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Key points

Optical vegetation indices (VIs) derived from space-borne Earth observations are widely
used for monitoring terrestrial ecosystems including plant biophysical, biochemical and
physiological properties, vegetation dynamics and environmental stresses.

Sensor and calibration effects, quality assurance and quality control (QA/QC) flags,
bidirectional reflectance distribution function (BRDF), atmospheric and topographic
effects, and snow/soil background are among important sources of VI-based uncertainties.
Potential artefacts must be carefully considered to avoid biased interpretations of the
underlying ecological processes resulting from the improper use of VlIs.

VIs based on ratios of reflectance such as NDVI can help reduce sensor calibration, BRDF,
atmospheric and topographic effects, but could be sensitive to snow/soil background and
scale effects.

NIRv has the biophysical meaning of FPAR times the photon escape ratio (fesc), and is
linearly correlated with EVI, EVI2 and DVI on a mathematical-basis, while ratio-based
NDVI behaves differently.

Next generation VIs with greater signal sensitivity and less artefacts, are expected with
new hyperspectral/geostationary satellite missions and synergistic integration with other

metrics, providing advanced opportunities for studying terrestrial ecosystems.
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Abstract

Vegetation indices (VIs) are widely used in studying vegetation dynamics across spatial (local,
regional, and global) and temporal (sub-hourly, daily, seasonal, annual, and decadal) scales.
However, diverging conclusions have often been reached for the same canopy conditions using
different VIs, rendering past and present scientific studies by the ecological community ambiguous.
In this review, we summarize the rationale, history and ecological applications of Vs, and provide
useful insights on VI inconsistencies due to improper considerations of a variety of factors, such as
the use of different VIs, sensors, satellite product versions, atmospheric and sun-target-sensor
geometry corrections, compositing algorithms, and use of quality assurance and control (QA/QC)
flags. The debate on Amazon forest greening in the dry season is used as an example to illustrate
VI inconsistencies. We demonstrate that the photon escape ratio (fesc) from the canopy provides
the mathematical- and physical-basis for the intrinsic linkage among several of the most widely
used VIs. NIRv, EVI, EVI2 and DVI are strongly linearly correlated with each other while NDVI
behaviors differently. Identifying key sensitive wavelengths for target application is the first step
towards the optimal use of Vls, followed by an understanding of potential signal contamination

sources in the specific ecosystem.
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1. Introduction

Vegetation indices (‘VIs’) are simple mathematical combinations or transformations of
reflectance in two or more spectral channels to represent vegetation status conditions (Fig. 1),
while minimizing the impacts of other contributing factors such as the soil background, atmosphere
and sun-target-sensor geometry' ~. As useful and efficient tools, VIs have attracted a large
community of users from a wide range of scientific disciplines over the last half century. Vs are
also easily obtained at different scales, from the ground with hand-held spectral sensing devices,
tower-based and airborne sensors up to satellites, and hence can provide measurements from the
fine to coarse resolutions. VIs are highly objective, with no or only minimal assumptions with
regard to land cover type and canopy structure. As a result, they have been intensively used in local
to global scale studies, and in almost every discipline of Earth science, especially in ecological
research™®,

A number of VIs have been developed since the early 1970s (Table 1). Many of them can be
easily calculated from publicly available remote sensing data, while the subtleties in processing
and interpretation of results require more experience and theoretical background. With their wide
adoption, VlIs are increasingly applied to more challenging research questions/experiments to shed
light on complex ecological topics such as vegetation response to long-term climate change’”,

%" and extreme climate events'>. The simplicity of VIs, however, can be

short-term disturbances
deceptive as there are many cases of confusion, misinterpretations, and scientific controversies
related to their use.

This review aims to inform scientists with the rationale, history, and key features of VIs that
hopefully can be helpful for better understanding and using VlIs for ecological studies. Although
hundreds of VIs have been proposed, there is no necessity to go through all these VIs because
many of them were built with similar formulae or principles. Instead, we will reinvestigate a
selected subset of the most widely used VlIs in this review, with a particular emphasis on clarifying

and summarizing their usefulness, relationships, inconsistencies, artefacts and limitations. We also

attempt to present recommendations on how to avoid these potential pitfalls to improve their use
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for the wider ecological community. In addition, since most existing VIs are based on reflectance
in the optical wavelengths, we mainly focus on the optical VIs in this review, and particularly on
those having the potential to be derived by satellite observations and applied globally. We use a
few ‘milestone’ VIs as representative examples across our technical analyses, such as the
Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and the
Near-Infrared Reflectance of Vegetation (NIRv), which are among the most widely used VIs in a

variety of global-scale ecological studies and can reveal some common features of many Vls.

2. Rationale of VIs

The launch of Earth observing satellites since 1972 ushered a new era for global observation
and study of vegetation (Fig. 2)". The physical foundation of VIs, as a product of the remotely-
sensed spectral reflectance, is built on our understanding of the complex light-vegetation
interactions. Essentially, satellite-measured spectral reflectance is a mixed signal of vegetation
canopies, their shadows, soils and possibly other components standing on the land surface, and is
commonly co-determined by leaf reflectance, the background soil reflectance, canopy structure,
and the sun-sensor geometry. The spectral signature of leaf reflectance is well understood (Fig. 1).
Leaf reflectance is relatively lower in the visible (VIS) domain (400~700 nm) because of the strong
absorption of photosynthetic pigments, particularly in the non-green wavelengths due to the
absorption of chlorophylls; high leaf reflectance in the near infrared band (NIR; 700~1300 nm) is
usually expected due to spongy mesophyll, and lower leaf reflectance happens in the shortwave
infrared (SWIR; 1300~2500 nm) due to strong water absorption and, to a less degree, other leaf
biochemical traits such as lignin, protein and cellulose content. A typical soil reflectance spectrum
monotonically increases with wavelength in the optical domain except the water absorptions in the
SWIR band. Canopy structure is a key factor for the canopy reflectance, because it determines how
much of the incoming light is reabsorbed, re-scattered and finally escapes from the canopies.
Biophysical or structural parameters such as Leaf Area Index (LAI), Leaf Angle Distribution (LAD)

and Clumping Index (CI) are commonly used to characterize canopy structure. The sun-sensor
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geometry further complicates the canopy reflectance observations, largely due to the fraction of
shadows in view because of the varying relative positions of the light source (sun) and the sensor.
Furthermore, the atmospheric radiative transfer process is another important factor to consider in
practice.

Therefore, VIs have been developed based on the simple rationale that the spectral signals
from the vegetation, and more specifically, the vegetation characteristics of interest (for example,
vegetation biophysical, biochemical and physiological properties) should be enhanced with
properly designed mathematical combinations such as ratios, differences, derivative, or the
combinations of the ratios and differences between reflectance from different spectral wavelengths
or bands (Fig. 3). This enhancement goes along with reducing, or ideally suppressing background
signals from soil and confounding factors related to vegetation characteristics with overlapping
spectral features. However, even for a given vegetation characteristic, it is not straightforward to
use one single formula that holds under different conditions. This, together with the interest in
various different vegetation characteristics as well as increasing availability of more and more and
increasingly narrow spectral bands from satellite sensors, is driving the continuing development of

Vls.

3. A Brief History of VIs

3.1 VIs for plant biophysical properties

The history of VI developments goes back to the early 1970s (Fig. 2). The first-generation red-
NIR ratio- and difference-based VlIs, including the Simple ratio (SR), Difference Vegetation Index
(DVI) and NDVI'*'® were proposed to quantify vegetation growing condition based on the fact
that live green vegetation significantly absorbs solar radiation in red but reflects most of the solar
energy in NIR to support photosynthesis while avoiding potential damage from overheating'” (Fig.
1). Further refinements have been introduced to minimize the effects of intervening soil
background and atmosphere to better isolate the vegetation contributions, especially for sparse

vegetation cover'™. Examples include an orthogonal-transformation based perpendicular
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vegetation index (PVI)”, the soil adjusted vegetation index (SAVI)’, Transformed SAVI
(TSAVI)™ and Modified SAVI (MSAVI)*'. Later, Modified Simple Ratio (MSR)** was formulated
based on the evaluation of several two-band VIs (for example, SR, NDVI and SAVI) for the
purpose of improving the linear relationship with biophysical parameters and reducing the
sensitivity to measurement noise”>. Reduced SR (RSR) further increased the sensitivity and
correlation to LAI than SR, and reduced the effect of background reflectance by taking the canopy
closure and understory contribution of open canopies into account with the SWIR band included™.
The Global Environment Monitoring Index (GEMI) was introduced to reduce the atmospheric
effects”. The launch of MODIS onboard NASA’s Terra and Aqua satellites in the early 2000s
opened new opportunities for VI developments with more spectral bands in the optical wavelengths.
The Atmospherically Resistant Vegetation Index (ARVI) and EVI* were proposed to minimize the
atmospheric effects with an expected blue to red band ‘atmosphere scatter’ signal, enabling

correction from the blue and red band relative proportions™

. As atmospheric correction
algorithms improved, the two-band version of EVI (EVI2)*’ with the absence of the blue-band was
developed in 2008 without blue band while achieving similar performance as compared with EVI*’,
In 2014, plant phenology index (PPI)*® was derived for estimating plant canopy growth, especially
for evergreen forest phenology over high latitudes™. PPI has a nearly linear relationship with green
LAI, and soil brightness variations have moderate impact on PPI. More recently, NIRv* and the
fluorescence correction vegetation index (FCVI)* were added to the list because of their ability to
reduce soil background effects on the NIR reflectance of vegetation and to better approximate the
vegetation’s solar radiation absorption and photosynthesis**’. NIRv has received significant
attention and application because of its clear physical foundation and strong correlation with
vegetation photosynthesis (Fig. 3)*°. In 2021, the kernel NDVI (kNDVI) was proposed based on
the theory of kernel methods as a unifying VI for monitoring the terrestrial carbon dynamics and

increasing the sensitivity of NDVI to plant biophysical parameters’'.

3.2 VIs for plant biochemical properties.
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Broad-band reflectance smooths the detailed spectral signatures and thus above-mentioned
broad-band VIs are primarily designed for detecting vegetation structure and its changes. In
parallel, a group of VIs were developed by taking advantage of narrow-band sensor measurements
that keep more detailed spectral information. In general, narrow-band VlIs are specifically designed
to indicate the biochemical and physiological properties such as pigments, water, plant residues
and nitrogen®”, and typically use a combination of strong-absorbing VIS bands and a narrow band
located in the red-edge region (670~780nm). Examples include Red Edge Chlorophyll Index
(Clred-edge)®, Red-edge NDVI (NDVIre)** and MERIS Total Chlorophyll Index (MTCI)* for
indicating chlorophyll content, the Structure Insensitive Pigment Index (SIPI)*’, Normalized
Pigments Chlorophyll Ratio Index (NPCI)*’, Plant Senescence Reflectance Index (PSRI)* for
carotenoid content, and Anthocyanin Reflectance Index (ARI)’, Anthocyanin Content Index
(ACI)* and Red/Green Ratio Index (RGRI)*' for anthocyanin content. Using the water absorption
bands around 970, 1200, 1450, 1940 and 2500 nm, Normalized Difference Water Index (NDWI)“,
Land Surface Water Index (LSWI)**, and Normalized Difference Infrared Index (NDII)" were
designed with a similar formula and exhibit similarly robust performance on indicating vegetation
hydrological condition®®. The Normalized Difference Lignin Index (NDLI) was designed with the
1754 nm lignin absorption feature, and the Normalized Difference Nitrogen Index (NDNI)
considered the 1510 nm nitrogen absorption feature®’.

3.3 VIs for plant physiological properties

Another group of VIs were proposed to detect stress-induced physiological changes in
xanthophyll cycle pigments, as indicators of photosynthetic light use efficiency or environmental
stresses™. Because the reflectance at 531 nm is sensitive to carotenoid pigments and the
xanthophyll cycle, the Photochemical Reflectance Index (PRI) was proposed (with a reference
wavelength at 570 nm) in 1992 to track changes in diurnal photosynthetic efficiency®. The
Chlorophyll/Carotenoid Index (CCI) proposed in 2016 is another index for representing the
dynamics of the chlorophyll/carotenoid ratio and has the potential to track seasonal variations of

canopy photosynthesis at the global scale’, because it could be directly obtained from existing
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satellite data. PRI, CCI and green chromatic coordinate (GCC) can capture the seasonal variation
of carotenoid and xanthophyll cycles over temperate evergreen needleleaf forests that are difficult
to detect with broadband VIs such as NDVI and NIRv"”'. Red-edge Vegetation Stress Index
(RVSI)™ had less negative values for stressed leaves than healthy leaves in grapevine leafroll
disease detection over two wine grape cultivars™.
3.4 Satellite sensors for VIs

VIs can be calculated from reflectance measurements by a series of Earth-observing satellite
sensors~ (Fig. 2). Landsat 1~3 MultiSpectral Scanner (MSS) since 1972 only had four VIS-NIR
bands with about 80-m spatial resolution and half-monthly revisit cycle, while since Landsat 4 was
launched in 1982, the spatial resolution in VIS-NIR bands has increased to 30-m. Sensors with
similar spatial resolution include SPOT (1986~) and Sentinel-2 (2015~), which have weekly to
daily temporal resolution. Sentinel-2 is one of the few sensors with the capability to calculate red-
edge VIs for plant pigments. AVHRR, MODIS and VIIRS, launched in 1981, 1999 and 2011,
respectively, have the daily temporal coverage, while AVHRR does not have the blue band for EVI.
Towards high temporal resolution, geostationary satellites, such as GOES and Himawari both
launched in the 1970s, had sub-hourly VI observations. NDVI, SR and RSR have been employed
to generate global LAI products from Himawari, AVHRR and MODIS observations with biome-

specific LAI-VI relationships“'S 6

, while global leaf chlorophyll content was firstly generated from
MERIS observations by physically-based radiative transfer models instead of the chlorophyll-
sensitive MTCI, due to the impact of LAI on MTCI”’. For very high spatial resolution (<10-m),
GeoEye-1, WorldView 2-4, Pleiades, SkySat and PlanetScope are available since 2009 but can
only provide VIS-NIR reflectance for vegetation biophysical properties. DESIS and HiSUI on the
International Space Station, and as well as Hyperion and PRISMA, provide the hyperspectral
observations while they just have monthly revisit cycle on average, which are suitable for plant

biochemical and physiological traits mapping instead of capturing rapid temporal changes of

vegetation.
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4. Ecological applications of VIs

VIs have been successfully applied to many specific ecological research fields. Below we

discuss a few prototypical examples.
4.1 Estimating vegetation attributes

An essential attractive feature of VIs is their conceptual simplicity and strong relationships
with vegetation biophysical properties. Therefore, using VIs to estimate vegetation biophysical

343538 14 one of the most successful

properties such as LAI, fractional vegetation cover, and biomass
application scenarios. Many VIs such as NDVI have been used as robust estimators of LAI and
fractional vegetation cover. A few problems of NDVI are well identified, such as the insensitivity
to densely vegetated areas and the oversensitivity to the changes of soil brightness due to rainfall

and snowfall. The saturation point of EVI is higher than NDVI*?*

, leading to more EVI
applications in densely vegetated area like tropical forests. In particular, chlorophyll-corrected VIs
can minimize the impact of chlorophyll content on LAI estimations. For example, a modified
triangular vegetation index (MTVI2) and a modified chlorophyll absorption ratio index (MCARI2)
have shown to be the best predictors of green LAI in a systematic evaluation of more than ten VIs
(including NDVI, MSR, SAVI, etc.) over various crops- .

For vegetation biochemical properties (Table 1), red-edge VIs have been widely used for
estimating leaf/canopy chlorophyll content and carotenoid pigments®, while SWIR-based VIs were
often roughly used for leaf/canopy water content, leaf mass per area and (LMA) and nitrogen
estimations®”. These retrieved plant traits can be directly used to quantify the functional diversity,
while the spatial distribution and textural feature of VIs such as MODIS EVI have also been

applied in studying the spectral diversity, species richness and habitat heterogeneity®"*.

4.2 Temporal vegetation dynamics

Compared to other VIs, NDVI and EVI are the most widely used ones in practice for detecting
and monitoring temporal vegetation dynamics because of their simplicity, robustness and

availability, especially for the seasonal (phenology) and long-term trends of structural changes "**
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% EVI and EVI2 are the primary data source for producing the MODIS vegetation phenology
product Collections 5 and 6, respectively. In the recent years, NIRv is gaining popularity for
analyses of vegetation changes regarding the ecosystem gross primary production (GPP)®. PPI and
EVI2 performed better than NDVI with Sentinel-2 imagery across Europe when compared to
ground-observed phenological stages, especially for evergreen coniferous forest during winter with
snow®’. CCI better tracked evergreen forest phenology and the end-of-season changes in deciduous
forests compared to structurally-oriented NDVI, EVI and NIRv®,

Artifacts such as sun-sensor geometry and inter-sensor calibrations usually play a critical role
for correctly using and interpreting the results of VI-based temporal vegetation dynamics. During
the past decades, considering the inter-sensor consistency and the sun-sensor geometry has been
well recognized by the research community although different VIs may subject to such artifacts at

different levels of sensitivities as discussed in Section 5.
4.3 Environmental stresses and disturbances

The abrupt temporal changes of VI time-series are also useful for the detection of land cover
change, environmental stress and disturbance. EVI has been widely used to monitor and quantify
the deforestation and degradation in the Amazon tropical rainforest”, as well as the responses to
drought, heatwave and water stresses' 1170, Using PRI, CCI and GCC infers more seasonal
physiological changes of vegetation than using structurally-oriented VIs such as NDVI and EVI in
dormant temperate forests’™'. Biochemically-related VIs such as SIPI, NPCI and ARI have also
been applied for the detection of pests and diseases in winter wheat’', and the soil erosion and
heavy metal pollution in rice’, especially when hyperspectral data are available. Forecasting
wildfire risks, monitoring fire severity, and characterizing vegetation recovery after fire
disturbance is typically achieved by simple VIs such as NDVI, while hyperspectral imaging
spectroscopy and light detection and ranging (LiDAR) are encouraged to be used in combination
for the assessment of fuel condition and vegetation structure mapping'>. NDVI has also been used
for the assessment of ecosystem integrity and land degradation/desertification at different scales,

including the resilience of agroecosystems’.
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4.4 Ecosystem carbon and water fluxes

Vegetation dynamics drive changes of surface radiation regime, which co-determine
microclimate and land-atmosphere carbon and water fluxes, and thus has been an important
application of VlIs, in principle by employing VIs as the proxy for vegetation canopy coverage, leaf
area and fraction of absorbed solar radiation (FPAR) (Fig. 3). FPAR is usually considered as a
function of LAI, and thus the advantages and disadvantages of the VIs for monitoring LAI also
apply to the carbon fluxes estimations.

Some notable examples of using VI to estimate carbon fluxes, particularly GPP, include the
Carnegie-Ames-Stanford Approach (CASA)™, MODIS algorithm’ and EC-LUE model (all using
NDVI-derived FPAR); Vegetation Photosynthesis Model (VPM)*, the modified GPP model in
TEM”’, data-driven GPP upscaling” (using EVI); simpler statistical upscaling using NIRv**";
regional forest GPP estimations® (using EVI2); satellite-based GPP with inexplicit
parameterization of LUE®” (using NDVI and soil-adjusted NIRv, SANIRvV). All these approaches
have demonstrated moderate to high success. NIRv has received growing attention in recent years

R**¥152 a5 well as a moderate relationship with LUE®.

because of its explicit physical link to FPA
PRI, CCI and GCC are also found to well track the seasonal GPP dynamics, it is still challenging to
establish quantitative relationships between these VIs and LUE for robust GPP estimations.
Nevertheless, the inclusion of PRI together with NDVI had shown improvements in estimating
boreal forest CO, fluxes %,

VIs have been used as direct indicators of photosynthesis in studies, such as for examining the
CO, fertilization effects by using AVHRR and MODIS NIRv**, the carbon loss in Amazon

rainforest degradation and deforestation with MODIS EVI®

, the change velocity and optimum air
temperature of productivity across biomes by MODIS NDVI and NIRv*’, and the anomalies and
recovery of the tropical forest during the strong 2015/2016 El Nino event also with MODIS

EVI®®. Estimating belowground carbon fluxes from satellite observations has rarely been

attempted and is based on indirect correlations between GPP and soil respiration via VIs™.

10
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Typically, NDVI, EVI and MSAVI were used as scaling factors to extrapolate field-level soil
respiration measurements to larger scales **°".

Another prominent application of VIs is in the estimation of evapotranspiration (ET) with a
history of over 30 years’>”. Although ET has been more accurately assessed using land surface
temperature (LST), VIs are easier to obtain. The principle is because transpiration through plant
leaf stomata generally dominates evaporation. A number of previous review papers have
summarized that VIs in remote sensing ET models are powerful indicators of the fraction of
vegetation coverage, absorption of solar energy, or surface roughness that are major determinant of
ET’*%. Besides, due to the good VI-LST or VI-ET correlations observed at the flux tower sites in a
wide variety of ecosystems, VIs have been used for either up-scaling site observation or
enhancing/downscaling satellite LST, especially when LST data is unavailable or has a coarse
resolution®**®. NDVI, SAVI and EVI are so far the most widely used VIs in a variety of ET

estimation models”®’. However, due to NDVI’s sensitivity to soil brightness, the more soil-

resistant VIs, such as EVI, EVI2, NIRv and SAV], are considered as better choices’>**%.

5. Artefacts that cause inconsistencies

VIs can be easily acquired from a variety of satellite sensors, however, inconsistencies in VI-
based results reported in literature are common. Some of these inconsistencies are due to the use of
different VIs, and a majority others are due to the artefacts of VI products derived from different
sensors, satellite product versions, atmospheric and directional correction effects, compositing
algorithms, and the application of different levels of quality assurance (QA) and quality control
(QC) flags™. A comprehensive understanding of these inconsistencies as well as the limitations and
caveats of each VI is critically important for rigorous use of VI and for the correct interpretation of
the results from VI-based analyses. In this section, several notable examples of how VIs are not
used consistently are discussed and classified by the primary factors for such inconsistencies (Fig.

4).

5.1 Sensor and calibration effects

11
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There are inconsistencies in different satellite time-series for the same study area/region. For
example, vegetation greenness trends derived from AVHRR and MODIS NDVI time series
apparently show trends in opposing directions’. The differences in the central wavelength and
range of the spectral response function across sensors can be important contributing factor for such
inconsistencies”'”. For example, NDVI obtained from AVHRR, MODIS, and VIIRS show
significant differences in values and the level of the differences varies across land cover types,
although their orbits and spatio-temporal resolutions are similar’.

Besides, satellites and their sensors often suffer from the harsh space environment, resulting in
orbital drift and sensor degradation over time. Although onboard calibration or vicarious
calibration are applied to maintain the measuring standards, the remaining limitations can affect the
accuracy of the derived VIs and introduce systematic biases especially in long-term trend
analyses'’""'"?. Typical examples involve products from AVHRR and MODIS'"'* AVHRR
measurements come from a series of satellites, each of which has specific orbital

characteristics' %1%

which can affect the image acquisition time and sun-target-sensor geometry'®'.
In particular, NDVI values from AVHRR onboard NOAA-11 were found to be significantly higher
than those from prior and subsequent AVHRR sensors'”’. Orbital drift effects were also found in
the VIP3 and LTDR4 NDVI data and over the more humid areas for GIMMS-3g NDVI. MODIS-
based NDVI exhibited an increasing trend during 2001~2016, while a decreasing trend of the
GIMMS-based NDVI was observed especially after 2012, which suggests large discrepancies of
global greening'®. A significant positive jump in the SPOT-VGT NDVI time series was identified
due to the platform/sensor change from VGT-1 to VGT-2°. A recent study used AVHRR NIRv as a
long-term consistent record to quantify the trends in CO, fertilization effect on global vegetation
photosynthesis from 1982 to 2015%. However, concerns were raised about potential uncertainties
in the conclusion partly due to sensor differences**'*.

Another important issue is that different VIs may show varying levels of sensitivity to sensor

calibration due to their mathematical formulae. The calibration bias may affect both VIS and NIR

bands in a similar way, and thus can at least partly cancel out in ratio-based VIs such as NDVI and

12
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SR. For example, the single-band reflectance calibration uncertainty for MODIS was 2% under
normal atmosphere conditions, while the mean NDVI uncertainties due to sensor calibration was
only = 0.01 units and was less than 2% of the dynamic range using field canopy reflectance
observations'®”. The cross-sensor difference of NDVI could also be smaller than the difference of
surface reflectance. For the comparison among fifteen moderate-resolution sensors including
MODIS, VIIRS and AVHRR, each pair of the sensors had a larger R* and smaller Root Mean
Square Error (RMSE) for NDVI than for the VIS and NIR bands separately’. In VIs such as NIRv
(=NDVIXNIR), such calibration biases do not cancel out and thus can impact the absolute values of
the VI signals as NIR reflectance is multiplied. While this could be problematic for applications
that rely on the absolute values of VI, it could also be an issue for the consistency of long-term
time-series when there are differences in calibration bias between different sensors, or calibration
drift of a given sensor over time. Therefore, differences in vegetation trends and magnitudes for
different VIs can be due not only to the inherent characteristics of the VIs but also to their different

sensitivities to calibration bias.
5.2 Product versions

Vs satellite products are usually produced in different versions (collections) with algorithmic
improvements and calibration adjustments. Using different VI product versions may lead to
inconsistent interpretation of changes in the vegetation. There still exist inconsistent
greening/browning trends between MODIS Collection 5 (C5) and Collection 6 (C6) products'®.
MODIS itself suffers from sensor degradation, which is the largest for the Terra satellite especially
in the blue band'**'"°. The degree of degradation decreases with increasing wavelength, and thus
there are negative decadal trend artefacts for MODIS Terra products with ANDVI~0.01 and A
EVI~0.02""" when comparing C5 to an enhanced C6 (C6+) version. The percentage of negative
MODIS-C5 NDVI trends derived from Terra (17.4%) was nearly three times as large as that
derived from Aqua (6.7%) for North America during 2002~2010'"". Most of the vegetation
browning trends revealed by MODIS Terra-C5 VIs were likely caused by sensor degradation,

particularly during the period after 2007, and thus previous studies of vegetation trends based on
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only Terra-C5 VIs may need to be re-evaluated'”. Thus the latest MODIS C6 has sensor
degradation corrected and better consistency between Terra and Aqua measurements and provides

a more reliable record than C5'"°,

5.3 Pre-processing steps

Standard VI products usually include important data pre-processing and sensor configuration
information, such as the sun-target-sensor geometry and QA/QC, which if not taken into account
appropriately, could introduce critical errors in the subsequent analyses. The relative positions of
the sun, sensor and observing target commonly change over time due to the continuous movement
of Earth, sun, and satellites. Such changes result in the variations of the solar illumination and
sensor viewing angles and have been recognized for decades to affect remotely sensed observations

strongly!! 113

. This effect can be mathematically described as the bidirectional reflectance
distribution function (BRDF) effect or the sun-target-sensor geometry effect (Fig. 4).

The solar angle is seasonally and latitudinally varying but annually repetitive if a sensor
remains in a stable orbit, and therefore it can influence the VI-based phenology, but not the long-
term trends or interannual variations. For example, Amazon forests have been reported to exhibit
no variations in EVI from wet to dry season, and dry season greening has been attributed to

4 or the

seasonal solar-angle variations''>. Subsequent studies using either the same data
rigorously BRDF-corrected MAIAC product'”® suggested dry-season greening but with smaller
magnitude, which demonstrates the importance of disentangling solar angle-induced seasonal
variations in VI from vegetation-induced variations. A similar case also shows that the BRDF
effect, instead of the vegetation response, drives the satellite NDVI phenology in evergreen sparse
canopy ecosystems in western US with subtle growth dynamics''®. Not only MODIS, but also
Landsat 7, Sentinel-2, VIIRS and Proba-V confirmed this effect with the ground-based PhenoCam
observations as the reference. Thus the authors suggest to either restrict the analyses to selected
data with consistent sun-target-sensor geometry, or to rigorously remove the BRDF effect in the
data''®. Landsat that only acquires images at £ 7.5° from nadir has relatively small view angle
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effects’ ', while other satellite sensors such as AVHRR and MODIS usually extend to larger view
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angles, which can introduce uncertainties to the downstream products if uncorrected''"'"”. The
impact of the BRDF effect on MODIS NDVI was evaluated in West Africa, and was found to be
the highest for medium dense vegetation (NDVI=(0.5~0.6) compared to sparsely canopy
(NDVI~0.3~0.35) or dense vegetation (NDVI~0.7)'"*. In Alaska Arctic tundra, the influence of
BRDF effect on satellite NDVI-based biomass estimations was up to 33% (excluding extremes)
more sensitive than on NDVI'"

A related uncertainty source is the compositing approach, which determines how to extract the
highest quality observations over the typically used 8-day, 16-day, or monthly interval.
Compositing has gone through major changes between the traditional Maximum Value
Compositing (MVC) algorithm, which is still employed in GIMMS-3g datasets, to the modified
constrained view angle MVC, or CV-MVC?®, used in MODIS VI compositing (MODI13A1 and
MYD13A1), to the 16-day rolling compositing based on BRDF retrievals used in MCD43A4 Nadir
BRDF-Adjusted Reflectance (NBAR)-VIs''®. Note that MOD13A1 and MYDI13A1 products with
the CV-MVC algorithm aimed to reduce the BRDF effect but still did not theoretically normalize
it'"?, while the MCD43A4 C6 product removed the view angle effects but was set at the local solar
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noon zenith angle ™ which varies seasonally and latitudinally. Compositing approaches vary

widely and can lead to inconsistencies in the interpretation of results. For example, in the studies

conducted over the Amazon® %!

and western US'', selective compositing settings based on
study objectives resulted in inconsistent results.

Another source of inconsistency is the atmospheric correction, which was either conducted
fully, partially or sometimes not at all conducted for different VI products. MODIS attempted the
full correction, while GIMMS attempted at limited correction. NDVI derived from VIIRS
observations is based on top-of-atmosphere (TOA) reflectance, while VIIRS EVI is generated
based on surface reflectance'””. Even when VIs are calculated from atmospherically-corrected
reflectance at the surface, they are still subject to uncertainties in atmospheric correction such as

cloud masking, residual sub-pixel clouds, incomplete corrections for Rayleigh scattering, ozone,

water vapor absorptions, and imperfect aerosol correction'®. In the studies regarding the impact of
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drought on Amazon forests, where VIs were intensively used, large differences were found in the
extent of Amazon greening during the 2005 drought that were attributed to inadequate QA/QC
screening for clouds and aerosols effects that are usually accounted for in atmospheric correction

process’’.
5.4 Soil, snow and topographic effects

Most of Earth's terrestrial ecosystems have sparse canopies with appreciable canopy
background (soil, litter, snow, water, etc.) signals that can affect satellite-derived VIs. Soil types
and soil moisture conditions lead to spatiotemporal variations of soil brightness'**. In natural
ecosystems, the soil layer could be mixed with litter, moss, lichen, or waterbodies; and especially
in forest ecosystems, woody stems and branches could contribute to the background noise or bias
of VIs'*. Soil influences are assumed to vary the most in arid regions, while they have the greatest
effect in moderately vegetated canopies (LAI ~1 or ~50% cover). For example, in northern Africa,

extensive soil-artefacts in the AVHRR-NDVI signals are seen over reddish soils'*°

, while in the
Sahel, the NDVI variations were reported due to soil type, moisture and reflectance differences'®’.
The first rains can result in an artefact NDVI flush prior to the actual greening cycle, while over-

irrigated and freshly ploughed croplands, one can see similar NDVI 'soil artefacts''*®. Snow and ice

with high optical reflectance are among the most important factors that lead to the inconsistency of

116,129 130

the VI time-series during winter in temperate regions or, more permanently, in Arctic ™.
There is evidence of bias in the detection of vegetation phenology phase using NDVI at the end of
non-growing season, due to presence of snow that causes low NDVI values''.

In addition to soil and snow, topography also influences VIs. Mountainous regions cover 24%
of the total Earth's land surface'*. Topography, which can cast macro-scale shadows and change
the local sun-surface-sensor geometry, has been reported to have important effects on surface
reflectance'* and VIs'**. Similar to the shadows in view caused by the sun-target-sensor geometry,
a topographic shadow is much darker in the red wavelength than in highly scattered NIR

wavelength due to the multiple scattering between slopes'>. Compared to the sun-target-sensor

geometry-induced porous and fuzzy canopy shadows, the dark and opaque topographic shadows
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can have larger effects on EVI'**. The topographic effects on reflectance should be minimized
before EVI and other VIs without a band-ratio format (such as NIRv and SAVI) are calculated,
while the topographic effects on the ratio-based VIs such as SR and NDVI are usually smaller'**.
The topographic effects are also related to the spatial scale and as the size of the pixel increases,

the topographic effects may decrease and even disappear with spatial averaging'*°.
5.5 Scale-mismatch effects

Spatial mismatches between the region-of-interest and the predefined grid cells in the remote
sensing-based datasets could be another important source of uncertainty'>’. For example, MODIS
pixels have accurate geolocation, yet on average, the offset is up to half a pixel between scenes,
which is significant when users rely on single pixel VIs to match with in-situ measurements'”".
Considering that the in-situ measurement is rarely near the centre of a pixel, there is high
probability that a single MODIS pixel may not always sample the in-situ measurement area. The
sensor point spread function could further distort the matching of gridded satellite data with
ground-based data?’. The emerging high-spatial resolution data (for example, PlanetScope and
airborne data, < 3 m) could also lead to difficulties in the interpretation. For example, a pixel could
be completely in the shadows of a tree so that VI values could be highly distorted due to the lower
illumination than sunlit crown side if the research target is the whole tree canopy'”. Identifying a
suitable remote sensing product at an appropriate spatial scale could be the most effective choice
for minimizing such uncertainties.

There is a general lack of studies that use long-term, well-coordinated in-situ networks to
measure reflected radiation from vegetation to confirm larger scale greening and browning results.
The MODIS EVI results related to the Amazon dry season greening were confirmed with in-situ
measurements of GPP from eddy-covariance flux towers'*’. In contrast, the greening trends in the
Sahel challenge the mainstream paradigm of irreversible ground-observed land degradation in this

region'"!

. There is also a debate as to whether the onset of spring phenology has been advancing
due to climate warming. The trends in the Start Of growing Season (SOS) for Tibet alpine meadow

and steppe were examined using ground-based phenology observations as well as NDVI datasets
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from GIMMS and GIMMS3g, MODIS, SPOT-VEG and SeaWiFS'*. The results from that study
showed large discrepancies in the SOS trends among the ground-based and different NDVI
datasets, and between the different phenology retrieval. The study pointed out the NDVI data
quality and scale-mismatch between satellite and ground data might be an important reason for
these inconsistencies. Similar results were reported by comparing ground-based PhenoCam data
with EVI derived from a variety of sensors including Landsat ETM+, MODIS, and DSCOVR-
EPIC®. At three rural sites and one urban site of deciduous trees in Ireland, AVHRR and MODIS
EVI2-derived SOS during 1982~2016 was consistently earlier than in-situ leaf-unfolding across all
these sites with the RMSE of 25~52 days and Mean Bias Error (MBE) of —5 to —50 days, while
satellite-derived growing-season-length was consistently longer than in-situ data with the RMSE of
65~102 days and MBE of 45 to 96 days'*. For the period 2001~2014, MODIS EVI2-derived SOS
advanced by about 2.36 days from middle to high latitudes of Northern Hemisphere
(43.5°N~70.0°N) snow-covered landmass, while delayed by about 0.53 days in lower latitudes
(33.0°N~43.5°N); the differences between MODIS EVI2-derived SOS and in-situ SOS at 420
phenology observations from five filed datasets including Pan European Phenology (PEP)

144,145

project are centralized between —30 days and 30 days, with the coefficient of determination

(R of 0.67, RMSE of 12.13 days and bias of —3.99 days'*.

6. Limitations and intrinsic linkage

6.1 Notable limitations of VIs

In principle, VIs capture a combination of canopy properties and other external contributing
factors such as atmospheric conditions and sun-target-sensor geometry that may simultaneously
and non-uniquely vary throughout the vegetation growing season. Thus, it might be infeasible to
physically couple a VI to a specific plant variable without accounting for changes due to these
factors and changing vegetation conditions at the same time. For example, a VI cannot be coupled
to leaf biomass, without accounting for simultaneous differences in leaf biochemical constituent

differences, non-photosynthetic vegetation (NPV), soil background, atmospheric contamination,
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and canopy structural effects, which are also tightly connected to the sun-target-sensor geometry
effects. From the mathematical formula, a large group of ratio-based VIs (e.g., NDVI, SR, PRI,
CCI and Clred-edge), are sensitive to different soil brightness due to the larger variation of the
denominator than the numerator’, but are insensitive to fractional vegetation cover when the soil
background is dark or in water for mangrove'*’. For example, a leaf floating in a black water body
would maintain the same NDVI regardless of how large the leaf became (whether that leaf
occupies 1% of the water or 100% of the water, the NDVI is the same, as in Fig. 4).

Impacts of some inherent properties of vegetation, such as the leaf biochemical constituents
and NPV, are usually difficult to separate because of limited understanding of their spatiotemporal
variations. Leaf biochemical constituents, such as chlorophyll, water and dry matter contents,
largely determine the leaf reflectance spectrum and thus fundamentally shape the vegetation
canopy reflectance'**'*’. Recent studies have demonstrated the strong spatio-temporal variations of

leaf biochemical constituents®’'>

, which contribute to the important plant diversity but greatly
complicate the interpretations of VIs. NPVs, such as woody stems, branches, and standing litter''
can mask emerging green vegetation and thus can weaken the correlation between VIs and green
vegetation biophysical properties. Therefore, satellite-derived phenology could be delayed due to
the masking of NPVs, because the standing plant materials from the previous year may occlude the
initial green-up of vegetation"'. The limitations of VIs can be at least partially addressed when the

VI formulae are appropriately designed with the principles of radiative transfer in vegetation

canopies (Section S2.2).
6.2 Intrinsic similarities between VIs

Red-NIR VIs , such as NDVI, DVI, EVI, EVI2 and NIRv, are typically among the most
widely-used category. In general, surface reflectance in NIR band is larger than that in the red band.
In addition, canopy NIR reflectance essentially increases with LAI while red reflectance shows the
opposite trend due to strong light absorption at this wavelength. Therefore, NIR typically
dominates the factor NIR/(NIR+Red), which equals NIRv/DVI. It typically falls in a small range of

0.8~1 for vegetated surfaces (LAI>1). Therefore, Eq. 2 in Box 1 suggests that NIRv is well
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correlated with DVI in most cases, and NIRv has the biophysical meaning of FPAR times photon
escape probability (fesc) (Fig. 3a).

EVI has been reported to be well approximated by EVI2, a variant of EVI without the blue
band”’. EVI and EVI2 can be derived as the product of DVI and 2.5/(NIR+6-Red+7.5-Blue+1) or
2.5/(NIR+2.4-Red+1) (Eqs. 3-4), respectively”’. Note that the number ‘1’ in the denominator is
typically much larger than the variability of the remaining term (NIR+2.4:-Red) or
(NIR+6:Red+7.5-Blue) in response to the changes of LAI. Thus, the factor
1/(NIR+6-Red+7.5-Blue+1) (Eq. 3) is typically between 0.7~0.8 in most cases especially when
LAI is greater than 1. Similarly, the factor 1/(NIR+2.4-Red+1) is also almost a constant with small
variation between 0.7~0.8 in most cases. This suggests that EVI2 and EVI should have a strong
linear correlation with DVI, although with different magnitudes because of the constant coefficient
(2.5) used in the numerator.

Thus, DVI is strongly correlated to both EVI and NIRv, and NIRv, DVI, EVI and EVI2
intrinsically have strong linear correlations with one another according to their mathematical
definitions and typical range of variation of NIR and VIS reflectance of vegetated surfaces. In
contrast, DVI is mathematically the numerator of NDVI, and the denominator (NIR+Red) can vary
significantly with LAI and other vegetation properties. Therefore, a nonlinear relationship is often
observed between NDVI and DVI, and thereby also between NDVI and the other indices similar to
DVI, such as EVI, EVI2 and NIRv.

NDVI, EVI and DVI can also be more generally described by another well-known VI, the
SAVI, and the ‘L’ in the denominator of SAVI (Eq. 7) is the canopy background adjustment term
that addresses the nonlinear, differential NIR and red radiative transfer process through a canopy™=.
In case L in SAVI is 0, SAVI is equal to NDVI; if L is 1, SAVI equals to EVI. Note that factors of
6 and 7.5 in the denominator of EVI (Eq. 3), and 2.4 in the denominator of EVI2 (Eq. 4), are for
atmosphere self-correction instead of canopy biophysical properties. Third, when L is infinity,
SAVI is equal to DVI. The real canopy has an L value generally greater than 0 but less than 10.

Details about the evaluation of similarity and difference among these VIs, and their sensitivity to
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artefacts such as the impacts of soil background, atmospheric contamination, canopy structural and

sun-target-sensor geometry effects are in Section S2.1.

7. Appropriate use of VIs

Attractive features of VIs are their conceptual simplicity and strong relationships with target
properties of the vegetation and land cover. Because of the diverse types and application scenarios
of VlIs, it is not possible for a universal recommendation of the best VI. Instead, identifying the
target application and corresponding sensitive wavelength and VI is the first step towards the
optimal use of VIs. For example, red-NIR VIs such as NDVI and EVI may be the best choices for
studying dynamics of vegetation structure, red-edge VIs are more suitable for pigment retrievals,
while VIS-based PRI and CCI are more appropriate for the monitoring of physiological changes.
Then, understanding the intrinsic differences, strengths and particularly the limitations of VIs may
help to further identify the suitable VIs. For example, NDVI may be the best candidate VI for
estimating fractional vegetation cover as it is less impacted by sun-target-sensor geometry than
EVI and NIRv, while if the sun-target-sensor geometry effect is properly addressed, NDVI may be
less robust in estimating fractional vegetation cover due to the stronger sensitivity to soil brightness
changes from rainfall or snowfall*>. In addition, Vs are typically saturated in dense vegetated

areas; the saturation point of NDVI is usually lower than EVI**?’

, suggesting that NDVI may be a
less appropriate choice for analysing vegetation variations in dense vegetation canopies, while
NDVI is still useful for onset/offset phenology detection. Even though EVI, EVI2, DVI and NIRv
show high correlations, the mechanistic link that was established between NIRv and the product of
FPAR times fesc (Fig. 3) makes NIRv an attractive choice for studies related to GPP estimation
and STFS! 83152153

Potential artefacts must be carefully taken care of to avoid biased interpretations of the
underlying ecological processes resulting from the use of the incorrect data. Due to sensor

degradation, the analysis and interpretation of the interannual variations and long-term trends in

VIs remained challenging until the inter-calibration of AVHRR with MODIS became feasible after
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2000 during the overlapping period'”. The newer versions of VI products should theoretically be
more accurate than the older ones''. Spectral response function normalizations are recommended
for multi-sensor VI harmonizations”. The BRDF correction by the kernel-driven model is
recommended especially if the BRDF varies seasonally and latitudinally in the analysis'®. If
uncertainties from sensor calibration'”, atmospheric, BRDF and topographic effects'™* are a
serious issue to be reduced, ratio-based VIs are more recommended than difference-based VIs,
while ratio-based VIs could be sensitive to snow/soil background'*® and scale effects™. For the
spatial aggregation, it is highly recommended to firstly aggregate the single-band reflectance to
coarse resolution, and then calculate VIs such as NDVI and EVI, instead of aggregating the high-
resolution VlIs directly, just to avoid the scaling effect over heterogeneous surfaces due to possible
nonlinear formula of VIs™®.

Identifying dominant variables and potential signal contamination sources in specific
ecosystems are also important for the correct use of VIs. For example, for temperate evergreen
forests, the structure and chlorophyll in winter may not vary much, while physiologically-
associated VIs such as PRI and CCI which are more sensitive to light use efficiency should be
more suitable®™!. Tropical rainforest could be more vulnerable to atmosphere and optical signal

114

saturation impacts  ~ (EVI is more recommended instead of NDVI), savanna and shrubland with

sparse vegetation are more sensitive to soil backgrounds® (EVI and NIRv are recommended), Artic
region with high latitudes is vulnerable to large solar zenith angle and ice/snow backgrounds'*
(PPIL, EVI2 and NIRv with BRDF correction are recommended), while mountainous regions such
as the Tibetan Plateau with rugged terrain is vulnerable to not only ice/snow but also topographic

and shadowing effects'** (topographic normalizations including the empirical, semi-empirical and

physically-based methods'>* are recommended).

8. Future directions

VlIs with the spectral, angular, spatial and temporal information are classic remote sensing

products with rich research history. Because of their simplicity and robustness, we envision they
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will continue to be heavily used in the foreseeable future. Looking forward, we identified a few
research opportunities and challenges below that may advance the use of VIs for the more accurate
and timely monitoring of terrestrial ecosystems from space.
8.1 Multi-sensor VI harmonization

Multi-sensor fusion of observations from multiple sensors/satellites can improve the spatio-
temporal resolution and continuity as well as the timespan of VIs, such as Sentinel-2 and Landsat-
8'%°, which may greatly enhance their applicability. Ongoing efforts are devoted to developing

13615 and datasets''™'**'! for producing long-term gap-free VIs at relatively high

fusion algorithms
resolutions. However, land surface heterogeneity'® and BRDF effects''” remain to be major
scientific challenges and issues to be resolved for producing fused VI products. The atmospheric
correction also deserves greater attention, because even under the same solar angle, VIs differ
depending on the fraction of diffuse radiation which differs at the overpassing times of different
sensors/satellites. Sensor calibration drift and degradation are also critical challenges for the fusion
of VI data from similar sensors on multiple satellites or multiple sensors on different satellites such
as AVHRR and MODIS, in producing decadal datasets and analyses'**'**.
8.2 Synergistic use with novel metrics

Most VIs are good proxies of vegetation biophysical properties and to a limited extent
represent vegetation functioning. Some novel remote sensing indicators, such as Solar-Induced

163-166

chlorophyll Fluorescence (SIF) , could provide valuable complementary information. SIF

captures some of the vegetation physiological information, and thus responds to the onset of

. .. . 167
environmental conditions and stresses earlier than VIs

. SIF can track the photosynthetic
seasonality in evergreen species in cold environments where red-NIR VIs showed no changes'®.
Besides, SIF is rarely impacted by soil because green vegetation is the only source of SIF.
However, the existing SIF retrievals have poor spatial resolution, infrequent revisiting time,
low signal to noise ratio, and a relatively short history of measurements'®. New sensors/satellites

will continue enhancing the capability for SIF measurement, but complementary VIs such as NIRv

provide far better spatial and temporal resolutions. Understanding the intrinsic linkage between SIF
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and VIs is the key for the synergistic use for scientific applications, and one possible useful
direction is to study the shared characteristics of SIF and VIs. In recent studies, far-red SIF
normalized by Photosynthetically Active Radiation (SIF/PAR) and NIRv has been demonstrated to

share the same fesc in the radiative transfer process®"'”

(Box 1). Thus, under low-stress conditions
with stable fluorescence yield (@r), NIRv and SIF/PAR are expected to be strongly correlated
under the same sun-target-sensor geometry (Fig. S1). NIRv radiance (NDVIXNIR radiance) or
NIRvVP (NIRvxPAR) and SIF should be even more strongly related than NIRv and SIF/PAR as the

common radiation factor further enhances the underlying relationship™®®>'>*

. The similarity between
NIRv and SIF implies that VIs could be used as structural proxies for SIF because they have a
longer data record. For example, MODIS EVI has been used to generate a global SIF product
(GOSIF; 2000-2020) from OCO-2 SIF soundings'’'. Combining NIRv with SIF during times of the
overlapping data has great potential to isolate the unique physiological responses of SIF as NIRv
can be used to normalize the dominant canopy structure effects'>*'"2.

Microwave vegetation indices derived from different frequency and polarization combinations

173

are more sensitive to the woody part of the vegetation than NDVI *°, and are potential approaches

to derive vegetation optical depth (VOD)'™

. VOD describes vegetation extinction effects in the
microwave spectrum and is increasingly used for estimating parameters of vegetation water content
and the aboveground biomass'”'’°. VOD has the advantage of being unaffected by the clouds and
less sensitive to the water in the atmosphere, which is important especially for cloudy and humid
tropical regions such as the Amazon and Congo rainforests'>'””. VOD has been reported to have a
saturation point with higher biomass values than NDVI'"’. Optical VIs with a higher spatial
resolution can contribute to the downscaling of VOD, while VOD can help to improve the
temporal observing frequency over cloudy and humid regions and seasons.
8.3 New remote sensing missions

The widely used red-NIR VIs which are sensitive to canopy structure and chlorophyll content

do not directly contain the LUE information, which can be captured to some degree by several VIs

such as PRI®, CCI° and GCC™' from emerging hyperspectral or multispectral remote sensing
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capabilities. In addition, hyperspectral data with more spectral information can be beneficial for the
disentangling of the pure vegetation and soil reflectance contributions in the mixed pixel spectrum,
by the newly proposed NIRVH'®. The next generation of VIs aim at the reduction of soil/snow/ice
background effects, reduced BRDF impact and reduced signal-saturation. Such hyperspectral
remote sensing capability has been limited at the global scale and relatively fine spatial resolution.
However, these limitations will be addressed with the emerging and forthcoming spaceborne
hyperspectral satellite missions such as the HiSUI, PRISMA, EnMap, CHIME, DESIS, GeoCarb
and SBG. New opportunities to further improve temporal characteristics of traditional VIs will also
be provided by the new-generation geostationary satellites, such as GOES, Himawari and GEO-
KOMPSAT, as well as the unique DSCOVR position at the Sun-Earth L1 Lagrange Point. They
provide higher observing frequency that support not only the diurnal variations of ecosystem
processes'"®, but also the seasonality of greenness in cloudy and humid regions such as Amazon

compared to polar-orbiting satellites'”*'*.

9. Summary

This review summarizes inherent features of several widely used VIs and some factors
contributing to consistencies and inconsistencies among them that may lead to controversies
resulting from their inappropriate use in scientific studies and other applications. Factors such as
the formulation of Vls, sensor characteristics, product version, compositing algorithms, QA/QC,
atmospheric and topographic conditions, and sun-target-sensor geometries all impact VIs and their
appropriate use. We further highlight that improper use of QA/QC flags attached to VIs could be
an important source of uncertainty and pitfall in their use, and offer a few guidance and
recommendations for the appropriate use of VIs. Mathematical analysis suggests that NIRv, EVI,
EVI2 and DVI have similar radiative transfer features and are strongly linearly correlated with
each other, while NDVI behaves differently as a ratio-based VI and is more impacted by soil
background. NIRv, EVI, EVI2 and DVI can reproduce the results of each other in most cases

because of their similarity.
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Finally, we strongly recommend that future studies using VIs should be conducted with clear
focus on interpretation of VlIs, and using more than one in-situ dataset for verification when
possible, to render greater confidence in their findings and conclusions. It would also be important
to provide a detailed documentation of the key processing steps mentioned above to facilitate the
interpretation and reproducibility of VI-based results. Ideally, the programming code should also
be provided or made available when requested, and where feasible, the final VI dataset should be
stored in a publicly accessible repository or cloud storage such as Google Earth Engine for ease of
access . In particular, the documentation should include relevant information on the application
of QA/QC levels as well as any other processing steps such as spatio-temporal aggregation,
additional quality and outlier filtering or other corrections applied to the original data. Providing
such detailed technical information on VI products might be a promising strategy as then the
documentation would be straightforward to find and also citable via a doi linked to a given dataset
that is available for the user community. The technical review and recommendations presented
here are intended to further advance the use of VIs in scientific studies and reduce any confusion
and inconsistencies due to their improper use, considering the continued record length of existing

capabilities, such as MODIS and VIIRS instruments, and emerging new ones, such as HiSUI,

PRISMA and EnMap.
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Fig. 1. The vegetation and soil spectrum across wavelengths to design vegetation indices. The
spectral response range in the atmospheric window of a few widely used satellites are also
included'”. The colored blocks and vertical lines in the top panel illustrate the spectral band range

or band pass for each satellite sensor.
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b| The taxonomy of VIs from four different dimensions: physics, mathematics, ecology and
uncertainties. ¢| Global spatial correlations of monthly-averaged MODIS NIRv, DVI, EVI, EVI2,
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1308 Fig. 4 A sketch map of VIs from satellite observations. Uncertainties come from different
1309  sensors and calibration, QA/QC flags and compositing algorithms, atmosphere and BRDF effects,

1310  soil/snow background and topography, and scale effects.
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Table 1: The widely used optical vegetation indices, spectral ranges and references

Spectral Name and Abbrevia Equation and derivation Primary applications,
space references tion .
P advantages and disadvantages
Red-NIR Simple Ratio'* SR NIR/Red Structure; Simple but sensitive to the
atmospheric correction of the red
band
Red-NIR Normalized NDVI (NIR — Red)/(NIR + Red) Structure; Simple but sensitive to the
Difference =(SR-1)/(SR+1) soil background variations
Vegetation =1-2/(SR+1)
Index'*"
- . . NIR/Red — 1 ; More li lationshi
Red-NIR Modified Simple MSR /Re Structure; More linear relationship
JNIR/Red + 1 ,
Ratiozz with canopy structure parameters
Red-NIR Difference DVI NIR — Red Structure; Simple but sensitive to the
Index"”
Red-NIR Global GEMI Red —0.125 Structure; Reduce the atmospheric
n-(1—0.25-n)—71_Red
Environment perturbation effects, while maintain
. n
Monitoring the vegetation information
2+ (NIR? — Red?)+ 1.5-NIR + 0.5 Red
Index™ _2 ed’) ¢
NIR + Red + 0.5
Red-NIR Perpendicular PVI Structure; Minimize the soil
P \/(NIRsoil - NIRveg)z + (Re'dsoil - Redveg)z
Vegetation background influence but need the
19
Index slope and intercept of the soil line
Red-NIR Soil Adjusted SAVI (1+L)-(NIR — Red)/(NIR + Red + L) Structure; Minimize the soil
Vegetation background influence but sensitive to
Index’ the BRDF effect
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Red-NIR | Modified SAVI?' | MSAVI (2-NIR+1 Structure; Further minimize the soil
_ \/(2 “NIR + 1)2 — 8- (NIR — Red))/2 background influence while increase
the dynamic range of vegetation
signal
Red-NIR Transformed TSAVI a-(NIR—a-Red—b)/(a-NIR+ Red —a Structure; Minimize the soil
SAVI? *b) background influence and work well
for LAI and APAR estimations
Red-NIR Adjusted ATSAVI a-(NIR—a-Red —b)/[a-NIR+ Red —a Structure; Minimize the soil
TSAVI'® b +0.08:(1+a?)] background influence and work well
for LAl and APAR estimations
VIS-NIR | Atmospherically | ARVI (NIR — RB)/(NIR + RB), Structure; Minimize the atmospheric
Resistant RB = Red —y - (Blue — Red) effect and work better for vegetated
Vegetation surfaces than for soils, but need the
26
Index blue band
VIS-NIR Soil Adjusted SARVI (1+L)-(NIR—-RB)/(NIR+ RB+ L), Structure; Minimize both the soil and
and RB = Red —y - (Blue — Red) atmospheric effects, but need the blue
Atmospherically band
Resistant
Vegetation
Index*®
VIS-NIR Enhanced EVI 2.5-(NIR — Red)/(NIR+ 6-Red — 7.5 Structure; Minimize both the soil and
Vegetation *Blue + 1) atmospheric effects, while sensitive to
25
Index the BRDF effect and need the blue
band
Red-NIR two-band EVI EVI2 2.5 (NIR — Red)/(NIR + 2.4-Red + 1) Structure; Minimize the soil
without the blue- background influence and no need the
band”’

blue band, while sensitive to the

BRDF effect
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Red-NIR Near-Infrared NIRv NDVI-NIR Structure; Minimize the soil
Reflectance of background influence, while sensitive
-4
vegetation to the BRDF effect
VIS-NIR Hyperspectral NIRVH NIR — Red — k(Ayir — Ared) Structure; Further minimize the soil
NIRv'™ background influence, while sensitive
to the BRDF effect
VIS-NIR Fluorescence FCVI NIR - VIS Structure; Minimize the soil
Correction background influence, while sensitive
Vegetation to the BRDF effect
Index”
VIS-NIR | Kernel NDVTI*! KNDVI tanh(NDVI?) Structure; Higher sensitivity to
canopy structural parameters and GPP
VIS-NIR | Plant Phenology PPI —K-In( M —DVI ) Structure; Linearly related to green
2 M —DVI
Index LALI, less severely impacted by snow
than NDVI and EVI, and work well
for phenology at high latitudes, while
need the soil DVI
VIS-NIR Triangular TVI 0.5 [120 - (Ry59 — Rss0) — 200 - (Re70 Structure; Biochemical: chlorophyll;
Vegetation — Rgso)] Describe the radiation absorbed by
183
Index the pigments
VIS-NIR Modified MTVI1 1.2 [1.2 - (Rgoo — Rss0) — 2.5 - (Rg70 Structure; Insensitive to pigment
Triangular — Rsso)] changes, and better for LAI
Vegetation Index estimations than TVI
1 59
VIS-NIR Modified MTVI2 | 15 Structure; Minimize both the soil
Triangular [1.2 - (Rgoo — Rss0) — 2.5 (Re70 — Rss0)] background and chlorophyll effects,

Vegetation Index

259

/\/(2 *Rgoo +1)? — (6 "Rgoo — 5+ R670) - 0.

while sensitive to LAI and thus a

good LAI predictor
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VIS-NIR Modified MCARI1 1.2 - [2.5 (Rgoo — Re70) — 1.3 - (Rgoo Structure; Less sensitive to
Chlorophyll — Rsso)] chlorophyll variations than MCARI,
Absorption while sensitive to LAI changes
Ratio Index 1%
VIS-NIR Modified MCARI2 | 1.5 Structure; Minimize both the soil
Chlorophyll [2.5 (Rgoo — Re70) — 1.3 (Rgo0 — Rs50)] background and chlorophyll effects,
APSOmtion N /\/(2 Roon + 1% — (6 Ravg — 5+ ) — 0 while sensitive to LAI and thus a
Ratio Index 2 good LAI predictor
VIS-NIR- | MIR corrected NDVIc NDVI - (1 MIR — MIRpip Structure; Considered the canopy
MIR NDVI'* MIRmax — MIRmin closure and understory contribution in
LAI estimations by leaf water
absorption of open canopies
VIS-NIR- Reduced SR* RSR SR- (1 - SWIR-SWIRmin Structure; Increased the sensitivity
SWIRmax—SWIRmin
SWIR and correlation to LAI than SR in
boreal forests, while reduced the
effect of background reflectance
Green- Normalized NDGI (Green — Red)/(Green + Red) Structure; Work well for identifying
Red Difference and mapping vegetation in inundated
Greenness regions, no need the blue or NIR
Indexlgs bands, and can work at PhenoCam
imageries
Green- Green GCVI NIR/Green — 1 Structure; Biochemical: chlorophyll;
NIR Chlorophyll Depend on both LAI and chlorophyll
Vegetation concentration, and close relationship
Index'* with LAI and green leaf biomass
Green- QGreen Difference GDVI NIR — Green Biochemical: chlorophyll; Work well
NIR Vegetation for predicting the late-season nitrogen
Index'*’ requirement for corn
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Green- Green GNDVI (NIR — Green)/(NIR + Green) Biochemical: chlorophyll; More
NIR Normalized sensitive to chlorophyll concentration
Difference than NDVI
Vegetation
Index'**
Red edge- Red Edge Clred- NIR/Re — 1 Biochemical: chlorophyll; Linear
NIR Chlorophyll edge relationship between the chlorophyll
Index™ content in maize and soybean leaves
with Clred-edge
Red edge Red-edge NDVlIre (NIR — RE)/(NIR + RE) Biochemical: chlorophyll; Directly
-NIR NDVI* proportional to chlorophyll and serve
as indicators of leaf senescence
Red edge MERIS Total MTCI (R750 = R710)/((R710 — Reso) Biochemical: chlorophyll; Correlate
-NIR Chlorophyll strongly with red-edge position and is
Index’ sensitive to high values of chlorophyll
content.
Red-Red Chlorophyll CARI (R700 = Re70) — 0.2 (R700 — Rss0) Biochemical: chlorophyll; Minimize
edge Absorption the effect of nonphotosynthetic
Ratio Index'®'*° materials in the FPAR estimations
Red-Red Modified MCARI [(R700 — Re70) — 0.2 - (R700 — Rss0)] Biochemical: chlorophyll; Sensitive
edge Chlorophyll * (Ry00/Re70) to leaf chlorophyll concentrations
Absorption in
Reflectance
Index'*
Red-Red Transformed TCARI 3 [(R700 — Re70) — 0.2 - (R700 — Rss0) Biochemical: chlorophyll; Sensitive
edge Chlorophyll * (R700/Re70)] to chlorophyll over a wide range of
Absorption in variations, and is more sensitive to
Reflectance chlorophyll than MCARI
Index"”!
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VIS-NIR | Pigment Specific PSND (Rsoo — Re75)/((Rgoo + Re7s) for Chly; Biochemical: chlorophyll, carotenoid;
Normalized (Rgoo — Reso)/((Rgoo + Reso) for Chly; Strong relation with chlorophyll,
Difference'” (Rgoo — Rs00)/((Rgoo + Rsoo) for Car; while poor relation with carotenoid
VIS-NIR | Pigment Specific PSSR (Rgoo/Re7s) for Chly; Biochemical: chlorophyll, carotenoid;
Simple (Rgoo/Reso) for Chly; Strong relation with chlorophyll,
Ratio'” (Rgoo/Rso0) for Car; while poor relation with carotenoid
VIS-Red Carotenoid CRI 1/Rs10 — 1/Rs50; Biochemical: carotenoid; Remove the
edge Reflectance 1/Rs10 — 1/R700 chlorophyll effect from the
Index'” reflectance in the green edge range,
and is sufficient to estimate the
carotenoid content in plant leaves
VIS-Red | Plant Senescence | PSRI (Re78 = Rs00)/R7s0 Biochemical: carotenoid, chlorophyll;
edge Reflectance Sensitive to the Car/Chl ratio, and can
Index’® be used as a quantitative measure of
leaf senescence/fruit ripening process
VIS Normalized NPCI (Rego — Raz0)/(Rego + Razo) Biochemical: carotenoid, chlorophyll;
Pigments Vary with the ratio of total
Chlorophyll pigments/Chl, indicative of plant
Ratio Index*’ phenology status
VIS-NIR Structure STPI (Rgoo — Raas)/((Rgoo — Reso) Biochemical: carotenoid, chlorophyll
Insensitive a; Physiological; Minimize the
Pigment Index™ confounding effects of the leaf
surface and mesophyll structure, and
provide the best semi-empirical
estimation of the ratio of Car/Chla
Green- Anthocyanin ARI 1/Rss0 — 1/R700 Biochemical: anthocyanin; An
Red edge Reflectance accurate estimation of anthocyanin
Index™ accumulation
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VIS-NIR Modified MARI (1/Rss50 — 1/R790) - NIR Biochemical: anthocyanin; The best
Anthocyanin fit function with the Anthocyanin
Reflectance content, and yield accurate
Index”’l(m assessment
VIS Red/Green Ratio RGRI Red/Green Biochemical: anthocyanin; Strongly
Index*! related to pigment estimated by
destructive sampling and
spectrophotometric quantification
Green- Anthocyanin ACI QAgreen/ ANIR Biochemical: anthocyanin; Linear
NIR Content Index™ relationship with total extractable
anthocyanin content
QGreen- Modified MACI NIR/Green Biochemical: anthocyanin,
NIR Anthocyanin chlorophyll; Depends on three
Content Index'” variables: chlorophyll, anthocyanin,
and leaf thickness, and when the three
vary independently, MACI becomes
insensitive to anthocyanin.
NIR- Normalized NDWI NIRggo — SWIR; 240 Biochemical: water content; Sensitive
NIRggo + SWIR 240
SWIR Difference Water to vegetation water content changes,
Index* less sensitive to atmospheric effects
than NDVI, while not completely
remove the soil background
reflectance effect as NDVI
NIR- Land Surface LSWI R7g0~890 — R1sg0~1790 Biochemical: water content; A useful
SWIR Water Index** R7ao~os0 + Faseo~1790 indicator for water content of

evergreen needleleaf forest, useful for
improving classification of cropland
and forests, and improve the GPP

estimations in the VPM model
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NIR- Normalized NDII Rgso — Ries0 Biochemical: water content; Related
Rgso + Riss0
SWIR Difference to canopy water content, linearly
Infrared Index* related to Equivalent Water Thickness
(EWT) for corn, soybean and
woodland
NIR- Water Index'*° WI Ro0/Ro70 Biochemical: water content; Correlate
SWIR with plant water concentration, and
useful in evaluation of wild fire risk
and drought
SWIR Normalized NDLI [log(1/R1754) —108(1/R16g0)]/[108(1/R1754) Biochemical: lignin; Significantly
Difference + log(1/R1650)] correlate to foliar lignin concentration
Lignin Index"’ in green canopies, while unable to
assess foliar or bulk canopy lignin in
senescing vegetation
SWIR Cellulose CAI 100 [0.5 (Ry019 + R2206) — R2100] Biochemical: cellulose; Positive for
Absorption all crop residues, while all soils have
IndeX197 negative values, and thus can
discriminate crop residues from soil
under dry and moist conditions
SWIR Lignin Cellulose LCA 100 * [(R2185~2225 — Ra145~2185) Biochemical: lignin, cellulose;
Absorption + (Ry1g5~2225 Linearly relate to crop residue cover
Index'"® — Ryz95-2365)] with the R* higher than eight VIs in
the evaluation
SWIR Normalized NDNI [log(1/R1510) —108(1/R1680)]/[10g(1/R1510) | Biochemical: nitrogen; Significantly
Difference +1og(1/R1680)] correlate to foliar nitrogen
Nitrogen concentration in green canopies,
Index"’ while unable to assess foliar or bulk

canopy nitrogen in senescing

vegetation
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VIS Photochemical PRI (Rs31 — Rs70)/((Rs31 — Rs70) Physiological; Well track the diurnal
Reflectance changes of photosynthetic activity,
Index" but need to reduce complications
associated with diurnal sun angle
changes
VIS Chlorophyll CCI Band,, — Band, Physiological; Biochemical; Well
Band,, + Band,
Carotenoid track the seasonality of daily GPP and
Index’ phenology for evergreen conifers at
multiple spatial scales, and can be
acquired at the global scale with
MODIS data compared to PRI
VIS Green Chromatic GCC Green/(Red + Green + Blue) Physiological; Structure;
Coordinate®”"” Biochemical; Sensitive to changes in
both carotenoid and chlorophyll,
correlate well with GPP seasonality
but less than CCI and PRI, and can be
easily acquired using RGB imagery
Red edge Red-edge RVSI (Ry14 + R752)/2 — Ry33 Physiological; Useful in the detection
Vegetation Stress of stressed leaves in grapevine
Index** leafroll disease
VIS Enhanced Bloom EBI Red + Green + Blue Physiological; Structure;
Index*” ngi? - (Red — Blue + ¢) Biochemical; Reduce the soil and
green vegetation background noise,
and can capture the flower
information using RGB imagery from
ground to satellites
1314
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Box 1: Physical clarification of a few VIs and SIF on their linkages and differences

DVI is defined as the difference between the NIR and Red bands'’:
DVI =NIR —Red (1)

Here we demonstrate the linkage between NIRv and other VIs such as DVI, EVI and EVI2, by
using DVI as the bridge among them. By definition, NIRv can be derived as the product of DVI and
NIR/(NIR+Red)*.

MIRZRed  NIR = DVI - —22_~DVI  (2)

NIRv = NDVI-NIR = s NIR+Red

NIR-Red — pVI- 2.5
NIR+6-Red—7.5'Blue+1 NIR+6-Red—7.5-Blue+1

EVI =12.5-

~DVI (3)

NIR-Red 2.5

EVI2Z=25———= ——
4 5 NIR+2.4-Red+1 NIR+2.4-Red+1

~DVI (4)

Below we show the linkage and difference between NDVI, SR and SAVI. Note when L in SAVI is
0, SAVI is equal to NDVIL.

NDVI = NIR—-Red — SR-1 =1— 2 (5)
NIR+Red SR+1 SR+1
SR = NIR/Red (6)
NIR—Red
SAVI - (1 + L) .WWZ-I-L (7)

Based on spectral invariants theory, NIRv and SIF/PAR can be modelled in similar formula®':

NIRv = FPAR - @ - fosc (8)
SIF/PAR = FPAR - ®p - fose (9)

where fesc is the photon escape probability from the canopy, w is the leaf single scattering albedo in
the NIR band, which is close to 1 in the NIR band, and @ is the fluorescence yield. Rearranging

Eqgs. 8 and 9 gives

NIRv: (SIF/PAR) = w: ®;  (10)
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Glossary

AVHRR: Advanced Very High Resolution Radiometer

CHIME: Copernicus Hyperspectral Imaging Mission for the Environment
DESIS: DLR Earth Sensing Imaging Spectrometer

DSCOVR: Deep Space Climate Observatory

EnMap: Environmental Monitoring and Analysis Program

EPIC: Earth Polychromatic Imaging Camera

ETM+: Enhanced Thematic Mapper Plus

FLEX: FLuorescence EXplorer

GIMMS-3g: Global Inventory Modeling and Mapping Studies-3rd generation
GOES: Geostationary Operational Environmental Satellite

HiSUI: Hyper-spectral Imager SUIte

LTDR4: Long Term Data Record version 4

MAIAC: Multi-Angle Implementation of Atmospheric Correction
MERIS: MEdium Resolution Imaging Spectrometer

MODIS: MODerate resolution Imaging Spectroradiometer

MSG: Meteosat Second Generation

PACE: Plankton, Aerosol, Cloud, ocean Ecosystem

PRISMA: PRecursore IperSpettrale della Missione Applicativa
SBG: Surface Biology and Geology

SEVIRI: Spinning Enhanced Visible and Infrared Imager
SPOT-VGT: Systeme Pour I'Observation de la Terre VEGETATION
TEMPO: Tropospheric Emissions: Monitoring of Pollution

VIIRS: Visible Infrared Imaging Radiometer Suite
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VIP3: Vegetation Index and Phenology version 3
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