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ABSTRACT
We report work-in-progress that aims to better understand
prediction performance differences between Deep Knowledge
Tracing (DKT) and Bayesian Knowledge Tracing (BKT) as
well as “gaming the system” behavior by considering vari-
ation in features and design across individual pieces of in-
structional content. Our“non-monolithic”analysis considers
hundreds of “workspaces” in Carnegie Learning’s MATHia
intelligent tutoring system and the extent to which two rel-
atively simple features extracted from MATHia logs, po-
tentially related to gaming the system behavior, are corre-
lated with differences in DKT and BKT prediction perfor-
mance. We then take a closer look at a set of six MATHia
workspaces, three of which represent content in which DKT
out-performs BKT and three of which represent content
in which BKT out-performs DKT or there is little differ-
ence in performance between the approaches. We present
some preliminary findings related to the extent to which
students game the system in these workspaces, across two
school years, as well as other facets of variability across
these pieces of instructional content. We conclude with a
road map for scaling these analyses over much larger sets of
MATHia workspaces and learner data.
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1. INTRODUCTION
Intelligent Tutoring Systems (ITS) like Carnegie Learning’s
MATHia (previously, Cognitive Tutor; [15]) have relied on
statistical knowledge tracing algorithms for decades to model
students’ mastery of sets of knowledge components, or skills.
Recent work (e.g., [7, 8, 11]) considers questions related
to conditions under which recent approaches to knowledge
tracing based on deep learning predict student performance
better than more“traditional”methods like Bayesian Knowl-
edge Tracing (BKT) [1, 19]. For example, [7] measured the

difference in performance of the two algorithms on over 300
MATHia workspaces. They found that there are workspaces
where Deep Knowledge Tracing (DKT; [14]) outperforms
BKT significantly, and others where BKT does as well or
slightly outperforms DKT. Other work attempts to bridge
the gap between the two algorithms, in order to provide a
more interpretable algorithm that performs as well as DKT
(e.g., by including a forgetfulness parameter [11]). Gervet et
al. present the possibility in [8] that knowledge tracing ap-
proaches based on deep learning might“pick up”on behavior
like “gaming the system” [4].

The present work describes work-in-progress investigating
both performance differences between BKT and DKT as
well as models of gaming the system behavior, analyzed on
a workspace-by-workspace basis (what was called in [7] a
“non-monolithic” approach). We begin by considering two
relatively simple measures extracted from MATHia log data
that may serve as prima facie proxies for more complex
phenomena like “gaming the system” to see whether these
simple proxies are correlated with the difference between
DKT and BKT prediction performance over several hun-
dred MATHia workspaces. Next, we consider a more so-
phisticated model of gaming the system thus far applied
to six MATHia workspaces’ data from two distinct school
years (2018-19 and 2021-22). The six workspaces considered
represent the three workspaces with the largest difference
in DKT and BKT performance and the three workspaces
with the smallest difference in this performance. We find
roughly consistent patterns of gaming the system in each
workspace across the two school years and that gaming the
system may be more common in workspaces in which DKT
out-performs BKT, though we take the question to be unre-
solved. We conclude by laying out a road map for on-going
and future analyses investigating knowledge tracing predic-
tion performance differences, gaming the system, and ques-
tions of year-over-year applications of these models to larger
datasets from platforms like MATHia.

2. MATHIA
MATHia is an ITS developed by Carnegie Learning, typi-
cally used as part of a blended mathematics curriculum, pri-
marily in middle and high schools across the United States.
In such a blended curriculum, educators are typically ad-
vised to allow students to use MATHia for approximately
40% of the in-classroom instructional time. MATHia is
used by hundreds of thousands of students in the United
States every year. MATHia delivers instruction and practice



grouped into topical “workspaces.”, where each grade-level
course in middle school (Grades 6-8) and high school course
(Algebra I-II and Geometry) are comprised of approximately
70 to 120 workspaces. MATHia’s “mastery” workspaces de-
liver instruction and practice on sets of fine-grained knowl-
edge components (or skills) using a mastery learning ap-
proach [16]. Students are presented practice on skills un-
til they reach a threshold (probability of learning equalling
0.95) for mastery of all skills within a workspace as estimated
by BKT (or a pre-defined maximum number of problems, so
that students who struggle to reach skill mastery are not
perpetually provided additional practice). When a student
is estimated to reach mastery of all skills associated with a
workspace, they progress to the next workspace in the se-
quence of workspaces assigned to them. As students work on
complex, multi-step problems in MATHia, they can request
context-sensitive hints and receive just-in-time (JIT) feed-
back when mistakes they make are (at least roughly) aligned
with known misconceptions or expected errors (e.g., that an
errant numeric response appears in a problem-statement).

2.1 Knowledge Tracing Models
The present work compares the statistical prediction per-
formance of two knowledge tracing models, BKT and DKT.
For each knowledge component or skill, Bayesian Knowledge
Tracing can be represented by a two-state hidden markov
model (HMM) with four parameters governing transitions
between the two-states, namely an “un-mastered” state and
a “mastered” state, and student performance on opportu-
nities to practice a particular skill. BKT’s parameters for
each skill represent students’ prior knowledge, the probabil-
ity that a student transitions from the un-mastered to the
mastered state at a particular practice opporunity, the prob-
ability that the student may be able to guess correctly, or
make an error despite mastery (or “slip”). Using student
performance data, these models can be used to predict stu-
dent correctness at particular practice opportunities as well
as to estimate student mastery.

A newer recurrent neural network based method known as
Deep Knowledge Tracing (DKT) [14] has been shown to per-
form better than BKT in certain cases and similarly in oth-
ers [7, 8, 11]. As a part of our explorations of differences in
DKT and BKT performance and the incidence of gaming the
system across MATHia workspaces, we consider whether this
difference in performance, at least in part, may be attributed
to gaming the system behavior (addressing a question raised
by Gervet et al. [8]) and relatively simple potential proxies
for gaming behavior.

2.2 Gaming the System
“Gaming the System” is a widely studied phenomenon in
the educational data science and learning analytics litera-
ture, referring to behavior whereby learners using educa-
tional technologies like ITS attempt to exploit features of
learning technologies (e.g., hints and feedback) to make progress
through instructional material without learning [3]. This
literature often targets the development of data-driven “de-
tectors” of such behavior, relying on action-level learning
process data to predict instances of learner interactions in
ITS that are likely examples of such behavior. Cognitive
Tutor, now MATHia, has been a target platform for the
development of detectors of gaming the system (e.g., [4])

as well as other behaviors and affective states (e.g., [5]).
Notably, work like [2] adopted what we have called a “non-
monolithic” approach to considering behaviors like gaming
the system, considering characteristics of individual Cogni-
tive Tutor “lessons” (what we call workspaces in MATHia)
that may be associated with students’ gaming the system
behavior. Mostly recently, several implementations of a
gaming the system detector were developed using data from
MATHia in the 2020-21 school year [12], we use one of them,
the Random Forest implementation, in this work. In addi-
tion to better understanding the extent to which students
game the system across individual MATHia workspaces, we
are also beginning to explore the question of the extent
to which behavioral patterns like gaming the system per-
sist across multiple school years in the same workspaces, a
question related to whether such detector models “rot” over
longer periods of time raised by recent work [12].

2.3 Data
In this study, we use student action-level data from both the
2018-19 and 2021-22 academic years for the 3 workspaces
that were found in [7] to have the highest and lowest (non-
absolute value) difference in performance between the DKT
and BKT algorithms, where performance is measured in [7]
on 2018-19 MATHia data, as the area under receiver oper-
ator curve (AUC ROC) of the two algorithms’ predictions
(probabilities) of students’ correctness at opportunities to
practice skills in those workspaces. 1 These 6 workspaces
come from a diverse variety of curricula in terms of grade-
level. Workspaces with the highest AUC(DKT) - AUC(BKT)
difference implies that the DKT algorithm performs better
in those workspaces, while the lowest AUC(DKT) - AUC(BKT)
difference is slightly negative and implies that the BKT is
slightly better in those workspaces. For brevity, we refer
to the former sample as DKT+ and the latter sample as
BKT+. The workspaces used in the DKT+ and BKT+
samples are shown in Tables 1 and Table 2 respectively,
along with the number of students, and number of actions
in the sample.2. The DKT-BKT performance difference is
0.31, 0.28, and 0.27 for Rewriting Radicals with Variables,
Checking Solutions to Linear Equations, and Solving Lit-
eral Equations respectively; and -0.08, -0.07, and -0.03 for
Solving with Addition and Subtraction (Type In), Solving
Problems with Both Sales Tax and Discounts, and Solving
with the Distributive Property Over Multiplication respec-
tively. While we are working to deploy the relatively sophis-
ticated gaming the system detector over a broader range

1We limit ourselves to 6 workspaces as we’re currently work-
ing to “scale up” the implementation of gaming the system
detectors to make predictions over hundreds of workspaces
and hundreds of millions of student actions to allow for more
definitive inferences about the relationship, if any, between
prediction performance and gaming the system.
2The three BKT+ workspaces we consider have smaller sam-
ple sizes (in terms of students and transaction counts) in
the 2018-19 data over which these models were trained. As
Fancsali et al. [7] note a small correlation (r = 0.2) between
sample size and the DKT-BKT performance difference, this
may be a contributing factor to the “good” performance of
BKT relative to DKT. However, there are workspaces with
comparable sample sizes to the DKT+ workspaces for which
BKT and DKT perform similarly. Future work will more
comprehensively consider workspaces with both large sam-
ple sizes and “good” BKT performance.



of MATHia workspaces and student data, we consider two
relatively simple potential proxies for gaming the system be-
havior, calculated over all workspaces from the 2018-19 and
2021-22 academic years: action duration and JIT feedback
summary statistics.

We use the recent gaming the system detector developed
by [12], generating the 18 features described in [12] from
MATHia transactional action-level data. We then define
“clips”of data on which to run the gaming detector. We com-
pute 9 summary statistics (mean, count, minimum, maxi-
mum, median, Q1, Q3, standard deviation, and sum) for
each of the 18 features on the actions within a clip, result-
ing in 162 features on which we run the gaming detector.
We define a clip as a single students’ action-level data of up
to 8 actions, and at least 2 actions, in up to 20 seconds. To
avoid ambiguity, we look for series of actions satisfying ex-
actly 8 actions in up to 20 seconds first, and identify them as
clips. Once those actions have been used to generate clips,
those actions are removed from the dataset, and we look for
actions satisfying exactly 7 actions in up to 20 seconds, and
so forth in descending order. This procedure insures that
actions are not repeated across clips, and that the number
of action within a clip is maximized up to 8. It is notewor-
thy that the 18 features are generated prior to defining clips,
including certain features that targets actions on a rolling
basis. For example, the dur_sd_prev_5 feature, which is the
sum of the last 5 standardized action durations, is computed
on windows of actions of size 5 before potentially splitting
those actions into clips.

3. GAMING THE SYSTEM PREDICTIONS
3.1 Proxy measures of gaming the system
Two prima facie potential correlates of gaming the system
behavior include rapid student actions, and student actions
that lead to JIT feedback, sometimes referred to in the liter-
ature (e.g., [2]) as “buggy”messages. Fancsali, for examples,
suggests in [6] an especially high correlation between stu-
dent errors that lead to JIT feedback and predictions that a
student is gaming the system. While rapid student actions
could also indicate attempts to game the system (e.g., by
rapidly entering numbers that appear in a problem), rapid
student actions may also simply be the result of the instruc-
tional design of a particular MATHia workspace. Fancsali et
al. [7] noted, for example, that workspaces for which DKT
vastly out-performed BKT tended to be workspaces in which
students used an equation solving tool, used a numberline
tool, or in which problem-steps were frequently “drop-down”
menus with several choices for response. Any of these types
of interface elements could lead to more rapid student ac-
tions, regardless of whether students are gaming the system.

Taking into account all workspaces in MATHia (as these
proxy measures are more easily extracted from MATHia pro-
cess data), we find that the median duration of student ac-
tions in each workspace is weakly negatively correlated at a
statistically significant level to the DKT-BKT performance
difference in both the 2018-19 and 2021-22 data (where the
DKT-BKT performance difference is re-used for the 2021-22
correlation). Specifically, these correlations were r=-0.15 for
2018-19 at a p-value of 0.008 and r=-0.18 for 2021-22 at a
p-value of 0.002.
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Figure 1: The distribution of gaming probabilities for all clips
in the DKT+ sample, on a workspace-by-workspace basis, for
both the 2018-19 and 2021-22 academic years. The distri-
butions show that gaming trends remain the same over the
years, even for different student samples. KS test show that
the CDFs of the two distributions for each workspace differs
by 0.10, 0.28, and 0.38 for Solving Literal Equations, Rewrit-
ing Radicals with Variables, and Checking SOlutions to Linear
Equations respectively.



Table 1: Data volume for workspaces in the DKT+ sample, where DKT outperforms BKT the most

2018-19

Workspace Name # of transactions # of students

Solving Literal Equations 443433 5911

Checking Solutions to Linear Equations 1234234 27956

Rewriting Radicals with Variables 86923 2750

2021-22

Workspace Name # of transactions # of students

Solving Literal Equations 1134960 22191

Checking Solutions to Linear Equations 411898 26690

Rewriting Radicals with Variables 59326 6296

Table 2: Data volume for workspaces in the BKT+ sample, where BKT outperforms DKT the most.

2018-19

Workspace Name # of transactions # of students

Solving with the Distributive Property Over Multiplication 15266 365

Solving Problems with Both Sales Tax and Discounts 10737 529

Solving with Addition and Subtraction (Type In) 20245 582

2021-22

Workspace Name # of transactions # of students

Solving with the Distributive Property Over Multiplication 711740 20461

Solving Problems with Both Sales Tax and Discounts 596958 23862

Solving with Addition and Subtraction (Type In) 6830 445

We found no statistically significant between the median
or average number of total JIT feedback messages that a
student received in a workspace and the DKT-BKT perfor-
mance difference. Our on-going work will more comprehen-
sively consider the extent to which student actions trigger-
ing JIT feedback are correlated with detector predictions of
gaming the system, in addition to whether more compre-
hensive predictions of gaming the system over all MATHia
workspace correlate with the performance difference between
these knowledge tracing methods.

The negative correlation with action durations implies that
workspaces where DKT most outperforms BKT have shorter
durations between student actions. Given that gaming be-
havior may be occurring when students are making rapid
attempts, this might point towards that DKT outperforms
BKT for workspaces more susceptible to gaming. However,
both the possibility that rapid student actions may arise
out of particular workspace design features and the lack of
correlation with JITs imply otherwise, and further work is
needed to confirm or reject this hypothesis.

Notably, these behavioral patterns (i.e., rapid student ac-
tions and the extent to which students trigger JIT feedback
in these workspaces) stayed largely the same across years,
the correlation between the median duration in workspaces
from 2018-19 and 2021-22 data was 0.86 and the correla-
tion between the number of JITs for the median student
from 2018-19 and 2021-22 data was 0.87, both at p-values
< 10−81.

3.2 Persistence of gaming the system behavior
across time

We generate 342,274 clips from the 2021-22 data and 183,568
clips from the 2018-19 data, each containing summary statis-
tics of between 2 and 8 student actions. On a high level, we

find that clips in the DKT+ sample are 8.4% and 3.4% more
likely to be classified as gaming the system than clips in the
BKT+ sample for the 2021-22 and 2018-19 data respectively.

It is unclear whether a trend will emerge when considering a
larger number of workspaces, and the higher level difference
is likely driven by a few workspaces, as there is large variance
between gaming behavior trends in different workspaces.

Interestingly, gaming trends seem to have stayed largely the
same between the 2018-19 and 2021-22 samples in these
workspaces. Figures 1 and 2 show histograms and kernel
density estimations (KDE) of the per-clip gaming proba-
bilities for each workspace in both years considered. The
distributions were normalized such that they are compara-
ble across years. The KDE uses a Gaussian kernel with
bandwidth selected using Scott’s rule of thumb [17].

Quantitatively, we used a two-sided Kolmogorov-Smirnov
(KS) tests [13] to measure the absolute maximum distance
between the Cumulative Distributed Functions (CDFs) of
the distributions of gaming probabilities (over all values of
gaming probabilities) in the 2018-19 and 2021-22 data in
each workspace. While the KS test found statistically sig-
nificant differences between the distributions in each case,
these differences were small, between 0.1 for Solving Literal
Equations and 0.38 for Checking Solutions to Linear Equa-
tions, where values closer to 0 indicate that the two distri-
butions were drawn from the same distribution and values
closer to 1 indicate that there is no similarity in the CDFs of
the two distributions. Given the large sample sizes making
up the distributions, KS tests are expected to show statisti-
cally significant differences even for minor differences in the
two distributions.
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Figure 2: The distribution of gaming probabilities for all clips
in the BKT+ sample, on a workspace-by-workspace basis, for
both the 2018-19 and 2021-22 academic years. The distri-
butions show that gaming trends remain the same over the
years, even for different student samples. KS test show that
the CDFs of the two distributions for each workspace differs
by 0.23, 0.17 and 0.30 for Solving with Addition and Sub-
traction (Type In), Solving with the Distributive Property
Over Multiplication, and Solving Problems with Both Sales
Tax and Discounts respectively.

4. ROAD MAP + CONCLUSIONS
In the present report on work-in-progress, we have looked
at how certain workspace characteristics vary along with the
difference in DKT and BKT performance in those workspaces.
We found a small, but statistically significant, negative cor-
relation between the median duration of student actions
and the difference in DKT and BKT performance over all
MATHia workspaces. This is the first statistically signifi-
cant correlation we have found between the DKT and BKT
performance difference and a characteristic of (learner be-
havior in) workspaces (aside from correlation with sample
size noted by [7]).

We also considered gaming the system behavior for six workspaces,
selected as the three with the highest and lowest difference
in DKT and BKT performance. We found that gaming be-
havior varies highly between workspaces, but that within
each workspace, similar gaming behavior trends have per-
sisted across years. We found that, on average, the three
workspaces with higher DKT performance compared to BKT
combined showed higher probability of gaming the system,
for both 2018-19 and 2021-22. However, it is not yet clear
whether this would generalize over all MATHia workspaces.

A more holistic (and consequently more computationally in-
tensive) approach is planned for a future study, where we
plan to develop and use a scalable and refined version of the
gaming detector (i.e., constructed over more labeled exam-
ples of gaming versus non-gaming behavior), deployed on
MATHia data over all workspaces for one or more school
years. We also intend to better understand the extent to
which DKT and BKT performance differences and gam-
ing the system behavior persist from school year to school
year when considered on a workspace-by-workspace basis,
following the “non-monolithic” analysis approach for which
we have advocated [7]. In the spirit of Baker’s Cognitive
Tutor Lesson Variation Space [2], intended to capture “les-
son” or workspace-level variation in gaming the system, we
also intend to better explore the space of factors that vary
workspace-by-workspace that may help explain both gam-
ing the system as well as differences in performance among
knowledge tracing methods.
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