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ABSTRACT

Multimodal depression classification has gained immense popular-
ity over the recent years. We develop a multimodal depression clas-
sification system using articulatory coordination features extracted
from vocal tract variables and text transcriptions obtained from an
automatic speech recognition tool that yields improvements of area
under the receiver operating characteristics curve compared to uni-
modal classifiers (7.5% and 13.7% for audio and text respectively).
We show that in the case of limited training data, a segment-level
classifier can first be trained to then obtain a session-wise predic-
tion without hindering the performance, using a multi-stage convo-
lutional recurrent neural network. A text model is trained using a
Hierarchical Attention Network (HAN). The multimodal system is
developed by combining embeddings from the session-level audio
model and the HAN text model.

Index Terms— depression detection, multimodal, vocal tract
variables, articulatory coordination features, hierarchical attention

1. INTRODUCTION

Major Depressive Disorder (MDD) is a mental health disorder
with serious consequences. Previous studies have shown that vocal
biomarkers developed using prosodic, source, and spectral features
[3] can be very effective in automatic depression detection to enable
timely diagnosis and prompt treatments.

MDD is known to cause changes in articulatory coordination of
speech due to a neurological condition called psychomotor slowing
which is a necessary feature of MDD [4, 5, 6]. Articulatory Coor-
dination Features (ACFs) have yielded successful results in distin-
guishing depressed speech from non-depressed speech by quantify-
ing these changes in the timing of speech gestures [7, 8, 9]. Pre-
viously, the correlation structure of the formants or Mel Frequency
Cepstral Coefficients (MFCCs) was used as a proxy for articulatory
coordination to derive indirect ACFs which showed promise in the
depression detection task [7]. Authors of this paper showed in their
previous work, that by using Vocal Tract Variables (TVs) as a direct
measure of articulation to quantify changes in depressed and non-
depressed speech can yield relatively better results in the depression
detection task [8, 9] and for depression severity level classification
task [10]. TV-based ACFs also showed promise as a robust set of
features for depression classification by generalizing well across the
two databases [11].

This work was supported by the UMCP & UMB Artificial Intelligence +
Medicine for High Impact Challenge Award and the National Science Foun-
dation grant numbered 2124270. We thank Dr. James Mundt for the de-
pression databases MD-1&2 [1, 2] and Dr. Thomas Quatieri and Dr. James
Williamson for granting access to the MD-2 database which was funded by
Pfizer.

Deep learning based depression detection is a highly researched
area with promising results [12, 13]. Among these works, multi-
modal depression classification and severity prediction attempt to
further improve the performance through inter-learning among dif-
ferent modalities [14, 15, 16, 17]. Several studies have used the
approach of aggregating segment-level predictions to obtain a final
subject/session-level prediction using techniques such as plurality
voting (PV) [18, 19], max-pooling [20] or recurrent neural networks
(RNN) [21, 10]. This is especially useful in a setting where there’s
a lack of training samples to train a deep learning model using full
audio recordings which can lead to overfitting issues. It was shown
empirically that the strengths of the segment-level classifier are am-
plified as a result of its repeated usage in the session-level classi-
fier [19, 10]. In a multimodal setting, most of these aggregating
approaches have used one-to-one correspondence among segments
from different modalities [21, 19].

The key contributions of this paper are as follows:
(1) The development of a multimodal system using depression

corpora that contain only speech data. Utilizing ASR to obtain text
transcriptions, we show that for the first time, the performance of
binary depression classification can be improved by using TV-based
ACFs and textual features. The generalizability is improved by
sourcing data from two different depression databases. The fusion
strategy of the proposed architecture enables us to segment data
from different modalities independently, in the most optimal way for
each modality, when performing session-level classification from
segment-level classification.

(2) The analysis of the constraints to be satisfied by the segment-
level classifier to yield a stronger session-level classifier. Using a
multi-stage convolutional recurrent neural network, these analytical
findings are validated empirically using different sets of ACFs and
openSMILE features.

2. FEATURE EXTRACTION
2.1. Audio Features
Vocal Tract Variables (TVs): Developed based on Articulatory
Phonology [22], TVs define the kinematic state of 5 distinct constric-
tors (lips, tongue tip, tongue body, velum, and glottis) located along
the vocal tract in terms of their constriction degree and location. We
use a speaker-independent deep neural network based speech inver-
sion system [23] to estimate 6 TVs for 3 of the constricting organs
- Lip Aperture, Lip Protrusion, Tongue Tip Constriction Location,
Tongue Tip Constriction Degree, Tongue Body Constriction Loca-
tion and Tongue Body Constriction Degree. In addition, we use the
periodicity and aperiodicity measures obtained from an Aperiodic-
ity, Periodicity and Pitch (APP) detector [24] to represent the glottal
TV. At this time, we provide no information on the velum.

For comparison purposes, we also trained models using ACFs
derived from formants and MFCCs. The first three formant frequen-
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cies were obtained using the Karma formant tracking tool [25]. 12
MFCC time series were extracted (window size of 20ms, overlap of
10ms) discarding the (1st MFCC coefficient. We created two more
sets of ACFs by appending the same glottal parameters to formants
(FMT+GL) and MFCCs (MFCC+GL) to investigate the effect of
adding voice source information.

2.1.1. Articulatory Coordination Features (ACFs)

ACFs can be used to characterize the level of articulatory coordina-
tion and timing. To measure the coordination, assessments of the
multi-scale structure of correlations among the time series signals
such as TVs were used.

We use the channel-delay correlation matrix proposed in [26] as
the ACFs in this work. For an M -channel feature vector X (such as
TVs or formants), the delayed correlations (rdi,j) between ith chan-
nel xi and jth channel xj delayed by d frames, are computed as:

rdi,j =

∑N−d−1
t=0 xi[t]xj [t+ d]

N − |d|
(1)

where N is the length of the channels. The correlation vector for each
pair of channels with delays d ∈ [0, D] frames will be constructed
as follows:

Ri,j =
[
r0i,j , r1i,j , . . . rDi,j

]T ∈ R1×(D+1) (2)

The delayed auto-correlations and cross-correlations are stacked to
construct the channel-delay correlation matrix:

R̃ACF =
[
R1,1 . . . Ri,j . . . RM,M

]T ∈ RM2×(D+1) (3)

Information pertaining to multiple delay scales are incorpo-
rated into the model by using dilated Convolutional Neural Network
(CNN) layers with corresponding dilation factors while maintaining
a low input dimensionality. Each Ri,j will be processed as a sepa-
rate input channel in the CNN model. Before computing the ACFs,
feature vectors were standardized individually.

2.1.2. Baseline Acoustic Features
We trained a baseline model using the openSMILE features (win-
dow size of 20ms, overlap of 10ms) to benchmark the performance
of models trained using ACFs. The extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS) [27] was extracted using the
openSMILE toolkit [28]. This 23-dimensional feature set consists
of spectral, cepstral, prosodic and voice quality parameters.

2.2. Textual Features
Linguistic features reveal important information about the mental
health of a depressed subject. Therefore adding semantic contextual
information should help to improve our models. We used Google
speech-to-text API to obtain transcribed text of the Free Speech (FS)
recordings that were used to train the audio models. Since the Hier-
archical Attention Network (HAN) can be expected to explicitly cap-
ture contextual information we decided to use context-independent
GloVe word embeddings (100-dimensional) [29] to initialize the em-
bedding layer of the text model.

3. SEGMENT TO SESSION-LEVEL CLASSIFICATION
Let h denote the segment-level classifier, H denote the session-level
classifier, C be an oracle which provides ground-truth, {C0, C1}
be the classes and S be a session consisting of S1, S2, ..., SN seg-
ments. Let’s consider an arbitrary class C0 and prove that the recall
of class C0 of a PV session-level classifier is better than that of the
segment-level classifier it is based on. We use a PV classifier here
for simplicity, however RNN based approaches yield more general-
izable classifiers.

We assume pj = Pr(h(Si) = Cj | C(Si) = C0) to be the same
∀i and each segment classification is independent. Note that p0 is
the recall of class C0 and p0 + p1 = 1. Consider a PV classifier
which breaks ties by randomly selecting one class. Let P0 denote
the recall of the combined classifier.

P0 = Pr(H(S) = C0 | C(S) = C0) =

N∑
k=⌈N/2⌉

(N

k

)
d(k)p

k
0p

N−k
1 where d(k) =

{
1/2, if k = N/2

1, otherwise (4)

Using
(
N
k

)
=

(
N

N−k

)
and d(k) = d(N − k), the sum of coeffi-

cients of (4) can be written as,

N∑
k=⌈N/2⌉

(N

k

)
d(k) =

N∑
k=⌈N/2⌉

( N

N − k

)
d(N − k) =

⌊N/2⌋∑
k=0

(N

k

)
d(k)

With that we have,

2

N∑
k=⌈N/2⌉

(N

k

)
d(k) =

N∑
k=⌈N/2⌉

(N

k

)
d(k) +

⌊N/2⌋∑
k=0

(N

k

)
d(k) =

N∑
k=0

(N

k

)

Therefore we have the sum of coefficients of (4),

N∑
k=⌈N/2⌉

(N

k

)
d(k) =

∑N
k=0

(
N
k

)
2

= (1 + 1)
N

/2 = 2
N−1

Consider the difference of recalls. We use (4) to substitute for
P0 and artificially multiply p0 by a term equal to 1 to ensure that the
coefficient sums of both the terms are equal. Since p0 + p1 = 1,

P0 − p0 =

N∑
k=⌈N/2⌉

(N

k

)
d(k)p

k
0p

N−k
1

︸ ︷︷ ︸
Coefficient sum is 2N−1

−p0 (p0 + p1)
N−1︸ ︷︷ ︸

Coefficient sum is 2N−1

=

N∑
k=⌈N/2⌉

[
d(k)

(N

k

)
−

(N − 1

k − 1

)]
p
k
0p

N−k
1

−
⌈N/2⌉−1∑

k=1

(N − 1

k − 1

)
p
k
0p

N−k
1 (5)

Given that

d(k)

(N

k

)
−

(N − 1

k − 1

)
=

(N − 1

k − 1

)
(d(k)N/k − 1) =

{
0, if k ∈ {N/2, N}
> 0, otherwise

we can group the terms in the expansion of (5) into pairs of the form

pr0p
l
1(p

t
0 − pt1) where r > 0, l ≥ 0, t ≥ 0 and r + l + t = N (6)

which are non-negative when p0 ≥ p1. Therefore we establish that
P0 − p0 ≥ 0 or P0 ≥ p0 when p0 ≥ p1. That is, if all the
classes have better than 50% recall in the segment-level classifier,
PV based session-level classifier would result in a better recall for
all the classes.

4. MODEL ARCHITECTURES
4.1. Audio Model
Baseline Segment-Level Classifier: We trained a CNN using the
openSMILE features as a baseline model for this task. The input is
passed through two sequential 1-D (across time axis) convolutional
layers. Each convolutional layer is followed by batch normaliza-
tion, leaky ReLU activation, dropouts and a max-pooling layer. The
output from the second max-pooling layer is flattened and passed
through two dense layers to perform classification at the output layer.
The output of the second dense layer is extracted and used as the in-
put to the session-level classifier.

Dilated CNN based Segment-Level Classifier for ACFs: A di-
lated CNN proposed in [26] was trained using the ACFs to classify
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(a)

(b)

Fig. 1. (a) Dilated CNN architecture for segment-level classification.
Hyper-parameters for the best performing audio model (TV-based
ACF) are mentioned. Kernel size of C5 and C6 is (3,1). (b) Ar-
chitecture of the multimodal classifier. LSTM-1 and LSTM-2 have
128 and 64 hidden units (HU) and 0.7 and 0.7 dropout probabili-
ties (DP), respectively. The word-level encoder and sentence-level
encoder have 100 HU each and 0.3 and 0.1 DP, respectively. The
Dimension of attention layers are 64. The final Dense Layer (before
the Softmax Layer) has 64 HU.

the segments (Fig. 1a). The input R̃ACF is fed into 4 parallel con-
volutional layers with different dilation rates n = {1, 3, 7, 15} and
a kernel size of (15, 1) which resembles the multiple delay scales.
The outputs of these 4 parallel layers are concatenated and then
passed through two sequential convolutional layers. This output is
flattened and passed through two dense layers to perform segment-
level classification in the output layer. All convolutional layers used
LeakyReLU activation, whereas the dense layers used ReLU activa-
tion with l2 regularization (λ = 0.01). The flattened output of C6 is
passed as input to the session-level classification.

RNN based Session-Level Classification: The segment embed-
dings are extracted from the segment-level classifiers as a sequence
and are passed through a Long Short-Term Memory (LSTM) based
RNN model to perform the session-level classification. The input
is passed through two LSTM layers followed by a Dense layer with
ReLU activation. Finally, the output layer with Softmax activation
performs the session-level Classification. Recurrent dropout proba-
bilities are applied to the two LSTM layers.

4.2. Text Model
We trained a Bidirectional LSTM based HAN model shown in
Fig. 1 to obtain a session-level classification for the text model.
HAN applies the attention mechanism in two levels: word-level and
sentence-level taking the hierarchical structure of a document into
consideration [30]. This allows the model to learn the important
words and sentences taking the context into consideration. In this
work, a document corresponds to the transcribed text of a session.
The embedding layer was fine-tuned for the task by allowing it to
back-propagate the error from the output layer.

4.3. Multimodal Depression Classifier
The multimodal system (Fig. 1b) is constructed with embeddings
from the session-level audio classifier (Ma) and HAN-based text
classifier (Mt). The context vector from the second LSTM layer of
Ma and the attention-weighted sentence level context vector of Mt

were concatenated and passed through a Dense layer with ReLu acti-
vation to perform final binary classification at the output layer. This

late fusion structure helps to avoid overfitting issues that can occur as
a result of the high dimensionality of input features when using early
fusion. It also helps to overcome the requirement to have one-to-one
correspondence between the audio segments and text sentences and
allows us to create segments of different modalities independently
(overlapping segments for audio and sentences for text).

5. EXPERIMENTS AND RESULTS

5.1. Dataset Preparation
Similar to our previous work [11], we used FS data from two
databases: MD-1 [1] and MD-2 [2]. Both databases were collected
in a longitudinal study where subjects diagnosed with MDD par-
ticipated over a period of 6 and 4 weeks, respectively. For the
binary classification problem, ground truth labels were determined
by the bi-weekly scores provided for the clinician-rated 17-item
Hamilton Depression Rating Scale (HAMD). Sessions with HAMD
> 7 were considered as ‘depressed’ and sessions with HAMD ≤
7 were considered as ‘not-depressed’. Due to the availability of 2
clinician-rated depression scores in MD-2, the agreement between
the two scores in terms of the severity level was considered (see
Table 1 in [11]). Originally there were 472 (35 speakers) and 753
(105 speakers) FS recordings from MD-1 and MD-2 respectively.
The 140 speakers were divided into train / validation / test splits
(60 : 20 : 20) preserving a similar class distribution in each split
and ensuring that there are no speaker overlaps. For the segment-
level models trained on ACFs, we segmented the audio recordings
that are longer than 20s into segments of 20s with a shift of 5s.
Recordings with duration less than 10s were discarded and other
shorter recordings (between 10s-20s) were used as they were. Table
1 summarizes the amount of speech data available after the seg-
mentation. For the baseline model trained on openSMILE features,
all audio segments were truncated at 10s (minimum length of the
available audio segments) to have fixed sized inputs to the CNN.
Before extracting the low-level features, segments were normalized
to have a maximum absolute value of 1.

Table 1. Available Data in hours/ # segments/ # sessions
Database Depressed Not-depressed

MD-1 11.8 / 2131 / 111 2.5 / 444 / 22
MD-2 16.8 / 3056 / 232 1 / 183 / 17

Before extracting GloVe embeddings for the text data, the tran-
scribed text was preprocessed by removing punctuation, expanding
contractions, lemmatizing and removing stop words (except nega-
tion words to preserve the contextual meaning).

5.2. Model Training
Hyper-parameters of the models were tuned using a grid search. The
ranges used were as follows: the kernel size {(3,1), (4,1)} and the
number of output filters {128, 64, 32, 16, 8} of the convolutional lay-
ers, the number of hidden units of dense layers {16, 8}, the number
of hidden units of LSTM layers {128, 100, 64, 32}, the dimension of
the attention vectors {128, 100, 64} and dropout probabilities {0.4,
0.5, 0.6, 0.7}. The models were optimized using an Adam Optimizer
for the Binary Cross Entropy loss. The models were trained with an
early stopping criteria based on validation loss (patience 20 epochs)
for a maximum of 300 epochs. A batch size was 128. All seed
values were set to 1729 for training. A learning rate of 2e − 5 was
used for the segment-level classifier. The session-level unimodal and
multimodal classifiers were trained using an adaptive learning rate
starting from 2e − 4 and it was decayed by 50% every 10 epochs
until it reached 2e − 5. To address the class imbalance issue, class
weights were assigned to both training and validation splits during
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the training process to both the models. To evaluate the performance
of the model, the Area Under the Receiver Operating Characteris-
tics Curve (AUC-ROC), Unweighted Average Recall (UAR) and F1
scores were used.

Table 2. Classification Results - Audio Model
Model Features AUC-ROC UAR F1 (D/ND)

Segment-Baseline openSMILE 0.6300 0.5602 0.86/0.22

Segment-Level
Classifier
(ACFs)

TV 0.7408 0.6961 0.87/0.37
MFCC 0.6031 0.5412 0.88/0.19
FMT 0.5714 0.5688 0.77/0.22

MFCC+GL 0.6042 0.5474 0.87/0.20
FMT+GL 0.4806 0.5045 0.79/0.16

Session-Baseline openSMILE 0.6673 0.6613 0.87/0.35

Session-Level
Classifier
(ACFs)

TV 0.8246 0.8024 0.91/0.52
MFCC 0.7016 0.6452 0.85/0.32
FMT 0.75 0.7238 0.88/0.42

MFCC+GL 0.6794 0.6452 0.85/0.32
FMT+GL 0.6552 0.6734 0.73/0.31

5.3. Segment-Level to Session-Level Classification
We trained 6 different audio-based segment-level to session-level
classifiers using the ACFs derived from various feature vectors
and openSMILE features (baseline). Results can be found in
Table 2. In general, for all feature sets, there is a performance
boost in the session-level classifier compared to the segment-level
classifier. In both segment-level and session-level classifications,
TV-based ACFs outperform the other features. TV-based ACFs
yield a relative AUC-ROC improvement of 11.3% and a relative
UAR improvement of 15.3% in session-level classification com-
pared to segment-level classification. The AUC-ROC and UAR of
session-level TV-based ACF classifier are 9.9% and 9.8% higher
than the second best performing session-level classifier which was
trained using formant-based ACFs. The chance-level F1 scores for
depressed/not-depressed classes were 0.64/0.18 (segment-level) and
0.64/0.19 (session-level).

Table 3. Results of Classification Using Different Modalities

Model Features AUC-ROC UAR F1 (D) / F1 (ND)
Audio TV ACF 0.8246 0.8024 0.91/0.52
Text GloVe 0.7802 0.7540 0.85/0.41

multimodal TV ACF + GloVe 0.8871 0.8105 0.92/0.55

5.4. Results of multimodal Classification
Using the best performing audio model which was trained using TV-
based ACFs and HAN based text model, we trained a multimodal
system that yields synergies by combining different modalities. Ac-
cording to Table 3, the multimodal system has a relative AUC-ROC
improvement of 7.58% and 13.7% compared to the audio model and
the text model, respectively.

Fig. 2. Distribution of HAMD scores for the mis-classified samples
categorized by severity levels: not-depressed (0-5), borderline not-
depressed (6-7), mild (8-13), moderate (14-18), severe (≥19)

6. DISCUSSION
Results reported in Table 2 show that TV-based ACFs are more effec-
tive compared to other feature sets in the binary depression classifi-
cation task. These results support the hypothesis that TVs as a direct

measure convey more distinguishing information regarding the artic-
ulatory coordination of depressed speech. Further, it is evident from
the results that the performance of the session-level classifier heavily
relies on the performance of the segment classifier. We observed that
the segment-level TV-based classifier satisfied the constraints we de-
rived in section 3 (the recall of depressed and not-depressed classes
were 58.1% and 81.1%, respectively). Consequently, the TV-based
session-level classifier yielded better results with recall increased to
75% and 85.5% for the two classes respectively.

According to Table 3, the audio-only model performs better than
the text-only model. One possible reason for this could be errors
introduced to the text transcripts by the ASR tool. We further in-
vestigated the sentence-level attention weights of the mis-classified
sessions to understand the nature of the errors. Most of the mis-
classifications are cases where the subjects use complex sentence
structures (often with mixed sentiments) in their answers. However
the model seems to capture the most frequently occurring raw sen-
timent and not take the sentence structure into account. A common
pattern is when patients use contrast in their sentences. Consider
the following example. Text: “Like I said in the beginning, I am
feeling much better. I’m not feeling sad. I’m not feeling guilty and
feeling like I cannot do anything like before”. Ground Truth: not
depressed (misclassified as depressed). Note that the first segment
of the text “I am feeling much better. I’m not feeling sad. I’m not
feeling guilty” in isolation conveys a positive sentiment. The last
segment of the text “feeling like I cannot do anything like before”
conveys a negative sentiment to which the model has paid higher
attention. However if the underlined ‘not’ is also applicable to this
segment, it results in double negation and consequently the segment
conveys a positive sentiment. Another common pattern is when the
patients excessively use negation. Consider the following example.
Text: “I do not feel like I do not want to do anything”. Ground
Truth: not depressed (misclassified as depressed). Note the usage of
double negation which results in a complex sentence structure. In
the future we plan to explore context aware embeddings which are
capable of correctly processing such complex sentence structures.

For the multimodal classifier, the recall of depressed and not-
depressed classes were 87.1% and 75%, respectively. From a clini-
cal perspective, the model is effective in recognizing depressed sub-
jects, reducing type-II errors (classifying a depressed subject as not-
depressed). Nine out of the total of 10 mis-classified sessions by
the multimodal system are a subset of the 25 mis-classified sessions
by unimodal classifiers. This shows that the inter-learning among
different modalities can compensate for the errors made by individ-
ual modalities. It is worth noting that when a session is incorrectly
classified by both the unimodal classifiers, it is always incorrectly
classified by the multimodal classifier. According to Fig. 2, it can
be seen that the multimodal classifier is able to correctly classify
the depressed sessions in the severe category which were incorrectly
classified by the unimodal classifiers.

7. CONCLUSION
We presented a multimodal system which utilizes audio data from
two different depression databases and text data obtained by ASR.
The proposed system performs better compared to unimodal classi-
fiers. The robustness of the TV-based ACFs is evident from the per-
formance of the audio-only models trained using a comprehensive
set of features. We established the constraints that need to be satis-
fied by a segment-level classifier in order to yield a stronger session-
level classifier. In the future we plan to incorporate other linguistic
features to improve the text model and investigate the performance
of TV-based ACFs in the depression severity score prediction task.
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