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ABSTRACT 
A longstanding goal of learner modeling and educational data min-
ing is to improve the domain model of knowledge that is used to 
make inferences about learning and performance. In this report we 
present a tool for finding domain models that is built into an exist-
ing modeling framework, logistic knowledge tracing (LKT). LKT 
allows the flexible specification of learner models in logistic re-
gression by allowing the modeler to select whatever features of the 
data are relevant to prediction. Each of these features (such as the 
count of prior opportunities) is a function computed for a compo-
nent of data (such as a student or knowledge component). In this 
context, we have developed the “autoKC” component, which clus-
ters knowledge components and allows the modeler to compute 
features for the clustered components. For an autoKC, the input 
component (initial KC or item assignment) is clustered prior to 
computing the feature and the feature is a function of that cluster. 
Another recent new function for LKT, which allows us to specify 
interactions between the logistic regression predictor terms, is com-
bined with autoKC for this report. Interactions allow us to move 
beyond just assuming the cluster information has additive effects to 
allow us to model situations where a second factor of the data mod-
erates a first factor. 
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1. INTRODUCTION 
Quantitative models of learning, used to predict performance and 
make pedagogical decisions, have a long history [1; 2]. To do this 
prediction effectively, models typically assign sets of problems or 
items specific skill tags (often called knowledge components, or 
KCs). Having such an identification of knowledge components al-
lows a system to monitor mastery of skills. The matrices 
representing these item assignments to skills are called Q-matrices 
[4]. Because the act of tracing student learning is so important for 
pedagogy, the assignment of items to KCs is crucially important to 
understand for systems to make pedagogical choices. Without such 
an assignment, a system would conceivably need to schedule all 
practice items for practice to ensure mastery, since there would be 
no way to make inferences among the items belonging to a KC. In 

other words, a higher quality domain model should presumably re-
sult in better pedagogical decisions in a system due to improved 
ability to make inferences about other items based on sampling 
items for each KC. This paper is about improving these critical do-
main models, a tradition that has included much prior work [3; 5; 
17; 19; 21; 23; 27].  

In this continuing quest for a richer quantitative model, we also in-
troduce a tool for exploring interactions of the simple and complex 
features LKT provides for the learner. The idea of explicitly includ-
ing statistical interactions in logistic regression learner appears to 
be new and is related to the issue of multiple knowledge component 
labeling (where performance for an item has 2 or more KCs in-
volved), which it can be used to model. When an item or step has 
multiple knowledge components [15] it implies that the prediction 
for that item or step depends on both in some way but the function 
for combination is never clear without expert prediction or empiri-
cal evidence. Interactions allow the modeling of conjunctive 
situations. If an interaction coefficient between the features for 2 
KCs has a positive sign, that implies that the influence of the com-
bination of skills is super-additive, which models a conjunctive 
relationship (where you need both KCs to do very well). In contrast, 
if the interaction coefficient is negative that implies a compensatory 
situation, where the combination is less than additive, implying the 
skills can in some way substitute for each other. Finally, the lack of 
an interaction (with interaction coefficient 0) implies that there are 
2 independent routes to success, and being good at one route does 
not compromise or enhance your ability to perform given the other 
route. While these coefficients do not perfectly explain why the 
KCs combine, they are flexible in capturing many possible ways 
the skills may combine. 

2. LOGISTIC KNOWLEDGE TRACING 
2.1 Overview 
Logistic knowledge Tracing (LKT) is an R package for creating 
learner models with logistic regression [25]. LKT is a formalized 
approach to creating logistic regression models that subsumes 
many other models and provides flexibility that allows better deter-
mination of an accurate model than off-the-shelf approaches like 
the Additive Factors Model (AFM), Instructional Factors Analysis 
(IFA), Performance Factors Analysis (PFA), PFA-Decay or Re-
cent-PFA (R-PFA) [6; 8; 13; 14; 16; 22; 26], though it can replicate 
these models. 

2.2 AutoKC 
The new “autoKC” facility of LKT uses covariance clustering, 
which is a method to find item relationships using data on how 
starting KC performances covary. The first step of this method is 
to convert the performance for each participant into the raw 
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probabilities for each of the KCs for each participant and sum these 
results. Missing values are replaced by the mean for the KC. This 
large matrix is normalized to logits and screened for outliers and 
then multiplied by its transpose to produce a square covariance ma-
trix that provides a row/column for each starting KC that 
characterizes how its performance covaries across participants rel-
ative to all the other items. The final step is to cluster these 
covariance vectors (we use partial medoids here, using the pam R 
package, with default Euclidean distances), and then label the data 
with a new column that represents the cluster membership. 

Developed by Pavlik, Cen, Wu, and Koedinger [23], covariance 
clustering is a method to describe how each item or existing KC in 
a domain model is related to all other items or KCs (using a measure 
of conditional log odds to represent covariance). This method com-
putes a vector for each item representing the conditional probability 
table for success and failure for the items/KCs relative to all other 
items/KCs. The pairwise relationships between each vector are 
similar to the relationships inferred in POKS (Partial Order 
Knowledge Spaces, [9; 10]), a method related to Falmagne’s work 
[11; 12]. An advantage of covariance clustering is that it character-
izes each pairwise relationship between items/KCs in terms of the 
relationship with all other items/KCs. Pavlik et al. [23] used clus-
tering to establish how to group items by using this KC/item 
relational vector as a set of features. We updated this method in a 
recent publication [20]. AutoKC has the advantage of sharing the 
speed of clustering and matrix multiplication methods, so it pro-
vides very few disadvantages beyond the additional complexity of 
implementation. 

2.3 Applying autoKC in the LKT 
Application of AutoKC in LKT requires the specification of how 
the autoKC column is used as a predictor. Here we apply autoKC 
in the context of simple (1 coefficient for slopes of successes for 
each KC and 1 coefficient for failures) and full (coefficients for all 
KC for successes and failures) versions of Performance Factors 
Analysis (PFA). We add versions of autoKC to these models and 
also apply autoKC by itself with only student and KC intercept val-
ues to model basic student knowledge and KC difficulty. 

First, we investigate autoKC by itself. In this case, autoKC can be 
used to specify any number of clusters between 2 and the total num-
ber of KCs minus 1. A value of 2 would mean that autoKC was 
used to relabel all of the KCs as belonging to cluster 1 or cluster 2. 
Using this new “autoKC” with an LKT feature (such as the PFA 
success or failure count features), means that the effect of successes 
will now apply within cluster, so a success for cluster 1 will affect 
all items/KCs in cluster 1. In contrast, a value of N-1 (1 less than 
the actual count of KCs) means that the most similar two KCs will 
be clustered, and all the other KCs that remain will be in cluster 
with only 1 of the previous KCs (i.e., they are not clustered). 

Then we investigate autoKC added as an addition to the PFA model 
for the original KCs. In this case, we have the PFA model, but we 
also have additive cluster-level effects. So, if k (number of clusters) 
is set to 2, like in the prior example, it basically says that while there 
are KCs there are also relationships between the KCs (the autoKC). 
A value of 2 indicates there are two broad groups of KCs (perhaps 
they are word problems and numeric problems) that share some 
base aptitude (for example, one group may depend on a reading 
comprehension skill and the other math skill). 

2.4 Applying interactions in LKT 
We also apply interactions among the KCs. In this introduction to 
interactions in logistic knowledge tracing, we test a basic variant of 

PFA which, instead of only counting the success and failures for 
each KC, also counts the successes and failures for students (faculty 
KC) and for the autoKC. We look at these features additively, but 
we see the most advantage in various interaction situations. To sim-
plify this analysis, we always look at the interactions of success (or 
failure) for the KC with autoKC or with the student (faculty KC). 
We only look at these 2 interactions:(successes for KC X successes 
for autoKC or faculty and failures for KC X failures for autoKC or 
faculty. 

We apply these interactions in the context of autoKC, but the inter-
actions tool is independent of the autoKC tool. With an interaction 
it is possible to explore a new space of logistic regression models 
that may capture student data better than the simple addition of 
terms. In particular, interactions may also be excellent to capture 
the differential predictive accuracy of features in different practice 
contexts or to combine features to look at how levels of one feature 
(e.g., retention) are moderated by another feature (e.g. practice 
quantity). 

2.5 Model contrasts 
To understand the function, effect, and/or lack of effect of autoKC 
and component interactions, we have selected a number of possible 
models of practice and compared them. This helps us see the rela-
tive effect of each of the model configurations so that we can 
understand the autoKC and interaction functions in LKT. The no-
menclature for these models is as follows. All of the models are log 
PFA corresponding to the hypothesis that there are decreasing mar-
ginal returns to 1+successes or 1+failures according to a natural log 
function [7; 18]. IRT corresponds to a baseline without PFA terms 
(only containing KC difficulty and student ability). Faculty corre-
sponds to a very simplistic theory of knowledge where each student 
has 1 KC for all items, this serves as a baseline as it was used in 
prior research [16]. autoKC refers to a case where a KC is com-
posed by the autoKC algorithm. Simple and full are described in 
Section 2.3. When a model combines KCs with autoKCs (by having 
2 success predictors and 2 failure predictors (the final 6 models) 
these combinations are listed as additive or interactive 

3. DATASETS 
3.1 MATHia 
The Carnegie Learning MATHia Course 2 dataset was CMU 
Datashop dataset #4845, which was a sample of 500 students from 
the larger MATHia 2019-2020 dataset at the same location. MA-
THia Course 2 is part of a middle school math curriculum. This 
data was from the Modeling Two-Step Expressions workspace and 
included 119,379 observations. The 9 knowledge components in 
this workspace are shown in Tables 1 and 2. 

3.2 Cloze 
The cloze statistics cloze dataset was Memphis Datashop #1465 
and included 58,316 observations from 478 participants who 
learned statistical concepts by reading sentences and filling in miss-
ing words. Participants were adults recruited from Amazon 
Mechanical Turk. There were 72 KCs in the dataset (some KCs 
with different feedback conditions were combined since the content 
was identical), derived from 18 sentences, each with 1 of 4 different 
possible words missing (cloze items). The number of times specific 
cloze items were presented was manipulated, as well as the tem-
poral spacing between presentations (narrow, medium, or wide). 
The post-practice test (filling in missing words) could be after 2 
minutes, 1 day, or 3 days (manipulated between students). The 
stimuli type, manipulation of spacing, repetition of KCs and items, 



and multiple-day delays made this dataset appropriate for evaluat-
ing model fit to well-known patterns in human learning data (e.g., 
substantial forgetting across delays, benefits of spacing).  

4. MODEL COMPARISONS 
The reader should keep in mind that the number of possible models 
in LKT is practically limitless, so selecting comparisons was done 
with a focus on improving understanding of the possibilities rather 
than looking for the best fit model. We do learn about the 
knowledge models for both datasets, in addition to the properties of 
autoKCs and interactions, but much of this knowledge is qualitative 
in this first analysis of these features. While we do cross-validate 
our comparisons results, it seems true that the methods here are 
very highly dependent on the domain analyzed (as the results 
show). Nevertheless, we do see consistent improvements in both 
model complexity and fit that will make these methods important 
to investigate further.  

Table 1. autoKC assignments for k=2 and 3. 

Model Equation 

IRT intercept i + interceptk 

Faculty intercepti + interceptk + successesi

+ failuresi 

Log Full autoKC intercepti + interceptk + $successesaKC

+ $failuresaKC 

Log Simple PFA $intercepti + $interceptk + successesk

+ failuresk 

Log Full PFA intercepti + interceptk + $successesk

+ $failuresk 

Log Full PFA full 
autoKC additive 

intercepti + interceptk + $successesk

+ $failuresk

+ $successesaKC

+ $failuresaKC 

Log Full PFA Fac-
ulty additive  

intercepti + interceptk + $successesk

+ $failuresk

+ $successesi

+ $failuresi 

Log Simple PFA 
Faculty interac-
tive  

intercepti + interceptk + successesk

+ failuresk

+  successesi

+  failuresi

+ successesksuccessesi

+ failureskfailuresi 

Log Simple PFA 
full autoKC inter-
active 

intercepti + interceptk + successesk

+ failuresk + $successesaKC + $failuresaKC

+ successesk$successesaKC

+ failuresk$failuresaKC 

Log Full PFA sim-
ple autoKC 
interactive 

intercepti + interceptk + $successesk

+ $failuresk + successesaKC + failuresaKC

+ $successesksuccessesaKC

+ $failureskfailuresaKC 

Log Simple PFA 
simple autoKC in-
teractive 

intercepti + interceptk + successesk

+ failuresk + successesaKC + failuresaKC

+ successesksuccessesaKC

+ failureskfailuresaKC 

Table 1 shows the model names and the equation notation. Inter-
cepts refer to fixed coefficients for each level of the factor 
subscripted. i, k and aKC represent the indices for student, KC and 
autoKC. The $ is used to represent non-intercept additive factors 
which are fit with 1 coefficient for each level of the factor (i.e. 1 
coefficient per KC) instead of a single coefficient for all levels. 

4.1 Fit for different applications of autoKC 
with and without interacting KCs  

4.1.1 MATHia results 
Figure 1 shows the surprising conclusion first of all that the 9 KC 
domain model is not better than a simple faculty model. This 
doesn’t imply that the KC model is inherently incorrect, because 
we can also see that the Full KC model with the faculty model 
added actually does substantially better. So, the main implication 
here is that there is some additional student domain learning beyond 
just the independent KCs. Figure 1 shows no particular advantage 
for autoKC, but the simple PFA simple autoKC interaction model 
does do particularly well given its small number of parameters (just 
6 added to the IRT model). 

 
Figure 1. IRT is a baseline of .1726 R2 using 5-fold unstratified 
crossvalidation. Graph shows improvement in crossvalidated 
R2 values. autoKC set k=2. 

 
Figure 2. IRT is a baseline of .1581 R2 using 5-fold unstratified 
crossvalidation. Graph shows improvement in crossvalidated 
R2 values, autoKC set to 40. 

4.1.2 Cloze results 
For the cloze data in Figure 2 we see a somewhat different pattern. 
While it is clear the faculty (1 KC) model is better than IRT, it isn’t 
very good even compared to the equally parameterized (1 parame-
ter for success and 1 for failures in both case) simple PFA model, 



which uses the 72 KCs. This implies strong independence of the 
items which we also see confirmed in Figure 5. When autoKC was 
set to 40 KCS we see that the fit for 72 KCs is not approached, 
which shows the independence of the KCs again. Again, we see that 
the simple PFA simple autoKC interaction model does particularly 
well given its small number of parameters. We suspect this is due 
to the how the interaction terms provide flexibility in the shapes of 
the learning curves. 

4.2 Fit for all levels of k for each dataset 
4.2.1 MATHia results 
Figures 3 and 4 show respectively the results for different K for the 
3rd (Log Full autoKC) and 6th  models in Figures 1. The Figure 3 
result suggest no benefit for the fit for the Log Full autoKC model 
at any k, the number of clusters.  Comparing Figure 1 Log Full KC 
shows an advantage for the original model with 9 KCs at R2= 
.02191.) 

 
Figure 3.  Crossvalidated fit for Log Full autoKC model as 
function of k. Dashed line is a randomly sampled autoKC com-
parison. Solid line is the 3rd model. 

In contrast, when autoKC is added on top of the 9 KCs we do see 
some indication that 2 or 3 autoKC clusters provides an additive 
advantage on top of Log Full PFA. 

 
Figure 4. Crossvalidated fit for Full PFA with additive autoKC 
as a function of k. k=2 or k=3 provides an optimal advantage 
over random. Dashed line is a randomly sampled autoKC com-
parison. Solid line is the 6th model. 

In a case like this is interesting and perhaps useful for understand-
ing the model to see how autoKC is grouping the skills by 
inspecting the autoKC assignment matrix (which is available from 
the LKT R function). Table 2 presents the assignment matrices 

found for 2 and 3 clusters in Figure 4. On the surface it seems the 
groupings are meaningful, but it would take further analysis of the 
MATHia system to draw strong conclusions, furthermore these re-
sults are likely to be noisy unless very large datasets are used as 
input.  

Table 2. autoKC assignments for k=2 and 3. 

k=2 k=3 original KC 

1 1 define variable-1 

1 1 enter given, reading numerals-1 

1 1 enter given, reading words-1 

2 2 find y, any form-1 

2 2 identifying units-1 

2 3 write expression, negative intercept-1 

2 3 write expression, negative slope-1 

2 3 write expression, positive intercept-1 

2 3 write expression, positive slope-1 

 

4.2.2 Cloze results 
Figure 5 shows the third model Log Full autoKC across the 70 set-
tings of k. We see that there is always loss of fit compared to the 
original KCs, but by comparing the random and model KC assign-
ments lines in the figure we can see that starting around 7 KCs until 
about 27 KCs there is some indication that the clustered groupings 
are better than random. This figure suggests the items are highly 
independent since more clusters always helps. 

 
Figure 5. Crossvalidated fit for Log Full autoKC model as func-
tion of k. Dashed line is a randomly sampled autoKC 
comparison. Solid line is the 3rd model. 

The pattern in Figure 6 shows more potential for the 6th model than 
Figure 5 does for the 3rd model, since we can see some advantages 
for the autoKC model terms when added to the PFA model. Lower 
values of k result in larger clusters with weaker associations be-
tween the items in the clusters, and thus less gain for each cluster. 
Middle values of k result in smaller clusters of more similar items 
resulting in more benefits. However, as k becomes very high the 
autoKC produces many singleton clusters and singleton clusters do 
not improve fit, since the input data becomes equivalent to Full 
PFA, which was already included in the model. 



 
Figure 6. Crossvalidated fit for Full PFA with additive autoKC 
as a function of k. k between 37 and 45 provides an optimal 
advantage over random. Dashed line is a randomly sampled au-
toKC comparison. Solid line is the 6th model. 

5. LIMITATIONS AND FUTURE WORK 
The simplification of the models here was a limitation of the work, 
and also reveals future work to refine the usages of these new LKT 
methods. One simplification was that we used the PFA log of suc-
cess and log of failures predictors for each KC and choose to use 
those as the basis to look at autoKC and interactions. On the other 
hand, consider that we could have computed autoKC for the 
logitdec feature (a recency weighted function of the logit of perfor-
mance) and that would have been an elegant way to model each of 
the clusters as a knowledge domain and track aptitude in that do-
main. Rather the current model we presented with log PFA 
predictors more closely represents a model of transfer within the 
cluster. Of course, there is also the limitation of covariance cluster-
ing itself, which is nondirectional, and could cluster either due to 
transfer of learning or due to shared aptitude (a third variable like 
prior knowledge might drive correlation). 

Another limitation of this paper was our focus on introducing the 
two mechanisms together. While this paper nicely illustrates inter-
esting interactions with autoKC, many interactions are possible, for 
example, interactions between group factors (such as the condition 
of an intervention experiment), student factors (such as the ethnic-
ity or prior knowledge), item factors (such as word frequency or 
amount of practice) and trial factors (such as multiple choice or fill-
in-the-blank/cloze). This limitation of the paper hides the enormous 
flexibility that interactions allow the modeler in LKT. 

The models we showed also only had 1 or 2 layers of component 
predictors on top of the IRT terms. For example, our 2-layer models 
used the original KC layer and the autoKC layer. However, it is 
certainly possible to consider 3 or more KC layers using autoKC. 
For example, based on Figures 5 and 6 we might hypothesize that 
in addition to an autoKC k=40, we might also add a layer of much 
larger clusters with k=7. While there would certainly be diminish-
ing returns from multiple layers, still creating a multilevel 
representation of the skill hierarchy seems likely to result in better 
predictions.  

A final limitation is the curse of dimensionality due to the large 
feature sets in situations with high dimensionality. It isn’t entirely 
clear this is an important issue since the feature spaces in our case 
will not be independent but tend to have patterns of correlations. 
Research has shown the curse of dimensionality may depend on in-
dependent features [28]. Nevertheless, future work will need to 

better examine the effect of dimension reduction prior to using clus-
tering methods. 

6. DISCUSSION 
In summary, we saw incremental small improvements in fit, some-
times with reductions in the complexity of the model. These results 
suggest that the models presented here are practical to use in 
knowledge tracing applications for adaptive learning software [24]. 
In particular, it was notable that the reduced parameter (simple PFA 
simple autoKC) has many fewer coefficients than the full PFA 
model despite showing a slight advantage in fit. 

While the model fit benefit of autoKC is small, the implications for 
adaptive learning may be considerably greater due to the way the 
clustering implies relationships among items. One way to describe 
our result is to say that we have created a model where there will 
be transfer among KCs without any loss of model fit. This empha-
sizes the fact that the model of transfer is itself valuable to guide 
pedagogy. If we know that there are relationships between KCs, 
this can be used to guide the introduction of related KCs in a 
grouped fashion and also improve the adaptation of items within an 
autoKC cluster by using their correlation to guide inference about 
other items. If two KCs are in a cluster that means if performance 
is high on one, the other is also likely to be above average. Simi-
larly, when KCs are clustered it may mean that if a student learns 
one of the KCs, they will also have improved their performance for 
the other KCs in that cluster. This sort of knowledge may be useful 
for adaptive learning systems by allowing the software to infer 
whether KCs are mastered or need practice even when the KC has 
not been practiced itself (only other items in its cluster having been 
practiced). Such information could be useful to guide the introduc-
tion of new content and the revisiting of old content in adaptive 
learning systems. 
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