of the channel
with spin § = 1 compared to S = 2, we establish the
following power counting. The LO contribution consists
of direct (i.e., without initial state strong interactions,
see for example, Fig. [I) E1 capture from the initial 55,
state. NLO corrections come from direct E1 captures
from the initial d-wave in the spin S = 2 channel and ini-
tial s-wave in the spin S = 1 channel. Initial state strong
interactions enter only at NNLO in both channels—the
loop contribution from Fig. [2]due to rescattering scales as
ao @*/A with Coulomb interactions [34] [66H68], in con-
trast with the non-Coulomb case [27]. In the S =1
spin channel, the unaturally large ag ~ 1/Q is compen-
sated by a Q/A suppression of this channel relative to
S = 2, which has a natural ap ~ 1/A. Another NNLO
correction comes from direct E1 capture from initial d-
wave in the spin § = 1 channel. That makes evident
the peripheral nature of this capture reaction. Two-
body current contribution in E1 capture is estimated
to scale as koagLg1 [34, B5] with photon momentum
ko = (p® ++2)/(2n) ~ Q3/A2. In the S = 2 channel the
s-wave scattering length scales as ag = a((f) ~ 1/A. Thus
two-body current contributes at next-to-next-to-next-to-
leading order (N3LO) as Q3/A3. In the S = 1 channel,
the scattering length is larger ag = a(()l) ~ 1/Q so the
two-body current contributes as Q?/A2. However, this
spin channel starts one order higher in perturbation thus
making the two-body current contribution also a N3LO
effect. The effective range corrections to s-wave initial
state strong interactions are also a N3LO effect. M1 cap-
ture is included at L.O, and mostly contributes around the
17 resonance energy ~ 600keV. Thus the estimated the-
ory error at threshold is dominated by the Q3/A3 ~ 0.03
correction at N3LO from the E1 transition.

The present calculation has only 2 free parameters up
to NLO when fitted to capture data below 500 keV. At
NNLO, EF Ty still has 2 fit parameters and EFT, has 5.
In contrast, previous EFT calculations [23] 24] need 7 (9
with unconstrained s-wave scattering lengths) at NLO
for capture below 500 keV. Their power counting were
set to include short-distance two-body currents and ef-
fective ranges for E1 transition, a scenario slightly diffi-
cult to conciliate with the extremely peripheral nature of
this reaction. We emphasize that our disagreement with
previous EFT calculations is not about just the power
counting but also about the construction of the strong
interaction operators themselves. We include an extra
two-body M1 current when analysing capture data above
500 keV to describe the 17 resonance contribution.

We constrain our halo EFT parameters at each or-
der with “modern” direct capture data [28H33] using
Bayesian analysis. That allows us to take into account
common-mode-errors due to normalization of different
data sets in a straightforward way. The fits were sep-
arated into two different energy ranges. Region I com-
prises data with energies £ < 500keV, thus, below the
1% resonance energy Er = 630keV. Both versions of
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halo EFT, EFT, and EFT,, were fitted in this region.
There is no strong evidence in the capture data to prefer
one theory over the other in this energy region. In other
words, both EFT, and EFTgs describe data equally well
at £ < E, though EFTg does it with 3 fewer parame-
ters. Region II includes data with £ < 1MeV. In region
II, which includes energies above the threshold for the ex-
cited "Be* core, only EFT, is fitted, with the addition of
the M1 capture, Eq. . Figs. [7H9|present our results for
S17 as function of the c.m. momentum, confronted with
data. The fitted EFT parameters summarized in Table[l]
are consistent with the ones fixed from the ANCs. More
importantly, the parameter estimates are consistent with
the power counting. Table [IT]] presents our results for
S17(0), with the corresponding NNLO posterior distri-
butions given by the insets in Figs. S17 for a range
of momenta (energies) are included in Table of Ap-
pendix [B]

The non-resonant EFT results agree with the evalua-
tion by Descouvemont [71] once it is scaled to match our
S-factor at threshold. The resonant contribution in the
EFT also agrees with the R-matrix evaluation by Jung-
hans et al. [40]. We provide the first two energy deriva-
tives of the S-factor for a low-energy Taylor series extrap-
olation to the Gamow peak energy. The NNLO EFT
result for S17(0) averaged over the three fits (EF Ty I,
EFT, I, and EFT, II) gives S17(0) = 21.0(7) eV b,
in agreement with the Solar II recommended value of
20.8(1.6) eV b [3] but with a much reduced theory error.
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Appendix A: Projectors

The following are from Ref. [27, 39] that we include for
reference. For each partial wave we construct the cor-
responding projection operators from the relative core-
nucleon velocity, the spin-1/2 Pauli matrices o;’s, and



the following spin-1/2 to spin-3/2 transition matrices

(A1)

which satisfy

2 7
SiSJT = 55’7 — 3€iikOh

- 3 1, /2 (372 i 3/2
S1S; = 704 - 6{Jf 2 )}+§eijkj,§ ) (A2)

where Ji(3/2)’s are the generators of the spin-3/2. We
construct the Clebsch-Gordan coefficient matrices

iV 3
F; = _%O—ZSZ’;

! UQ(UiSi + O’jSZ‘),

Qij = Y (A3)

for projections onto spin channels S = 1 and S = 2,
respectively. Then in coordinate space the relevant pro-
jectors that appear in the Lagrangians involving the "Be
ground state in Egs. , are [20 [39]

P = F

VR
55
P)i(j 2= Qi

— —
pCP . 3, (V - V) Ciny
Y

2 me My
vV Vv
CPe) _
Pz'j 2) — \/gFm (Tm - mp> Rmyij )
y
— —
e\ [2a. (v . V> |
me  my |
1 vV V¥
5P
Pi(j Y = EQW <mc - mp>z Tooyzij - (A4)

The tensors
1 2
Rijzy - 5 6116]y + 5iy5jw - géz](swy ’
1
Twyzij = 5 (exzifsyj + €xzj5yi + 6yzi(savj + eyzjfsm'); (A5)

ensures total angular momentum j = 2 is picked.
The new projectors to describe the interactions in
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Eq. with the excited "Be* core are

PP — i\/ga o V.V R (A6)
CP) _ i 30 [ L - Y
J 2727 e~ m, ) wyij

For the external states we introduce the photon vector

(557)) and ground state 8B 2% spin-2 (g;;) polarizations,

obeying the following polarization sums [78] [79],

% kik;
ZEEV)EE_’Y) _ 6ij _ kz] ,

pol.

« _ Rijim
§ : €ij€im = 5 .

pol. ave.

(A7)

Appendix B: Numerical S-factor values

We tabulate the numerical values of the S-factor at
some momenta (and energies) in Table Near the res-
onance momentum pr = 32.15 MeV where the M1 con-
tribution is noticeable, we provide a finer momenta mesh
points. For the EFT I NNLO and EFT, I NNLO fits,
the S-factor only contains contribution from E1 tran-
sition and they are applicable below pr. For EFT, II
NNLO fit, we list the E1 and M1 contributions sepa-
rately. We present the central values of different quan-
tities to 4-significant figures. The c.m. momentum p is
converted to c.m. energy F = p?/(2u) with pu ~ 820.49
MeV.

Appendix C: Coulomb Integrals

The combination B(p) + Jo(p) that appear in Fig.
can be evaluated as

3 3

poip® =y

B(p) + Jo(p) = =L — L
(p)+ 0(p) 3 p2+’}/2
el
2

+ ke B'(p) + AB(p)

5
2H (np) + 2vE — 3 + Indr (C1)
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TABLE IV. S-factor as a function of c.m. momentum/energy from the NNLO Bayesian fits. Only the mean and the standard
deviation of the posterior distribution of Si7 are shown. Theory errors are not included.

p (MeV) E (keV) EFT, IEL Si7 (eVb) EFT,1El Si; (eVb) EFT, IIEL Si7 (eVb) EFT, II M1 Si7 (eVb)
0.2864 0.05 20.72(27) 20.92(39) 21.21(27) 0.000 180 4(34)
2.3 3.224 20.60(27) 20.81(39) 21.09(27) 0.000203 1(38)
4.3 11.27 20.34(27) 20.54(38) 20.81(27) 0.000 261 7(49)
6.3 24.19 19.99(26) 20.17(37) 20.43(26) 0.000 373 7(69)
8.3 41.98 19.61(26) 19.79(35) 20.01(25) 0.000 576 3(100)
10.3 64.65 19.28(25) 19.43(34) 19.63(25) 0.000941(17)
12.3 92.19 19.01(25) 19.16(32) 19.31(24) 0.001 604(29)
14.3 124.6 18.86(25) 18.98(30) 19.09(24) 0.002826(51)
16.3 161.9 18.81(24) 18.91(28) 18.97(23) 0.005 131(92)
18.3 204.1 18.88(25) 18.95(27) 18.95(23) 0.009 605(170)
20.3 251.1 19.06(25) 19.11(25) 19.03(23) 0.01865(33)
22.3 303 19.36(25) 19.36(25) 19.20(23) 0.03807(68)
24.3 359.8 19.76(26) 19.72(25) 19.45(23) 0.083 76(150)
26.3 4215 20.26(27) 20.18(28) 19.77(23) 0.2086(37)
28.3 488.1 20. 87(28) 20.72(33) 20.16(24) 0.6578(120)
29.05 514.3 — 20.31(25) 1.134(20)
29.8 541.2 — — 20.47(26) 2.191(39)
30.55 568.7 — — 20.63(31) 5.134(91)
31.3 597 — — 20.80(57) 17.48(31)
31.55 606.6 — — 20.85(87) 30.04(53)
31.8 616.2 — — 20.91(150) 53.75(95)
31.95 622.2 — — 20.95(190) 72.56(130)
32.15 630 — — 20.99(220) 84.3(15)
32.3 635.8 — — 21.02(200) 74.65(130)
32.55 645.7 — — 21.08(130) 47.04(83)
33.05 665.6 — — 21.19(60) 18.41(33)
33.55 685.9 — — 21.31(40) 9.402(170)
34.05 706.5 — — 21.43(33) 5.777(100)
35.3 759.4 — — 21.73(29) 2.620(46)
36.55 814.1 — — 22.04(28) 1.617(28)
37.8 870.7 — — 22.38(29) 1.167(20)
40.3 989.7 — — 23.10(31) 0.7813(140)
42.3 1090 — — 23.75(34) 0.6491(110)
44.3 1196 — — 24.46(37) 0.5788(100)
46.3 1306 — — 25.24(40) 0.5411(93)
48.3 1422 — — 26.10(44) 0.5231(89)
50.3 1542 — — 27.03(49) 0.5181(88)

The function B’(p) is given by the double integral

/ _# X 1 .
B(p) = 67T2(p2+72)/0 de | dy\/mm

X (xp2 In %
L=vC

@wﬂ+u—ywwx—wﬂ]

i .
+p°In | —(—yp® — (1 —y)p*/z — i0")
k2,

+2+% In

| 4k2

+721n {4kj2 (yy

7T@f+u—wfm—wﬂ]

~-gptfe-io)]) e

which is reduced to a single integral before evaluating
numerically. The function AB(p) is obtained from

Bab(p)

where

and

(B

G(C})(—B; r’,r)]
,r/

:7§/d3r G(l)( B;r')r)
1

r

" 5‘G(C+)(E;r,()) Ty

r’'=0

Gg)(—B;r, r’)]
T./

r’=0

or, r’ (C3)

r’'=0

_ _ﬂr (2+kc/v) Wﬁkfc’%(Q’W‘) , (C4)

6mr

1% .
=——1T(1
,’I",O) A ( +7’np)

W_iy, 1 (=i2pr). (C5)



The integral Bg,(p) is divergent at r = 0. However,
when combined with the contribution from J(p)dap it is
finite. Thus we make the substitution (ry/r)[0/0r,] =
(rary/72)[0/0r] — (8ab/3)[0/0r] in the integral and ac-
cordingly Buy(p) = B(p)das. The finite piece AB(p)
is obtained numerically from B(p) after subtracting the
zero and single photon contributions i.e. removing terms
up to order o? [34].

The 1-loop magnetic moment contribution from Fig.
(c1), (¢2) is given by the integral

Cos )/dgm a3l d3q
ab pa’y - (27_[_)3 (271_)3 (27_‘_)3 maQb

X Gc(fBamal)GC(Ealvq)
_ 9/d3rTaTb GS)(—B,T/,T) G(C})(E,r, r'")

2 / "

x/ drW_we
0 v

T T T r’'=0=r""
1 1
_as [ gpnGE B ) GE (B )
o ab " r! r!’ r’=0=r"’
.2
YD . ko
. - F(2+mp)r(2+7)

(29) W, 3 (—i2pr)

= C(p,7)0ab -

N

(C6)

20

The function C(p,~) is evaluated as

A 1 ip3f'y3
_ 2
Clp.7) =n {27T+371-p2—|—72
kc/LQ 1 2 A2
- 4= —In =2
3r | D4 37PNz

+kcC'(p,v) +AC(p,v), (C7)

and

, 2 oot z 1
c - | oar | dy)—
#,7) 67T2(p2+72)/0 x/o Wiz yvi—y

y [pz Lot —a ;]i/z)pQ/x —i0"
JEIN —yp® + (1 —453)72/9: —i0"
+7%In ¥y’ — (1 —41)3292/33 —i0*
et a _41)272/56 —0T(oy)
F

AC(p,7) is evaluated from C(p,v) by subtracting the
zero and single photon contributions similar to AB(p, ).
The divergences in C(p, ) are regulated by the two-body
current coupling L. The regulated C(p,~) is defined as

_ pﬁipSf’ﬁ
3m p2? + 2

C(p,v) +kcC'(p,v) + AC(p, 7). (C9)
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