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Abstract The study of frequency synchronization
configurations in Kuramoto models for networks of
coupled oscillators is a ubiquitous mathematical prob-
lem that has found applications in many seemingly
independent fields. In this paper, we focus on networks
in which the underlying graph is a cycle graph. Based
on a recent result on the maximum number of dis-
tinct frequency synchronization configurations in this
context, we propose a constructive toric deformation
homotopy method for locating all frequency synchro-
nization configurations with complexity that is linear
in this upper bound. Inspired by the polyhedral homo-
topy method for solving general polynomial systems
and the more general framework of toric deformation
in algebraic geometry, the proposed homotopy method
deforms the set of synchronization configurations into
a collection of toric varieties. Compared to existing
homotopy methods for solving Kuramoto equations,
the proposed method has the distinct advantages of
avoiding the costly step of computing “mixed vol-
ume/cells” and using special starting systems that can
be solved in linear time. We also explore the impor-
tant consequences of this homotopy method in the con-
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1 Introduction

A network of oscillators is a set of objects, varying
between two states, that can influence one another.
A network of N = n + 1 oscillators can be mod-
eled by a weighted graph G = (V, E, K ) with the
vertices V = {0, . . . , n} representing the oscillators,
the edges E representing the connections among the
oscillators, and the weights K = {ki j } representing
the coupling strengths along the edges. Each oscillator
i has a natural frequency ci . In a network, however,
oscillators influence one another and the dynamics can
be described by the generalized Kuramoto model [29]
given by the differential equations

dθi

dt
= ci −

∑

j∈NG (i)

ki j sin(θi − θ j ), (1)

for i = 0, . . . , n, where each θi ∈ [0, 2π) is the phase
angle that describes the state of the i-th oscillator, and
NG(i) is the set of its neighbors. Here, we allow non-
uniform coupling strength (ki j ’s may not be identical).

A fundamental mathematical problem in the study
of the Kuramoto model as well as the behavior of
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coupled oscillators is the occurrence of synchroniza-
tion. Among many different notions of synchroniza-
tion, this paper focuses only on frequency synchro-
nization, which occurs when the competing forces of
oscillators to stay with their natural frequency and the
influence of their neighbors reach equilibrium for all
oscillators, and they are all tuned to the same frequency.
Then dθi

dt = c for a common constant c for all i . They
are precisely the solutions to the system of nonlinear
equations

ci −
∑

j∈NG (i)

ki j sin(θi − θ j ) = c, (2)

for i = 0, . . . , n in the variables θ0, . . . , θn .
In this paper, we focus on the cases where the under-

lying graph is a cycle of N = n + 1 nodes so that the
set E of edges of G consists of {0, 1}, {1, 2}, . . . , {n −
1, n}, {n, 0}. This corresponds to a network of cou-
pled oscillators in which each oscillator is influenced
by exactly two adjacent oscillators. In [10], an upper
bound on the total number of isolated solutions to
the synchronization equations (2) is shown to be
N

( N−1
�(N−1)/2�

)
using the theory of the birationally invari-

ant intersection index. Indeed, this upper bound is
generically sharp for a complexified version of (2).
Recently, Lindberg, Zachariah, Boston, and Lesieutre
[31] showed that this bound can also be attained by real
solutions of (2).

It is then natural to ask if there exists an algorithm
that can locate all solutions of (2) with a complexity
that is linear in this solution bound N

( N−1
�(N−1)/2�

)
. This

is the main topic that this paper addresses.
The primary contribution of this paper is the devel-

opment of a homotopy method in the spirit of poly-
hedral homotopy (toric deformation) that will find all
isolated solutions of (2). The total number of homo-
topy paths to be tracked with this method is exactly the
solution bound

N

(
N − 1

�(N − 1)/2�
)

,

where N = n + 1 is the number of oscillators in the
cycle network. This method offers significant advan-
tages over a direct application of polyhedral homotopy
via the following features:

– our method avoids the costly step of computing
mixed volumes or mixed cells;

– our method does not require solving binomial sys-
tems, and the starting systems can be solved in
O(N 2) time in serial or O(N ) time in parallel;

– our method uses integer liftings of {0, 1, 2}, thus
avoiding the well-known numerical instability that
is caused by random liftings.

The secondary contribution is an explicit description
of a regular unimodular triangulation of the adjacency
polytope which significantly strengthens the previous
volume and facet description results [10] and may shed
new light on closely related constructions such as “sym-
metric edge polytopes” [16,22,24,39,40].

The tertiary contribution is our significant refine-
ment for the directed acyclic decomposition scheme
proposed in [7] for cycle graphs. This refined scheme
is capable of reducing a network into simplest sub-
networks known as primitive subnetworks for which
frequency synchronization configurations can be com-
puted both directly and efficiently. Finally, we provide
an interpretation of our result in terms of tropical alge-
braic geometry aswell as the equivalence of three rather
different perspective to the Kuramoto equations.

The paper is organized as follows. In Sect. 2, we
briefly review the Kuramoto model and the Kuramoto
equations. Section 4 describes a complex algebraic for-
mulation of the Kuramoto equations as a system of
rational equations over the complex algebraic torus
(C∗)n . Recent results on the generic root count of the
algebraic Kuramoto equations, known as the adjacency
polytope bound, is reviewed in Sect. 5. We strengthen
this result by describing explicit formulas for a regu-
lar unimodular triangulation of the adjacency polytope
in Sect. 6. The resulting algorithm is outlined in Sect. 7.
Based on this triangulation, we develop our homotopy
method in Sect. 8. In Sect. 9, we interpret our results in
the broader context. An example is shown in Sect. 10,
and the conclusion follows in Sect. 11. Software imple-
mentations are briefly described in “Code availability”
section.

2 Kuramoto equations and its variations

A simple mechanical analog of the coupled oscillator
model (1) is a spring network, shown in Fig. 1, that
consists of a set of weightless particles constrained to
move on the unit circle without friction or collision
[29]. The real numbers ki j = k ji characterizing the
stiffness of the springs connecting particles i and j
are known as coupling strength, and dθi

dt represents the
angular velocity of the i-th particle.
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Fig. 1 A spring network

The class of special configurations in which the
angular velocities of all particles can become perfectly
aligned, that is, when dθi

dt = c for i = 0, . . . , n and a
constant c, is known as the class of frequency synchro-
nization configurations. By adopting a rotational frame
of reference, we can always assume c = 0, i.e., fre-
quency synchronization configurations are equivalent
to equilibria of the ordinary differential equations (1).
As a result of the symmetry assumption that ki j = k ji ,
the n+1 equilibrium equations must sum to zero. This
allows the elimination of one of the equations, produc-
ing the system of n equations

ci −
∑

j∈NG (i)

ki j sin(θi − θ j ) = 0, for i = 1, . . . , n

(3)

in the n unknowns θ = (θ1, . . . , θn). The problem of
finding some or all frequency synchronization config-
urations has been an active research topic in recent
decades [5,14,15,21,26,33,35,38,43,44]. Tradition-
ally, stable synchronization configurations or transi-
tion states (synchronization configurations with mini-
mal unstable manifolds) are the main focus of studies.
However, such configurations cannot be enumerated
directly, and the most efficient and practical approach
is still to find all synchronization configurations and
selectively study a certain subset. Therefore, in this
paper, we focus on the problem of finding all synchro-
nization configurations.

Despite its mechanical origin, the above frequency
synchronization system naturally appears in a long
list of seemingly unrelated fields, including chemistry,
electrical engineering, biology, and computer security.
We refer to [17] for a detailed list. Here, we highlight
two variations for which the method proposed in the
present paper can be directly applied.

2.1 Kuramoto model with phase shifts

In some applications, oscillators may be influenced by
shifted phases of neighboring oscillators. Such phase
shifts are characterized by symmetric parameters {δi j },
and the generalized version of (3) is

ci −
∑

j∈NG (i)

ki j sin(θi − θ j + δi j ) = 0, (4)

for i = 1, . . . , n. The presence of nonzero phase shift
{δi j } breaks the inherent symmetry of the model, yet
the method developed here can directly handle such
generalizations.

2.2 Load-flow equations

With minor modifications, the system (2) can also be
generalized to include a much broader family of mod-
els. Of particular interest in electric engineering are
the load-flow equations. As a fundamental model in
electric engineering, the load-flow equations describe
the steady state of alternating current (AC) power net-
works.

The state of a power network consisting of nodes
{0, . . . , n} is definedby their complex voltages vi eiθi on
the nodes i ∈ {0, . . . , n}, where vi ∈ R

+ represents the
magnitude, θi represents the phase, and i, with i2 = −1,
is the imaginary unit. These voltages must satisfy bal-
ancing conditions derived from conservation laws. In
particular, the real power balancing condition is given
by the load-flow equations

Pi =
∑

j

gi jv
2
i − viv j fi j sin(θi − θ j )

−gi j cos(θi − θ j ) (5)

for each (non-slack) node i in the network, where gi j is
the conductance of the line connecting nodes i and j ,
while fi j is its susceptance. With the assumptions that
all nodes are modeled as generator nodes (PV buses),
the vi may be taken as constants, and the above equa-
tions are in the n unknowns θ1, . . . , θn .

This model differs from (6) in the presence of the
cosine terms. As we shall demonstrate, the method
developed here can be adapted to solve such gener-
alizations. The algebraic formulation studied here is
most directly related to the formulation used in [2]. An
alternative method for analyzing load-flow equations
derived from cycle networks was presented in [3].
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3 A toric deformation approach

In the rest of the paper, we will focus on the Kuramoto
equations (2) with the understanding that all of the
results can be directly applied to the generalizations
described in Sects. 2.1 and 2.2. Our main goal is to
develop a robust, efficient, and scalable method for
solving these equations. In this section, we highlight
the main idea behind the general approach that is the
overarching framework of the present paper. The expla-
nations here are provided to appeal to intuition, and the
more rigorous formulation will be developed in Sect. 4.

This approach starts with the viewpoint that the sys-
tem (3) is actually a member of a family of similar
systems parameterized by the coefficients ki j , which is
a viewpoint commonly adopted in the study of dynami-
cal systems. Namely, we consider the family of systems
of equations F(θ1, . . . , θn; t) = 0, given by

ci −
∑

j∈NG (i)

ki j (t) sin(θi − θ j ) = 0, for i = 1, . . . , n,

(6)

parameterized by a real parameter t . Here, the functions
ki j (t) are defined so that {ki j (1)} is the set of original
coupling strengths. That is, the original equations (3)
are the instance at t = 1. The idea of introducing con-
tinuously varying parameters into amodel is often used
in studying the fundamental structure of solution sets,
and it was proved to be a fruitful approach in the early
study of the Kuramoto model. In the broader context of
numerical computation, this idea is also the basis of a
large class of numerical methods known as homotopy
continuation methods.

The hope is that as t varies, the solutions (θ1, . . . , θn)
to (6) also vary continuously inR

n , forming continuous
“solution paths” in R

n ×R. Under this assumption, we
can move t to some value t0 at which the system (6) is
particularly easy to solve. Once we find the solutions
to F(θ1, . . . , θn; t0) = 0, which are points on these
solution paths, we can trace these paths and locate the
solutions to the original system F(θ1, . . . , θn; 1) = 0.

This description is the naive view of a continuous
deformation of the system (3). There are two obvi-
ous obstacles: first, there may be no choice of the
parameter t at which the system F(θ1, . . . , θn; t) = 0
is sufficiently easy to solve. Second, the solutions to
F(θ1, . . . , θn; t) = 0 may not move continuously as
the parameter t varies, e.g., at certain choices of t ,
the resulting coupling strength {ki j (t)} may cause cer-

tain synchronization configurations to disappear com-
pletely or collide with other configurations. In other
words, the path of the parameters may enter a discrim-
inant locus and complicated bifurcation phenomena
may be observed.

Fortunately, both obstacles can be surmounted. The
first requires introduction of additional structure, while
second requires the extension of the complex state
space and generic coefficients. In the following two
subsections, we provide brief and informal explana-
tions of these ideas. Finally, in Sect. 3.3, we consolidate
these ideas into the formulation of a smooth deforma-
tion.

3.1 Decoupling of bidirectional interaction terms

In the standard Kuramoto model, the interaction of
two adjacent nodes i and j along the edge {i, j} is
considered to be bidirectional and symmetric. We first
generalize this view by decoupling this interaction into
the two components along the directed edges (i, j)
and ( j, i), respectively. We define the complex directed
interaction function along the directed edge (i, j) to be

zi j (θ) = 1

2
[sin(θi − θ j ) − i cos(θi − θ j )]. (7)

This function describes the interaction along the edge
(i, j).On the other hand, the interaction along the oppo-
site direction, i.e., the directed edge ( j, i), is given by
the function z ji , as shown in Fig. 2 (see [7] for detail).
The use of imaginary interaction terms is also the foun-
dation of analytic Kuramoto models [36].

The imaginary part in zi j is normally hidden in the
sense that

zi j (θ) − z ji (θ) = sin(θi − θ j ),

so that when both directed edges (i, j) and ( j, i) are
present, the combined effect reduces to the original

Fig. 2 Interactions along directed edges
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interaction term in the standard Kuramoto model. Yet,
the introduction of this hidden imaginary artifact pro-
vides additional structure through which much simpler
systems can be produced via continuous deformation.
In particular, with this notation, the original Kuramoto
equation (2) can be written as

ci −
n∑

j=0

(ki j zi j − k ji z ji ) = 0 for i = 1, . . . , n,

and the separation of the interaction term sin(θi − θ j )

into two terms zi j (θ) − z ji (θ) allows the full decom-
position of the equations [7]. The resulting system is
sufficiently simple and can be solved directly.

3.2 Allowing complex phase angles

The second ingredient needed to surmount our obsta-
cles is the adoption of complex phase angles: instead
of using only real phase angles θi ∈ R, we introduce
imaginary parts ρ = (ρ1, . . . , ρn) as well as ρ0 = 0
and use θ − iρ to represent the states of the oscillators.
Of course, setting ρ = 0 restores the original represen-
tations.

The extension to complex phase angles opens the
door to leveraging complex analytical tools (e.g., the
analytic Kuramotomodel in [36]). In this paper, the use
of complex phase angle is crucially important in ensur-
ing that smooth deformation is possible. In Sect. 8, we
will show, under a mild genericity assumption, that as
the parameter t of (6) varies, the solutions θ − iρ, as
complex phase angles, do indeed move continuously.
This enables the fundamental idea of deformation.

3.3 Smooth deformation of models

Combining the ideas described in the subsections
above, we can construct a family of generalized
Kuramoto equations

ci −
n∑

j∈NG (i)

[(ki j tωi j )zi j − (k ji t
ω j i )z ji ] = 0 (8)

for i = 1, . . . , n, where the zi j are complex valued
functions of complexvariables θ−iρ, and {ωi j } are pos-
itive constants to be carefully selected.When t = 1, the
equation is identical to the original Kuramoto equation

(3). As t continuously varies from 1 toward 0, the cou-
pling strengths are gradually decreased, and the gen-
eralized complex synchronization configurations also
move continuously forming solution paths.

The constants {ωi j } are chosen carefully so that at
the limit t → 0, known as “toric infinity,” the system
breaks apart into particularly simple subsystems that
can be solved directly, and their solutions provide us
the starting points of the solution paths. From these
starting points, we can employ robust numerical meth-
ods (known as path tracking algorithms) to track these
paths and locate all synchronization configurations of
the original model.Moreover, since each path produces
at most one synchronization configuration, this idea
also provides a practical way for counting the max-
imum number of synchronization configurations. We
will review the root counting results in Sect. 5.

Identifying starting points of solution paths is the
difficult part of this approach. Through the deep theory
of toric algebraic geometry, this can be done through
a special triangulation of a convex polytope, known as
the adjacency polytope. Indeed, each cell in this tri-
angulation produces a simple subsystem that (8) will
be decomposed into at “toric infinity,” which, in turn,
produces a starting point of a solution path.

It is worth noting that not all deformation schemes
are created equal. In previous work [7], the simple
choice of a uniform constant ωi j leads to a coarse
decomposition of the system “at toric infinity,” which
will require additional stages of further decomposition.
One focus of this paper is a significant refinement of of
this scheme through a special choice of the values of
{ωi j }.

The next section sets up the rigorous algebraic for-
mulation of the idea highlighted here.

4 A complex algebraic formulation

Toput the descriptions given in the previous section into
a rigorous and algebraic form, we start with a complex-
ification, which is crucial in applying the root counting
results and homotopy continuation theory. Using the
identity sin(θi − θ j ) = 1

2i (e
i(θi−θ j ) − e−i(θi−θ j )), the

equations (3) can be transformed into

ci −
∑

j∈NG (i)

ki j
2i

(eiθi e−iθ j − e−iθi eiθ j ) = 0
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for i = 1, . . . , n. We then extend the domain to the
complex plane via θi �→ θi − iρi and introduce the
change of variables xi := ei(θi−iρi ) = eρi+iθi for
i = 1, . . . , n.With these, the left-hand side of the above
equation can be expressed as the Laurent polynomial

FG,i (x1, . . . , xn) = ci −
∑

j∈NG (i)

(
ai j

xi
x j

− bi j
x j
xi

)
,

(9)

where ai j , bi j = ki j
2i , and x0 = 1.

Remark 1 If nonzero phase shift parameters {δi j }
(described in Sect. 2.1) are included, then ai j =
ki j
2i e

iδi j and bi j = ki j
2i e

−iδi j will be different. Simi-
larly, this formulation also includes the load-flow equa-
tions described in Sect. 2.2. In that case, we have
ai j = bi j = fi j

2i + gi j
2 . Also note that the rational

function xi
x j

in the above equation corresponds to the
complex interaction function zi j (θ) defined in (7).

A Laurent polynomial is simply a polynomial that
may contain negative exponents of the variables, and
we use the notation FG,i to emphasize its dependence
on the topology of the graph G. The system FG =
(FG,1, . . . , FG,n) is thus a system of n Laurent poly-
nomials in then complexvariablesx = (x1, . . . , xn). In
the following, it is referred to as the (algebraic) system
of synchronization equations for a Kuramoto model, or
simply a synchronization system. Since xi ’s appear in
the denominators, FG is only defined on the algebraic
torus (C∗)n = (C \ {0})n . Each equivalence class of
real solutions of (2), modulo translations by multiples
of 2π , corresponds to a single solution of (9) in (C∗)n .
Conversely, only solutions (x1, . . . , xn) with |xi | = 1
(i.e., on the unit circle of the complex plane) for each
i = 1, . . . , n correspond to real solutions of the orig-
inal synchronization equation (2). It is thus possible
for this algebraic formulation to introduce extraneous
solutions. However, as we shall summarize in Sect. 5,
recent real root counting results shows that it is possible
for all complex solutions of (9) to be real.

We now formulate the “unmixed” version of FG ,
which will be the crucial construction that will allow
us to introduce methods from convex geometry to this
problem. If we consider FG as a column vector, then for
any nonsingular n×nmatrix R, the systems R ·FG and
FG have the same zero set. Therefore, in the following,

it is sufficient to focus on the system

FR
G = R · FG =

⎡

⎢⎣
r11 · · · r1n
...

. . .
...

rn1 · · · rnn

⎤

⎥⎦

⎡

⎢⎣
FG,1

...

FG,n

⎤

⎥⎦

It is easy to verify that for generic choices of the matrix
R, there is no complete cancellation of the terms, and
thus FR

G is of the form

FR
G,k = cRk −

∑

{i, j}∈E(G)

(
aR
i jk

xi
x j

+ aR
jik

x j
xi

)
(10)

for k = 1, . . . , n where

cRk = rk1c1 + · · · + rkn, cn

aR
i jk = rki ai j − rk j b ji

are the resulting nonzero coefficients after collection
of similar terms. Every equation in this system has the
same set of monomials, and such systems are known as
unmixed systems. Thus, the system (10)will be referred
to as the unmixed form of the synchronization equa-
tions, and it will be the main focus of the rest of this
paper.

5 Maximum and generic root count

In this section, we briefly review the existing results on
the root counts of (2), (9), and (10).

In [2], an upper bound on the number of equilibria
of the Kuramoto model (solutions to (2)) induced by
a graph of N vertices with any coupling strengths is
shown to be

(2N−2
N−1

)
. This bound can be understood

as a bi-homogeneous Bézout number on the algebraic
version (9) or (10): via the map yi = x−1

i , the two
systems can be translated into equivalent systems that
have a bi-degree of (1, 1) with respect to the partition
and are defined in ((x1, . . . , xn), (y1, . . . , yn))with the
additional conditions that xi yi = 1 for i = 1, . . . , n.
It is easy to verify that the bi-homogeneous Bézout
number will be

(2n
n

) = (2(N−1)
N−1

)
.

Recent studies [12] suggest tighter bounds on the
number of isolated complex solutions may exist when
the network is sparsely connected. When the underly-
ing graph is a cycle, a sharp bound is established in
[10] using the theory of the birationally invariant inter-
section index as well as a construction known as the
adjacency polytopewhich we shall review briefly here.
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Recall that a polytope is a bounded intersection of
finitely many closed half-spaces. For any polytope,
there is a finite set S for which the polytope is the con-
vex hull of S, that is, the smallest convex set containing
S; we use the notation conv S to denote the convex hull
of S.

The adjacency polytope in particular is a poly-
tope that encodes the topological information of the
Kuramoto network. Given an undirected graph G with
edge set E(G), its adjacency polytope is defined to be

PG = conv
{
ei − e j | {i, j} ∈ E(G)

}
(11)

where we adopt the convention that e0 = en+1 = 0.
That is, the adjacency polytope of G is the convex hull
of a set of line segments, each corresponding to an
edge in G. Note PG is a lattice polytope in the sense
that all of its vertices have integer coordinates. Similar
constructions have also appeared in other contexts (e.g.,
[16,23,34]).

The adjacency polytope bound [8] of a Kuramoto
system (2) on the graph G is defined to be the normal-
ized volume of PG , which is n! vol(PG). This bound
is an upper bound for the number of isolated complex
solutions for the systems (9) and (10). Consequently, it
is also an upper bound for the number of real solutions
that the original synchronization system (2) has.

In the case of a cycle graph of N nodes, i.e., the
graph G = CN with edge set {{0, 1}, . . . , {N −2, N −
1}, {N − 1, 0}}, the recent paper [10] establishes the
explicit formula N

( N−1
�(N−1)/2�

)
for the adjacency poly-

tope bound. Furthermore it is shown that this bound
coincides with the birationally invariant intersection
index in (C∗)n of theKuramoto system (9) as amember
of a family of rational functions. This result is strength-
ened significantly by Lindberg, Zachariah, Boston, and
Lesieutre [31], who showed that this bound can also be
attained by real solutions of (2).

In this paper, we further extend this theoretical
framework by producing an explicit construction of a
unimodular triangulation of the adjacency polytope for
cycle graphs and define a homotopy method based on
this triangulation.

Before continuing, two remarks are in order.

Remark 2 The theoryof the birationally invariant inter-
section index [27,28] (as well as the general inter-
section theory [18] and homotopy continuation theory
[30,42]) shows that the adjacency polytope bound is
“generically exact” in the sense that if one chooses the

coefficients of the algebraic Kuramoto equations (9)
randomly then, with probably one, the total num-
ber of isolated complex solutions that system has is
exactly the adjacency polytope bound N

( N−1
�(N−1)/2�

)
.

Stated more precisely, there exists a nonzero polyno-
mial D whose variables are the coefficients {ci } and
{ai j } of (10) such that for all choices of {ci } and
{ai j } where D �= 0, the total number of isolated
complex roots of (9) reaches the adjacency polytope
bound.What is particularly remarkable is that the adja-
cency polytope bound (the generic root count of (10)),
the Bernstein–Kushnirenko–Khovanskii bound (the
generic root count of (9)), the most refined birationally
invariant intersection index, and even the maximum
real root count of (2) are all identical. This shows
that the sequence of relaxations (from the original real
transcendental equations (3) to the algebraic formula-
tion (9) and then to its unmixed version (10)) does not
necessarily introduce extraneous solutions.

Remark 3 In specific cases, the adjacency polytope of
a graph on {0, . . . , N−1} coincideswith the type AN−1

root polytope as defined in [1]. This polytope is defined
as the convex hull of the generators in Z

N of the root
lattice, generated as a monoid, of the Coxeter group of
type AN−1. Indeed, this is exactly the adjacency poly-
tope PG whereG is the graph for which 0 is an isolated
vertex and the induced subgraph on {1, . . . , N − 1}
is KN−1. However, in the type CN−1 and type DN−1

cases, the constructions of the root polytopes do not
coincide with any adjacency polytopes.

One should take care when researching root poly-
topes in the literature, as there are competing notions
of root polytopes for root lattices of type AN−1. One
is as we have mentioned, while another considers only
positive roots of the root lattice (and the origin). This
root polytope was introduced and studied in [41, Sec-
tion 12], with an emphasis on connections to the broad
class of polytopes called generalized permutohedra.

6 A regular, unimodular triangulation of the
adjacency polytope

From the informal idea of deformation discussed in
Sect. 3.3, we will formulate a concrete numerical
homotopy method for solving the synchronization
equations. One important ingredient in this construc-
tion is a “regular and unimodular triangulation” of the
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adjacency polytope (defined in (11)). Indeed, each cell
in this triangulation gives rise to a solution path that
will reach one complex solution to (9). In this section,
we describe this triangulation in detail.

A subdivision of an n-dimensional polytope P is a
collection of polytopes P1, . . . , Pk ⊆ P such that

1. dim Pi = n for all i ,
2. Pi ∩ Pj is either empty or a face common to both

Pi and Pj , and
3. P = ∪i Pi .

A triangulation, a.k.a. simplicial subdivision, of a poly-
tope is a subdivision consisting entirely of simplices.
Furthermore, a triangulation is said to be unimodular
if all of the member simplices are lattice simplices of
normalized volume 1.

In order to be used in our homotopy construction,
the “regularity” property of the triangulation is also
required. Recall that a facet of a polytope is a face of
codimension 1. A triangulation of a polytope is said to
be regular if it is the projection of the lower facets of a
lifting of the polytope into one-higher dimension.More
precisely, given a polytope P = conv{v1, . . . , vm} in
R
n and weights ω1, . . . , ωm ∈ R, the new polytope

P ′ = conv{(vi , ωi ) ∈ R
n+1 | i = 1, . . . ,m}

is a lifting of P into one-higher dimension. The pro-
jections of lower facets, that is, the facets whose inner
normal vectors have positive last entry, to the first n
coordinates is called a regular subdivision, or a regular
triangulation if all facets are simplices.

Remark 4 We note that the lifting into one-higher
dimension corresponds to the introduction of the addi-
tional parameter t in (6).

For the rest of this paper, we shall fix the graph to
be G = CN , the cycle graph CN on N = n + 1 nodes.
We will construct a unimodular triangulation for the
adjacency polytope PCN by finding and triangulating
all of its facets. Using the set of facetsF(PCN ), a well-
known subdivision of PCN can be constructed as the set
of pyramids formed by the facets and a fixed interior
point as the common apex. That is, fixing any interior
point p ∈ PCN , the set

{conv F ∪ {p} | F ∈ F(PCN )}
forms a subdivision of PCN . By further triangulating
each facet, the above subdivision can be refined into a

triangulation of PCN . That is, if T (F) is a triangulation
of the facet F ∈ F(PCN ) then the set

{convC ∪ {p} | C ∈ T (F), F ∈ F(PCN )}
for a fixed interior point p form a triangulation of PCN .
This is the strategy that we will follow in this section.
The choice of the interior point p will be the origin 0
which is an interior point of PCN since it is the average
of ei − e j and e j − ei for all edges {i, j}.

It was shown in [10] that PCN is unimodularly equiv-
alent to the polytope

QN = conv{±e1, . . . ,±en,±(e1 + · · · + en)}
via the map x �→ Ax , where A is the n × n matrix
with 1 on and below the diagonal and 0 everywhere
else. Then, [10, Proposition 12] and [37, Remark 4.3]
identify the facets of QN . The geometric structure of
this polytope depends on the parity of N . When N is
even, the facets can be indexed by the set

�N =
{

(λ1, . . . , λN ) ∈ {−1, 1}N |
N∑

i=1

λi = 0

}
,

and for each λ = (λ1, . . . , λN ) ∈ �N , the correspond-
ing facet is of the form

Fλ = conv{λ1(−e1 − e2 − · · · − en), λ2e1, . . . , λN en, }.
When N is odd, we define �N differently: in this case,
the facets can be indexed by �N := ∪N

j=1� j,N where

� j,N =
{

(λ1, . . . , λN )

∣∣∣∣∣
λi ∈ {−1, 1} for all i �= j,

λ j = 0, λ1 + · · · + λN = 0

}
,

and the facet corresponding to λ = (λ1, . . . , λN ) ∈
� j,N is given by

Fλ = conv

{
λ1(−e1 − e2 − · · · − en),

λ2e1, . . . , λ̂ je j−1, . . . , λN en

}
.

Here, the notation λ̂ je j−1 indicates that element is
excluded from the list.

From the above constructions, we can see that QN

is simplicial, i.e., all the facets are simplices, when N is
odd, but is not simplicial when N is even. Via the uni-
modular equivalence between QN and PCN we have
same characterization of the facets of PCN . As a result
of this dichotomy, the constructions of the triangula-
tions in the even and odd N cases require very different
procedures.

Remark 5 (Unimodular equivalence of facets)Another
important property worth noting is that the facets of
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QN are all unimodularly equivalent to each other. To
see this suppose Fλ, Fλ′ are facets of QN . Then Fλ′ =
f (Fλ) where f (x) = Bλ,λ′x and Bλ,λ′ is the n × n
matrix constructed as follows: first let 	 = λ1λ

′
1. For

1 ≤ i ≤ n, note that there is a unique j such that λi+1

is the j th instance of −1 or the j th instance of 1 in
(λ2, . . . , λN ). Let 	λ′

k+1 be the j th instance of 	λi+1

in (	λ′
2, . . . , 	λ

′
N ). Set row i of Bλ,λ′ to be 	ek . As a

result, Bλ,λ′ is a permutationmatrix (up to simultaneous
scaling of all entries by −1), so det Bλ,λ′ = ±1, hence
f yields a unimodular equivalence.
Consider, for example, the case with N = 3

and the choices of λ = (1,−1,−1, 1) and λ′ =
(−1, 1,−1, 1). In this case, 	 = λ1λ

′
1 = −1. Note

that λ2 is the first instance of −1 in (λ2, λ3, λ4). Now,
−λ′

2 is the first occurrence of−λ2 in (−λ′
2,−λ′

3,−λ′
4).

So, the first row of Bλ,λ′ is −e1. Next, λ3 is the second
occurrence of−1 in (λ2, λ3, λ4), and−λ′

4 is the second
occurrence of −1 in (−λ′

2,−λ′
3,−λ′

4), so the second
row of Bλ,λ′ is −e3. Since λ3 is the first occurrence of
1 in (λ2, λ3, λ4), and−λ′

3 is the first occurrence of 1 in
(−λ′

2,−λ′
3,−λ′

4), we have that the third row of Bλ,λ′
is −e2:

Bλ,λ′ =
⎡

⎣
−1 0 0
0 0 −1
0 −1 0

⎤

⎦ .

Remark 6 (Point configuration) In order to be used in
a homotopy construction, a stronger triangulation is
needed. Define the point set

SCN = {0} ∪ {ei − e j | {i, j} ∈ E(CN )}
This set is known as the support of the unmixed sys-
tem (10) as it collects the exponents (as points) of all
of the terms appearing in that system. It is easy to see
that PCN = conv SCN since 0 is an interior point of
PCN (as 0 = 1

2 (ei − e j )+ 1
2 (e j − ei )). In our construc-

tions, we will require all simplices in a triangulation to
have vertices within the set SCN . This is known as a
triangulation of a point configuration.

In the rest of this section, we describe the construc-
tion of regular unimodular triangulation of PCN in the
cases with even and odd N , respectively.

6.1 Even N

For the entirety of this subsection, we assume that N is
even. From the preceding discussion, we know that all

of the facets of PCN are unimodularly equivalent due
to transitivity of equivalence relations. In particular, all
facets of PCN are unimodularly equivalent to

conv

{
e0 − e1, e1 − e2, . . . , e� n

2 � − e� n
2 �+1,

−(e� n
2 �+1 − e� n

2 �+2), . . . ,−(en−1 − en),−en

}
.

Let Gλ denote the facet of PCN obtained by applying
A−1 to all points in Fλ. It will be important to keep in
mind that ±A−1(e1 + · · · + en) = ±e1. We can then
produce a subdivision of PCN by setting

G0
λ = conv{0,Gλ}.

and ranging overall λ ∈ �N .
To aid us in what follows, we establish the following

lemma. Recall that in R
n , we use the convention e0 =

en+1 = 0.

Lemma 7 Let VN = {v0, . . . , vN } denote the vertices
of G0

λ such that

vi =
{
0 if i = 0,

λi (ei−1 − ei ) if 1 ≤ i ≤ N ,

If N is even, then each G0
λ has exactly two triangula-

tions:


+(G0
λ) = {conv{VN \ {vi }} | λi = λ1}

and


−(G0
λ) = {conv{VN \ {vi }} | λi = −λ1}.

Moreover, both of these triangulations are regular.

Proof Let N = 2k. Note that for each λ ∈ �N ,
dimG0

λ = n and G0
λ has n + 2 vertices. Thus, there

is a unique (up to simultaneous scaling of the coeffi-
cients) affine dependence of the form

N∑

i=0

civi = 0

satisfying
∑

c j = 0 with c0, . . . , cn+1 ∈ R. Without
loss of generality, we may choose c0 = 0 and ci =
λi k/N for i > 0.

The desired conclusions for the lemma then follow
from [13, Lemma 2.4.2]. Specifically,


+(G0
λ) = {conv{V \ {vi }} | λi = λ1}

is the triangulation of G0
λ corresponding to the height

vector (ω0, . . . , ωN ) where

ωi =
{
0 if ci ≤ 0,

1 if ci > 0
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and


−(G0
λ) = {conv{V \ {vi }} | λi = −λ1}

is the triangulation corresponding to the heights

ωi =
{
0 if ci ≥ 0,

1 if ci < 0.

��
Wewill be concernedwith the particular lifting func-

tion ω : SCN → Z given by

ω(a) =

⎧
⎪⎨

⎪⎩

0 if a = 0

2 if a = ±e1
1 otherwise

as this will induce the desired regular, unimodular tri-
angulation 
N of PCN . To help us with notation, we
will define

�ω(P) = conv{ω(v) | v ∈ P ∩ SCN }
for any polytope P whose vertices are a subset of SCN .
If X is a collection of polytopes whose vertices are
subsets of SCN , then we let �ω(X) = {�ω(P) | P ∈
X}.

First, we will identify the normal vectors of sim-
plices in �ω(
+(G0

λ)). Recall that a vector is upward-
pointing if its final coordinate is positive.

Lemma 8 Let N be even. If λ ∈ �N and λ1 = 1,
then the upward-pointing inner normal vectors for all
simplices in �ω(
+(G0

λ)) are xλ = (x1, . . . , xn+1)

where

xi =
{∑i

j=1 λ j if 1 ≤ i < n + 1,

1 if i = n + 1

as well as

yλ, j = x +
j−1∑

k=1

ek

for each j > 1 such that λ j = 1. If λ1 = −1, then
the upward-pointing inner normal vectors are xλ =
σ(x−λ), yλ, j = σ(y−λ, j ) where λ j > 0 and where σ

is the map that negates the first n coordinates.

Proof First observe that by construction, each vector
under consideration is upward-pointing. Next, let λ1 =
1. It is then straightforward to verify that

〈x, λ j (e j−1 − e j ) + en+1〉 = −λ2j + 1 = 0

for all 1 < j ≤ n+1. Following this same process, one
may verify that the hyperplane for which yλ, j is normal
contains all vertices of G0

λ except λ j (e j−1 − e j ).
Finally, notice that if λ′ = −λ, then−T ∈ 
+(G0

λ′)

for each cell T ∈ 
+(G0
λ). It directly follows that

σ(xλ) and σ(yλ, j ) are the upward-pointing inner nor-
mal vectors of the simplices in 
+(G0

λ) for all λ satis-
fying λ1 = −1. ��
Theorem 9 Let N be even. The lifting function ω :
SG → Z given by

ω(a) =

⎧
⎪⎨

⎪⎩

0 if a = 0,

2 if a = ±e1,

1 otherwise

(12)

induces a regular unimodular triangulation 
N of the
point configuration SCN . Specifically,


N =
⋃

λ∈�N


+(G0
λ) (13)

Proof Let 
N denote the regular subdivision of PCN

induced by ω. For λ ∈ �N , consider the vectors xλ,
yλ, j , σ(xλ), σ(yλ, j ), as defined in Lemma 8. First, we
focus on xλ. We have already seen that each vertex of
G0

λ except for−λ1e1 lies on the hyperplanewith normal
vector x . In fact, it is straightforward to check that

〈x,−λ j (e j−1 − e j ) + en+1〉 = λ2j + 1 > 0

for all 1 < j ≤ n + 1, and that

〈x,±e1 + 2en+1〉 = ±1 + 2 > 0,

so x defines a facet of �ω(PCN ).
Following this same process, one may verify that

yλ, j defines a facet containing all vertices ofG0
λ except

λ j (e j−1−e j ). By an argument that is symmetric in the
first n coordinates, σ(xλ) and σ(yλ, j ) also define facets
of �ω(PCN ).

Ranging overall λ ∈ �N , we have identified a col-
lection of simplicesC that are lower facets of�ω(PCN ).
Projecting each C back down to R

n , we get
⋃

λ∈�N


+(G0
λ) ⊆ 
N . (14)

In fact, this set covers PCN completely: let a ∈ PCN .
Then for some nonzero c ∈ R, ca is on the boundary
of PCN . Thus, ca ∈ Gλ for some λ ∈ �N , and a ∈ G0

λ.
Therefore, a ∈ C for some cell C ∈ 
+(G0

λ).
Together, this shows that 
N is a triangulation of

PCN , and is the regular triangulation induced by ω. To
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see that this triangulation is unimodular, recall that all
simplices in 
N are unimodularly equivalent to the
simplex whose nonzero vertices are

e0 − e1, e1 − e2, . . . , e� n
2 � − e� n

2 �+1,

−(e� n
2 �+1 − e� n

2 �+2), . . . ,−(en−1 − en),−en .

Placing these vertices as the columns of amatrix, in this
order, results in a lower-triangular matrix with determi-
nant ±1. Thus, the corresponding simplex, and there-
fore all simplices in 
N , are unimodular. This com-
pletes the proof. ��
Remark 10 The directed acyclic decomposition
scheme developed in [7] is equivalent to the process
of computing a regular subdivision of the adjacency
polytope induced by certain 0/1 weights. It is shown
that for certain graphs, this processwill produce regular
unimodular triangulations, which is desired due to their
connection to primitive decomposition of a Kuramoto
network. Here, however, we can see this is not possi-
ble in general. In particular, with the aid of Macaulay2
[20] to test all 29 = 512 possible 0/1 weight orders for
PC4 , we verified that only 4 choices of weights produce
a triangulation of the polytope, and of these, none are
unimodular. So, in the sense of bounding, the heights
of the lattice points of ω(PCN ) for all even N , using
only nonnegative integer heights, to produce a regular
unimodular triangulation, theω given in this subsection
is best possible.

6.2 Odd N

For the entirety of this subsection, we assume that N is
odd. Recall that in this case, the facets of QN consist
of all sets of the form

Fj,λ = conv

{
λ1(−e1 − e2 − · · · − en),

λ2e1, . . . , λ̂ je j+1, . . . , λN en

}

Tracing this back to PCN , we find that its facets are of
the form

Gλ = conv

{
λ1(e0 − e1), λ2(e1 − e2), . . . ,

̂λ j (e j−1 − e j ), . . . , λN (en − eN )

}

for λ ∈ � j,N . Set

G0
λ = conv{λi (ei − ei+1) | (λ1, . . . , λN ) ∈ � j,N },

and let


N = {G0
λ | λ ∈ �N }. (15)

By construction, since each Gλ is a simplex, 
N is a
triangulation of PCN . It is straightforward to check that
the matrix whose columns are the nonzero vertices of
G0

λ has determinant ±1 for each λ ∈ �N , so 
N is a
unimodular triangulation.

Let ω : SCN → Z be the height function given by

ω(a) =
{
0 if a = 0

1 otherwise.
(16)

It is clear from this choice that the lower facets of the
lifted polytope �ω(PCN ) are of the form

conv{0,Gλ × {1}},
so their projections back onto R

n are exactly the sim-
plices G0

λ for all λ ∈ �N . With this work, we have
shown the following.

Proposition 11 The set 
N is a regular, unimodular
triangulation of PCN , and is induced by the lifting func-
tion ω in (16).

We can, in fact, be more specific when identifying
the lower facets of �ω(PCN ).

Corollary 12 The upward-pointing inner normal vec-
tors for �ω(G0

λ) are x = (x1, . . . , xN ) where

xk =
{∑k

i=1 λi if i < N ,

1 if i = N

for all λ ∈ �N .

Proof Let �ω(G0
λ) be a lower facet of �ω(PCN ) for

some λ ∈ � j,N , and select a nonzero vertex v of the
facet. Since this vertex is nonzero, we know v is of the
form v = λr+1(er − er+1 + eN for some r �= j . Then,

〈x, v〉 = λr+1

⎛

⎝
r∑

i=1

λi −
r+1∑

l=1

λl

⎞

⎠ + 1 = −λ2r+1 + 1 = 0.

Thus, x is normal to �ω(G0
λ). ��

7 Cell enumeration algorithm

In this section, we briefly summarize the algorithm for
constructing a regular unimodular triangulation for the
adjacency polytope PCN as proposed above. Here, we
shall focus only on the enumeration of all the upward
pointing inner normal vectors of the lifted polytope
�(PCN ) of the point configuration SCN , since these
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are directly used in the homotopy construction to be
described in Sect. 8. Moreover, these objects directly
correspond to tropical stable intersections as we shall
discuss in detail in Sect. 9.2. Once a normal vector v is
obtained, the vertices of the corresponding cell can be
found easily by computing the minimizing set of the
linear functional 〈· , v〉.

The algorithm EnumerateNormals(N ) for enu-
merating inner normal vectors is listed in Algorithm
1. It takes the argument N , which is the number of
nodes in the cycle graph, and produces the upward-
pointing inner normal vectors of the lower facets of
�(PCN ) which are in one-to-one correspondence with
the simplices in the regular unimodular triangulation

N .

Algorithm 1 EnumerateNormals(N ): Enumeration
of upward pointing inner normals
Input: N ∈ Z

+, N > 2.
Output: Set C of all upward pointing inner normals.
C ← ∅

for all (λ1, . . . , λn) ∈ �N do
for k = 1, . . . , n do
xk ← ∑k

i=1 λi
end for
xN ← 1
x ← [x1, . . . , xN ]
C ← C ∪ {x}
if N is even and N > 2 then
for j = 1, . . . , n do
if λ j = 1 then

y ← x + ∑ j−1
k=1 ek

C ← C ∪ {y}
end if

end for
end if

end for
return C

Note that this algorithm is pleasantly parallel since
the description of vectors associated with indices λ ∈
�N are independent fromone another. The cost for pro-
ducing each normal vector is O(N 2), and no additional
storage is needed.

8 The adjacency polytope homotopy for Kuramoto
equations

We now return to the problem of finding all isolated
complex solutions of (9) with the graph G being the

cycle graphCN . Equivalently, these are the solutions of
the unmixed synchronization equations FR

CN
as defined

in (10) (again with G = CN ). Utilizing the unimodular
regular triangulation of the adjacency polytope PCN ,
in this section, we describe a specialized polyhedral
homotopy [25] construction for locating all of these
complex solutions or the more general homotopy con-
struction based on Khovanskii bases [4] yet avoid the
computationally expensive steps associated with poly-
hedral homotopy.

Consider the function HCN : C
n × C → C

n with
HCN (x, t) = (HCN ,1, . . . , HCN ,n) given by

HCN ,k = cRk −
∑

{i, j}∈E(CN )

(
aR
i jk

xi
x j

+ aR
jik

x j
xi

)
tωi j

(17)

for k = 1, . . . , n, where ωi j = ω(ei − e j ) as given
in (12) or (16) depending on the parity of N . Clearly,
HCN (x, 1) = FR

CN
(x). As t varies strictly between 0

and 1 within the interval [0, 1], HCN (x, t) represents
a smooth deformation of the unmixed synchronization
system FR

CN
(10). We shall show that under this defor-

mation, the corresponding complex roots also vary
smoothly. Thus, the deformation forms smooth paths
reaching the complex roots of FR

CN
and, equivalently,

that of the algebraic synchronization system FCN (9).

Proposition 13 For generic choices of the parame-
ters, the solution set of HCN (x, t) = 0 within C

n ×
(0, 1) consists of N

( N−1
�(N−1)/2�

)
smooth curves that are

smoothly parameterized by t ∈ (0, 1), and the limit
points of these curves as t → 1 are precisely the iso-
lated complex solutions of the unmixed synchronization
system FR

CN
(x) = 0 of (10).

This is a special version of the smoothness condi-
tion for the polyhedral homotopy, and its proof can
be found in [25,30]. Here, we include a variation of
the proof adapted from [30] for completeness, as the
special choice of the lifting function prevents us from
directly applying the general theorems which require
generic liftings.

Proof As proved in [10], for generic choices of the
parameters, the system HCN (x, 1) ≡ FR

CN
is in general

position with respect to the adjacency polytope bound,
i.e., it has the maximum number of isolated complex
solutions.

Also note that for any t �= 0, H(x, t) has the same
form as (10) since the effect of t is only in scaling
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the coefficients. We shall show that H(x, t) remains
a generic member of (9) for all t ∈ (0, 1] and hence
all complex solutions of H(x, t) = 0 (as a system in
x only) are isolated and the total number matches the
adjacency polytope bound N

( N−1
�(N−1)/2�

)
.

As noted in Remark 2, the genericity condition is
characterized by an algebraic function D, the discrim-
inant, which is a polynomial in the coefficients cRk and
aR
i jk t

ωi j for k = 1, . . . , n and {i, j} ∈ E(CN ) such that
F(x) = HCN (x, t) is generic with respect to the adja-
cency polytope bound preciselywhen D �= 0. Consider
the univariate polynomial

g(t) = D((cRi )ni=1, (a
R
i jk t

ωi j ){i, j}∈E(CN ),k=1,...,n).

By our genericity assumption, g(1) �= 0, and there-
fore the polynomial g(t) is not the zero polynomial.
It then has finitely many zeros within the unit disk
of C, say, r1eτ1 , . . . , r	eτ	 for some 	 ∈ Z

+. Pick-
ing a real value τ ∈ [0, 2π ] such that τ �= τk for
k = 1, . . . , 	 will ensure g(eτ t) �= 0 for all t ∈ (0, 1).
But g(eτ t) describes the discriminant condition for the
system HCN ,k(x, eτ t) given by

cRk −
∑

{i, j}∈E(CN )

(
aR
i jk

xi
x j

+ aR
jik

x j
xi

)
eωi j τ tωi j ,

for k = 1, . . . , n, which implies HCN (x, eτ t) is in gen-
eral position for all t ∈ (0, 1).

Notice that the map τ �→ eωi j τ is finite-to-one, and
themap aR

i jk �→ aR
i jk ·eωi j τ is a nonsingular linear trans-

formation on the coefficients {aR
i jk}, which preserves

genericity. We can conclude that for generic choices of
the coefficients, HCN (x, t) will be in general position
for t ∈ (0, 1).

This shows that at any fixed t ∈ (0, 1), all solutions
of H(x, t) = 0 in C

n are isolated, and the total number
is exactly the adjacency polytope bound N

( N−1
�(N−1)/2�

)
.

A direct application of the homotopy continuation the-
ory is then sufficient to establish that the solution set
of H(x, t) = 0 in C

n × (0, 1) forms paths that are
smoothly parametrized by t . Furthermore, by continu-
ity, the limit points of these paths as t → 1 must be all
of the solutions of FR

CN
(x) = 0 which is identical to

that of FCN (x) = 0. ��
The equation HCN (x, t) = 0 defines finitely many

smooth paths in C
n × (0, 1) reaching all of the iso-

lated complex solutions of the target synchronization
system FCN (x) = 0. The starting points of these paths
at t = 0, however, cannot be determined directly since

HCN (x, 0) = (c1, . . . , cn) which has no root in C
n .

This obstacle is surmounted via a technique similar to
the main construction in polyhedral homotopy [25].

Recall that 
N is the set of cells forming the uni-
modular triangulation of the adjacency polytope PCN

(defined in (13) or (15) depending on the parity of
N ). For each cell T ∈ 
N , we define the subset of
(directed) edges

E(T ) = {(i, j) ∈ E(G) | ei − e j ∈ T }.
Here, we do not assume the symmetry of edges, i.e.,
(i, j) ∈ E(T ) does not imply ( j, i) ∈ E(T ). Define the
cell system FT = (FT,1, . . . , FT,n) associated with the
cell T ∈ 
N to be

FT,k(x) = cRk −
∑

(i, j)∈E(T )

aR
i jk

xi
x j

(18)

for k = 1, . . . , n. This system can be considered as a
subsystem of the unmixed synchronization system (10)
in the sense that it involves a subset of the terms in that
system: only those terms corresponding to points in
T . Indeed, T is exactly the Newton polytope of the
corresponding cell system.

Remark 14 The cell systems defined here are refine-
ments of the facet systems studied in [7]. Indeed, for
odd N , they are exactly the facet systems since each
T ∈ 
N is the convex hull of a facet of the adja-
cency polytope PCN together with the origin. For even
N values, however, the cell systems will be significant
refinement of facet systems defined in [7]. Two partic-
ularly important advantages (18) offers are that it has a
unique (complex) solution, and it can be solved easily
and directly. This distinction will be explained in detail
in Sect. 9.1.

Here, each cell T ∈ 
N is a full-dimensional lattice
simplex with normalized volume 1 (a primitive sim-
plex). From classical results in toric algebraic geome-
try, we can deduce that the corresponding cell system
has a unique solution.

Lemma 15 For generic choices of complex constants
{ci }ni=1 and {ai j , bi j }{i, j}∈E(CN ), each cell system FT (x),
as defined in (18), for T ∈ 
N has a unique complex
root, and this root is isolated and nonsingular.

A direct algebraic proof is also given in [7, Theo-
rem 4], as the system FT corresponds to a primitive
subnetwork which has a unique generalized frequency
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synchronization configuration. More importantly, as
shown in that proof [7, Remark 5], after Gaussian elim-
ination, such a system can be reduced to a special form
of a binomial system which can be solved in linear
time, i.e., in O(n) complex multiplications and divi-
sions with no additional memory needed.

With this result, we modify the function (17) so that
it defines a solution path that starts from the unique
solution of the cell system FT . This is essentially a spe-
cialized polyhedral homotopy [25] of the “unmixed”
form using the triangulation found in the previous sec-
tion.

Definition 16 [Adjacency polytope homotopy] For
each cell T ∈ 
N , let (α1, . . . , αn, 1) ∈ R

n+1 be
the associated upward-pointing inner normal vector as
given inLemma8 andCorollary 12.Wedefine the adja-
cency polytope homotopy induced by this cell as the
function HT = (HT,1, . . . , HT,n) : C

n × [0, 1] → C
n

given by

HT,k(y, t) = HCN ,k(y1 t
α1 , . . . , yn t

αn , t). (19)

Here, HCN ,k is the function defined in (17). Recall
that the collection of cells in
N form a regular triangu-
lation of the adjacency polytope PCN which is also the
Newton polytope of (10). By applying the construction
of the unmixed form of polyhedral homotopy [25], we
obtain the desired result: A homotopy that can locate
all isolated complex solutions of the algebraic synchro-
nization system FCN (x) = 0 as defined in (9).

Theorem 17 For generic choices of the complex con-
stants {ci }ni=1 and {ai j , bi j }{i, j}∈E(CN )

1. The solution set of HT = 0 within C
n × (0, 1) con-

sists of a finite number of smooth paths parametrized
by t, and the limit points of these paths as t → 1
are precisely the isolated solutions of FCN (x) = 0
in C

n.
2. Among them, there is a unique path CT (t) whose

limit point CT (0) = limt→0+ CT (t) is the unique
solution of the cell system FT (x) = 0 of (18).

3. The set of end points {CT (1) | T ∈ 
N } of paths
induced by all cells is exactly the isolatedC-solution
set of FCN (x) = 0.

Remark 18 Here, the interpretationof “generic choices”
still follows Remark 2: There is a nonzero polynomial
D in {ci }ni=1 and {ai j , bi j }{i, j}∈ECN

such that all choices
of these coefficients at which D is nonzero are consid-
ered “generic.” In particular, if these coefficients are

chosen at random, then, with probability one, the cho-
sen coefficients will be generic. In other words, almost
all choices are generic. Furthermore, it is sufficient to
choose generic real constant terms {ci }ni=1 and sym-
metric coupling coefficients {ki j }{i, j}∈ECN

. That is, for
almost all real constants {ci }ni=1 and {ki j }{i, j}∈ECN

, the
conclusions of the above theorem still hold.

Remark 19 The theorem above assumes the coeffi-
cients to be generic. For special choices of the coef-
ficients, e.g., in the special case of uniform coupling of
ki j = 1, this assumption will fail if N is divisible by 4,
as detailed in [11].

The most practical way for handling such a non-
generic synchronization system F({ci }, {ki j }; θ) as in
(3) is to consider a perturbed version F({ci +εi }, {ki j +
εi j }; θ) with randomly chosen real numbers εi and εi j
of sufficiently small magnitude. Then, with probabil-
ity one, this perturbed synchronization system satis-
fies the assumption of the above theorem, and its syn-
chronization configurations can be located by the adja-
cency polytope homotopy described here. The implicit
function theorem ensures that regular solutions of the
original synchronization system (solutions at which the
Jacobian of the system is of full rank) can be approx-
imated arbitrarily closely by the solutions of the per-
turbed system with sufficiently small values of εi and
εi j .

Compared to a direct application of the polyhedral
homotopy, the above construction has great computa-
tional advantages as summarized in Table 1.

Remark 20 From the viewpoint of numerical analysis,
the stability of a homotopy formulation is a deep and
complex problem that is outside the scope of this paper.
Here, we only comment on one distinct advantage of
the adjacency polytope homotopy over a direct applica-
tion of the polyhedral homotopy method. In practical
implementations of polyhedral homotopy, it is well-
known that the distribution of the exponents of the t
parameter in the homotopy plays a crucial role in the
numerical stability of the homotopy algorithm [19].
In particular, if the exponents of t spread over a wide
range, the problem of tracking the homotopy paths can
become extremely ill-conditioned and standard algo-
rithms for path tracking become unstable. While many
techniques have been developed to deal with this issue,
it is much preferred if this problem can be avoided in
the first place. In our construction, the exponents of t
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Table 1 Computational advantages of the adjacency polytope homotopy

Direct application ofpolyhedral
homotopy

Adjacency polytopehomotopy

Construction of the homotopy Requires the costly step of mixed
cells computation

Each homotopy HT only requires
one cell generated by
Algorithm 1

Starting systems Binomial systems which are
usually solved in O(n3) time and
additional memory

Special “primitive” system that can
be solved in O(n)time and
requires no memory

Lifting function Uses random image and requires
numerical conditioning
techniques

Uses values {0, 1, 2} and will not
directly cause instability

in both (17) and Definition 16 involve small integers
{0, 1, 2}, ensuring that the exponents of t in HT (y, t)
consist of only small positive integers for relatively
small N values.

9 Interpretations

In this section, we interpret our main results in a
wider context and draw connections to closely related
problems. Even though the main result is an efficient
homotopy method for locating complex synchroniza-
tion configurations for the Kuramoto model on cycle
networks, we shall show that our construction actu-
ally provides explicit solutions to other problems: the
directed acyclic decomposition of cycle Kuramoto net-
works, and the self-intersection of a tropical hypersur-
face.

9.1 Directed acyclic decomposition of cycle networks

In recent work of the first author [7], a general scheme
is proposed to decompose a Kuramoto network into
smaller subnetworks supported by directed acyclic
graphs while preserving certain properties of the syn-
chronization configurations. This scheme utilizes the
geometric properties of the adjacencypolytope. Indeed,
the subnetworks correspond to the facets of the adja-
cency polytope.

In this context, the constructions proposed in the
present paper provide two important improvements to
that decomposition scheme. First, the regular unimod-
ular triangulation of the adjacency polytope PCN gives
rise to a significant refinement for the directed acyclic

decomposition scheme which will decompose a cycle
network into “primitive” subnetworks that can be ana-
lyzed easily and exactly. This was not possible for
even N valueswith the original decomposition scheme.
Second, as the starting system induced by the adja-
cency polytope homotopy (17) can be solved easily
and efficiently. Finally, since the explicit formula for
the generic root count is known (Sect. 5), the number
of solution paths induced by the homotopy proposed
in Sect. 8 matches the generic root count exactly, and
thus will not produce extraneous solution paths in the
generic situation. This feature was not established for
the original decomposition scheme and the associated
homotopy method.

To see how the regular unimodular triangulation
described in Sect. 6 gives rises to a decomposition of
the Kuramoto network, we first define the subnetwork
corresponding to a cell.

Definition 21 Let 
N be the regular subdivision of
PCN defined in (13) and (15). For each cell T ∈ 
N ,
we define the directed acyclic subnetwork associated
with T to be the graph ({0, . . . , N − 1}, E(T )) where

E(T ) = {(i, j) ∈ E(CN ) | ei − e j ∈ T }.
This is a refinement of the definition in [7] where

subnetworks correspond to facets of the adjacency
polytope. In contrast, subnetworks defined above come
from a triangulation which, in the case of even N val-
ues, are associated with simplices in the facets of PCN .

As established in [7], such a subnetwork associated
with a cell is always an acyclic graph, which justifies
its name (directed acyclic subnetwork).Moreover, such
subnetworks are of the simplest possible form known
as “primitive” subnetworks.
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Definition 22 [Primitive subnetwork [7]] A subnet-
work associated with a cell is said to be primitive if
it contains exactly n = N − 1 directed edges.

Primitive subnetworks are the smallest directed
acyclic subnetworks that are weakly connected and
contain all oscillators. More importantly, their (gener-
alized) synchronization configurations can be analyzed
easily and exactly. Note that since each cell T ∈ 
N is
a simplex of dimension n containing exactly n nonzero
points of the form ei − e j for i �= j , we can see that
the induced subnetwork must be primitive.

Proposition 23 Let
N be the regular unimodular tri-
angulation of PCN . For each cell T ∈ 
N , the associ-
ated directed acyclic subnetwork is primitive.

In other words, under the assumption of generic
coefficients, each primitive subnetwork corresponds to
a complex solution of the algebraic synchronization
system (9) through the adjacency polytope homotopy

(Definition 16). Figure 3 shows the directed acyclic
subnetworks of a cycle network with 4 nodes induced
by the triangulation
N . All subnetworks are primitive.
In contrast, the decomposition scheme studied in pre-
vious work [7], shown in Fig. 4, produces subnetworks
that are not primitive.

9.2 A tropical interpretation

Even though it was not stated explicitly, the procedure
that resulted in the adjacency polytope homotopy (17)
is actually rooted from tropical algebraic geometry
[32]. In this section, we provide the interpretation from
the tropical viewpoint.

Recall that we started with the unmixed form of the
algebraic synchronization equations (10). If we con-
sider the valuation on the field of coefficients given by
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Fig. 3 Directed acyclic subnetworks of a cycle network with 4 nodes induced by the refined decomposition scheme developed in this
paper. Every subnetwork is primitive. This is to be compared with the original coarser decomposition scheme shown in Fig. 4
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Fig. 4 Directed acyclic
subnetworks of a cycle
network with 4 nodes
induced by the coarser
decomposition scheme
originally proposed in [7].
None of the subnetworks
are primitive

val(cRi ) = 0 and (20)

val(aR
i jk) =

{
2 if N is even and (i, j) = (1, 0)

1 otherwise,
(21)

which mirrors the choices of the weights given in (12)
and (16), then the tropicalizations of the n polynomials
in (1) are identical and they define a common tropical
hypersurface. Themain results developed in Sect. 6 can
thus be interpreted tropically: The valuation defined
above induces the simplest (stable) self-intersection.

Proposition 24 Let h = trop(FR
CN ,k) for k = 1, . . . , n

be the tropicalization of (10) with respect to the val-
uation given in (20). Then, the tropical hypersurface
defined by h has exactly N

( N−1
�(N−1)/2�

)
self-intersection

points, and each intersection is of multiplicity one.

As discussed in Remark 10, the special choice of
the valuation (20) is an important condition for this
result to hold. Using only 0-1 valuations, for exam-
ple, will not produce self-intersections with multiplic-
ity one. One of the key contributions of this paper is
the explicit formula for these self-intersection points.
These tropical self-intersection points are precisely the
tropicalizations of the curves defined by (17).

10 An example

In this section, we illustrate the workflow of the pro-
posed algorithm through the example of a cycle net-

work consisting of 6 oscillators as shown in Fig. 5. This
example will assume natural frequencies c1 = 0.011,
c2 = 0.012, c3 = 0.013, c4 = 0.014, and c5 = 0.015
(relative to a rotating frame of reference determined by
themean natural frequencies) and coupling coefficients
ki j = 1. The edge set of the underlying graph C6 is

{{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 0}},
and the adjacency polytope is a full-dimensional poly-
tope in R

5 given by the convex hull of the points

±

⎡

⎢⎢⎢⎢⎣

1
0
0
0
0

⎤

⎥⎥⎥⎥⎦
, ±

⎡

⎢⎢⎢⎢⎣

1
−1
0
0
0

⎤

⎥⎥⎥⎥⎦
,±

⎡

⎢⎢⎢⎢⎣

0
1

−1
0
0

⎤

⎥⎥⎥⎥⎦
, ±

⎡

⎢⎢⎢⎢⎣

0
0
1

−1
0

⎤

⎥⎥⎥⎥⎦
, ±

⎡

⎢⎢⎢⎢⎣

0
0
0
1

−1

⎤

⎥⎥⎥⎥⎦
, ±

⎡

⎢⎢⎢⎢⎣

0
0
0
0
1

⎤

⎥⎥⎥⎥⎦
,

as well as the origin. Algorithm 1 produces 60 cells that
form a unimodular triangulation of the adjacency poly-
tope; the implementation is described in “Code avail-
ability” section. Since all of the cells will be handled
in the same process and are unimodularly equivalent to
one another, in this example, we will focus on a single
cell.

Fig. 5 A cycle network of
six oscillators
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One of the cells produced by Algorithm 1 is the full-
dimensional simplex in R

5 spanned by the subset

E =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎣

−1
1
0
0
0

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

0
−1
1
0
0

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

0
0
1

−1
0

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

0
0
0
1

−1

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

0
0
0
0
1

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

0
0
0
0
0

⎤

⎥⎥⎥⎥⎦
,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

It corresponds to the primitive subnetwork shown in
Fig. 6 and the upward pointing inner normal vector

α̂ =

⎡

⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

α4

α5

1

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

−1
−2
−3
−2
−1
1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The adjacency polytope homotopy (Definition 16)
induced by this cell HT = (HT,1, . . . , HT,5) is given
by

HT,k(y, t) = cRk −
∑

{i, j}∈E

(
aR
i jk

yi tαi

y j tα j
+ aR

jik
y j tα j

yi tαi

)
tωi j .

At t = 0, HT reduces to the cell system (defined in
(18)) FT = (FT,1, . . . , FT,5) associated with this cell,
which given by

cRk − aR
21k

x2
x1

− aR
32k

x3
x2

− aR
34k

x3
x4

− aR
45k

x4
x5

− aR
50k

x5
x0

for k = 1, 2, 3, 4, 5. This cell system has a unique
complex solution, and it can be computed directly and
efficiently [7, Remark 5]. Using it as the starting point,
we can trace the solution path defined by HT (y, t) = 0
from t = 0 to t = 1 via path trackers described in
“Code availability” section, and we obtain an approxi-
mation of the complex solution given by

Fig. 6 A primitive
subnetwork corresponds to
a cell

x1 = 9.999636994703 · 10−1 − 8.520548236360 · 10−3i

x2 = 9.996068365590 · 10−1 − 2.803876432684 · 10−2i

x3 = 9.982263386348 · 10−1 − 5.953298749315 · 10−2i

x4 = −9.998870074708 · 10−1 + 1.503237480704 · 10−2i

x5 = −9.972937024033 · 10−1 + 7.352054824607 · 10−2i.

They correspond to the complex phase angles

θ1 = −8.520651337993 · 10−3 − 2.882462982872 · 10−13 i

θ2 = −2.804243951050 · 10−2 − 2.336632165329 · 10−13 i

θ2 = −5.956820960829 · 10−2 + 1.279509845221 · 10−10 i

θ2 = 3.126559712575 · 100 − 6.2544185864211̇0−13 i

θ2 = 3.068005710633 · 100 + 6.615774118443 · 10−11 i,

which produce a good approximation of a real synchro-
nization configuration. Here, we only show the approx-
imation directly obtained from a numerical homotopy
continuation implementation using double precision
floating point arithmetic before a “refinement” proce-
dure is applied. In typical applications, local solvers
such as Newton’s iterations should be applied to this
approximation and refine the numerical solution to any
desired accuracy.

The same process can be repeated for all 60 cells,
and all 60 complex solutions can be computed effi-
ciently. Indeed, all 60 complex solutions obtained are
close approximations of real synchronization configu-
rations. Since the homotopypaths are independent from
one another, the computation of the 60 solutions can be
carried out in parallel.

11 Conclusions

Following the volume computation result in [10], this
paper aims to deepen the geometric understanding of
adjacency polytopes associated with a cycle Kuramoto
network and use this information to explore three
aspects of Kuramoto equations:

1. To create an efficient polyhedral-like homotopy for
solving Kuramoto equations;

2. To explicitly describe directed acyclic decomposi-
tions of Kuramoto networks into primitive subnet-
works;

3. To understand the stable intersections of the tropical
hypersurfaces defined by Kuramoto equations.

First, we derived the explicit formula for a regu-
lar unimodular triangulation of the adjacency polytope
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PCN associated with a cycle graph of N nodes for any
N > 2. This greatly strengthens the results from [10]
where only the normalized volume of PCN is known.

Then, using this regular unimodular triangulation,
we develop a homotopy continuation algorithm based
on the well-established polyhedral homotopy method
yet has the distinct advantage that it entirely sidesteps
the costly mixed volume/cells computation step. This
homotopy is also a significant improvement over the
directed acyclic homotopy proposed in [7] since it
deforms the Kuramoto system into simplest possible
subsystems each having a unique solution. From the
computational viewpoint, the proposed homotopy also
offers important advantages in numerical conditions,
efficiency, and scalability as discussed in Remark 20.

The third contribution of this paper is a significantly
refined version of the directed acyclic decomposition
scheme originally proposed in [7]. The regular unimod-
ular triangulation proposed here induces a decompo-
sition of a cycle Kuramoto network into the smallest
possible components known as primitive subnetworks.
Primitive subnetworks are of great value since they
each have a unique complex synchronization config-
uration which can be computed easily and efficiently.
This is to be compared with the situation of the origi-
nal decomposition scheme where the resulting subnet-
works, in general, may not be primitive.

Finally, interpreted in the context of tropical geom-
etry, our result provides explicit formula for all stable
intersections of the tropical hypersurfaces defined by
the unmixed form of the Kuramoto system under a spe-
cial choice of the valuation. The induced tropical inter-
sections are particularly nice as we have shown that
every intersection point is of multiplicity 1.
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Travel Grant, Auburn University at Montgomery Research
Grant-in-Aid Program, and theNSF under award numbers DMS-
1923099 and DMS-1922998.

Code availability The main algorithms for generating the cells
in the regular unimodular triangulation 
N of PCN are imple-
mented in an open source Python package kap-cycle [6]. In
addition to the cells, this package also produces the upward-
pointing inner normals corresponding to each cell. That is, it
provides all the necessary information for bootstrapping the adja-
cency polytope homotopy proposed in Sect. 8. The actual track-
ing of the homotopy paths can be done via a variety of robust
numerical software packages known as “path trackers.” The cal-

culations involved in the example described inSect. 10 are carried
out by the GPU-accelerated path tracker libdh [9].
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