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ABSTRACT

A longstanding goal of learner modeling and educational data min-
ing is to improve the domain model of knowledge that is used to
make inferences about learning and performance. In this report we
present a tool for finding domain models that is built into an exist-
ing modeling framework, logistic knowledge tracing (LKT). LKT
allows the flexible specification of learner models in logistic re-
gression by allowing the modeler to select whatever features of the
data are relevant to prediction. Each of these features (such as the
count of prior opportunities) is a function computed for a compo-
nent of data (such as a student or knowledge component). In this
context, we have developed the “autoKC” component, which clus-
ters knowledge components and allows the modeler to compute
features for the clustered components. For an autoKC, the input
component (initial KC or item assignment) is clustered prior to
computing the feature and the feature is a function of that cluster.
Another recent new function for LKT, which allows us to specify
interactions between the logistic regression predictor terms, is com-
bined with autoKC for this report. Interactions allow us to move
beyond just assuming the cluster information has additive effects to
allow us to model situations where a second factor of the data mod-
erates a first factor.
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tracing, adaptive learning

1. INTRODUCTION

Quantitative models of learning, used to predict performance and
make pedagogical decisions, have a long history [1; 2]. To do this
prediction effectively, models typically assign sets of problems or
items specific skill tags (often called knowledge components, or
KCs). Having such an identification of knowledge components al-
lows a system to monitor mastery of skills. The matrices
representing these item assignments to skills are called Q-matrices
[4]. Because the act of tracing student learning is so important for
pedagogy, the assignment of items to KCs is crucially important to
understand for systems to make pedagogical choices. Without such
an assignment, a system would conceivably need to schedule all
practice items for practice to ensure mastery, since there would be
no way to make inferences among the items belonging to a KC. In
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other words, a higher quality domain model should presumably re-
sult in better pedagogical decisions in a system due to improved
ability to make inferences about other items based on sampling
items for each KC. This paper is about improving these critical do-
main models, a tradition that has included much prior work [3; 5;
17;19; 21; 23; 27].

In this continuing quest for a richer quantitative model, we also in-
troduce a tool for exploring interactions of the simple and complex
features LKT provides for the learner. The idea of explicitly includ-
ing statistical interactions in logistic regression learner appears to
be new and is related to the issue of multiple knowledge component
labeling (where performance for an item has 2 or more KCs in-
volved), which it can be used to model. When an item or step has
multiple knowledge components [15] it implies that the prediction
for that item or step depends on both in some way but the function
for combination is never clear without expert prediction or empiri-
cal evidence. Interactions allow the modeling of conjunctive
situations. If an interaction coefficient between the features for 2
KCs has a positive sign, that implies that the influence of the com-
bination of skills is super-additive, which models a conjunctive
relationship (where you need both KCs to do very well). In contrast,
if the interaction coefficient is negative that implies a compensatory
situation, where the combination is less than additive, implying the
skills can in some way substitute for each other. Finally, the lack of
an interaction (with interaction coefficient 0) implies that there are
2 independent routes to success, and being good at one route does
not compromise or enhance your ability to perform given the other
route. While these coefficients do not perfectly explain why the
KCs combine, they are flexible in capturing many possible ways
the skills may combine.

2. LOGISTIC KNOWLEDGE TRACING

2.1 Overview

Logistic knowledge Tracing (LKT) is an R package for creating
learner models with logistic regression [25]. LKT is a formalized
approach to creating logistic regression models that subsumes
many other models and provides flexibility that allows better deter-
mination of an accurate model than off-the-shelf approaches like
the Additive Factors Model (AFM), Instructional Factors Analysis
(IFA), Performance Factors Analysis (PFA), PFA-Decay or Re-
cent-PFA (R-PFA) [6; 8; 13; 14; 16; 22; 26], though it can replicate
these models.

2.2 AutoKC

The new “autoKC” facility of LKT uses covariance clustering,
which is a method to find item relationships using data on how
starting KC performances covary. The first step of this method is
to convert the performance for each participant into the raw



probabilities for each of the KCs for each participant and sum these
results. Missing values are replaced by the mean for the KC. This
large matrix is normalized to logits and screened for outliers and
then multiplied by its transpose to produce a square covariance ma-
trix that provides a row/column for each starting KC that
characterizes how its performance covaries across participants rel-
ative to all the other items. The final step is to cluster these
covariance vectors (we use partial medoids here, using the pam R
package, with default Euclidean distances), and then label the data
with a new column that represents the cluster membership.

Developed by Pavlik, Cen, Wu, and Koedinger [23], covariance
clustering is a method to describe how each item or existing KC in
a domain model is related to all other items or KCs (using a measure
of conditional log odds to represent covariance). This method com-
putes a vector for each item representing the conditional probability
table for success and failure for the items/KCs relative to all other
items/KCs. The pairwise relationships between each vector are
similar to the relationships inferred in POKS (Partial Order
Knowledge Spaces, [9; 10]), a method related to Falmagne’s work
[11; 12]. An advantage of covariance clustering is that it character-
izes each pairwise relationship between items/KCs in terms of the
relationship with all other items/KCs. Pavlik et al. [23] used clus-
tering to establish how to group items by using this KC/item
relational vector as a set of features. We updated this method in a
recent publication [20]. AutoKC has the advantage of sharing the
speed of clustering and matrix multiplication methods, so it pro-
vides very few disadvantages beyond the additional complexity of
implementation.

2.3 Applying autoKC in the LKT

Application of AutoKC in LKT requires the specification of how
the autoKC column is used as a predictor. Here we apply autoKC
in the context of simple (1 coefficient for slopes of successes for
each KC and 1 coefficient for failures) and full (coefficients for all
KC for successes and failures) versions of Performance Factors
Analysis (PFA). We add versions of autoKC to these models and
also apply autoKC by itself with only student and KC intercept val-
ues to model basic student knowledge and KC difficulty.

First, we investigate autoKC by itself. In this case, autoKC can be
used to specify any number of clusters between 2 and the total num-
ber of KCs minus 1. A value of 2 would mean that autoKC was
used to relabel all of the KCs as belonging to cluster 1 or cluster 2.
Using this new “autoKC” with an LKT feature (such as the PFA
success or failure count features), means that the effect of successes
will now apply within cluster, so a success for cluster 1 will affect
all items/KCs in cluster 1. In contrast, a value of N-1 (1 less than
the actual count of KCs) means that the most similar two KCs will
be clustered, and all the other KCs that remain will be in cluster
with only 1 of the previous KCs (i.e., they are not clustered).

Then we investigate autoKC added as an addition to the PFA model
for the original KCs. In this case, we have the PFA model, but we
also have additive cluster-level effects. So, if k (number of clusters)
is set to 2, like in the prior example, it basically says that while there
are KCs there are also relationships between the KCs (the autoKC).
A value of 2 indicates there are two broad groups of KCs (perhaps
they are word problems and numeric problems) that share some
base aptitude (for example, one group may depend on a reading
comprehension skill and the other math skill).

2.4 Applying interactions in LKT
We also apply interactions among the KCs. In this introduction to
interactions in logistic knowledge tracing, we test a basic variant of

PFA which, instead of only counting the success and failures for
each KC, also counts the successes and failures for students (faculty
KC) and for the autoKC. We look at these features additively, but
we see the most advantage in various interaction situations. To sim-
plify this analysis, we always look at the interactions of success (or
failure) for the KC with autoKC or with the student (faculty KC).
We only look at these 2 interactions:(successes for KC X successes
for autoKC or faculty and failures for KC X failures for autoKC or
faculty.

We apply these interactions in the context of autoKC, but the inter-
actions tool is independent of the autoKC tool. With an interaction
it is possible to explore a new space of logistic regression models
that may capture student data better than the simple addition of
terms. In particular, interactions may also be excellent to capture
the differential predictive accuracy of features in different practice
contexts or to combine features to look at how levels of one feature
(e.g., retention) are moderated by another feature (e.g. practice

quantity).
2.5 Model contrasts

To understand the function, effect, and/or lack of effect of autoKC
and component interactions, we have selected a number of possible
models of practice and compared them. This helps us see the rela-
tive effect of each of the model configurations so that we can
understand the autoKC and interaction functions in LKT. The no-
menclature for these models is as follows. All of the models are log
PFA corresponding to the hypothesis that there are decreasing mar-
ginal returns to 1+successes or 1+failures according to a natural log
function [7; 18]. IRT corresponds to a baseline without PFA terms
(only containing KC difficulty and student ability). Faculty corre-
sponds to a very simplistic theory of knowledge where each student
has 1 KC for all items, this serves as a baseline as it was used in
prior research [16]. autoKC refers to a case where a KC is com-
posed by the autoKC algorithm. Simple and full are described in
Section 2.3. When a model combines KCs with autoKCs (by having
2 success predictors and 2 failure predictors (the final 6 models)
these combinations are listed as additive or interactive

3. DATASETS

3.1 MATHia

The Carnegie Learning MATHia Course 2 dataset was CMU
Datashop dataset #4845, which was a sample of 500 students from
the larger MATHia 2019-2020 dataset at the same location. MA-
THia Course 2 is part of a middle school math curriculum. This
data was from the Modeling Two-Step Expressions workspace and
included 119,379 observations. The 9 knowledge components in
this workspace are shown in Tables 1 and 2.

3.2 Cloze

The cloze statistics cloze dataset was Memphis Datashop #1465
and included 58,316 observations from 478 participants who
learned statistical concepts by reading sentences and filling in miss-
ing words. Participants were adults recruited from Amazon
Mechanical Turk. There were 72 KCs in the dataset (some KCs
with different feedback conditions were combined since the content
was identical), derived from 18 sentences, each with 1 of 4 different
possible words missing (cloze items). The number of times specific
cloze items were presented was manipulated, as well as the tem-
poral spacing between presentations (narrow, medium, or wide).
The post-practice test (filling in missing words) could be after 2
minutes, 1 day, or 3 days (manipulated between students). The
stimuli type, manipulation of spacing, repetition of KCs and items,



and multiple-day delays made this dataset appropriate for evaluat-
ing model fit to well-known patterns in human learning data (e.g.,
substantial forgetting across delays, benefits of spacing).

4. MODEL COMPARISONS

The reader should keep in mind that the number of possible models
in LKT is practically limitless, so selecting comparisons was done
with a focus on improving understanding of the possibilities rather
than looking for the best fit model. We do learn about the
knowledge models for both datasets, in addition to the properties of
autoK Cs and interactions, but much of this knowledge is qualitative
in this first analysis of these features. While we do cross-validate
our comparisons results, it seems true that the methods here are
very highly dependent on the domain analyzed (as the results
show). Nevertheless, we do see consistent improvements in both
model complexity and fit that will make these methods important
to investigate further.

Table 1. autoKC assignments for k=2 and 3.

IRT intercept; + intercept

intercept; + intercepty + successes;
+ failures;

Faculty

intercept; + intercepty + $successes k¢
+ $failures,kc

Log Full autoKC

$intercept; + $intercept; + successesy
+ failures;

Log Simple PFA

intercept; + intercepty + $successesy
+ $failures;

Log Full PFA

intercept; + intercepty + $successesy
+ $failuresy
+ $successes,kc
+ $failures,kc

Log Full PFA full
autoKC additive

intercept; + intercepty + $successesy
+ $failuresy
+ $successes;
+ $failures;

Log Full PFA Fac-
ulty additive

Log Simple PFA
Faculty interac-
tive

intercept; + intercepty + successesy
+ failures)
+ successes;
+ failures;
+ successes,successes;
+ failuresyfailures;

intercept; + intercepty + successesy

+ failuresy + $successes k¢ + $failures,xc
+ successesy $successes k¢

+ failures $failures k¢

Log Simple PFA
full autoKC inter-
active

intercept; + intercepty + $successesy

+ $failuresy + successes,kc + failures,gc
+ $successesysuccesses,kc

+ $failuresy failures, k¢

Log Full PFA sim-
ple autoKC
interactive

intercept; + intercepty + successesy

+ failuresy + successes,kc + failures,kc
+ successes; Successes ke

+ failures,failuresxc

Log Simple PFA
simple autoKC in-
teractive

Table 1 shows the model names and the equation notation. Inter-
cepts refer to fixed coefficients for each level of the factor
subscripted. 1, k and aKC represent the indices for student, KC and
autoKC. The $ is used to represent non-intercept additive factors
which are fit with 1 coefficient for each level of the factor (i.e. 1
coefficient per KC) instead of a single coefficient for all levels.

4.1 Fit for different applications of autoKC
with and without interacting KCs

4.1.1 MATHia results

Figure 1 shows the surprising conclusion first of all that the 9 KC
domain model is not better than a simple faculty model. This
doesn’t imply that the KC model is inherently incorrect, because
we can also see that the Full KC model with the faculty model
added actually does substantially better. So, the main implication
here is that there is some additional student domain learning beyond
just the independent KCs. Figure 1 shows no particular advantage
for autoKC, but the simple PFA simple autoKC interaction model
does do particularly well given its small number of parameters (just
6 added to the IRT model).

IRT-

Faculty-

Log Full autoKC -
Log Simple PFA-
Log Full PFA-

Log Full PFA full autoKC additive -

Moadel Version

Log Full FFA Faculty additive -

Log Simple PFA Faculty interactive -
Log Simple PFA full autoKC interactive -
Log Full PFA simple autoKC interactive -

Log Simple PFA simple autoKC interactive -
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Figure 1. IRT is a baseline of .1726 R? using 5-fold unstratified
crossvalidation. Graph shows improvement in crossvalidated
R’ values. autoKC set k=2.
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Figure 2. IRT is a baseline of .1581 R? using 5-fold unstratified
crossvalidation. Graph shows improvement in crossvalidated
RZvalues, autoKC set to 40.

4.1.2 Cloze results

For the cloze data in Figure 2 we see a somewhat different pattern.
While it is clear the faculty (1 KC) model is better than IRT, it isn’t
very good even compared to the equally parameterized (1 parame-
ter for success and 1 for failures in both case) simple PFA model,



which uses the 72 KCs. This implies strong independence of the
items which we also see confirmed in Figure 5. When autoKC was
set to 40 KCS we see that the fit for 72 KCs is not approached,
which shows the independence of the KCs again. Again, we see that
the simple PFA simple autoKC interaction model does particularly
well given its small number of parameters. We suspect this is due
to the how the interaction terms provide flexibility in the shapes of
the learning curves.

4.2 Fit for all levels of k for each dataset

4.2.1 MATHia results

Figures 3 and 4 show respectively the results for different K for the
3" (Log Full autoKC) and 6™ models in Figures 1. The Figure 3
result suggest no benefit for the fit for the Log Full autoKC model
at any k, the number of clusters. Comparing Figure 1 Log Full KC
shows an advantage for the original model with 9 KCs at R?>=
.02191.)
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Figure 3. Crossvalidated fit for Log Full autoKC model as
function of k. Dashed line is a randomly sampled autoKC com-
parison. Solid line is the 3" model.

In contrast, when autoKC is added on top of the 9 KCs we do see
some indication that 2 or 3 autoKC clusters provides an additive
advantage on top of Log Full PFA.
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Figure 4. Crossvalidated fit for Full PFA with additive autoKC
as a function of k. k=2 or k=3 provides an optimal advantage
over random. Dashed line is a randomly sampled autoKC com-
parison. Solid line is the 6™ model.

In a case like this is interesting and perhaps useful for understand-
ing the model to see how autoKC is grouping the skills by
inspecting the autoKC assignment matrix (which is available from
the LKT R function). Table 2 presents the assignment matrices

found for 2 and 3 clusters in Figure 4. On the surface it seems the
groupings are meaningful, but it would take further analysis of the
MATHia system to draw strong conclusions, furthermore these re-
sults are likely to be noisy unless very large datasets are used as
input.

Table 2. autoKC assignments for k=2 and 3.

k=2 k=3 original KC
define variable-1

enter given, reading numerals-1

[y
[y

enter given, reading words-1
find y, any form-1
identifying units-1
write expression, negative intercept-1
write expression, negative slope-1
write expression, positive intercept-1

N NN NDNN R R
w W W W NN R

write expression, positive slope-1

4.2.2 Cloze results

Figure 5 shows the third model Log Full autoKC across the 70 set-
tings of k. We see that there is always loss of fit compared to the
original KCs, but by comparing the random and model KC assign-
ments lines in the figure we can see that starting around 7 KCs until
about 27 KCs there is some indication that the clustered groupings
are better than random. This figure suggests the items are highly
independent since more clusters always helps.
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Figure S. Crossvalidated fit for Log Full autoKC model as func-
tion of k. Dashed line is a randomly sampled autoKC
comparison. Solid line is the 3" model.

The pattern in Figure 6 shows more potential for the 6" model than
Figure 5 does for the 3" model, since we can see some advantages
for the autoKC model terms when added to the PFA model. Lower
values of k result in larger clusters with weaker associations be-
tween the items in the clusters, and thus less gain for each cluster.
Middle values of k result in smaller clusters of more similar items
resulting in more benefits. However, as k becomes very high the
autoKC produces many singleton clusters and singleton clusters do
not improve fit, since the input data becomes equivalent to Full
PFA, which was already included in the model.
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Figure 6. Crossvalidated fit for Full PFA with additive autoKC
as a function of k. k between 37 and 45 provides an optimal
advantage over random. Dashed line is a randomly sampled au-
toKC comparison. Solid line is the 6™ model.

5. LIMITATIONS AND FUTURE WORK

The simplification of the models here was a limitation of the work,
and also reveals future work to refine the usages of these new LKT
methods. One simplification was that we used the PFA log of suc-
cess and log of failures predictors for each KC and choose to use
those as the basis to look at autoKC and interactions. On the other
hand, consider that we could have computed autoKC for the
logitdec feature (a recency weighted function of the logit of perfor-
mance) and that would have been an elegant way to model each of
the clusters as a knowledge domain and track aptitude in that do-
main. Rather the current model we presented with log PFA
predictors more closely represents a model of transfer within the
cluster. Of course, there is also the limitation of covariance cluster-
ing itself, which is nondirectional, and could cluster either due to
transfer of learning or due to shared aptitude (a third variable like
prior knowledge might drive correlation).

Another limitation of this paper was our focus on introducing the
two mechanisms together. While this paper nicely illustrates inter-
esting interactions with autoKC, many interactions are possible, for
example, interactions between group factors (such as the condition
of an intervention experiment), student factors (such as the ethnic-
ity or prior knowledge), item factors (such as word frequency or
amount of practice) and trial factors (such as multiple choice or fill-
in-the-blank/cloze). This limitation of the paper hides the enormous
flexibility that interactions allow the modeler in LKT.

The models we showed also only had 1 or 2 layers of component
predictors on top of the IRT terms. For example, our 2-layer models
used the original KC layer and the autoKC layer. However, it is
certainly possible to consider 3 or more KC layers using autoKC.
For example, based on Figures 5 and 6 we might hypothesize that
in addition to an autoKC k=40, we might also add a layer of much
larger clusters with k=7. While there would certainly be diminish-
ing returns from multiple layers, still creating a multilevel
representation of the skill hierarchy seems likely to result in better
predictions.

A final limitation is the curse of dimensionality due to the large
feature sets in situations with high dimensionality. It isn’t entirely
clear this is an important issue since the feature spaces in our case
will not be independent but tend to have patterns of correlations.
Research has shown the curse of dimensionality may depend on in-
dependent features [28]. Nevertheless, future work will need to

better examine the effect of dimension reduction prior to using clus-
tering methods.

6. DISCUSSION

In summary, we saw incremental small improvements in fit, some-
times with reductions in the complexity of the model. These results
suggest that the models presented here are practical to use in
knowledge tracing applications for adaptive learning software [24].
In particular, it was notable that the reduced parameter (simple PFA
simple autoKC) has many fewer coefficients than the full PFA
model despite showing a slight advantage in fit.

While the model fit benefit of autoKC is small, the implications for
adaptive learning may be considerably greater due to the way the
clustering implies relationships among items. One way to describe
our result is to say that we have created a model where there will
be transfer among KCs without any loss of model fit. This empha-
sizes the fact that the model of transfer is itself valuable to guide
pedagogy. If we know that there are relationships between KCs,
this can be used to guide the introduction of related KCs in a
grouped fashion and also improve the adaptation of items within an
autoKC cluster by using their correlation to guide inference about
other items. If two KCs are in a cluster that means if performance
is high on one, the other is also likely to be above average. Simi-
larly, when KCs are clustered it may mean that if a student learns
one of the KCs, they will also have improved their performance for
the other KCs in that cluster. This sort of knowledge may be useful
for adaptive learning systems by allowing the software to infer
whether KCs are mastered or need practice even when the KC has
not been practiced itself (only other items in its cluster having been
practiced). Such information could be useful to guide the introduc-
tion of new content and the revisiting of old content in adaptive
learning systems.
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