

Technical Reviews

Optical vegetation indices for monitoring terrestrial ecosystems globally

Yelu Zeng ^a, Dalei Hao ^b, Alfredo Huete ^c, Benjamin Dechant ^d, Joe Berry ^e, Jingming Chen ^f, Joanna Joiner ^g, Christian Frankenberg ^{h,m}, Ben Bond-Lamberty ⁱ, Youngryel Ryu ^j, Jingfeng Xiao ^k, Ghassem R. Asrar ^l, Min Chen ^a

^a Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI, USA

^b Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

^c School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia

^d Synthesis Centre for Biodiversity Sciences, German Centre for Integrative Biodiversity Research, Puschstraße 4, 04103 Leipzig, Germany

^e Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA

^f Department of Geography and Program in Planning, University of Toronto, Toronto, ON M5S 3G3, Canada

^g NASA Goddard Space Flight Center, Greenbelt, MD, USA

^h Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

ⁱ Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA

^j Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, South Korea

^k Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA

¹ Universities Space Research Association, Columbia, MD 21046, USA

28 ^m Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA

29 Corresponding authors: Min Chen (mchen392@wisc.edu) and Dalei Hao (dalei.hao@pnnl.gov)

30

31 **Key points**

- 32 • Optical vegetation indices (VIs) derived from space-borne Earth observations are widely
33 used for monitoring terrestrial ecosystems including plant biophysical, biochemical and
34 physiological properties, vegetation dynamics and environmental stresses.
- 35 • Sensor and calibration effects, quality assurance and quality control (QA/QC) flags,
36 bidirectional reflectance distribution function (BRDF), atmospheric and topographic
37 effects, and snow/soil background are among important sources of VI-based uncertainties.
- 38 • Potential artefacts must be carefully considered to avoid biased interpretations of the
39 underlying ecological processes resulting from the improper use of VIs.
- 40 • VIs based on ratios of reflectance such as NDVI can help reduce sensor calibration, BRDF,
41 atmospheric and topographic effects, but could be sensitive to snow/soil background and
42 scale effects.
- 43 • NIRv has the biophysical meaning of FPAR times the photon escape ratio (f_{esc}), and is
44 linearly correlated with EVI, EVI2 and DVI on a mathematical-basis, while ratio-based
45 NDVI behaves differently.
- 46 • Next generation VIs with greater signal sensitivity and less artefacts, are expected with
47 new hyperspectral/geostationary satellite missions and synergistic integration with other
48 metrics, providing advanced opportunities for studying terrestrial ecosystems.

49

50 **Abstract**

51 Vegetation indices (VIs) are widely used in studying vegetation dynamics across spatial (local,
52 regional, and global) and temporal (sub-hourly, daily, seasonal, annual, and decadal) scales.
53 However, diverging conclusions have often been reached for the same canopy conditions using
54 different VIs, rendering past and present scientific studies by the ecological community ambiguous.
55 In this review, we summarize the rationale, history and ecological applications of VIs, and provide
56 useful insights on VI inconsistencies due to improper considerations of a variety of factors, such as
57 the use of different VIs, sensors, satellite product versions, atmospheric and sun-target-sensor
58 geometry corrections, compositing algorithms, and use of quality assurance and control (QA/QC)
59 flags. The debate on Amazon forest greening in the dry season is used as an example to illustrate
60 VI inconsistencies. We demonstrate that the photon escape ratio (f_{esc}) from the canopy provides
61 the mathematical- and physical-basis for the intrinsic linkage among several of the most widely
62 used VIs. NIRv, EVI, EVI2 and DVI are strongly linearly correlated with each other while NDVI
63 behaviors differently. Identifying key sensitive wavelengths for target application is the first step
64 towards the optimal use of VIs, followed by an understanding of potential signal contamination
65 sources in the specific ecosystem.

66

67 **1. Introduction**

68 Vegetation indices ('VIs') are simple mathematical combinations or transformations of
69 reflectance in two or more spectral channels to represent vegetation status conditions (Fig. 1),
70 while minimizing the impacts of other contributing factors such as the soil background, atmosphere
71 and sun-target-sensor geometry¹⁻³. As useful and efficient tools, VIs have attracted a large
72 community of users from a wide range of scientific disciplines over the last half century. VIs are
73 also easily obtained at different scales, from the ground with hand-held spectral sensing devices,
74 tower-based and airborne sensors up to satellites, and hence can provide measurements from the
75 fine to coarse resolutions. VIs are highly objective, with no or only minimal assumptions with
76 regard to land cover type and canopy structure. As a result, they have been intensively used in local
77 to global scale studies, and in almost every discipline of Earth science, especially in ecological
78 research⁴⁻⁶.

79 A number of VIs have been developed since the early 1970s (Table 1). Many of them can be
80 easily calculated from publicly available remote sensing data, while the subtleties in processing
81 and interpretation of results require more experience and theoretical background. With their wide
82 adoption, VIs are increasingly applied to more challenging research questions/experiments to shed
83 light on complex ecological topics such as vegetation response to long-term climate change⁷⁻⁹,
84 short-term disturbances^{10,11} and extreme climate events¹². The simplicity of VIs, however, can be
85 deceptive as there are many cases of confusion, misinterpretations, and scientific controversies
86 related to their use.

87 This review aims to inform scientists with the rationale, history, and key features of VIs that
88 hopefully can be helpful for better understanding and using VIs for ecological studies. Although
89 hundreds of VIs have been proposed, there is no necessity to go through all these VIs because
90 many of them were built with similar formulae or principles. Instead, we will reinvestigate a
91 selected subset of the most widely used VIs in this review, with a particular emphasis on clarifying
92 and summarizing their usefulness, relationships, inconsistencies, artefacts and limitations. We also
93 attempt to present recommendations on how to avoid these potential pitfalls to improve their use

94 for the wider ecological community. In addition, since most existing VIs are based on reflectance
95 in the optical wavelengths, we mainly focus on the optical VIs in this review, and particularly on
96 those having the potential to be derived by satellite observations and applied globally. We use a
97 few ‘milestone’ VIs as representative examples across our technical analyses, such as the
98 Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and the
99 Near-Infrared Reflectance of Vegetation (NIRv), which are among the most widely used VIs in a
100 variety of global-scale ecological studies and can reveal some common features of many VIs.

101 **2. Rationale of VIs**

102 The launch of Earth observing satellites since 1972 ushered a new era for global observation
103 and study of vegetation (Fig. 2)¹³. The physical foundation of VIs, as a product of the remotely-
104 sensed spectral reflectance, is built on our understanding of the complex light-vegetation
105 interactions. Essentially, satellite-measured spectral reflectance is a mixed signal of vegetation
106 canopies, their shadows, soils and possibly other components standing on the land surface, and is
107 commonly co-determined by leaf reflectance, the background soil reflectance, canopy structure,
108 and the sun-sensor geometry. The spectral signature of leaf reflectance is well understood (Fig. 1).
109 Leaf reflectance is relatively lower in the visible (VIS) domain (400~700 nm) because of the strong
110 absorption of photosynthetic pigments, particularly in the non-green wavelengths due to the
111 absorption of chlorophylls; high leaf reflectance in the near infrared band (NIR; 700~1300 nm) is
112 usually expected due to spongy mesophyll, and lower leaf reflectance happens in the shortwave
113 infrared (SWIR; 1300~2500 nm) due to strong water absorption and, to a less degree, other leaf
114 biochemical traits such as lignin, protein and cellulose content. A typical soil reflectance spectrum
115 monotonically increases with wavelength in the optical domain except the water absorptions in the
116 SWIR band. Canopy structure is a key factor for the canopy reflectance, because it determines how
117 much of the incoming light is reabsorbed, re-scattered and finally escapes from the canopies.
118 Biophysical or structural parameters such as Leaf Area Index (LAI), Leaf Angle Distribution (LAD)
119 and Clumping Index (CI) are commonly used to characterize canopy structure. The sun-sensor

120 geometry further complicates the canopy reflectance observations, largely due to the fraction of
121 shadows in view because of the varying relative positions of the light source (sun) and the sensor.
122 Furthermore, the atmospheric radiative transfer process is another important factor to consider in
123 practice.

124 Therefore, VIs have been developed based on the simple rationale that the spectral signals
125 from the vegetation, and more specifically, the vegetation characteristics of interest (for example,
126 vegetation biophysical, biochemical and physiological properties) should be enhanced with
127 properly designed mathematical combinations such as ratios, differences, derivative, or the
128 combinations of the ratios and differences between reflectance from different spectral wavelengths
129 or bands (Fig. 3). This enhancement goes along with reducing, or ideally suppressing background
130 signals from soil and confounding factors related to vegetation characteristics with overlapping
131 spectral features. However, even for a given vegetation characteristic, it is not straightforward to
132 use one single formula that holds under different conditions. This, together with the interest in
133 various different vegetation characteristics as well as increasing availability of more and more and
134 increasingly narrow spectral bands from satellite sensors, is driving the continuing development of
135 VIs.

136 **3. A Brief History of VIs**

137 ***3.1 VIs for plant biophysical properties***

138 The history of VI developments goes back to the early 1970s (Fig. 2). The first-generation red-
139 NIR ratio- and difference-based VIs, including the Simple ratio (SR), Difference Vegetation Index
140 (DVI) and NDVI¹⁴⁻¹⁶ were proposed to quantify vegetation growing condition based on the fact
141 that live green vegetation significantly absorbs solar radiation in red but reflects most of the solar
142 energy in NIR to support photosynthesis while avoiding potential damage from overheating¹⁷ (Fig.
143 1). Further refinements have been introduced to minimize the effects of intervening soil
144 background and atmosphere to better isolate the vegetation contributions, especially for sparse
145 vegetation cover^{1,18}. Examples include an orthogonal-transformation based perpendicular

146 vegetation index (PVI)¹⁹, the soil adjusted vegetation index (SAVI)³, Transformed SAVI
147 (TSAVI)²⁰ and Modified SAVI (MSAVI)²¹. Later, Modified Simple Ratio (MSR)²² was formulated
148 based on the evaluation of several two-band VIs (for example, SR, NDVI and SAVI) for the
149 purpose of improving the linear relationship with biophysical parameters and reducing the
150 sensitivity to measurement noise²². Reduced SR (RSR) further increased the sensitivity and
151 correlation to LAI than SR, and reduced the effect of background reflectance by taking the canopy
152 closure and understory contribution of open canopies into account with the SWIR band included²³.

153 The Global Environment Monitoring Index (GEMI) was introduced to reduce the atmospheric
154 effects²⁴. The launch of MODIS onboard NASA's Terra and Aqua satellites in the early 2000s
155 opened new opportunities for VI developments with more spectral bands in the optical wavelengths.
156 The Atmospherically Resistant Vegetation Index (ARVI) and EVI²⁵ were proposed to minimize the
157 atmospheric effects with an expected blue to red band 'atmosphere scatter' signal, enabling
158 correction from the blue and red band relative proportions^{25,26}. As atmospheric correction
159 algorithms improved, the two-band version of EVI (EVI2)²⁷ with the absence of the blue-band was
160 developed in 2008 without blue band while achieving similar performance as compared with EVI²⁷.
161 In 2014, plant phenology index (PPI)²⁸ was derived for estimating plant canopy growth, especially
162 for evergreen forest phenology over high latitudes²⁸. PPI has a nearly linear relationship with green
163 LAI, and soil brightness variations have moderate impact on PPI. More recently, NIRv⁴ and the
164 fluorescence correction vegetation index (FCVI)²⁹ were added to the list because of their ability to
165 reduce soil background effects on the NIR reflectance of vegetation and to better approximate the
166 vegetation's solar radiation absorption and photosynthesis^{4,30}. NIRv has received significant
167 attention and application because of its clear physical foundation and strong correlation with
168 vegetation photosynthesis (Fig. 3)^{4,30}. In 2021, the kernel NDVI (kNDVI) was proposed based on
169 the theory of kernel methods as a unifying VI for monitoring the terrestrial carbon dynamics and
170 increasing the sensitivity of NDVI to plant biophysical parameters³¹.

171 ***3.2 VIs for plant biochemical properties.***

172 Broad-band reflectance smooths the detailed spectral signatures and thus above-mentioned
173 broad-band VIs are primarily designed for detecting vegetation structure and its changes. In
174 parallel, a group of VIs were developed by taking advantage of narrow-band sensor measurements
175 that keep more detailed spectral information. In general, narrow-band VIs are specifically designed
176 to indicate the biochemical and physiological properties such as pigments, water, plant residues
177 and nitrogen³², and typically use a combination of strong-absorbing VIS bands and a narrow band
178 located in the red-edge region (670~780nm). Examples include Red Edge Chlorophyll Index
179 (CIred-edge)³³, Red-edge NDVI (NDVI_{re})³⁴ and MERIS Total Chlorophyll Index (MTCI)³⁵ for
180 indicating chlorophyll content, the Structure Insensitive Pigment Index (SIPI)³⁶, Normalized
181 Pigments Chlorophyll Ratio Index (NPCI)³⁷, Plant Senescence Reflectance Index (PSRI)³⁸ for
182 carotenoid content, and Anthocyanin Reflectance Index (ARI)³⁹, Anthocyanin Content Index
183 (ACI)⁴⁰ and Red/Green Ratio Index (RGRI)⁴¹ for anthocyanin content. Using the water absorption
184 bands around 970, 1200, 1450, 1940 and 2500 nm, Normalized Difference Water Index (NDWI)⁴²,
185 Land Surface Water Index (LSWI)^{43,44}, and Normalized Difference Infrared Index (NDII)⁴⁵ were
186 designed with a similar formula and exhibit similarly robust performance on indicating vegetation
187 hydrological condition⁴⁶. The Normalized Difference Lignin Index (NDLI) was designed with the
188 1754 nm lignin absorption feature, and the Normalized Difference Nitrogen Index (NDNI)
189 considered the 1510 nm nitrogen absorption feature⁴⁷.

190 *3.3 VIs for plant physiological properties*

191 Another group of VIs were proposed to detect stress-induced physiological changes in
192 xanthophyll cycle pigments, as indicators of photosynthetic light use efficiency or environmental
193 stresses⁴⁸. Because the reflectance at 531 nm is sensitive to carotenoid pigments and the
194 xanthophyll cycle, the Photochemical Reflectance Index (PRI) was proposed (with a reference
195 wavelength at 570 nm) in 1992 to track changes in diurnal photosynthetic efficiency⁴⁹. The
196 Chlorophyll/Carotenoid Index (CCI) proposed in 2016 is another index for representing the
197 dynamics of the chlorophyll/carotenoid ratio and has the potential to track seasonal variations of
198 canopy photosynthesis at the global scale⁵, because it could be directly obtained from existing

199 satellite data. PRI, CCI and green chromatic coordinate (GCC) can capture the seasonal variation
200 of carotenoid and xanthophyll cycles over temperate evergreen needleleaf forests that are difficult
201 to detect with broadband VIs such as NDVI and NIR^{50,51}. Red-edge Vegetation Stress Index
202 (RVSI)⁵² had less negative values for stressed leaves than healthy leaves in grapevine leafroll
203 disease detection over two wine grape cultivars⁵³.

204 **3.4 Satellite sensors for VIs**

205 VIs can be calculated from reflectance measurements by a series of Earth-observing satellite
206 sensors¹³ (Fig. 2). Landsat 1~3 MultiSpectral Scanner (MSS) since 1972 only had four VIS-NIR
207 bands with about 80-m spatial resolution and half-monthly revisit cycle, while since Landsat 4 was
208 launched in 1982, the spatial resolution in VIS-NIR bands has increased to 30-m. Sensors with
209 similar spatial resolution include SPOT (1986~) and Sentinel-2 (2015~), which have weekly to
210 daily temporal resolution. Sentinel-2 is one of the few sensors with the capability to calculate red-
211 edge VIs for plant pigments. AVHRR, MODIS and VIIRS, launched in 1981, 1999 and 2011,
212 respectively, have the daily temporal coverage, while AVHRR does not have the blue band for EVI.
213 Towards high temporal resolution, geostationary satellites, such as GOES and Himawari both
214 launched in the 1970s, had sub-hourly VI observations. NDVI, SR and RSR have been employed
215 to generate global LAI products from Himawari, AVHRR and MODIS observations with biome-
216 specific LAI-VI relationship⁵⁴⁻⁵⁶, while global leaf chlorophyll content was firstly generated from
217 MERIS observations by physically-based radiative transfer models instead of the chlorophyll-
218 sensitive MTCI, due to the impact of LAI on MTCI⁵⁷. For very high spatial resolution (<10-m),
219 GeoEye-1, WorldView 2-4, Pleiades, SkySat and PlanetScope are available since 2009 but can
220 only provide VIS-NIR reflectance for vegetation biophysical properties. DESIS and HiSUI on the
221 International Space Station, and as well as Hyperion and PRISMA, provide the hyperspectral
222 observations while they just have monthly revisit cycle on average, which are suitable for plant
223 biochemical and physiological traits mapping instead of capturing rapid temporal changes of
224 vegetation.

225 **4. Ecological applications of VIs**

226 VIs have been successfully applied to many specific ecological research fields. Below we
227 discuss a few prototypical examples.

228 ***4.1 Estimating vegetation attributes***

229 An essential attractive feature of VIs is their conceptual simplicity and strong relationships
230 with vegetation biophysical properties. Therefore, using VIs to estimate vegetation biophysical
231 properties such as LAI, fractional vegetation cover, and biomass^{54,55,58} is one of the most successful
232 application scenarios. Many VIs such as NDVI have been used as robust estimators of LAI and
233 fractional vegetation cover. A few problems of NDVI are well identified, such as the insensitivity
234 to densely vegetated areas and the oversensitivity to the changes of soil brightness due to rainfall
235 and snowfall. The saturation point of EVI is higher than NDVI^{25,27}, leading to more EVI
236 applications in densely vegetated area like tropical forests. In particular, chlorophyll-corrected VIs
237 can minimize the impact of chlorophyll content on LAI estimations. For example, a modified
238 triangular vegetation index (MTVI2) and a modified chlorophyll absorption ratio index (MCARI2)
239 have shown to be the best predictors of green LAI in a systematic evaluation of more than ten VIs
240 (including NDVI, MSR, SAVI, etc.) over various crops⁵⁹.

241 For vegetation biochemical properties (Table 1), red-edge VIs have been widely used for
242 estimating leaf/canopy chlorophyll content and carotenoid pigments⁶⁰, while SWIR-based VIs were
243 often roughly used for leaf/canopy water content, leaf mass per area and (LMA) and nitrogen
244 estimations³². These retrieved plant traits can be directly used to quantify the functional diversity,
245 while the spatial distribution and textural feature of VIs such as MODIS EVI have also been
246 applied in studying the spectral diversity, species richness and habitat heterogeneity^{61,62}.

247 ***4.2 Temporal vegetation dynamics***

248 Compared to other VIs, NDVI and EVI are the most widely used ones in practice for detecting
249 and monitoring temporal vegetation dynamics because of their simplicity, robustness and
250 availability, especially for the seasonal (phenology) and long-term trends of structural changes^{7,63}.

251 ⁶⁵. EVI and EVI2 are the primary data source for producing the MODIS vegetation phenology
252 product Collections 5 and 6, respectively. In the recent years, NIRv is gaining popularity for
253 analyses of vegetation changes regarding the ecosystem gross primary production (GPP)⁶⁶. PPI and
254 EVI2 performed better than NDVI with Sentinel-2 imagery across Europe when compared to
255 ground-observed phenological stages, especially for evergreen coniferous forest during winter with
256 snow⁶⁷. CCI better tracked evergreen forest phenology and the end-of-season changes in deciduous
257 forests compared to structurally-oriented NDVI, EVI and NIRv⁶⁸.

258 Artifacts such as sun-sensor geometry and inter-sensor calibrations usually play a critical role
259 for correctly using and interpreting the results of VI-based temporal vegetation dynamics. During
260 the past decades, considering the inter-sensor consistency and the sun-sensor geometry has been
261 well recognized by the research community although different VIs may subject to such artifacts at
262 different levels of sensitivities as discussed in Section 5.

263 ***4.3 Environmental stresses and disturbances***

264 The abrupt temporal changes of VI time-series are also useful for the detection of land cover
265 change, environmental stress and disturbance. EVI has been widely used to monitor and quantify
266 the deforestation and degradation in the Amazon tropical rainforest⁶⁹, as well as the responses to
267 drought, heatwave and water stresses^{10,11,70}. Using PRI, CCI and GCC infers more seasonal
268 physiological changes of vegetation than using structurally-oriented VIs such as NDVI and EVI in
269 dormant temperate forests^{50,51}. Biochemically-related VIs such as SIPI, NPCI and ARI have also
270 been applied for the detection of pests and diseases in winter wheat⁷¹, and the soil erosion and
271 heavy metal pollution in rice⁷², especially when hyperspectral data are available. Forecasting
272 wildfire risks, monitoring fire severity, and characterizing vegetation recovery after fire
273 disturbance is typically achieved by simple VIs such as NDVI, while hyperspectral imaging
274 spectroscopy and light detection and ranging (LiDAR) are encouraged to be used in combination
275 for the assessment of fuel condition and vegetation structure mapping¹². NDVI has also been used
276 for the assessment of ecosystem integrity and land degradation/desertification at different scales,
277 including the resilience of agroecosystems⁷³.

278 **4.4 Ecosystem carbon and water fluxes**

279 Vegetation dynamics drive changes of surface radiation regime, which co-determine
280 microclimate and land-atmosphere carbon and water fluxes, and thus has been an important
281 application of VIs, in principle by employing VIs as the proxy for vegetation canopy coverage, leaf
282 area and fraction of absorbed solar radiation (FPAR) (Fig. 3). FPAR is usually considered as a
283 function of LAI, and thus the advantages and disadvantages of the VIs for monitoring LAI also
284 apply to the carbon fluxes estimations.

285 Some notable examples of using VI to estimate carbon fluxes, particularly GPP, include the
286 Carnegie-Ames-Stanford Approach (CASA)⁷⁴, MODIS algorithm⁷⁵ and EC-LUE model⁷⁶ (all using
287 NDVI-derived FPAR); Vegetation Photosynthesis Model (VPM)⁴⁴, the modified GPP model in
288 TEM⁷⁷, data-driven GPP upscaling⁷⁸ (using EVI); simpler statistical upscaling using NIRv^{30,79};
289 regional forest GPP estimations⁸⁰ (using EVI2); satellite-based GPP with inexplicit
290 parameterization of LUE^{6,79} (using NDVI and soil-adjusted NIRv, SANIRv). All these approaches
291 have demonstrated moderate to high success. NIRv has received growing attention in recent years
292 because of its explicit physical link to FPAR^{30,81,82} as well as a moderate relationship with LUE⁸³.
293 PRI, CCI and GCC are also found to well track the seasonal GPP dynamics, it is still challenging to
294 establish quantitative relationships between these VIs and LUE for robust GPP estimations.
295 Nevertheless, the inclusion of PRI together with NDVI had shown improvements in estimating
296 boreal forest CO₂ fluxes⁸⁴.

297 VIs have been used as direct indicators of photosynthesis in studies, such as for examining the
298 CO₂ fertilization effects by using AVHRR and MODIS NIRv^{85,86}, the carbon loss in Amazon
299 rainforest degradation and deforestation with MODIS EVI⁶⁹, the change velocity and optimum air
300 temperature of productivity across biomes by MODIS NDVI and NIRv⁸⁷, and the anomalies and
301 recovery of the tropical forest during the strong 2015/2016 El Niño event also with MODIS
302 EVI^{88,89}. Estimating belowground carbon fluxes from satellite observations has rarely been
303 attempted and is based on indirect correlations between GPP and soil respiration via VIs⁹⁰.

304 Typically, NDVI, EVI and MSAVI were used as scaling factors to extrapolate field-level soil
305 respiration measurements to larger scales^{90,91}.

306 Another prominent application of VIs is in the estimation of evapotranspiration (ET) with a
307 history of over 30 years^{92,93}. Although ET has been more accurately assessed using land surface
308 temperature (LST), VIs are easier to obtain. The principle is because transpiration through plant
309 leaf stomata generally dominates evaporation. A number of previous review papers have
310 summarized that VIs in remote sensing ET models are powerful indicators of the fraction of
311 vegetation coverage, absorption of solar energy, or surface roughness that are major determinant of
312 ET^{94,95}. Besides, due to the good VI-LST or VI-ET correlations observed at the flux tower sites in a
313 wide variety of ecosystems, VIs have been used for either up-scaling site observation or
314 enhancing/downscaling satellite LST, especially when LST data is unavailable or has a coarse
315 resolution^{94,96}. NDVI, SAVI and EVI are so far the most widely used VIs in a variety of ET
316 estimation models⁹⁵⁻⁹⁷. However, due to NDVI's sensitivity to soil brightness, the more soil-
317 resistant VIs, such as EVI, EVI2, NIRv and SAVI, are considered as better choices^{92,94,96}.

318 **5. Artefacts that cause inconsistencies**

319 VIs can be easily acquired from a variety of satellite sensors, however, inconsistencies in VI-
320 based results reported in literature are common. Some of these inconsistencies are due to the use of
321 different VIs, and a majority others are due to the artefacts of VI products derived from different
322 sensors, satellite product versions, atmospheric and directional correction effects, compositing
323 algorithms, and the application of different levels of quality assurance (QA) and quality control
324 (QC) flags⁷⁰. A comprehensive understanding of these inconsistencies as well as the limitations and
325 caveats of each VI is critically important for rigorous use of VI and for the correct interpretation of
326 the results from VI-based analyses. In this section, several notable examples of how VIs are not
327 used consistently are discussed and classified by the primary factors for such inconsistencies (Fig.
328 4).

329 **5.1 Sensor and calibration effects**

330 There are inconsistencies in different satellite time-series for the same study area/region. For
331 example, vegetation greenness trends derived from AVHRR and MODIS NDVI time series
332 apparently show trends in opposing directions⁹⁸. The differences in the central wavelength and
333 range of the spectral response function across sensors can be important contributing factor for such
334 inconsistencies^{99,100}. For example, NDVI obtained from AVHRR, MODIS, and VIIRS show
335 significant differences in values and the level of the differences varies across land cover types,
336 although their orbits and spatio-temporal resolutions are similar⁹.

337 Besides, satellites and their sensors often suffer from the harsh space environment, resulting in
338 orbital drift and sensor degradation over time. Although onboard calibration or vicarious
339 calibration are applied to maintain the measuring standards, the remaining limitations can affect the
340 accuracy of the derived VIs and introduce systematic biases especially in long-term trend
341 analyses^{101,102}. Typical examples involve products from AVHRR and MODIS^{103,104}. AVHRR
342 measurements come from a series of satellites, each of which has specific orbital
343 characteristics^{105,106} which can affect the image acquisition time and sun-target-sensor geometry¹⁰⁴.
344 In particular, NDVI values from AVHRR onboard NOAA-11 were found to be significantly higher
345 than those from prior and subsequent AVHRR sensors¹⁰⁷. Orbital drift effects were also found in
346 the VIP3 and LTDR4 NDVI data and over the more humid areas for GIMMS-3g NDVI. MODIS-
347 based NDVI exhibited an increasing trend during 2001~2016, while a decreasing trend of the
348 GIMMS-based NDVI was observed especially after 2012, which suggests large discrepancies of
349 global greening¹⁰⁸. A significant positive jump in the SPOT-VGT NDVI time series was identified
350 due to the platform/sensor change from VGT-1 to VGT-2⁸. A recent study used AVHRR NIRv as a
351 long-term consistent record to quantify the trends in CO₂ fertilization effect on global vegetation
352 photosynthesis from 1982 to 2015⁸⁵. However, concerns were raised about potential uncertainties
353 in the conclusion partly due to sensor differences^{86,104}.

354 Another important issue is that different VIs may show varying levels of sensitivity to sensor
355 calibration due to their mathematical formulae. The calibration bias may affect both VIS and NIR
356 bands in a similar way, and thus can at least partly cancel out in ratio-based VIs such as NDVI and

357 SR. For example, the single-band reflectance calibration uncertainty for MODIS was 2% under
358 normal atmosphere conditions, while the mean NDVI uncertainties due to sensor calibration was
359 only ± 0.01 units and was less than 2% of the dynamic range using field canopy reflectance
360 observations¹⁰⁹. The cross-sensor difference of NDVI could also be smaller than the difference of
361 surface reflectance. For the comparison among fifteen moderate-resolution sensors including
362 MODIS, VIIRS and AVHRR, each pair of the sensors had a larger R^2 and smaller Root Mean
363 Square Error (RMSE) for NDVI than for the VIS and NIR bands separately⁹. In VIs such as NIRv
364 (=NDVI×NIR), such calibration biases do not cancel out and thus can impact the absolute values of
365 the VI signals as NIR reflectance is multiplied. While this could be problematic for applications
366 that rely on the absolute values of VI, it could also be an issue for the consistency of long-term
367 time-series when there are differences in calibration bias between different sensors, or calibration
368 drift of a given sensor over time. Therefore, differences in vegetation trends and magnitudes for
369 different VIs can be due not only to the inherent characteristics of the VIs but also to their different
370 sensitivities to calibration bias.

371 **5.2 Product versions**

372 VIs satellite products are usually produced in different versions (collections) with algorithmic
373 improvements and calibration adjustments. Using different VI product versions may lead to
374 inconsistent interpretation of changes in the vegetation. There still exist inconsistent
375 greening/browning trends between MODIS Collection 5 (C5) and Collection 6 (C6) products¹⁰².
376 MODIS itself suffers from sensor degradation, which is the largest for the Terra satellite especially
377 in the blue band^{102,110}. The degree of degradation decreases with increasing wavelength, and thus
378 there are negative decadal trend artefacts for MODIS Terra products with Δ NDVI~0.01 and Δ
379 EVI~0.02¹¹⁰ when comparing C5 to an enhanced C6 (C6+) version. The percentage of negative
380 MODIS-C5 NDVI trends derived from Terra (17.4%) was nearly three times as large as that
381 derived from Aqua (6.7%) for North America during 2002~2010¹⁰¹. Most of the vegetation
382 browning trends revealed by MODIS Terra-C5 VIs were likely caused by sensor degradation,
383 particularly during the period after 2007, and thus previous studies of vegetation trends based on

384 only Terra-C5 VIs may need to be re-evaluated¹⁰². Thus the latest MODIS C6 has sensor
385 degradation corrected and better consistency between Terra and Aqua measurements and provides
386 a more reliable record than C5¹¹⁰.

387 **5.3 Pre-processing steps**

388 Standard VI products usually include important data pre-processing and sensor configuration
389 information, such as the sun-target-sensor geometry and QA/QC, which if not taken into account
390 appropriately, could introduce critical errors in the subsequent analyses. The relative positions of
391 the sun, sensor and observing target commonly change over time due to the continuous movement
392 of Earth, sun, and satellites. Such changes result in the variations of the solar illumination and
393 sensor viewing angles and have been recognized for decades to affect remotely sensed observations
394 strongly¹¹¹⁻¹¹³. This effect can be mathematically described as the bidirectional reflectance
395 distribution function (BRDF) effect or the sun-target-sensor geometry effect (Fig. 4).

396 The solar angle is seasonally and latitudinally varying but annually repetitive if a sensor
397 remains in a stable orbit, and therefore it can influence the VI-based phenology, but not the long-
398 term trends or interannual variations. For example, Amazon forests have been reported to exhibit
399 no variations in EVI from wet to dry season, and dry season greening has been attributed to
400 seasonal solar-angle variations¹¹². Subsequent studies using either the same data¹¹⁴ or the
401 rigorously BRDF-corrected MAIAC product¹¹⁵ suggested dry-season greening but with smaller
402 magnitude, which demonstrates the importance of disentangling solar angle-induced seasonal
403 variations in VI from vegetation-induced variations. A similar case also shows that the BRDF
404 effect, instead of the vegetation response, drives the satellite NDVI phenology in evergreen sparse
405 canopy ecosystems in western US with subtle growth dynamics¹¹⁶. Not only MODIS, but also
406 Landsat 7, Sentinel-2, VIIRS and Proba-V confirmed this effect with the ground-based PhenoCam
407 observations as the reference. Thus the authors suggest to either restrict the analyses to selected
408 data with consistent sun-target-sensor geometry, or to rigorously remove the BRDF effect in the
409 data¹¹⁶. Landsat that only acquires images at $\pm 7.5^\circ$ from nadir has relatively small view angle
410 effects¹¹⁷, while other satellite sensors such as AVHRR and MODIS usually extend to larger view

411 angles, which can introduce uncertainties to the downstream products if uncorrected^{111,113}. The
412 impact of the BRDF effect on MODIS NDVI was evaluated in West Africa, and was found to be
413 the highest for medium dense vegetation ($NDVI \approx 0.5 \sim 0.6$) compared to sparsely canopy
414 ($NDVI \approx 0.3 \sim 0.35$) or dense vegetation ($NDVI \approx 0.7$)¹¹³. In Alaska Arctic tundra, the influence of
415 BRDF effect on satellite NDVI-based biomass estimations was up to 33% (excluding extremes)
416 more sensitive than on NDVI¹¹¹.

417 A related uncertainty source is the compositing approach, which determines how to extract the
418 highest quality observations over the typically used 8-day, 16-day, or monthly interval.
419 Compositing has gone through major changes between the traditional Maximum Value
420 Compositing (MVC) algorithm, which is still employed in GIMMS-3g datasets, to the modified
421 constrained view angle MVC, or CV-MVC²⁵, used in MODIS VI compositing (MOD13A1 and
422 MYD13A1), to the 16-day rolling compositing based on BRDF retrievals used in MCD43A4 Nadir
423 BRDF-Adjusted Reflectance (NBAR)-VIs¹¹⁸. Note that MOD13A1 and MYD13A1 products with
424 the CV-MVC algorithm aimed to reduce the BRDF effect but still did not theoretically normalize
425 it¹¹⁹, while the MCD43A4 C6 product removed the view angle effects but was set at the local solar
426 noon zenith angle¹²⁰ which varies seasonally and latitudinally. Compositing approaches vary
427 widely and can lead to inconsistencies in the interpretation of results. For example, in the studies
428 conducted over the Amazon^{63,70,121} and western US¹¹⁶, selective compositing settings based on
429 study objectives resulted in inconsistent results.

430 Another source of inconsistency is the atmospheric correction, which was either conducted
431 fully, partially or sometimes not at all conducted for different VI products. MODIS attempted the
432 full correction, while GIMMS attempted at limited correction. NDVI derived from VIIRS
433 observations is based on top-of-atmosphere (TOA) reflectance, while VIIRS EVI is generated
434 based on surface reflectance¹²². Even when VIs are calculated from atmospherically-corrected
435 reflectance at the surface, they are still subject to uncertainties in atmospheric correction such as
436 cloud masking, residual sub-pixel clouds, incomplete corrections for Rayleigh scattering, ozone,
437 water vapor absorptions, and imperfect aerosol correction¹²³. In the studies regarding the impact of

438 drought on Amazon forests, where VIs were intensively used, large differences were found in the
439 extent of Amazon greening during the 2005 drought that were attributed to inadequate QA/QC
440 screening for clouds and aerosols effects that are usually accounted for in atmospheric correction
441 process⁷⁰.

442 **5.4 Soil, snow and topographic effects**

443 Most of Earth's terrestrial ecosystems have sparse canopies with appreciable canopy
444 background (soil, litter, snow, water, etc.) signals that can affect satellite-derived VIs. Soil types
445 and soil moisture conditions lead to spatiotemporal variations of soil brightness¹²⁴. In natural
446 ecosystems, the soil layer could be mixed with litter, moss, lichen, or waterbodies; and especially
447 in forest ecosystems, woody stems and branches could contribute to the background noise or bias
448 of VIs¹²⁵. Soil influences are assumed to vary the most in arid regions, while they have the greatest
449 effect in moderately vegetated canopies (LAI ~1 or ~50% cover). For example, in northern Africa,
450 extensive soil-artefacts in the AVHRR-NDVI signals are seen over reddish soils¹²⁶, while in the
451 Sahel, the NDVI variations were reported due to soil type, moisture and reflectance differences¹²⁷.
452 The first rains can result in an artefact NDVI flush prior to the actual greening cycle, while over-
453 irrigated and freshly ploughed croplands, one can see similar NDVI 'soil artefacts'¹²⁸. Snow and ice
454 with high optical reflectance are among the most important factors that lead to the inconsistency of
455 the VI time-series during winter in temperate regions^{116,129} or, more permanently, in Arctic¹³⁰.
456 There is evidence of bias in the detection of vegetation phenology phase using NDVI at the end of
457 non-growing season, due to presence of snow that causes low NDVI values¹³¹.

458 In addition to soil and snow, topography also influences VIs. Mountainous regions cover 24%
459 of the total Earth's land surface¹³². Topography, which can cast macro-scale shadows and change
460 the local sun-surface-sensor geometry, has been reported to have important effects on surface
461 reflectance¹³³ and VIs¹³⁴. Similar to the shadows in view caused by the sun-target-sensor geometry,
462 a topographic shadow is much darker in the red wavelength than in highly scattered NIR
463 wavelength due to the multiple scattering between slopes¹³⁵. Compared to the sun-target-sensor
464 geometry-induced porous and fuzzy canopy shadows, the dark and opaque topographic shadows

465 can have larger effects on EVI¹³⁴. The topographic effects on reflectance should be minimized
466 before EVI and other VIs without a band-ratio format (such as NIRv and SAVI) are calculated,
467 while the topographic effects on the ratio-based VIs such as SR and NDVI are usually smaller¹³⁴.
468 The topographic effects are also related to the spatial scale and as the size of the pixel increases,
469 the topographic effects may decrease and even disappear with spatial averaging¹³⁶.

470 **5.5 Scale-mismatch effects**

471 Spatial mismatches between the region-of-interest and the predefined grid cells in the remote
472 sensing-based datasets could be another important source of uncertainty¹³⁷. For example, MODIS
473 pixels have accurate geolocation, yet on average, the offset is up to half a pixel between scenes,
474 which is significant when users rely on single pixel VIs to match with *in-situ* measurements¹³⁸.
475 Considering that the *in-situ* measurement is rarely near the centre of a pixel, there is high
476 probability that a single MODIS pixel may not always sample the *in-situ* measurement area. The
477 sensor point spread function could further distort the matching of gridded satellite data with
478 ground-based data¹³⁷. The emerging high-spatial resolution data (for example, PlanetScope and
479 airborne data, ≤ 3 m) could also lead to difficulties in the interpretation. For example, a pixel could
480 be completely in the shadows of a tree so that VI values could be highly distorted due to the lower
481 illumination than sunlit crown side if the research target is the whole tree canopy¹³⁹. Identifying a
482 suitable remote sensing product at an appropriate spatial scale could be the most effective choice
483 for minimizing such uncertainties.

484 There is a general lack of studies that use long-term, well-coordinated *in-situ* networks to
485 measure reflected radiation from vegetation to confirm larger scale greening and browning results.
486 The MODIS EVI results related to the Amazon dry season greening were confirmed with *in-situ*
487 measurements of GPP from eddy-covariance flux towers¹⁴⁰. In contrast, the greening trends in the
488 Sahel challenge the mainstream paradigm of irreversible ground-observed land degradation in this
489 region¹⁴¹. There is also a debate as to whether the onset of spring phenology has been advancing
490 due to climate warming. The trends in the Start Of growing Season (SOS) for Tibet alpine meadow
491 and steppe were examined using ground-based phenology observations as well as NDVI datasets

492 from GIMMS and GIMMS3g, MODIS, SPOT-VEG and SeaWiFS¹⁴². The results from that study
493 showed large discrepancies in the SOS trends among the ground-based and different NDVI
494 datasets, and between the different phenology retrieval. The study pointed out the NDVI data
495 quality and scale-mismatch between satellite and ground data might be an important reason for
496 these inconsistencies. Similar results were reported by comparing ground-based PhenoCam data
497 with EVI derived from a variety of sensors including Landsat ETM+, MODIS, and DSCOVR-
498 EPIC⁶⁵. At three rural sites and one urban site of deciduous trees in Ireland, AVHRR and MODIS
499 EVI2-derived SOS during 1982~2016 was consistently earlier than *in-situ* leaf-unfolding across all
500 these sites with the RMSE of 25~52 days and Mean Bias Error (MBE) of -5 to -50 days, while
501 satellite-derived growing-season-length was consistently longer than *in-situ* data with the RMSE of
502 65~102 days and MBE of 45 to 96 days¹⁴³. For the period 2001~2014, MODIS EVI2-derived SOS
503 advanced by about 2.36 days from middle to high latitudes of Northern Hemisphere
504 (43.5°N~70.0°N) snow-covered landmass, while delayed by about 0.53 days in lower latitudes
505 (33.0°N~43.5°N); the differences between MODIS EVI2-derived SOS and *in-situ* SOS at 420
506 phenology observations from five filed datasets including Pan European Phenology (PEP)
507 project^{144,145} are centralized between -30 days and 30 days, with the coefficient of determination
508 (R^2) of 0.67, RMSE of 12.13 days and bias of -3.99 days¹⁴⁶.

509 6. Limitations and intrinsic linkage

510 6.1 Notable limitations of VIs

511 In principle, VIs capture a combination of canopy properties and other external contributing
512 factors such as atmospheric conditions and sun-target-sensor geometry that may simultaneously
513 and non-uniquely vary throughout the vegetation growing season. Thus, it might be infeasible to
514 physically couple a VI to a specific plant variable without accounting for changes due to these
515 factors and changing vegetation conditions at the same time. For example, a VI cannot be coupled
516 to leaf biomass, without accounting for simultaneous differences in leaf biochemical constituent
517 differences, non-photosynthetic vegetation (NPV), soil background, atmospheric contamination,

518 and canopy structural effects, which are also tightly connected to the sun-target-sensor geometry
519 effects. From the mathematical formula, a large group of ratio-based VIs (e.g., NDVI, SR, PRI,
520 CCI and CIred-edge), are sensitive to different soil brightness due to the larger variation of the
521 denominator than the numerator², but are insensitive to fractional vegetation cover when the soil
522 background is dark or in water for mangrove¹⁴⁷. For example, a leaf floating in a black water body
523 would maintain the same NDVI regardless of how large the leaf became (whether that leaf
524 occupies 1% of the water or 100% of the water, the NDVI is the same, as in Fig. 4).

525 Impacts of some inherent properties of vegetation, such as the leaf biochemical constituents
526 and NPV, are usually difficult to separate because of limited understanding of their spatiotemporal
527 variations. Leaf biochemical constituents, such as chlorophyll, water and dry matter contents,
528 largely determine the leaf reflectance spectrum and thus fundamentally shape the vegetation
529 canopy reflectance^{148,149}. Recent studies have demonstrated the strong spatio-temporal variations of
530 leaf biochemical constituents^{57,150}, which contribute to the important plant diversity but greatly
531 complicate the interpretations of VIs. NPVs, such as woody stems, branches, and standing litter¹⁵¹
532 can mask emerging green vegetation and thus can weaken the correlation between VIs and green
533 vegetation biophysical properties. Therefore, satellite-derived phenology could be delayed due to
534 the masking of NPVs, because the standing plant materials from the previous year may occlude the
535 initial green-up of vegetation¹⁵¹. The limitations of VIs can be at least partially addressed when the
536 VI formulae are appropriately designed with the principles of radiative transfer in vegetation
537 canopies (Section S2.2).

538 **6.2 Intrinsic similarities between VIs**

539 Red-NIR VIs , such as NDVI, DVI, EVI, EVI2 and NIRv, are typically among the most
540 widely-used category. In general, surface reflectance in NIR band is larger than that in the red band.
541 In addition, canopy NIR reflectance essentially increases with LAI while red reflectance shows the
542 opposite trend due to strong light absorption at this wavelength. Therefore, NIR typically
543 dominates the factor $\text{NIR}/(\text{NIR}+\text{Red})$, which equals NIRv/DVI . It typically falls in a small range of
544 0.8~1 for vegetated surfaces (LAI>1). Therefore, Eq. 2 in Box 1 suggests that NIRv is well

545 correlated with DVI in most cases, and NIRv has the biophysical meaning of FPAR times photon
546 escape probability (f_{esc}) (Fig. 3a).

547 EVI has been reported to be well approximated by EVI2, a variant of EVI without the blue
548 band²⁷. EVI and EVI2 can be derived as the product of DVI and $2.5/(NIR+6\cdot Red+7.5\cdot Blue+1)$ or
549 $2.5/(NIR+2.4\cdot Red+1)$ (Eqs. 3-4), respectively²⁷. Note that the number ‘1’ in the denominator is
550 typically much larger than the variability of the remaining term ($NIR+2.4\cdot Red$) or
551 ($NIR+6\cdot Red+7.5\cdot Blue$) in response to the changes of LAI. Thus, the factor
552 $1/(NIR+6\cdot Red+7.5\cdot Blue+1)$ (Eq. 3) is typically between 0.7~0.8 in most cases especially when
553 LAI is greater than 1. Similarly, the factor $1/(NIR+2.4\cdot Red+1)$ is also almost a constant with small
554 variation between 0.7~0.8 in most cases. This suggests that EVI2 and EVI should have a strong
555 linear correlation with DVI, although with different magnitudes because of the constant coefficient
556 (2.5) used in the numerator.

557 Thus, DVI is strongly correlated to both EVI and NIRv, and NIRv, DVI, EVI and EVI2
558 intrinsically have strong linear correlations with one another according to their mathematical
559 definitions and typical range of variation of NIR and VIS reflectance of vegetated surfaces. In
560 contrast, DVI is mathematically the numerator of NDVI, and the denominator ($NIR+Red$) can vary
561 significantly with LAI and other vegetation properties. Therefore, a nonlinear relationship is often
562 observed between NDVI and DVI, and thereby also between NDVI and the other indices similar to
563 DVI, such as EVI, EVI2 and NIRv.

564 NDVI, EVI and DVI can also be more generally described by another well-known VI, the
565 SAVI, and the ‘L’ in the denominator of SAVI (Eq. 7) is the canopy background adjustment term
566 that addresses the nonlinear, differential NIR and red radiative transfer process through a canopy^{3,25}.
567 In case L in SAVI is 0, SAVI is equal to NDVI; if L is 1, SAVI equals to EVI. Note that factors of
568 6 and 7.5 in the denominator of EVI (Eq. 3), and 2.4 in the denominator of EVI2 (Eq. 4), are for
569 atmosphere self-correction instead of canopy biophysical properties. Third, when L is infinity,
570 SAVI is equal to DVI. The real canopy has an L value generally greater than 0 but less than 10.
571 Details about the evaluation of similarity and difference among these VIs, and their sensitivity to

572 artefacts such as the impacts of soil background, atmospheric contamination, canopy structural and
573 sun-target-sensor geometry effects are in Section S2.1.

574 **7. Appropriate use of VIs**

575 Attractive features of VIs are their conceptual simplicity and strong relationships with target
576 properties of the vegetation and land cover. Because of the diverse types and application scenarios
577 of VIs, it is not possible for a universal recommendation of the best VI. Instead, identifying the
578 target application and corresponding sensitive wavelength and VI is the first step towards the
579 optimal use of VIs. For example, red-NIR VIs such as NDVI and EVI may be the best choices for
580 studying dynamics of vegetation structure, red-edge VIs are more suitable for pigment retrievals,
581 while VIS-based PRI and CCI are more appropriate for the monitoring of physiological changes.
582 Then, understanding the intrinsic differences, strengths and particularly the limitations of VIs may
583 help to further identify the suitable VIs. For example, NDVI may be the best candidate VI for
584 estimating fractional vegetation cover as it is less impacted by sun-target-sensor geometry than
585 EVI and NIRv, while if the sun-target-sensor geometry effect is properly addressed, NDVI may be
586 less robust in estimating fractional vegetation cover due to the stronger sensitivity to soil brightness
587 changes from rainfall or snowfall^{2,3}. In addition, VIs are typically saturated in dense vegetated
588 areas; the saturation point of NDVI is usually lower than EVI^{25,27}, suggesting that NDVI may be a
589 less appropriate choice for analysing vegetation variations in dense vegetation canopies, while
590 NDVI is still useful for onset/offset phenology detection. Even though EVI, EVI2, DVI and NIRv
591 show high correlations, the mechanistic link that was established between NIRv and the product of
592 FPAR times *fesc* (Fig. 3) makes NIRv an attractive choice for studies related to GPP estimation
593 and SIF^{81,83,152,153}.

594 Potential artefacts must be carefully taken care of to avoid biased interpretations of the
595 underlying ecological processes resulting from the use of the incorrect data. Due to sensor
596 degradation, the analysis and interpretation of the interannual variations and long-term trends in
597 VIs remained challenging until the inter-calibration of AVHRR with MODIS became feasible after

598 2000 during the overlapping period¹⁰³. The newer versions of VI products should theoretically be
599 more accurate than the older ones¹¹⁰. Spectral response function normalizations are recommended
600 for multi-sensor VI harmonizations⁹⁹. The BRDF correction by the kernel-driven model is
601 recommended especially if the BRDF varies seasonally and latitudinally in the analysis¹²⁰. If
602 uncertainties from sensor calibration¹⁰⁹, atmospheric, BRDF and topographic effects¹³⁴ are a
603 serious issue to be reduced, ratio-based VIs are more recommended than difference-based VIs,
604 while ratio-based VIs could be sensitive to snow/soil background¹³⁰ and scale effects⁵⁸. For the
605 spatial aggregation, it is highly recommended to firstly aggregate the single-band reflectance to
606 coarse resolution, and then calculate VIs such as NDVI and EVI, instead of aggregating the high-
607 resolution VIs directly, just to avoid the scaling effect over heterogeneous surfaces due to possible
608 nonlinear formula of VIs⁵⁸.

609 Identifying dominant variables and potential signal contamination sources in specific
610 ecosystems are also important for the correct use of VIs. For example, for temperate evergreen
611 forests, the structure and chlorophyll in winter may not vary much, while physiologically-
612 associated VIs such as PRI and CCI which are more sensitive to light use efficiency should be
613 more suitable^{50,51}. Tropical rainforest could be more vulnerable to atmosphere and optical signal
614 saturation impacts¹¹⁴ (EVI is more recommended instead of NDVI), savanna and shrubland with
615 sparse vegetation are more sensitive to soil backgrounds²⁵ (EVI and NIRv are recommended), Arctic
616 region with high latitudes is vulnerable to large solar zenith angle and ice/snow backgrounds¹³⁰
617 (PPI, EVI2 and NIRv with BRDF correction are recommended), while mountainous regions such
618 as the Tibetan Plateau with rugged terrain is vulnerable to not only ice/snow but also topographic
619 and shadowing effects¹⁴² (topographic normalizations including the empirical, semi-empirical and
620 physically-based methods¹⁵⁴ are recommended).

621 **8. Future directions**

622 VIs with the spectral, angular, spatial and temporal information are classic remote sensing
623 products with rich research history. Because of their simplicity and robustness, we envision they

624 will continue to be heavily used in the foreseeable future. Looking forward, we identified a few
625 research opportunities and challenges below that may advance the use of VIs for the more accurate
626 and timely monitoring of terrestrial ecosystems from space.

627 ***8.1 Multi-sensor VI harmonization***

628 Multi-sensor fusion of observations from multiple sensors/satellites can improve the spatio-
629 temporal resolution and continuity as well as the timespan of VIs, such as Sentinel-2 and Landsat-
630 8¹⁵⁵, which may greatly enhance their applicability. Ongoing efforts are devoted to developing
631 fusion algorithms¹⁵⁶⁻¹⁵⁹ and datasets^{118,160,161} for producing long-term gap-free VIs at relatively high
632 resolutions. However, land surface heterogeneity¹⁶² and BRDF effects¹¹⁷ remain to be major
633 scientific challenges and issues to be resolved for producing fused VI products. The atmospheric
634 correction also deserves greater attention, because even under the same solar angle, VIs differ
635 depending on the fraction of diffuse radiation which differs at the overpassing times of different
636 sensors/satellites. Sensor calibration drift and degradation are also critical challenges for the fusion
637 of VI data from similar sensors on multiple satellites or multiple sensors on different satellites such
638 as AVHRR and MODIS, in producing decadal datasets and analyses^{103,104}.

639 ***8.2 Synergistic use with novel metrics***

640 Most VIs are good proxies of vegetation biophysical properties and to a limited extent
641 represent vegetation functioning. Some novel remote sensing indicators, such as Solar-Induced
642 chlorophyll Fluorescence (SIF)¹⁶³⁻¹⁶⁶, could provide valuable complementary information. SIF
643 captures some of the vegetation physiological information, and thus responds to the onset of
644 environmental conditions and stresses earlier than VIs¹⁶⁷. SIF can track the photosynthetic
645 seasonality in evergreen species in cold environments where red-NIR VIs showed no changes¹⁶⁸.
646 Besides, SIF is rarely impacted by soil because green vegetation is the only source of SIF.

647 However, the existing SIF retrievals have poor spatial resolution, infrequent revisiting time,
648 low signal to noise ratio, and a relatively short history of measurements¹⁶⁹. New sensors/satellites
649 will continue enhancing the capability for SIF measurement, but complementary VIs such as NIRv
650 provide far better spatial and temporal resolutions. Understanding the intrinsic linkage between SIF

651 and VIs is the key for the synergistic use for scientific applications, and one possible useful
652 direction is to study the shared characteristics of SIF and VIs. In recent studies, far-red SIF
653 normalized by Photosynthetically Active Radiation (SIF/PAR) and NIRv has been demonstrated to
654 share the same f_{esc} in the radiative transfer process^{81,170} (Box 1). Thus, under low-stress conditions
655 with stable fluorescence yield (Φ_F), NIRv and SIF/PAR are expected to be strongly correlated
656 under the same sun-target-sensor geometry (Fig. S1). NIRv radiance (NDVI×NIR radiance) or
657 NIRvP (NIRv×PAR) and SIF should be even more strongly related than NIRv and SIF/PAR as the
658 common radiation factor further enhances the underlying relationship^{4,82,152}. The similarity between
659 NIRv and SIF implies that VIs could be used as structural proxies for SIF because they have a
660 longer data record. For example, MODIS EVI has been used to generate a global SIF product
661 (GOSIF; 2000-2020) from OCO-2 SIF soundings¹⁷¹. Combining NIRv with SIF during times of the
662 overlapping data has great potential to isolate the unique physiological responses of SIF as NIRv
663 can be used to normalize the dominant canopy structure effects^{152,172}.

664 Microwave vegetation indices derived from different frequency and polarization combinations
665 are more sensitive to the woody part of the vegetation than NDVI¹⁷³, and are potential approaches
666 to derive vegetation optical depth (VOD)¹⁷⁴. VOD describes vegetation extinction effects in the
667 microwave spectrum and is increasingly used for estimating parameters of vegetation water content
668 and the aboveground biomass^{175,176}. VOD has the advantage of being unaffected by the clouds and
669 less sensitive to the water in the atmosphere, which is important especially for cloudy and humid
670 tropical regions such as the Amazon and Congo rainforests^{175,177}. VOD has been reported to have a
671 saturation point with higher biomass values than NDVI¹⁷⁷. Optical VIs with a higher spatial
672 resolution can contribute to the downscaling of VOD, while VOD can help to improve the
673 temporal observing frequency over cloudy and humid regions and seasons.

674 **8.3 New remote sensing missions**

675 The widely used red-NIR VIs which are sensitive to canopy structure and chlorophyll content
676 do not directly contain the LUE information, which can be captured to some degree by several VIs
677 such as PRI⁴⁹, CCI⁵ and GCC^{50,51} from emerging hyperspectral or multispectral remote sensing

678 capabilities. In addition, hyperspectral data with more spectral information can be beneficial for the
679 disentangling of the pure vegetation and soil reflectance contributions in the mixed pixel spectrum,
680 by the newly proposed NIRvH¹⁵³. The next generation of VIs aim at the reduction of soil/snow/ice
681 background effects, reduced BRDF impact and reduced signal-saturation. Such hyperspectral
682 remote sensing capability has been limited at the global scale and relatively fine spatial resolution.
683 However, these limitations will be addressed with the emerging and forthcoming spaceborne
684 hyperspectral satellite missions such as the HiSUI, PRISMA, EnMap, CHIME, DESIS, GeoCarb
685 and SBG. New opportunities to further improve temporal characteristics of traditional VIs will also
686 be provided by the new-generation geostationary satellites, such as GOES, Himawari and GEO-
687 KOMPSAT, as well as the unique DSCOVR position at the Sun-Earth L1 Lagrange Point. They
688 provide higher observing frequency that support not only the diurnal variations of ecosystem
689 processes¹⁷⁸, but also the seasonality of greenness in cloudy and humid regions such as Amazon
690 compared to polar-orbiting satellites^{179,180}.

691 9. Summary

692 This review summarizes inherent features of several widely used VIs and some factors
693 contributing to consistencies and inconsistencies among them that may lead to controversies
694 resulting from their inappropriate use in scientific studies and other applications. Factors such as
695 the formulation of VIs, sensor characteristics, product version, compositing algorithms, QA/QC,
696 atmospheric and topographic conditions, and sun-target-sensor geometries all impact VIs and their
697 appropriate use. We further highlight that improper use of QA/QC flags attached to VIs could be
698 an important source of uncertainty and pitfall in their use, and offer a few guidance and
699 recommendations for the appropriate use of VIs. Mathematical analysis suggests that NIRv, EVI,
700 EVI2 and DVI have similar radiative transfer features and are strongly linearly correlated with
701 each other, while NDVI behaves differently as a ratio-based VI and is more impacted by soil
702 background. NIRv, EVI, EVI2 and DVI can reproduce the results of each other in most cases
703 because of their similarity.

704 Finally, we strongly recommend that future studies using VIs should be conducted with clear
705 focus on interpretation of VIs, and using more than one *in-situ* dataset for verification when
706 possible, to render greater confidence in their findings and conclusions. It would also be important
707 to provide a detailed documentation of the key processing steps mentioned above to facilitate the
708 interpretation and reproducibility of VI-based results. Ideally, the programming code should also
709 be provided or made available when requested, and where feasible, the final VI dataset should be
710 stored in a publicly accessible repository or cloud storage such as Google Earth Engine for ease of
711 access¹⁸¹. In particular, the documentation should include relevant information on the application
712 of QA/QC levels as well as any other processing steps such as spatio-temporal aggregation,
713 additional quality and outlier filtering or other corrections applied to the original data. Providing
714 such detailed technical information on VI products might be a promising strategy as then the
715 documentation would be straightforward to find and also citable via a doi linked to a given dataset
716 that is available for the user community. The technical review and recommendations presented
717 here are intended to further advance the use of VIs in scientific studies and reduce any confusion
718 and inconsistencies due to their improper use, considering the continued record length of existing
719 capabilities, such as MODIS and VIIRS instruments, and emerging new ones, such as HiSUI,
720 PRISMA and EnMap.

721 References

- 722 1 Bannari, A., Morin, D., Bonn, F. & Huete, A. A review of vegetation indices.
723 *Remote sensing reviews* **13**, 95-120 (1995).
- 724 2 Gao, X., Huete, A. R., Ni, W. & Miura, T. Optical–biophysical relationships of
725 vegetation spectra without background contamination. *Remote sensing of
726 environment* **74**, 609-620 (2000).
- 727 3 Huete, A. R. A soil-adjusted vegetation index (SAVI). *Remote sensing of
728 environment* **25**, 295-309 (1988).
- 729 4 Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and
730 terrestrial photosynthesis. *Science Advances* **3**, e1602244 (2017).
- 731 5 Gamon, J. A. *et al.* A remotely sensed pigment index reveals photosynthetic
732 phenology in evergreen conifers. *Proceedings of the National Academy of
733 Sciences* **113**, 13087-13092 (2016).
- 734 6 Joiner, J. *et al.* Estimation of terrestrial global gross primary production (GPP) with
735 satellite data-driven models and eddy covariance flux data. *Remote Sensing* **10**,
736 1346 (2018).

737 7 Piao, S. *et al.* Characteristics, drivers and feedbacks of global greening. *Nature Reviews Earth & Environment* **1**, 14-27 (2020).

738 8 Tian, F. *et al.* Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. *Remote Sensing of Environment* **163**, 326-340 (2015).

740 9 Fan, X. & Liu, Y. A global study of NDVI difference among moderate-resolution satellite sensors. *ISPRS Journal of Photogrammetry and Remote Sensing* **121**, 177-191 (2016).

741 10 AghaKouchak, A. *et al.* Remote sensing of drought: Progress, challenges and opportunities. *Reviews of Geophysics* **53**, 452-480 (2015).

742 11 Anyamba, A. & Tucker, C. J. Historical perspective of AVHRR NDVI and vegetation drought monitoring. *Remote sensing of drought: Innovative monitoring approaches* **23**, 20 (2012).

743 12 Veraverbeke, S. *et al.* Hyperspectral remote sensing of fire: State-of-the-art and future perspectives. *Remote Sensing of Environment* **216**, 105-121 (2018).

744 13 Houborg, R., Fisher, J. B. & Skidmore, A. K. Advances in remote sensing of vegetation function and traits. *International Journal of Applied Earth Observation and Geoinformation* **43**, 1-6 (2015).

745 14 Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. *Remote Sensing of Environment* **8**, 127-150, doi:[http://dx.doi.org/10.1016/0034-4257\(79\)90013-0](http://dx.doi.org/10.1016/0034-4257(79)90013-0) (1979).

746 15 Rouse, J. W., Haas, R. H., Schell, J. A. & Deering, D. W. Monitoring vegetation systems in the Great Plains with ERTS. *NASA special publication* **351**, 309 (1974).

747 16 Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. & Harlan, J. C. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. *NASA/GSFC Type III Final Report, Greenbelt, Md* **371** (1974).

748 17 Gutman, G., Skakun, S. & Gitelson, A. Revisiting the use of red and near-infrared reflectances in vegetation studies and numerical climate models. *Science of Remote Sensing* **4**, 100025 (2021).

749 18 Jackson, R. D. & Huete, A. R. Interpreting vegetation indices. *Preventive veterinary medicine* **11**, 185-200 (1991).

750 19 Richardson, A. J. & Wiegand, C. Distinguishing vegetation from soil background information. *Photogrammetric engineering and remote sensing* **43**, 1541-1552 (1977).

751 20 Baret, F., Guyot, G. & Major, D. in *12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium*. 1355-1358 (IEEE).

752 21 Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. & Sorooshian, S. A modified soil adjusted vegetation index. *Remote sensing of environment* **48**, 119-126 (1994).

753 22 Chen, J. M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. *Canadian Journal of Remote Sensing* **22**, 229-242 (1996).

754 23 Brown, L., Chen, J. M., Leblanc, S. G. & Cihlar, J. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: An image and model analysis. *Remote sensing of environment* **71**, 16-25 (2000).

755 24 Pinty, B. & Verstraete, M. GEMI: a non-linear index to monitor global vegetation from satellites. *Vegetatio* **101**, 15-20 (1992).

756 25 Huete, A. *et al.* Overview of the radiometric and biophysical performance of the MODIS vegetation indices. *Remote Sensing of Environment* **83**, 195-213, doi:[http://dx.doi.org/10.1016/S0034-4257\(02\)00096-2](http://dx.doi.org/10.1016/S0034-4257(02)00096-2) (2002).

757 26 Kaufman, Y. J. & Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. *IEEE transactions on Geoscience and Remote Sensing* **30**, 261-270 (1992).

758 27 Jiang, Z., Huete, A. R., Didan, K. & Miura, T. Development of a two-band enhanced vegetation index without a blue band. *Remote sensing of Environment* **112**, 3833-3845 (2008).

790 28 Jin, H. & Eklundh, L. A physically based vegetation index for improved monitoring
791 of plant phenology. *Remote Sensing of Environment* **152**, 512-525,
792 doi:10.1016/j.rse.2014.07.010 (2014).

793 29 Yang, P., van der Tol, C., Campbell, P. K. & Middleton, E. M. Fluorescence
794 Correction Vegetation Index (FCVI): A physically based reflectance index to
795 separate physiological and non-physiological information in far-red sun-induced
796 chlorophyll fluorescence. *Remote sensing of environment* **240**, 111676 (2020).

797 30 Badgley, G., Anderegg, L. D., Berry, J. A. & Field, C. B. Terrestrial gross primary
798 production: Using NIRV to scale from site to globe. *Global change biology* **25**,
799 3731-3740 (2019).

800 31 Camps-Valls, G. *et al.* A unified vegetation index for quantifying the terrestrial
801 biosphere. *Science Advances* **7**, eabc7447 (2021).

802 32 Roberts, D. A., Roth, K. L. & Perroy, R. L. 14 hyperspectral vegetation indices.
803 *Hyperspectral remote sensing of vegetation* **309** (2016).

804 33 Gitelson, A. A., Vina, A., Ciganda, V., Rundquist, D. C. & Arkebauer, T. J. Remote
805 estimation of canopy chlorophyll content in crops. *Geophysical Research Letters*
806 **32** (2005).

807 34 Gitelson, A. & Merzlyak, M. N. Spectral reflectance changes associated with
808 autumn senescence of *Aesculus hippocastanum* L. and *Acer platanoides* L. leaves.
809 Spectral features and relation to chlorophyll estimation. *Journal of plant physiology*
810 **143**, 286-292 (1994).

811 35 Dash, J. & Curran, P. The MERIS terrestrial chlorophyll index. *International
812 Journal of Remote Sensing* **25**, 5403-5413 (2004).

813 36 Peñuelas, J., Baret, F. & Filella, I. Semi-empirical indices to assess
814 carotenoids/chlorophyll a ratio from leaf spectral reflectance. *Photosynthetica* **31**,
815 221-230 (1995).

816 37 Peñuelas, J., Gamon, J., Fredeen, A., Merino, J. & Field, C. Reflectance indices
817 associated with physiological changes in nitrogen-and water-limited sunflower
818 leaves. *Remote sensing of Environment* **48**, 135-146 (1994).

819 38 Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B. & Rakitin, V. Y. Non -
820 destructive optical detection of pigment changes during leaf senescence and fruit
821 ripening. *Physiologia plantarum* **106**, 135-141 (1999).

822 39 Gitelson, A. A., Merzlyak, M. N. & Chivkunova, O. B. Optical properties and
823 nondestructive estimation of anthocyanin content in plant leaves. *Photochemistry
824 and photobiology* **74**, 38-45 (2001).

825 40 van den Berg, A. K. & Perkins, T. D. Nondestructive estimation of anthocyanin
826 content in autumn sugar maple leaves. *HortScience* **40**, 685-686 (2005).

827 41 Gamon, J. & Surfus, J. Assessing leaf pigment content and activity with a
828 reflectometer. *The New Phytologist* **143**, 105-117 (1999).

829 42 Gao, B.-C. NDWI—A normalized difference water index for remote sensing of
830 vegetation liquid water from space. *Remote sensing of environment* **58**, 257-266
831 (1996).

832 43 Xiao, X., Boles, S., Liu, J., Zhuang, D. & Liu, M. Characterization of forest types in
833 Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data.
834 *Remote Sensing of Environment* **82**, 335-348 (2002).

835 44 Xiao, X. *et al.* Satellite-based modeling of gross primary production in an
836 evergreen needleleaf forest. *Remote sensing of environment* **89**, 519-534 (2004).

837 45 Yilmaz, M. T., Hunt Jr, E. R. & Jackson, T. J. Remote sensing of vegetation water
838 content from equivalent water thickness using satellite imagery. *Remote Sensing
839 of Environment* **112**, 2514-2522 (2008).

840 46 Cheng, Y.-B., Ustin, S. L., Riaño, D. & Vanderbilt, V. C. Water content estimation
841 from hyperspectral images and MODIS indexes in Southeastern Arizona. *Remote
842 Sensing of Environment* **112**, 363-374 (2008).

843 47 Serrano, L., Penuelas, J. & Ustin, S. L. Remote sensing of nitrogen and lignin in
844 Mediterranean vegetation from AVIRIS data: Decomposing biochemical from
845 structural signals. *Remote sensing of Environment* **81**, 355-364 (2002).

846 48 Filella, I. *et al.* PRI assessment of long-term changes in carotenoids/chlorophyll
847 ratio and short-term changes in de-epoxidation state of the xanthophyll cycle.
848 *International Journal of Remote Sensing* **30**, 4443-4455 (2009).

849 49 Gamon, J., Penuelas, J. & Field, C. A narrow-waveband spectral index that tracks
850 diurnal changes in photosynthetic efficiency. *Remote Sensing of environment* **41**,
851 35-44 (1992).

852 50 Cheng, R. *et al.* Decomposing reflectance spectra to track gross primary
853 production in a subalpine evergreen forest. *Biogeosciences* **17**, 4523-4544 (2020).

854 51 Seyednasrollah, B. *et al.* Seasonal variation in the canopy color of temperate
855 evergreen conifer forests. *New Phytologist* **229**, 2586-2600 (2021).

856 52 Merton, R. in *Proceedings of the Seventh Annual JPL Airborne Earth Science
857 Workshop*. 12-16.

858 53 Naidu, R. A., Perry, E. M., Pierce, F. J. & Mekuria, T. The potential of spectral
859 reflectance technique for the detection of Grapevine leafroll-associated virus-3 in
860 two red-berried wine grape cultivars. *Computers and Electronics in Agriculture* **66**,
861 38-45 (2009).

862 54 Chen, Y. *et al.* Generation and evaluation of LAI and FPAR products from
863 Himawari-8 advanced Himawari imager (AHI) data. *Remote Sensing* **11**, 1517
864 (2019).

865 55 Zhu, Z. *et al.* Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction
866 of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory
867 Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index
868 (NDVI3g) for the Period 1981 to 2011. *Remote Sensing* **5**, 927-948,
869 doi:10.3390/rs5020927 (2013).

870 56 Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global
871 leaf area index (1981–2011) from combined AVHRR and MODIS data. *Journal of
872 Geophysical Research* **117**, doi:10.1029/2012jg002084 (2012).

873 57 Croft, H. *et al.* The global distribution of leaf chlorophyll content. *Remote Sensing
874 of Environment* **236**, 111479 (2020).

875 58 Jiang, Z. *et al.* Analysis of NDVI and scaled difference vegetation index retrievals
876 of vegetation fraction. *Remote sensing of environment* **101**, 366-378 (2006).

877 59 Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. & Strachan, I. B.
878 Hyperspectral vegetation indices and novel algorithms for predicting green LAI of
879 crop canopies: Modeling and validation in the context of precision agriculture.
880 *Remote sensing of environment* **90**, 337-352 (2004).

881 60 Wu, C., Wang, L., Niu, Z., Gao, S. & Wu, M. Nondestructive estimation of canopy
882 chlorophyll content using Hyperion and Landsat/TM images. *International Journal
883 of Remote Sensing* **31**, 2159-2167 (2010).

884 61 Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. *Remote
885 Sensing of Environment* **231**, 111218 (2019).

886 62 Ustin, S. L. & Gamon, J. A. Remote sensing of plant functional types. *New
887 Phytologist* **186**, 795-816 (2010).

888 63 Hilker, T. *et al.* Vegetation dynamics and rainfall sensitivity of the Amazon.
889 *Proceedings of the National Academy of Sciences* **111**, 16041-16046 (2014).

890 64 Zhang, Y., Commane, R., Zhou, S., Williams, A. P. & Gentine, P. Light limitation
891 regulates the response of autumn terrestrial carbon uptake to warming. *Nature
892 Climate Change* **10**, 739-743 (2020).

893 65 Weber, M. *et al.* Exploring the use of DSCOVR/EPIC satellite observations to
894 monitor vegetation phenology. *Remote Sensing* **12**, 2384 (2020).

895 66 Wang, S., Zhang, Y., Ju, W., Qiu, B. & Zhang, Z. Tracking the seasonal and inter-
896 annual variations of global gross primary production during last four decades using

897 satellite near-infrared reflectance data. *Science of the Total Environment* **755**,
898 142569 (2021).

899 67 Tian, F. *et al.* Calibrating vegetation phenology from Sentinel-2 using eddy
900 covariance, PhenoCam, and PEP725 networks across Europe. *Remote Sensing*
901 of *Environment* **260**, 112456 (2021).

902 68 Yin, G., Verger, A., Filella, I., Descals, A. & Peñuelas, J. Divergent estimates of
903 forest photosynthetic phenology using structural and physiological vegetation
904 indices. *Geophysical Research Letters* **47**, e2020GL089167 (2020).

905 69 Qin, Y. *et al.* Carbon loss from forest degradation exceeds that from deforestation
906 in the Brazilian Amazon. *Nature Climate Change* **11**, 442-448 (2021).

907 70 Samanta, A. *et al.* Amazon forests did not green - up during the 2005 drought.
908 *Geophysical research letters* **37** (2010).

909 71 Shi, Y., Huang, W., Luo, J., Huang, L. & Zhou, X. Detection and discrimination of
910 pests and diseases in winter wheat based on spectral indices and kernel
911 discriminant analysis. *Computers and Electronics in Agriculture* **141**, 171-180
912 (2017).

913 72 Zhang, Z., Liu, M., Liu, X. & Zhou, G. A new vegetation index based on
914 multitemporal Sentinel-2 images for discriminating heavy metal stress levels in rice.
915 *Sensors* **18**, 2172 (2018).

916 73 Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E. & Tucker III, C. J. *Use of the
917 Normalized Difference Vegetation Index (NDVI) to assess Land degradation at
918 multiple scales: current status, future trends, and practical considerations.*
919 (Springer, 2015).

920 74 Potter, C. S. *et al.* Terrestrial ecosystem production: a process model based on
921 global satellite and surface data. *Global Biogeochemical Cycles* **7**, 811-841 (1993).

922 75 Running, S. W. *et al.* A continuous satellite-derived measure of global terrestrial
923 primary production. *Bioscience* **54**, 547-560 (2004).

924 76 Yuan, W. *et al.* Deriving a light use efficiency model from eddy covariance flux
925 data for predicting daily gross primary production across biomes. *Agricultural and
926 Forest Meteorology* **143**, 189-207 (2007).

927 77 Chen, M. *et al.* Quantification of terrestrial ecosystem carbon dynamics in the
928 conterminous United States combining a process-based biogeochemical model
929 and MODIS and AmeriFlux data. *Biogeosciences* **8**, 2665-2688 (2011).

930 78 Xiao, J. *et al.* A continuous measure of gross primary production for the
931 conterminous United States derived from MODIS and AmeriFlux data. *Remote
932 sensing of environment* **114**, 576-591 (2010).

933 79 Jiang, C., Guan, K., Wu, G., Peng, B. & Wang, S. A daily, 250 m, and real-time
934 gross primary productivity product (2000–present) covering the Contiguous United
935 States. *Earth Syst. Sci. Data Discuss.* **2020**, 1-28 (2020).

936 80 Schubert, P. *et al.* Modeling GPP in the Nordic forest landscape with MODIS time
937 series data—Comparison with the MODIS GPP product. *Remote Sensing of
938 Environment* **126**, 136-147 (2012).

939 81 Zeng, Y. *et al.* A practical approach for estimating the escape ratio of near-infrared
940 solar-induced chlorophyll fluorescence. *Remote Sensing of Environment* **232**,
941 111209 (2019).

942 82 Baldocchi, D. D. *et al.* Outgoing Near Infrared Radiation from Vegetation Scales
943 with Canopy Photosynthesis Across a Spectrum of Function, Structure,
944 Physiological Capacity and Weather. *Journal of Geophysical Research: Biogeosciences*, e2019JG005534 (2020).

946 83 Dechant, B. *et al.* Canopy structure explains the relationship between
947 photosynthesis and sun-induced chlorophyll fluorescence in crops. *Remote
948 Sensing of Environment* **241**, 111733 (2020).

949 84 Rahman, A. F., Gamon, J. A., Fuentes, D. A., Roberts, D. A. & Prentiss, D.
950 Modeling spatially distributed ecosystem flux of boreal forest using hyperspectral

951 indices from AVIRIS imagery. *Journal of Geophysical Research: Atmospheres* **106**,
952 33579-33591 (2001).

953 85 Wang, S. *et al.* Recent global decline of CO₂ fertilization effects on vegetation
954 photosynthesis. *Science* **370**, 1295-1300 (2020).

955 86 Zhu, Z. *et al.* Comment on “Recent global decline of CO₂ fertilization effects on
956 vegetation photosynthesis”. *Science* **373**, eabg5673 (2021).

957 87 Huang, M. *et al.* Air temperature optima of vegetation productivity across global
958 biomes. *Nature ecology & evolution* **3**, 772-779 (2019).

959 88 Doughty, R. *et al.* Small anomalies in dry-season greenness and chlorophyll
960 fluorescence for Amazon moist tropical forests during El Niño and La Niña.
961 *Remote Sensing of Environment* **253**, 112196 (2021).

962 89 Wigneron, J.-P. *et al.* Tropical forests did not recover from the strong 2015–2016
963 El Niño event. *Science advances* **6**, eaay4603 (2020).

964 90 Huang, N. *et al.* Spatial and temporal variations in global soil respiration and their
965 relationships with climate and land cover. *Science advances* **6**, eabb8508 (2020).

966 91 Huang, N., He, J.-S. & Niu, Z. Estimating the spatial pattern of soil respiration in
967 Tibetan alpine grasslands using Landsat TM images and MODIS data. *Ecological
968 Indicators* **26**, 117-125 (2013).

969 92 Neale, C. M., Gonzalez - Dugo, M. P., Serrano - Perez, A., Campos, I. & Mateos,
970 L. Cotton canopy reflectance under variable solar zenith angles: Implications of
971 use in evapotranspiration models. *Hydrological Processes* **35**, e14162 (2021).

972 93 Chen, J. M. & Liu, J. Evolution of evapotranspiration models using thermal and
973 shortwave remote sensing data. *Remote Sensing of Environment* **237**, 111594
974 (2020).

975 94 Glenn, E. P., Huete, A. R., Nagler, P. L. & Nelson, S. G. Relationship between
976 remotely-sensed vegetation indices, canopy attributes and plant physiological
977 processes: What vegetation indices can and cannot tell us about the landscape.
978 *Sensors* **8**, 2136-2160 (2008).

979 95 Cui, Y., Jia, L. & Fan, W. Estimation of actual evapotranspiration and its
980 components in an irrigated area by integrating the Shuttleworth-Wallace and
981 surface temperature-vegetation index schemes using the particle swarm
982 optimization algorithm. *Agricultural and Forest Meteorology* **307**, 108488 (2021).

983 96 Glenn, E. P., Neale, C. M., Hunsaker, D. J. & Nagler, P. L. Vegetation index -
984 based crop coefficients to estimate evapotranspiration by remote sensing in
985 agricultural and natural ecosystems. *Hydrological Processes* **25**, 4050-4062
986 (2011).

987 97 French, A. N. *et al.* Satellite-based NDVI crop coefficients and evapotranspiration
988 with eddy covariance validation for multiple durum wheat fields in the US
989 Southwest. *Agricultural Water Management* **239**, 106266 (2020).

990 98 Fensholt, R. & Proud, S. R. Evaluation of earth observation based global long term
991 vegetation trends—Comparing GIMMS and MODIS global NDVI time series.
992 *Remote sensing of Environment* **119**, 131-147 (2012).

993 99 Trishchenko, A. P., Cihlar, J. & Li, Z. Effects of spectral response function on
994 surface reflectance and NDVI measured with moderate resolution satellite sensors.
995 *Remote Sensing of Environment* **81**, 1-18 (2002).

996 100 Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth
997 observation for ecological applications. *Ecological processes* **10**, 1-57 (2021).

998 101 Wang, D. *et al.* Impact of sensor degradation on the MODIS NDVI time series.
999 *Remote Sensing of Environment* **119**, 55-61 (2012).

1000 102 Zhang, Y., Song, C., Band, L. E., Sun, G. & Li, J. Reanalysis of global terrestrial
1001 vegetation trends from MODIS products: Browning or greening? *Remote Sensing
1002 of Environment* **191**, 145-155 (2017).

1003 103 Bhatt, R. *et al.* A consistent AVHRR visible calibration record based on multiple
 1004 methods applicable for the NOAA degrading orbits. Part I: Methodology. *Journal of*
 1005 *Atmospheric and Oceanic Technology* **33**, 2499-2515 (2016).

1006 104 Frankenberg, C., Yin, Y., Byrne, B., He, L. & Gentine, P. COMMENT ON
 1007 "RECENT GLOBAL DECLINE OF CO₂ FERTILIZATION EFFECTS ON
 1008 VEGETATION PHOTOSYNTHESIS". *Science* **373**, eabg2947,
 1009 doi:10.1126/science.abg2947 (2021).

1010 105 Los, S. O. Estimation of the ratio of sensor degradation between NOAA AVHRR
 1011 channels 1 and 2 from monthly NDVI composites. *IEEE Transactions on*
 1012 *Geoscience and Remote Sensing* **36**, 206-213 (1998).

1013 106 Jiang, C. *et al.* Inconsistencies of interannual variability and trends in long - term
 1014 satellite leaf area index products. *Global Change Biology* **23**, 4133-4146 (2017).

1015 107 de Beurs, K. M. & Henebry, G. M. Trend analysis of the Pathfinder AVHRR Land
 1016 (PAL) NDVI data for the deserts of Central Asia. *IEEE Geoscience and Remote*
 1017 *Sensing Letters* **1**, 282-286 (2004).

1018 108 Wang, Z. *et al.* Large discrepancies of global greening: Indication of multi-source
 1019 remote sensing data. *Global Ecology and Conservation*, e02016 (2022).

1020 109 Miura, T., Huete, A. R. & Yoshioka, H. Evaluation of sensor calibration
 1021 uncertainties on vegetation indices for MODIS. *Geoscience and Remote Sensing,*
 1022 *IEEE Transactions on* **38**, 1399-1409 (2000).

1023 110 Lyapustin, A. *et al.* Scientific impact of MODIS C5 calibration degradation and C6+
 1024 improvements. *Atmospheric Measurement Techniques* **7**, 4353-4365 (2014).

1025 111 Buchhorn, M., Reynolds, M. K. & Walker, D. A. Influence of BRDF on NDVI and
 1026 biomass estimations of Alaska Arctic tundra. *Environmental Research Letters* **11**,
 1027 125002 (2016).

1028 112 Morton, D. C. *et al.* Amazon forests maintain consistent canopy structure and
 1029 greenness during the dry season. *Nature* **506**, 221-224, doi:10.1038/nature13006
 1030 (2014).

1031 113 Fensholt, R., Sandholt, I., Proud, S. R., Stisen, S. & Rasmussen, M. O.
 1032 Assessment of MODIS sun-sensor geometry variations effect on observed NDVI
 1033 using MSG SEVIRI geostationary data. *International Journal of Remote Sensing*
 1034 **31**, 6163-6187 (2010).

1035 114 Saleska, S. R. *et al.* Dry-season greening of Amazon forests. *Nature* **531**, E4-E5
 1036 (2016).

1037 115 Lyapustin, A. I. *et al.* Multi-angle implementation of atmospheric correction for
 1038 MODIS (MAIAC): 3. Atmospheric correction. *Remote Sensing of Environment* **127**,
 1039 385-393 (2012).

1040 116 Norris, J. R. & Walker, J. J. Solar and sensor geometry, not vegetation response,
 1041 drive satellite NDVI phenology in widespread ecosystems of the western United
 1042 States. *Remote Sensing of Environment* **249**, 112013 (2020).

1043 117 Roy, D. P. *et al.* A general method to normalize Landsat reflectance data to nadir
 1044 BRDF adjusted reflectance. *Remote Sensing of Environment* **176**, 255-271 (2016).

1045 118 Schaaf, C. B. *et al.* First operational BRDF, albedo nadir reflectance products from
 1046 MODIS. *Remote sensing of Environment* **83**, 135-148 (2002).

1047 119 Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS vegetation index user's
 1048 guide (MOD13 series). *University of Arizona: Vegetation Index and Phenology Lab*
 1049 (2015).

1050 120 Wang, Z., Schaaf, C. B., Sun, Q., Shuai, Y. & Román, M. O. Capturing rapid land
 1051 surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43)
 1052 products. *Remote sensing of environment* **207**, 50-64 (2018).

1053 121 Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-
 1054 up during 2005 drought. *Science* **318**, 612-612 (2007).

1055 122 Vargas, M., Miura, T., Shabanov, N. & Kato, A. An initial assessment of Suomi
 1056 NPP VIIRS vegetation index EDR. *Journal of Geophysical Research: Atmospheres* **118**, 12,301-312,316 (2013).

1057 123 Kobayashi, H. & Dye, D. G. Atmospheric conditions for monitoring the long-term
 1059 vegetation dynamics in the Amazon using normalized difference vegetation index.
 1060 *Remote Sensing of Environment* **97**, 519-525 (2005).

1061 124 Jiang, C. & Fang, H. GSV: a general model for hyperspectral soil reflectance
 1062 simulation. *International Journal of Applied Earth Observation and Geoinformation*
 1063 **83**, 101932 (2019).

1064 125 Verrelst, J., Schaepman, M. E., Malenovský, Z. & Clevers, J. G. Effects of woody
 1065 elements on simulated canopy reflectance: Implications for forest chlorophyll
 1066 content retrieval. *Remote Sensing of Environment* **114**, 647-656 (2010).

1067 126 Huete, A. & Tucker, C. Investigation of soil influences in AVHRR red and near-
 1068 infrared vegetation index imagery. *International journal of remote sensing* **12**,
 1069 1223-1242 (1991).

1070 127 Farrar, T., Nicholson, S. & Lare, A. The influence of soil type on the relationships
 1071 between NDVI, rainfall, and soil moisture in semiarid Botswana. II. NDVI response
 1072 to soil moisture. *Remote sensing of Environment* **50**, 121-133 (1994).

1073 128 Huete, A. & Warrick, A. Assessment of vegetation and soil water regimes in partial
 1074 canopies with optical remotely sensed data. *Remote Sensing of Environment* **32**,
 1075 155-167 (1990).

1076 129 Wang, C. *et al.* A snow-free vegetation index for improved monitoring of vegetation
 1077 spring green-up date in deciduous ecosystems. *Remote sensing of environment*
 1078 **196**, 1-12 (2017).

1079 130 Myers-Smith, I. H. *et al.* Complexity revealed in the greening of the Arctic. *Nature Climate Change* **10**, 106-117 (2020).

1080 131 Shen, M. *et al.* No evidence of continuously advanced green-up dates in the
 1081 Tibetan Plateau over the last decade. *Proceedings of the National Academy of
 1082 Sciences* **110**, E2329-E2329 (2013).

1083 132 Grover, V. I., Borsdorf, A., Breuste, J., Tiwari, P. C. & Frangetto, F. W. *Impact of
 1084 global changes on mountains: responses and adaptation.* (CRC Press, 2014).

1085 133 Hao, D. *et al.* Modeling anisotropic reflectance over composite sloping terrain.
 1086 *IEEE Transactions on Geoscience and Remote Sensing* **56**, 3903-3923 (2018).

1087 134 Matsushita, B., Yang, W., Chen, J., Onda, Y. & Qiu, G. Sensitivity of the enhanced
 1088 vegetation index (EVI) and normalized difference vegetation index (NDVI) to
 1089 topographic effects: a case study in high-density cypress forest. *Sensors* **7**, 2636-
 1090 2651 (2007).

1091 135 Wen, J. *et al.* Characterizing land surface anisotropic reflectance over rugged
 1092 terrain: A review of concepts and recent developments. *Remote Sensing* **10**, 370
 1093 (2018).

1094 136 Friedl, M. A., Davis, F. W., Michaelsen, J. & Moritz, M. Scaling and uncertainty in
 1095 the relationship between the NDVI and land surface biophysical variables: An
 1096 analysis using a scene simulation model and data from FIFE. *Remote Sensing of
 1097 Environment* **54**, 233-246 (1995).

1098 137 Tan, B. *et al.* The impact of gridding artifacts on the local spatial properties of
 1099 MODIS data: Implications for validation, compositing, and band-to-band
 1100 registration across resolutions. *Remote Sensing of Environment* **105**, 98-114
 1101 (2006).

1102 138 Wolfe, R. E. *et al.* Achieving sub-pixel geolocation accuracy in support of MODIS
 1103 land science. *Remote Sensing of Environment* **83**, 31-49 (2002).

1104 139 Ferreira, M. P. *et al.* Retrieving structural and chemical properties of individual tree
 1105 crowns in a highly diverse tropical forest with 3D radiative transfer modeling and
 1106 imaging spectroscopy. *Remote Sensing of Environment* **211**, 276-291 (2018).

1107

1108 140 Huete, A. R. *et al.* Amazon rainforests green - up with sunlight in dry season.
1109 *Geophysical research letters* **33** (2006).

1110 141 Herrmann, S. M. & Tappan, G. G. Vegetation impoverishment despite greening: A
1111 case study from central Senegal. *Journal of Arid Environments* **90**, 55-66 (2013).

1112 142 Wang, X. *et al.* No consistent evidence for advancing or delaying trends in spring
1113 phenology on the Tibetan Plateau. *Journal of Geophysical Research: Biogeosciences* **122**, 3288-3305 (2017).

1115 143 Donnelly, A., Yu, R. & Liu, L. Comparing in situ spring phenology and satellite-
1116 derived start of season at rural and urban sites in Ireland. *International Journal of
1117 Remote Sensing* **42**, 7821-7841 (2021).

1118 144 Templ, B. *et al.* Pan European Phenological database (PEP725): a single point of
1119 access for European data. *International journal of biometeorology* **62**, 1109-1113
1120 (2018).

1121 145 Fu, Y. H. *et al.* Declining global warming effects on the phenology of spring leaf
1122 unfolding. *Nature* **526**, 104-107 (2015).

1123 146 Chen, X. & Yang, Y. Observed earlier start of the growing season from middle to
1124 high latitudes across the Northern Hemisphere snow-covered landmass for the
1125 period 2001–2014. *Environmental Research Letters* **15**, 034042 (2020).

1126 147 Alatorre, L. C. *et al.* Temporal changes of NDVI for qualitative environmental
1127 assessment of mangroves: shrimp farming impact on the health decline of the arid
1128 mangroves in the Gulf of California (1990–2010). *Journal of Arid Environments*
1129 **125**, 98-109 (2016).

1130 148 Jacquemoud, S. & Baret, F. PROSPECT: A model of leaf optical properties
1131 spectra. *Remote sensing of environment* **34**, 75-91 (1990).

1132 149 Wu, S. *et al.* Quantifying leaf optical properties with spectral invariants theory.
1133 *Remote Sensing of Environment* **253**, 112131 (2021).

1134 150 Wang, Z. *et al.* Mapping foliar functional traits and their uncertainties across three
1135 years in a grassland experiment. *Remote Sensing of Environment* **221**, 405-416
1136 (2019).

1137 151 Van Leeuwen, W. & Huete, A. Effects of standing litter on the biophysical
1138 interpretation of plant canopies with spectral indices. *Remote sensing of
1139 Environment* **55**, 123-138 (1996).

1140 152 Dechant, B. *et al.* NIRvP: A robust structural proxy for sun-induced chlorophyll
1141 fluorescence and photosynthesis across scales. *Remote Sensing of Environment*
1142 **268**, 112763 (2022).

1143 153 Zeng, Y. *et al.* Estimating near-infrared reflectance of vegetation from
1144 hyperspectral data. *Remote Sensing of Environment* **267**, 112723 (2021).

1145 154 Hantson, S. & Chuvieco, E. Evaluation of different topographic correction methods
1146 for Landsat imagery. *International Journal of Applied Earth Observation and
1147 Geoinformation* **13**, 691-700 (2011).

1148 155 Zhang, H. K. *et al.* Characterization of Sentinel-2A and Landsat-8 top of
1149 atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences.
1150 *Remote sensing of environment* **215**, 482-494 (2018).

1151 156 Gao, F., Masek, J., Schwaller, M. & Hall, F. On the blending of the Landsat and
1152 MODIS surface reflectance: Predicting daily Landsat surface reflectance. *IEEE
1153 Transactions on Geoscience and Remote sensing* **44**, 2207-2218 (2006).

1154 157 Zhu, X. *et al.* A flexible spatiotemporal method for fusing satellite images with
1155 different resolutions. *Remote Sensing of Environment* **172**, 165-177 (2016).

1156 158 Luo, Y., Guan, K. & Peng, J. STAIR: A generic and fully-automated method to fuse
1157 multiple sources of optical satellite data to generate a high-resolution, daily and
1158 cloud-/gap-free surface reflectance product. *Remote Sensing of Environment* **214**,
1159 87-99 (2018).

1160 159 Houborg, R. & McCabe, M. F. Daily Retrieval of NDVI and LAI at 3 m Resolution
1161 via the Fusion of CubeSat, Landsat, and MODIS Data. *Remote Sensing* **10**, 890
1162 (2018).

1163 160 Kimm, H. *et al.* Deriving high-spatiotemporal-resolution leaf area index for
1164 agroecosystems in the US Corn Belt using Planet Labs CubeSat and STAIR
1165 fusion data. *Remote Sensing of Environment* **239**, 111615 (2020).

1166 161 Claverie, M. *et al.* The Harmonized Landsat and Sentinel-2 surface reflectance
1167 data set. *Remote Sensing of Environment* **219**, 145-161 (2018).

1168 162 Kong, J. *et al.* Evaluation of four image fusion NDVI products against in-situ
1169 spectral-measurements over a heterogeneous rice paddy landscape. *Agricultural*
1170 and *Forest Meteorology* **297**, 108255 (2021).

1171 163 Köhler, P. *et al.* Global retrievals of solar - induced chlorophyll fluorescence with
1172 TROPOMI: First results and intersensor comparison to OCO - 2. *Geophysical*
1173 *Research Letters* **45**, 10,456-10,463 (2018).

1174 164 Sun, Y. *et al.* OCO-2 advances photosynthesis observation from space via solar-
1175 induced chlorophyll fluorescence. *Science* **358** (2017).

1176 165 Joiner, J., Yoshida, Y., Vasilkov, A. & Middleton, E. First observations of global
1177 and seasonal terrestrial chlorophyll fluorescence from space. *Biogeosciences* **8**,
1178 637-651 (2011).

1179 166 Frankenberg, C. *et al.* New global observations of the terrestrial carbon cycle from
1180 GOSAT: Patterns of plant fluorescence with gross primary productivity.
1181 *Geophysical Research Letters* **38** (2011).

1182 167 Qiu, B., Ge, J., Guo, W., Pitman, A. J. & Mu, M. Responses of Australian dryland
1183 vegetation to the 2019 heat wave at a subdaily scale. *Geophysical Research*
1184 *Letters* **47**, e2019GL086569 (2020).

1185 168 Magney, T. S. *et al.* Mechanistic evidence for tracking the seasonality of
1186 photosynthesis with solar-induced fluorescence. *Proceedings of the National*
1187 *Academy of Sciences* **116**, 11640-11645 (2019).

1188 169 Guanter, L. *et al.* Potential of the TROPOspheric Monitoring Instrument
1189 (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial
1190 chlorophyll fluorescence. *Atmospheric Measurement Techniques* **8**, 1337-1352
1191 (2015).

1192 170 Knyazikhin, Y. *et al.* Hyperspectral remote sensing of foliar nitrogen content.
1193 *Proceedings of the National Academy of Sciences* **110**, E185-E192 (2013).

1194 171 Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll
1195 fluorescence derived from OCO-2, MODIS, and reanalysis data. *Remote Sensing*
1196 **11**, 517 (2019).

1197 172 Zeng, Y. *et al.* Combining near-infrared radiance of vegetation and fluorescence
1198 spectroscopy to detect effects of abiotic changes and stresses. *Remote Sensing of*
1199 *Environment* **270**, 112856 (2022).

1200 173 Shi, J. *et al.* Microwave vegetation indices for short vegetation covers from satellite
1201 passive microwave sensor AMSR-E. *Remote sensing of environment* **112**, 4285-
1202 4300 (2008).

1203 174 Talebiefandarani, S. *et al.* Microwave vegetation index from multi-angular
1204 observations and its application in vegetation properties retrieval: Theoretical
1205 modelling. *Remote Sensing* **11**, 730 (2019).

1206 175 Wigneron, J.-P. *et al.* SMOS-IC data record of soil moisture and L-VOD: Historical
1207 development, applications and perspectives. *Remote Sensing of Environment* **254**,
1208 112238 (2021).

1209 176 Zhang, Y., Zhou, S., Gentine, P. & Xiao, X. Can vegetation optical depth reflect
1210 changes in leaf water potential during soil moisture dry-down events? *Remote*
1211 *Sensing of Environment* **234**, 111451 (2019).

1212 177 Frappart, F. *et al.* Global monitoring of the vegetation dynamics from the
1213 Vegetation Optical Depth (VOD): A review. *Remote Sensing* **12**, 2915 (2020).

1214 178 Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K. & Parazoo, N. C. Emerging satellite
1215 observations for diurnal cycling of ecosystem processes. *Nature Plants*, 1-11
1216 (2021).

1217 179 Hashimoto, H. *et al.* New generation geostationary satellite observations support
1218 seasonality in greenness of the Amazon evergreen forests. *Nature communications* **12**, 1-11 (2021).

1219 180 Somkuti, P. *et al.* Solar-induced chlorophyll fluorescence from the Geostationary
1220 Carbon Cycle Observatory (GeoCarb): An extensive simulation study. *Remote
1221 Sensing of Environment* **263**, 112565 (2021).

1222 181 Gorelick, N. *et al.* Google Earth Engine: Planetary-scale geospatial analysis for
1223 everyone. *Remote sensing of Environment* **202**, 18-27 (2017).

1224 182 Baret, F. & Guyot, G. Potentials and limits of vegetation indices for LAI and APAR
1225 assessment. *Remote sensing of environment* **35**, 161-173 (1991).

1226 183 Broge, N. H. & Leblanc, E. Comparing prediction power and stability of broadband
1227 and hyperspectral vegetation indices for estimation of green leaf area index and
1228 canopy chlorophyll density. *Remote sensing of environment* **76**, 156-172 (2001).

1229 184 Nemani, R., Pierce, L., Running, S. & Band, L. Forest ecosystem processes at the
1230 watershed scale: sensitivity to remotely-sensed leaf area index estimates.
International journal of remote sensing **14**, 2519-2534 (1993).

1231 185 Chamard, P. *et al.* Utilisation des bandes spectrales du vert et du rouge pour une
1232 meilleure évaluation des formations végétales actives. *Télédétection et
1233 cartographie*, 203-209 (1991).

1234 186 Gitelson, A. A. *et al.* Remote estimation of leaf area index and green leaf biomass
1235 in maize canopies. *Geophysical research letters* **30** (2003).

1236 187 Sripada, R. P., Heiniger, R. W., White, J. G. & Weisz, R. Aerial color infrared
1237 photography for determining late - season nitrogen requirements in corn.
Agronomy Journal **97**, 1443-1451 (2005).

1238 188 Gitelson, A. A., Kaufman, Y. J. & Merzlyak, M. N. Use of a green channel in
1239 remote sensing of global vegetation from EOS-MODIS. *Remote sensing of
1240 Environment* **58**, 289-298 (1996).

1241 189 Kim, M. S. *The Use of Narrow Spectral Bands for Improving Remote Sensing
1242 Estimations of Fractionally Absorbed Photosynthetically Active Radiation*, (1994).

1243 190 Daughtry, C. S., Walthall, C., Kim, M., De Colstoun, E. B. & McMurtrey Iii, J.
1244 Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance.
Remote sensing of Environment **74**, 229-239 (2000).

1245 191 Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J. & Dextraze, L.
1246 Integrated narrow-band vegetation indices for prediction of crop chlorophyll
1247 content for application to precision agriculture. *Remote sensing of environment* **81**,
1248 416-426 (2002).

1249 192 Blackburn, G. A. Spectral indices for estimating photosynthetic pigment
1250 concentrations: a test using senescent tree leaves. *International Journal of remote
1251 sensing* **19**, 657-675 (1998).

1252 193 Gitelson, A. A., Zur, Y., Chivkunova, O. B. & Merzlyak, M. N. Assessing carotenoid
1253 content in plant leaves with reflectance spectroscopy. *Photochemistry and
1254 photobiology* **75**, 272-281 (2002).

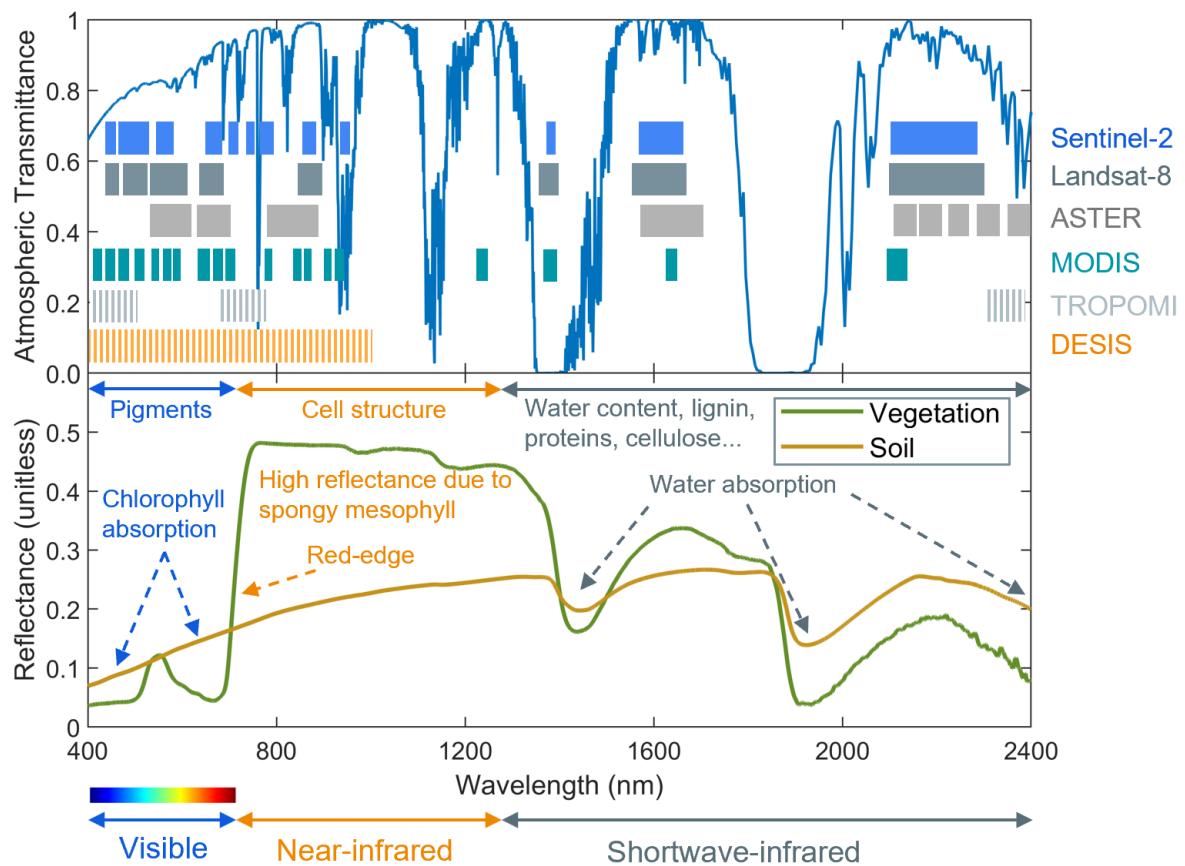
1255 194 Gitelson, A. A., Keydan, G. P. & Merzlyak, M. N. Three - band model for
1256 noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in
1257 higher plant leaves. *Geophysical research letters* **33** (2006).

1258 195 Steele, M. R., Gitelson, A. A., Rundquist, D. C. & Merzlyak, M. N. Nondestructive
1259 estimation of anthocyanin content in grapevine leaves. *American Journal of
1260 Enology and Viticulture* **60**, 87-92 (2009).

1261 196 Peñuelas, J., Pinol, J., Ogaya, R. & Filella, I. Estimation of plant water
1262 concentration by the reflectance water index WI (R900/R970). *International journal
1263 of remote sensing* **18**, 2869-2875 (1997).

1268 197 Daughtry, C. S. Discriminating crop residues from soil by shortwave infrared
1269 reflectance. *Agronomy Journal* **93**, 125-131 (2001).
1270 198 Daughtry, C. S., Hunt, E., Doraiswamy, P. & McMurtrey, J. Remote sensing the
1271 spatial distribution of crop residues. (2005).
1272 199 Richardson, A. D., Braswell, B. H., Hollinger, D. Y., Jenkins, J. P. & Ollinger, S. V.
1273 Near-surface remote sensing of spatial and temporal variation in canopy
1274 phenology. *Ecological Applications* **19**, 1417-1428, doi:10.1890/08-2022.1 (2009).
1275 200 Chen, B., Jin, Y. & Brown, P. An enhanced bloom index for quantifying floral
1276 phenology using multi-scale remote sensing observations. *ISPRS Journal of
1277 Photogrammetry and Remote Sensing* **156**, 108-120 (2019).
1278

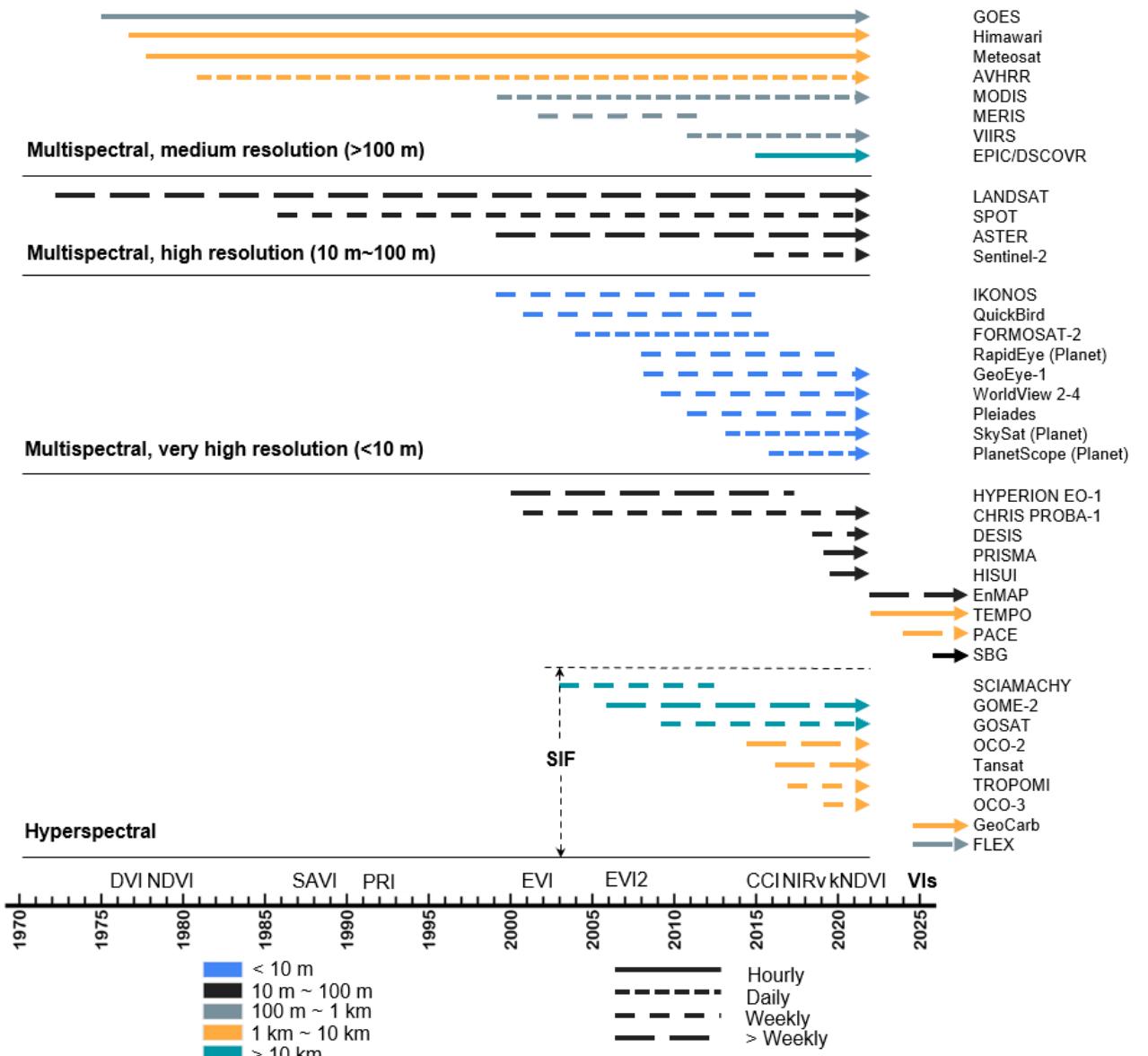
1279 **Figures, tables and boxes**



1280

1281 **Fig. 1. The vegetation and soil spectrum across wavelengths to design vegetation indices.** The
 1282 spectral response range in the atmospheric window of a few widely used satellites are also
 1283 included¹⁰⁰. The colored blocks and vertical lines in the top panel illustrate the spectral band range
 1284 or band pass for each satellite sensor.

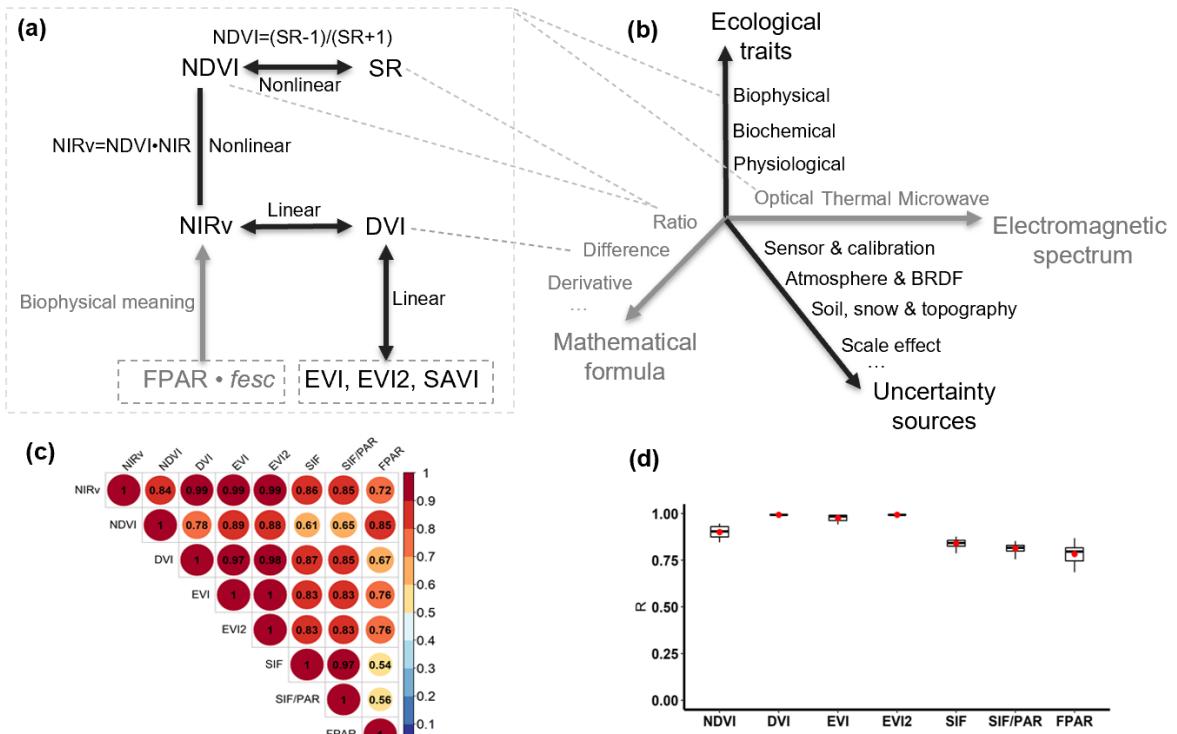
1285



1286

1287 **Fig. 2 The timeline of widely used satellites with the capability to derive VIs. The**
 1288 **corresponding spatio-temporal resolutions are also included.**

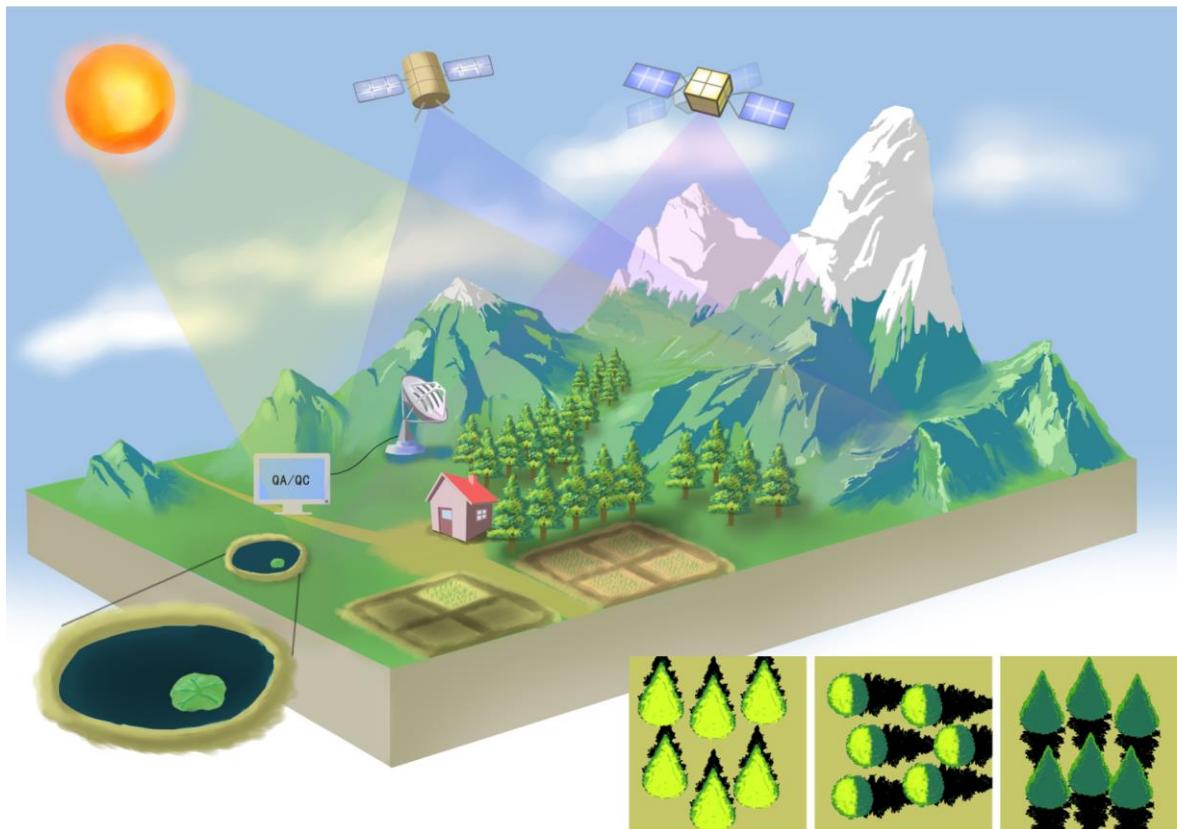
1289



1290

1291 **Fig. 3 The taxonomy, physical meaning and similarity of VIs.** **a|** The biophysical interpretation
1292 and intrinsic linkage of several most widely used VIs in a variety of global-scale ecological studies.
1293 **b|** The taxonomy of VIs from four different dimensions: physics, mathematics, ecology and
1294 uncertainties. **c|** Global spatial correlations of monthly-averaged MODIS NIRv, DVI, EVI, EVI2,
1295 SIF, SIF/PAR (PAR-normalized SIF), NDVI and FPAR in August, 2018 and at 0.1° spatial
1296 resolution, considered as the peak growing month for most vegetation types. **d|** Global spatial
1297 correlations between MODIS NIRv and other remote sensing VIs during the 2018.03~2019.02
1298 period since the origin of TROPOMI SIF, with the temporal resolution of 4 days and 0.1° spatial
1299 resolution. In the box plot, red circle refers to the mean value, boxes represent the interquartile
1300 ranges of the 25th (Q25) and 75th (Q75) percentiles, and whiskers cover the ranges of Q25 -
1301 1.5·(Q75 - Q25) and Q75+1.5·(Q75 - Q25). The R s among NIRv, DVI, EVI and EVI2 were greater
1302 than 0.95, while the R between NDVI and other VIs ranged from 0.78 to 0.89. NDVI has a
1303 relatively larger R with FPAR, but has a weaker linear correlation with SIF than the other VIs. In
1304 the spatial aggregation, the red, NIR and blue reflectance was firstly averagely aggregated to 0.1
1305 degrees, and then the VIs were calculated.

1306



1307

1308 **Fig. 4 A sketch map of VIs from satellite observations.** Uncertainties come from different
1309 sensors and calibration, QA/QC flags and compositing algorithms, atmosphere and BRDF effects,
1310 soil/snow background and topography, and scale effects.

1311

1312

1313 **Table 1: The widely used optical vegetation indices, spectral ranges and references**

Spectral space	Name and references	Abbreviation	Equation and derivation	Primary applications, advantages and disadvantages
Red-NIR	Simple Ratio ¹⁴	SR	NIR/Red	Structure; Simple but sensitive to the atmospheric correction of the red band
Red-NIR	Normalized Difference Vegetation Index ¹⁴⁻¹⁶	NDVI	$(NIR - Red)/(NIR + Red)$ $= (SR - 1)/(SR + 1)$ $= 1 - 2/(SR + 1)$	Structure; Simple but sensitive to the soil background variations
Red-NIR	Modified Simple Ratio ²²	MSR	$\frac{NIR/Red - 1}{\sqrt{NIR/Red + 1}}$	Structure; More linear relationship with canopy structure parameters
Red-NIR	Difference Vegetation Index ¹⁹	DVI	$NIR - Red$	Structure; Simple but sensitive to the BRDF effect
Red-NIR	Global Environment Monitoring Index ²⁴	GEMI	$\eta \cdot (1 - 0.25 \cdot \eta) - \frac{Red - 0.125}{1 - Red}$ $\eta = \frac{2 \cdot (NIR^2 - Red^2) + 1.5 \cdot NIR + 0.5 \cdot Red}{NIR + Red + 0.5}$	Structure; Reduce the atmospheric perturbation effects, while maintain the vegetation information
Red-NIR	Perpendicular Vegetation Index ¹⁹	PVI	$\sqrt{(NIR_{soil} - NIR_{veg})^2 + (Red_{soil} - Red_{veg})^2}$	Structure; Minimize the soil background influence but need the slope and intercept of the soil line
Red-NIR	Soil Adjusted Vegetation Index ³	SAVI	$(1 + L) \cdot (NIR - Red)/(NIR + Red + L)$	Structure; Minimize the soil background influence but sensitive to the BRDF effect

Red-NIR	Modified SAVI ²¹	MSAVI	$(2 \cdot NIR + 1 - \sqrt{(2 \cdot NIR + 1)^2 - 8 \cdot (NIR - Red)})/2$	Structure; Further minimize the soil background influence while increase the dynamic range of vegetation signal
Red-NIR	Transformed SAVI ²⁰	TSAVI	$a \cdot (NIR - a \cdot Red - b) / (a \cdot NIR + Red - a \cdot b)$	Structure; Minimize the soil background influence and work well for LAI and APAR estimations
Red-NIR	Adjusted TSAVI ¹⁸²	ATSAVI	$a \cdot (NIR - a \cdot Red - b) / [a \cdot NIR + Red - a \cdot b + 0.08 \cdot (1 + a^2)]$	Structure; Minimize the soil background influence and work well for LAI and APAR estimations
VIS-NIR	Atmospherically Resistant Vegetation Index ²⁶	ARVI	$(NIR - RB) / (NIR + RB),$ $RB = Red - \gamma \cdot (Blue - Red)$	Structure; Minimize the atmospheric effect and work better for vegetated surfaces than for soils, but need the blue band
VIS-NIR	Soil Adjusted and Atmospherically Resistant Vegetation Index ²⁶	SARVI	$(1 + L) \cdot (NIR - RB) / (NIR + RB + L),$ $RB = Red - \gamma \cdot (Blue - Red)$	Structure; Minimize both the soil and atmospheric effects, but need the blue band
VIS-NIR	Enhanced Vegetation Index ²⁵	EVI	$2.5 \cdot (NIR - Red) / (NIR + 6 \cdot Red - 7.5 \cdot Blue + 1)$	Structure; Minimize both the soil and atmospheric effects, while sensitive to the BRDF effect and need the blue band
Red-NIR	two-band EVI without the blue-band ²⁷	EVI2	$2.5 \cdot (NIR - Red) / (NIR + 2.4 \cdot Red + 1)$	Structure; Minimize the soil background influence and no need the blue band, while sensitive to the BRDF effect

Red-NIR	Near-Infrared Reflectance of vegetation ⁴	NIRv	$NDVI \cdot NIR$	Structure; Minimize the soil background influence, while sensitive to the BRDF effect
VIS-NIR	Hyperspectral NIRv ¹⁵³	NIRvH	$NIR - Red - k(\lambda_{NIR} - \lambda_{Red})$	Structure; Further minimize the soil background influence, while sensitive to the BRDF effect
VIS-NIR	Fluorescence Correction Vegetation Index ²⁹	FCVI	$NIR - VIS$	Structure; Minimize the soil background influence, while sensitive to the BRDF effect
VIS-NIR	Kernel NDVI ³¹	kNDVI	$\tanh(NDVI^2)$	Structure; Higher sensitivity to canopy structural parameters and GPP
VIS-NIR	Plant Phenology Index ²⁸	PPI	$-K \cdot \ln\left(\frac{M - DVI}{M - DVI_S}\right)$	Structure; Linearly related to green LAI, less severely impacted by snow than NDVI and EVI, and work well for phenology at high latitudes, while need the soil DVI
VIS-NIR	Triangular Vegetation Index ¹⁸³	TVI	$0.5 \cdot [120 \cdot (R_{750} - R_{550}) - 200 \cdot (R_{670} - R_{550})]$	Structure; Biochemical: chlorophyll; Describe the radiation absorbed by the pigments
VIS-NIR	Modified Triangular Vegetation Index ^{1₅₉}	MTVI1	$1.2 \cdot [1.2 \cdot (R_{800} - R_{550}) - 2.5 \cdot (R_{670} - R_{550})]$	Structure; Insensitive to pigment changes, and better for LAI estimations than TVI
VIS-NIR	Modified Triangular Vegetation Index ^{2₅₉}	MTVI2	$1.5 \cdot [1.2 \cdot (R_{800} - R_{550}) - 2.5 \cdot (R_{670} - R_{550})] / \sqrt{(2 \cdot R_{800} + 1)^2 - (6 \cdot R_{800} - 5 \cdot \sqrt{R_{670}}) - 0.5}$	Structure; Minimize both the soil background and chlorophyll effects, while sensitive to LAI and thus a good LAI predictor

VIS-NIR	Modified Chlorophyll Absorption Ratio Index 1 ⁵⁹	MCARI1	$1.2 \cdot [2.5 \cdot (R_{800} - R_{670}) - 1.3 \cdot (R_{800} - R_{550})]$	Structure; Less sensitive to chlorophyll variations than MCARI, while sensitive to LAI changes
VIS-NIR	Modified Chlorophyll Absorption Ratio Index 2 ⁵⁹	MCARI2	$1.5 \cdot [2.5 \cdot (R_{800} - R_{670}) - 1.3 \cdot (R_{800} - R_{550})]$ $/ \sqrt{(2 \cdot R_{800} + 1)^2 - (6 \cdot R_{800} - 5 \cdot \sqrt{R_{670}}) - 0.1}$	Structure; Minimize both the soil background and chlorophyll effects, while sensitive to LAI and thus a good LAI predictor
VIS-NIR-MIR	MIR corrected NDVI ¹⁸⁴	NDVIc	$NDVI \cdot (1 - \frac{MIR - MIR_{min}}{MIR_{max} - MIR_{min}})$	Structure; Considered the canopy closure and understory contribution in LAI estimations by leaf water absorption of open canopies
VIS-NIR-SWIR	Reduced SR ²³	RSR	$SR \cdot (1 - \frac{SWIR - SWIR_{min}}{SWIR_{max} - SWIR_{min}})$	Structure; Increased the sensitivity and correlation to LAI than SR in boreal forests, while reduced the effect of background reflectance
Green-Red	Normalized Difference Greenness Index ¹⁸⁵	NDGI	$(Green - Red)/(Green + Red)$	Structure; Work well for identifying and mapping vegetation in inundated regions, no need the blue or NIR bands, and can work at PhenoCam imageries
Green-NIR	Green Chlorophyll Vegetation Index ¹⁸⁶	GCVI	$NIR/Green - 1$	Structure; Biochemical: chlorophyll; Depend on both LAI and chlorophyll concentration, and close relationship with LAI and green leaf biomass
Green-NIR	Green Difference Vegetation Index ¹⁸⁷	GDVI	$NIR - Green$	Biochemical: chlorophyll; Work well for predicting the late-season nitrogen requirement for corn

Green-NIR	Green Normalized Difference Vegetation Index ¹⁸⁸	GNDVI	$(NIR - Green)/(NIR + Green)$	Biochemical: chlorophyll; More sensitive to chlorophyll concentration than NDVI
Red edge-NIR	Red Edge Chlorophyll Index ³³	CIred-edge	$NIR/Re - 1$	Biochemical: chlorophyll; Linear relationship between the chlorophyll content in maize and soybean leaves with CIred-edge
Red edge -NIR	Red-edge NDVI ³⁴	NDVI _{RE}	$(NIR - RE)/(NIR + RE)$	Biochemical: chlorophyll; Directly proportional to chlorophyll and serve as indicators of leaf senescence
Red edge -NIR	MERIS Total Chlorophyll Index ³⁵	MTCI	$(R_{750} - R_{710})/((R_{710} - R_{680})$	Biochemical: chlorophyll; Correlate strongly with red-edge position and is sensitive to high values of chlorophyll content.
Red-Red edge	Chlorophyll Absorption Ratio Index ^{189,190}	CARI	$(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550})$	Biochemical: chlorophyll; Minimize the effect of nonphotosynthetic materials in the FPAR estimations
Red-Red edge	Modified Chlorophyll Absorption in Reflectance Index ¹⁹⁰	MCARI	$[(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550})] \cdot (R_{700}/R_{670})$	Biochemical: chlorophyll; Sensitive to leaf chlorophyll concentrations
Red-Red edge	Transformed Chlorophyll Absorption in Reflectance Index ¹⁹¹	TCARI	$3 \cdot [(R_{700} - R_{670}) - 0.2 \cdot (R_{700} - R_{550}) \cdot (R_{700}/R_{670})]$	Biochemical: chlorophyll; Sensitive to chlorophyll over a wide range of variations, and is more sensitive to chlorophyll than MCARI

VIS-NIR	Pigment Specific Normalized Difference ¹⁹²	PSND	$(R_{800} - R_{675})/((R_{800} + R_{675})$ for Chl _a ; $(R_{800} - R_{650})/((R_{800} + R_{650})$ for Chl _b ; $(R_{800} - R_{500})/((R_{800} + R_{500})$ for Car;	Biochemical: chlorophyll, carotenoid; Strong relation with chlorophyll, while poor relation with carotenoid
VIS-NIR	Pigment Specific Simple Ratio ¹⁹²	PSSR	(R_{800}/R_{675}) for Chl _a ; (R_{800}/R_{650}) for Chl _b ; (R_{800}/R_{500}) for Car;	Biochemical: chlorophyll, carotenoid; Strong relation with chlorophyll, while poor relation with carotenoid
VIS-Red edge	Carotenoid Reflectance Index ¹⁹³	CRI	$1/R_{510} - 1/R_{550}$; $1/R_{510} - 1/R_{700}$	Biochemical: carotenoid; Remove the chlorophyll effect from the reflectance in the green edge range, and is sufficient to estimate the carotenoid content in plant leaves
VIS-Red edge	Plant Senescence Reflectance Index ³⁸	PSRI	$(R_{678} - R_{500})/R_{750}$	Biochemical: carotenoid, chlorophyll; Sensitive to the Car/Chl ratio, and can be used as a quantitative measure of leaf senescence/fruit ripening process
VIS	Normalized Pigments Chlorophyll Ratio Index ³⁷	NPCI	$(R_{680} - R_{430})/(R_{680} + R_{430})$	Biochemical: carotenoid, chlorophyll; Vary with the ratio of total pigments/Chl, indicative of plant phenology status
VIS-NIR	Structure Insensitive Pigment Index ³⁶	SIPI	$(R_{800} - R_{445})/((R_{800} - R_{680})$	Biochemical: carotenoid, chlorophyll a; Physiological; Minimize the confounding effects of the leaf surface and mesophyll structure, and provide the best semi-empirical estimation of the ratio of Car/Chla
Green- Red edge	Anthocyanin Reflectance Index ³⁹	ARI	$1/R_{550} - 1/R_{700}$	Biochemical: anthocyanin; An accurate estimation of anthocyanin accumulation

VIS-NIR	Modified Anthocyanin Reflectance Index ^{39,194}	MARI	$(1/R_{550} - 1/R_{700}) \cdot NIR$	Biochemical: anthocyanin; The best fit function with the Anthocyanin content, and yield accurate assessment
VIS	Red/Green Ratio Index ⁴¹	RGRI	<i>Red/Green</i>	Biochemical: anthocyanin; Strongly related to pigment estimated by destructive sampling and spectrophotometric quantification
Green-NIR	Anthocyanin Content Index ⁴⁰	ACI	$\alpha_{Green}/\alpha_{NIR}$	Biochemical: anthocyanin; Linear relationship with total extractable anthocyanin content
Green-NIR	Modified Anthocyanin Content Index ¹⁹⁵	MACI	<i>NIR/Green</i>	Biochemical: anthocyanin, chlorophyll; Depends on three variables: chlorophyll, anthocyanin, and leaf thickness, and when the three vary independently, MACI becomes insensitive to anthocyanin.
NIR-SWIR	Normalized Difference Water Index ⁴²	NDWI	$\frac{NIR_{860} - SWIR_{1240}}{NIR_{860} + SWIR_{1240}}$	Biochemical: water content; Sensitive to vegetation water content changes, less sensitive to atmospheric effects than NDVI, while not completely remove the soil background reflectance effect as NDVI
NIR-SWIR	Land Surface Water Index ^{43,44}	LSWI	$\frac{R_{780\sim890} - R_{1580\sim1790}}{R_{780\sim890} + R_{1580\sim1790}}$	Biochemical: water content; A useful indicator for water content of evergreen needleleaf forest, useful for improving classification of cropland and forests, and improve the GPP estimations in the VPM model

NIR-SWIR	Normalized Difference Infrared Index ⁴⁵	NDII	$\frac{R_{850} - R_{1650}}{R_{850} + R_{1650}}$	Biochemical: water content; Related to canopy water content, linearly related to Equivalent Water Thickness (EWT) for corn, soybean and woodland
NIR-SWIR	Water Index ¹⁹⁶	WI	R_{900}/R_{970}	Biochemical: water content; Correlate with plant water concentration, and useful in evaluation of wild fire risk and drought
SWIR	Normalized Difference Lignin Index ⁴⁷	NDLI	$[\log(1/R_{1754}) - \log(1/R_{1680})]/[\log(1/R_{1754}) + \log(1/R_{1680})]$	Biochemical: lignin; Significantly correlate to foliar lignin concentration in green canopies, while unable to assess foliar or bulk canopy lignin in senescing vegetation
SWIR	Cellulose Absorption Index ¹⁹⁷	CAI	$100 \cdot [0.5 \cdot (R_{2019} + R_{2206}) - R_{2109}]$	Biochemical: cellulose; Positive for all crop residues, while all soils have negative values, and thus can discriminate crop residues from soil under dry and moist conditions
SWIR	Lignin Cellulose Absorption Index ¹⁹⁸	LCA	$100 \cdot [(R_{2185 \sim 2225} - R_{2145 \sim 2185}) + (R_{2185 \sim 2225} - R_{2295 \sim 2365})]$	Biochemical: lignin, cellulose; Linearly relate to crop residue cover with the R^2 higher than eight VIs in the evaluation
SWIR	Normalized Difference Nitrogen Index ⁴⁷	NDNI	$[\log(1/R_{1510}) - \log(1/R_{1680})]/[\log(1/R_{1510}) + \log(1/R_{1680})]$	Biochemical: nitrogen; Significantly correlate to foliar nitrogen concentration in green canopies, while unable to assess foliar or bulk canopy nitrogen in senescing vegetation

VIS	Photochemical Reflectance Index ⁴⁹	PRI	$(R_{531} - R_{570}) / ((R_{531} - R_{570})$	Physiological; Well track the diurnal changes of photosynthetic activity, but need to reduce complications associated with diurnal sun angle changes
VIS	Chlorophyll Carotenoid Index ⁵	CCI	$\frac{Band_{11} - Band_1}{Band_{11} + Band_1}$	Physiological; Biochemical; Well track the seasonality of daily GPP and phenology for evergreen conifers at multiple spatial scales, and can be acquired at the global scale with MODIS data compared to PRI
VIS	Green Chromatic Coordinate ^{50,199}	GCC	<i>Green</i> / (<i>Red</i> + <i>Green</i> + <i>Blue</i>)	Physiological; Structure; Biochemical; Sensitive to changes in both carotenoid and chlorophyll, correlate well with GPP seasonality but less than CCI and PRI, and can be easily acquired using RGB imagery
Red edge	Red-edge Vegetation Stress Index ⁵²	RVSI	$(R_{714} + R_{752}) / 2 - R_{733}$	Physiological; Useful in the detection of stressed leaves in grapevine leafroll disease
VIS	Enhanced Bloom Index ²⁰⁰	EBI	$\frac{Red + Green + Blue}{\frac{Green}{Blue} \cdot (Red - Blue + \varepsilon)}$	Physiological; Structure; Biochemical; Reduce the soil and green vegetation background noise, and can capture the flower information using RGB imagery from ground to satellites

Box 1: Physical clarification of a few VIs and SIF on their linkages and differences

DVI is defined as the difference between the NIR and Red bands¹⁹:

$$DVI = NIR - Red \quad (1)$$

Here we demonstrate the linkage between NIRv and other VIs such as DVI, EVI and EVI2, by using DVI as the bridge among them. By definition, NIRv can be derived as the product of DVI and $NIR/(NIR+Red)$ ⁴.

$$NIRv = NDVI \cdot NIR = \frac{NIR-Red}{NIR+Red} \cdot NIR = DVI \cdot \frac{NIR}{NIR+Red} \sim DVI \quad (2)$$

$$EVI = 2.5 \cdot \frac{NIR-Red}{NIR+6 \cdot Red - 7.5 \cdot Blue + 1} = DVI \cdot \frac{2.5}{NIR+6 \cdot Red - 7.5 \cdot Blue + 1} \sim DVI \quad (3)$$

$$EVI2 = 2.5 \cdot \frac{NIR-Red}{NIR+2.4 \cdot Red + 1} = DVI \cdot \frac{2.5}{NIR+2.4 \cdot Red + 1} \sim DVI \quad (4)$$

Below we show the linkage and difference between NDVI, SR and SAVI. Note when L in SAVI is 0, SAVI is equal to NDVI.

$$NDVI = \frac{NIR-Red}{NIR+Red} = \frac{SR-1}{SR+1} = 1 - \frac{2}{SR+1} \quad (5)$$

$$SR = NIR/Red \quad (6)$$

$$SAVI = (1 + L) \cdot \frac{NIR-Red}{NIR+Red+L} \quad (7)$$

Based on spectral invariants theory, NIRv and SIF/PAR can be modelled in similar formula⁸¹:

$$NIRv = FPAR \cdot \omega \cdot f_{esc} \quad (8)$$

$$SIF/PAR = FPAR \cdot \Phi_F \cdot f_{esc} \quad (9)$$

where f_{esc} is the photon escape probability from the canopy, ω is the leaf single scattering albedo in the NIR band, which is close to 1 in the NIR band, and Φ_F is the fluorescence yield. Rearranging Eqs. 8 and 9 gives

$$NIRv: (SIF/PAR) = \omega: \Phi_F \quad (10)$$

1316 **Glossary**

1317 AVHRR: Advanced Very High Resolution Radiometer

1318 CHIME: Copernicus Hyperspectral Imaging Mission for the Environment

1319 DESIS: DLR Earth Sensing Imaging Spectrometer

1320 DSCOVR: Deep Space Climate Observatory

1321 EnMap: Environmental Monitoring and Analysis Program

1322 EPIC: Earth Polychromatic Imaging Camera

1323 ETM+: Enhanced Thematic Mapper Plus

1324 FLEX: FLuorescence EXplorer

1325 GIMMS-3g: Global Inventory Modeling and Mapping Studies-3rd generation

1326 GOES: Geostationary Operational Environmental Satellite

1327 HiSUI: Hyper-spectral Imager SUItE

1328 LTDR4: Long Term Data Record version 4

1329 MAIAC: Multi-Angle Implementation of Atmospheric Correction

1330 MERIS: MEdium Resolution Imaging Spectrometer

1331 MODIS: MODerate resolution Imaging Spectroradiometer

1332 MSG: Meteosat Second Generation

1333 PACE: Plankton, Aerosol, Cloud, ocean Ecosystem

1334 PRISMA: PRRecursore IperSpettrale della Missione Applicativa

1335 SBG: Surface Biology and Geology

1336 SEVIRI: Spinning Enhanced Visible and Infrared Imager

1337 SPOT-VGT: Systeme Pour l'Observation de la Terre VEGETATION

1338 TEMPO: Tropospheric Emissions: Monitoring of Pollution

1339 VIIRS: Visible Infrared Imaging Radiometer Suite

1340 VIP3: Vegetation Index and Phenology version 3

1341 **Acknowledgements**

1342 This research was supported by the National Aeronautics and Space Administration (NASA)
1343 through Remote Sensing Theory and Arctic Boreal Vulnerability Experiment (ABoVE) grants
1344 80NSSC21K0568 and NNH18ZDA001N granted to Min Chen. J. X. was supported by National
1345 Science Foundation (NSF) (Macrosystem Biology & NEON-Enabled Science program: DEB-
1346 2017870). Y. R. was supported by National Research Foundation of Korea (NRF-
1347 2019R1A2C2084626). The authors thank Grayson Badgley for the fruitful discussions on
1348 vegetation indices. The TROPOMI far-red daily SIF dataset¹⁶³ was acquired from
1349 <ftp://fluo.gps.caltech.edu/data/tropomi> provided by Philipp Köhler. The authors acknowledge the
1350 insightful comments and suggestions from the editors and three anonymous reviewers.

1351 **Author contributions**

1352 Y. Z., D. H., A. H., J. B., G. A. and M. C. wrote the synopsis and the initial draft of the manuscript.
1353 B. D., J. C., J. J., C. F., B. L., Y. R. and J. X. reviewed and edited the manuscript before
1354 submission. All authors made substantial contributions to the improvement of manuscript.

1355 **Competing interests**

1356 The authors declare no competing interests.