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Abstract—This paper presents a deep learning-based audio-
in-image watermarking scheme. Audio-in-image watermarking
is the process of covertly embedding and extracting audio
watermarks on a cover-image. Using audio watermarks can
open up possibilities for different downstream applications. For
the purpose of implementing an audio-in-image watermarking
that adapts to the demands of increasingly diverse situations,
a neural network architecture is designed to automatically
learn the watermarking process in an unsupervised manner. In
addition, a similarity network is developed to recognize the audio
watermarks under distortions, therefore providing robustness to
the proposed method. Experimental results have shown high
fidelity and robustness of the proposed blind audio-in-image
watermarking scheme.

Index Terms—Audio-in-image watermarking, deep learning,
neural networks, robustness

I. INTRODUCTION

Audio-in-image watermarking refers to the process of em-
bedding and extracting audio watermark information covertly
on a cover-image (see Fig. [I). An audio watermark is hidden
into a cover-image to create a to-be-transmitted marked-image.
The covert process suggests that the marked-image visually
does not give out any watermark information, but processing
the marked-image through an authorized extraction process
can reveal the correct watermark.
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Fig. 1: Audio-in-Image Watermarking.

Based on different target application scenarios, there are
many typical factors and properties a watermarking scheme
should provide [[1]-[3]. For example, the fidelity that secures
a high similarity between the marked-image and the cover-
image, and the blindness that the watermark extractions re-
quire no information about the original images. Compared
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to the highlighted properties in related areas, such as the
undetectability in steganography [4]] and the amount capacity
in data hiding [5], an image watermarking scheme often
considers the robustness that ensures correct watermark ex-
traction and recognition when the marked-image is distorted
or disturbed.

Audio watermarks: From the aspect of applications, an
audio watermark facilitates different downstream scenarios
by providing multiple information, for example, two-factor
authentication [6]], [7] by providing the speaker and con-
tent information. For research investigation, there is quite
a number of work that separately focused on cover-image
and cover-audio watermarking [8]—[10]. But audio-in-image
watermarking remains a challenge [11]] because audio signal
spans between a limited range and inserting it into an image
can cause severe tampering of its amplitudes. Therefore, it is of
great interest to explore a watermarking scheme that combines
audio and image.

Deep learning-based image watermarking: Manually de-
signing watermarking schemes often requires domain knowl-
edge, for example, understanding a signal’s frequency band
to determine where to insert a specific watermark. As a
result, almost every particular scenario requires a special
design. Different schemes have emerged that incorporate deep
neural networks to implement image watermarking, which
adapts to the demands of increasingly diverse applications.
For instance, Kandi et al. [12] incorporated two convolutional
autoencoders to reconstruct one cover-image so that the zero
or one bits in a binary watermark stream can be indicated.
Li et al. [13] proposed to embed a watermark into a gray-
scale cover-image with manual frequency-domain methods
and extract it with a convolutional neural network. Although
many methods have successfully applied deep neural networks
to assist some aspects in watermarking, it has been pointed
out [1f] that designing deep learning architecture to fully learn
the entire watermark embedding and extracting processes is
more challenging. Moreover, because deep neural networks
can be susceptible to noises [[14], achieving robustness in deep
learning—based watermarking is a major challenge because
distorted marked-images can mislead the neural networks.
Some proposals adopt adversarial training [[15] to address the
issue. Mun et al. [|[16] simulated attacks on marked-images
during training, and applied reinforcement learning to learn



a robust extraction. Zhong et al. 1] trained an end-to-end
neural network to learn the entire embedding and extraction
and proposed an invariance layer for the robustness of common
image processing attacks that modify pixel values in a marked-
image. Chen ef al. [17] proposed a neural network, which
included attack simulations during the training, to validate if
the original and the extracted watermarks are identical.

In this paper, we propose a novel deep learning—based
audio-in-image watermarking scheme that achieves blindness,
fidelity, and robustness simultaneously. Our major contribution
is threefold. First, a deep learning framework is proposed to
fully learn the watermark embedding and extracting processes
for audio-in-image watermarking. Second, to reduce the re-
quirement of watermarking domain knowledge, the proposed
watermarking model can be trained in an unsupervised manner
that requires no manual labeling. Finally, we develop a Sim-
ilarity Network to tolerate and recognize audio watermarks
under distortions, therefore providing robustness to our com-
bined watermarking and recognition process.

II. THE PROPOSED SCHEME

This section describes details on (i) the architecture that
fully learns the process of the audio-in-image watermarking
(namely the WM Network), (ii) the Similarity Network that
learns to recognize the audio watermarks under distortions,
and (iii) the loss and training processes. The proposed scheme
is summarized in Fig.

A. WM Network

Although the WM Network is trained as a single and
deep network, we conceptually modularized it to the Encoder,
Decoder, Embedder, and Extractor Nets to facilitate our de-
scription and illustration.

1) The Encoder and Decoder Nets: The Encoder Net learns
to map the watermark W to its code W.: W — W, from the
training samples w; € W, 1 = 1,2, 3, .... Inversely, the Decoder
Net learns to map the extracted code W/ to the watermark
extraction W': W/ — W’. The Encoder Net is a two layer
LSTM. The audio input is firstly reshaped from 8,192 x 1 to
128 x 64. The first LSTM takes a 64-dimensional input vector
per time-step, and both LSTM layers are configured to have
128-dimensional hidden state vectors. Hence the output from
each LSTM cell is a 128-dimensional vector. After 128 time-
steps, the output size will be 128 x 128. Symmetrically, the
Decoder Net converts back a 128 x 128 x 1 feature map into
a 8,192 x 1 audio data.

2) The Embedder and the Extractor Nets: The Embedder
Net learns a function that includes the 128 x 128 x 1 W, into
the 128 x 128 x 3 cover-image C' while retaining visual fidelity.
First, W, and C are separately processed by two sequences
of convolutional layers to produce 128 x 128 x 64 feature
maps. Each sequence contains four convolutional layers of
8, 16, 32, and 64 filters respectively. Although identically
structured, these sequences do not share any weights because
they are processing image and audio separately. Then, the
feature maps of both W, and C' are concatenated along the
channel dimension to obtain a 128 x 128 x 128 feature map. To

promote the propagation of information throughout the feature
map channels, a channel-wise fully connected layer [|18]] with
512 units is applied. The output (128 x 128 x 512) is then fed
into another sequence of convolutional layers with 128, 64,
32, 16, 8, 4, and 3 filters to obtain a marked-image M.

The Extractor Net aims at distilling out the watermark
information embedded inside the marked-image. To achieve an
M — W/ mapping, the network takes input M and passes it
through sequences of convolutional layers with different filter
numbers. A 512-unit channel-wise fully-connected layer is ap-
plied between two sequences of convolutional layers. The final
convolutional layer of the extractor net outputs a 128 x 128 x 1
W!. To ensure successful gradient propagation throughout the
extractor net, we incorporated two skip connections [[19].

B. Similarity Network

Marked-images may distort during transmission. Conse-
quently, the watermark extractions might get distorted. Al-
though experimentations reveal that the proposed WM Net-
work is robust to some noises, it is necessary to identify the
authenticity of the distorted watermark extractions. Simple
error (e.g., RMSE) analysis fails to indicate such a valida-
tion process. Hence, we introduce the Similarity Network to
validate if a watermark W and its extraction W’ are similar
by structural analysis of audio signal pairs. The ideal training
result is to be consistent with human judgment. Explicitly, if
an audio clip is distorted but recognizable by humans, it should
also be recognizable by the Similarity Network. As a result,
from extraction to validation, the Similarity Network provides
robustness from a semantic recognition perspective.

The Similarity Network takes a pair of 8,192x1 (W, W) as
input and outputs a [0,1] scalar where 0 means completely dif-
ferent and 1 means identical, and values in between indicating
a similarity level. We formulate this similarity computation as
metric learning and develop our Similarity Network based on
the Siamese architecture [20]. Our Similarity Network firstly
applies our trained Encoder Net so that the pre-trained LSTM
layers can extract features from the audio inputs rapidly. After
obtaining the 128 x 128 x 1 feature maps of W and W',
two identical weight-shared sequences of convolutional layers
with max-pooling is applied to compress the feature maps to
8 x 8 x 256. These feature maps are then flattened to 16, 384
and passed to a 4, 096-unit fully-connected layer. The absolute
difference is computed between the two 4,096 feature vectors
of W and W', and a single-unit fully-connected layer with
Sigmoid activation is used to output the similarity scalar.

C. Training and Loss Functions

1) Encoder-Decoder Net Pre-training: While the marked-
image is output at the middle of the WM Network, the water-
mark extraction has to propagate through the entire WM Net-
work. As a result, the extraction may fail to pass through the
rest of the network during the training. To address this issue,
we pre-train the Encoder and Decoder Nets, reconstructing
W to itself. Hence, the first step of pre-training the proposed
scheme is to train an Encoder-Decoder net, thus inputting W to
the Encoder, and the output of the Decoder should be W itself.
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Fig. 2: Proposed scheme: The WM Network (Encoder, Embedder, Extractor, and Decoder Nets), and the Similarity Network.

Given training sample watermarks w; € W,1 =1,2,3, ..., the
loss function for training this Encoder-Decoder net is a simple
mean squared error between w; and its reconstruction wj:
E(w“u_)z) = (’LUZ — ’LDz')z (1)
2) Training the WM Network: The second step is to train
the entire WM Network as a single network where the (pre-
trained) Encoder and Decoder Nets are fine-tuned, and the
Embedder and Extractor Nets are trained from scratch. Given
the samples w; € W,i=1,2,3,...and ¢; € C,i=1,2,3, ...,
an extraction loss that minimizes the difference between
the extraction w] and w; is applied to ensure a successful
extraction of the watermark. In addition, a fidelity loss that
minimizes the difference between a marked-image m; and c;
is applied to enable a high fidelity. Mean squared errors are
applied to compute the differences, and the loss is given as:

2

L(w;, w, ¢;,my) = M (w; — w;)Q + Xa(e; —my)®

where \; and A, are the weighing factors.

3) Training the Similarity Network: Given the input pair
w} and w?, Similarity Network is trained to recognize if they
are the same. Let y(w}, w?) be the label, then y(w}, w?) =1
if w} and w? are the same, and y(w},w?) = 0 otherwise.
The network prediction p is a decimal between O to 1, and we
applied the binary cross-entropy to compute the loss:

1,2

L(w},w}) = y(w;,w})log(p)+
(1 = y(wf,w?))log(1 - p)

III. EXPERIMENTS AND ANALYSIS
To the best of our knowledge, our proposal is the first deep

learning—based audio-in-image watermarking scheme, so it is
difficult to find peer methods for a fair analogous study. We

3)

only found a related handcrafted audio-in-image method [/11]
that has reported a Root Mean Square Error (RMSE) of
0.022325 averaged over four audio watermarks, whereas our
method has an RMSE of 0.009452 averaged over 5, 800 audio
watermark samples. To further illustrate the effectiveness of
the proposed scheme, we have conducted typical experiments
and analyses in deep learning and image watermarking.

A. Data Preparation

To train the proposed WM Network, we rescaled (128 x 128)
COCO Dataset [21] for the cover-image and resampled (8192
sampling rate) Speech Commands Dataset [22] audio clips for
watermark audio. Combining these two datasets, we sampled
42,600, 9,700, and 5,800 audio-image pairs for training,
validation, and testing. None of the training audio commands
match with either validation or testing audio commands.

Speech Command Dataset samples are paired with extracted
audio samples derived from the pre-trained WM Network with
varying marked-image distortions to prepare the Similarity
Network training dataset. This allowed us to generate 340, 000,
64,000, and 46, 000 audio-audio pairs for training, validation,
and testing. The audio pairs are labeled as 0 or 1, where 0
means an audio pair is different and 1 means the same.

B. Training, Validation, and Testing Results

After preparing the datasets, we train the proposed scheme
according to the strategies described in Section Fig. 34
shows the losses in training and validation of the WM Net-
work, indicates a proper fit for hundreds of epochs. Fig. [3b]
shows the training and validation loss of the Similarity Net-
work for 100 epochs, post training which achieved a validation
accuracy of 99.44% on identifying whether a watermark,
watermark extraction pair (W, W') is the same or not.
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Fig. 3: (a) Learning Curves of the WM Network for 200 epochs, and
(b) Learning Curve of the Similarity Network for 100 epochs.

At the testing phase of the WM Network, we calculated
the extracted watermark’s RMSE and the marked-image’s
Structural Similarity Index Measure (SSIM) [23]] score with
the original watermark and cover-image, respectively. At val-
idation and testing, the watermark’s RMSEs are 0.010664
and 0.009452, and the marked-image’s SSIMs are (0.988365
and 0.988230, where we can observe successful extractions
and high fidelity. Fig. [] shows examples of cover-images,
watermarks, marked-images, and extractions. To evaluate the
Similarity Network, we used binary accuracy and the cross-
entropy loss value. At validation and testing, the cross-entropy
values are 0.29 and 0.42, and the accuracies are 99.33% and
98.98%. Thus, the Similarity Network has successfully learned
to recognize the watermarks even under noisy situations.

Watermark Extracted Watermark

Cover-Image

Marked-Image

Fig. 4: WM Network sample inputs and outputs: (from left to right)
cover-image, watermark, marked-image, and watermark extraction.

C. Robustness

The encoder introduces some decomposition and redun-
dancy by enlarging the 8,192 lengths 128 x 64 watermark
to a 128 x 128 code. As a result, the WM Network can resist
noise to an extent without presenting any adversarial examples
while training. Moreover, because our watermark extraction is
verified by the Similarity Network, which can tolerate some
distortions, we analyzed the overall scheme’s (WM Network
+ Similarity Network) robustness by plotting the accuracy of
the Similarity Network versus swept-over noise parameters. To
train the Similarity Network, we generate noisy audio samples
derived from WM Network with marked images where 0
to 50% cutout (randomly removing regions) or —5° to +5°
rotation is applied. We then tested the Similarity Network with
watermark pairs within and beyond the range of its training
noise parameters. E.g., we tested (W, W) pairs for up to 90%
cutout noise exposure on the marked-images. Fig. [6a] shows
the accuracy of Similarity Network versus up to 90% cutout,
and Fig. [6b] shows the accuracy versus —6° to +6° rotation on

marked-images. On extracted watermark pair validation task,
the model has a high and decent tolerance range against image
processing and geometric rotation attacks, respectively.

D. Ablation Study of the Similarity Network

This section demonstrates the indispensability of the Sim-
ilarity Network by ablation study. If there are some noises
on the marked-image, the watermark extraction can be noisy
while retaining some resemblance with the original. However,
simple error values cannot accurately indicate this similarity.
Fig. [5| shows two such instances with (W, W) pairs, and each
pair is audibly the same for human hearing despite having high
RMSE values. Analytically, these values incorrectly indicate
low similarity compared to the test set’s low average RMSE of
0.009452 (considering as baseline). In contrast, the Similarity
Network correctly outputs high similarity values.

For a large-scale experiment on the testing set, Fig. [6a] and
[6b] show the RMSE and the Similarity Network accuracy ver-
sus the distortion parameters, where we find that under noise,
the Similarity Network can capture the semantic similarity that
is consistent with human judgments while the RMSE values
are simply computing the differences.

Original Extracted RMS Similarity
Watermark Watermark Error Network
0.0443456 0.99982
0.0626943 1.0

Fig. 5: Examples of watermark and noisy extractions with RMSE and
Similarity Net prediction.

IV. CONCLUSION

This paper introduces a robust and blind audio-in-image
watermarking scheme with deep learning. We designed a
WM Network to fully learn the audio-in-image watermarking
process without any supervision and a Similarity Network to
enhance robustness from the semantic recognition perspective.
In the future, our primary goal is to improve the robustness of
the WM Network itself so that our proposed scheme can be
resistant to different attacks, especially geometric distortions.

P S P o
Lo [ s I
0.0 1:00
0.95
0.9
I 0.06 0.90
o Accuracy
0.8 0.85 1
o= Rt
QL 4
e 0.04 0.80
07 Vs 075
'/
40.02 1
06 e £0.02 070
- 0.65 1.7

(IJ é 1‘8 2‘7 3’6 4‘5 5‘4 63 7‘2 8’1 9‘0
(a)
Fig. 6: Distortion parameters versus the Similarity Network accuracy
and watermark RMSE, (a): % of cutout and (b): rotation degree.




(1]

(2]
(3]

(4]

(51

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

X. Zhong, P. Huang, S. Mastorakis, and F. Y. Shih, “An automated and
robust image watermarking scheme based on deep neural networks,”
IEEE Transactions on Multimedia, 2020.

H. Berghel and L. O’Gorman, “Protecting ownership rights through
digital watermarking,” Computer, vol. 29, no. 7, pp. 101-103, 1996.
M. Asikuzzaman, M. J. Alam, A. J. Lambert, and M. R. Pickering, “A
blind high definition videowatermarking scheme robust to geometric and
temporal synchronization attacks,” in 2013 Visual Communications and
Image Processing (VCIP), 2013, pp. 1-6.

M. Sharifzadeh, C. Agarwal, M. Aloraini, and D. Schonfeld, “Convo-
lutional neural network steganalysis’s application to steganography,” in
2017 IEEE Visual Communications and Image Processing (VCIP), 2017,
pp. 1-4.

D. Hou, W. Zhang, J. Liu, S. Zhou, D. Chen, and N. Yu,
“Emerging applications of reversible data hiding,” in Proceedings
of the 2nd International Conference on Image and Graphics
Processing, ser. ICIGP ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 105-109. [Online]. Available:
https://doi.org/10.1145/3313950.3313952

L. Dovydaitis, T. Rasymas, and V. RudZionis, “Speaker authentication
system based on voice biometrics and speech recognition,” in Busi-
ness Information Systems Workshops, W. Abramowicz, R. Alt, and
B. Franczyk, Eds. Cham: Springer International Publishing, 2017, pp.
79-84.

S. Mastorakis, X. Zhong, P. Huang, and R. Tourani, “DLWIoT: Deep
learning-based watermarking for authorized iot onboarding,” in 2021
1IEEE 18th Annual Consumer Communications Networking Conference
(CCNC), 2021, pp. 1-7.

V. Potdar, S. Han, and E. Chang, “A survey of digital image watermark-
ing techniques,” in INDIN °05. 2005 3rd IEEE International Conference
on Industrial Informatics, 2005., 2005, pp. 709-716.

Z. Chen, L. Li, H. Peng, Y. Liu, and Y. Yang, “A novel digital
watermarking based on general non-negative matrix factorization,” IEEE
Transactions on Multimedia, vol. 20, no. 8, pp. 1973-1986, 2018.

A. Kanhe and A. Gnanasekaran, “Robust image-in-audio watermarking
technique based on DCT-SVD transform,” EURASIP J. Audio Speech
Music Process., vol. 2018, no. 1, Dec. 2018.

M. A. Bhat, P. G. Arfaat, and S. M. Hussain, “Audio watermarking in
images using wavelet transform,” IJCST, vol. 2, pp. 405411, 01 2011.
H. Kandi, D. Mishra, and S. R. S. Gorthi, “Exploring the learning
capabilities of convolutional neural networks for robust image
watermarking,” Computers & Security, vol. 65, pp. 247-268, 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167404816301699

D. Li, L. Deng, B. Bhooshan Gupta, H. Wang, and C. Choi, “A
novel CNN based security guaranteed image watermarking generation
scenario for smart city applications,” Information Sciences, vol. 479,
pp. 432-447, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pi1/S0020025518301452

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in 2016 IEEE European Symposium on Security and Privacy (EuroS P),
2016, pp. 372-387.

C. Yi, H. Li, R. Wan, and A. C. Kot, “Improving robustness of DNNs
against common corruptions via gaussian adversarial training,” in 2020
IEEE International Conference on Visual Communications and Image
Processing (VCIP), 2020, pp. 17-20.

S. Mun, S. Nam, H. Jang, D. Kim, and H. Lee, “Finding robust
domain from attacks: A learning framework for blind watermarking,”
Neurocomputing, vol. 337, pp. 191-202, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231219300955
Y. Chen, T. Fan, and H. Chao, “WMNet: A lossless watermarking
technique using deep learning for medical image authentication,”
Electronics, vol. 10, no. 8, 2021. [Online]. Available: https:
/Iwww.mdpi.com/2079-9292/10/8/932

D. Pathak, P. Krihenbiihl, J. Donahue, T. Darrell, and A. Efros, “Context
encoders: Feature learning by inpainting,” in Computer Vision and
Pattern Recognition (CVPR), 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

[20]

[21]

(22]

(23]

G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in ICML deep learning workshop, vol. 2.
Lille, 2015.

T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dolldr,
and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in
Computer Vision — ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and
T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014, pp.
740-755.

P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” ArXiv e-prints, Apr. 2018. [Online]. Available:
https://arxiv.org/abs/1804.03209

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600-612, 2004.


https://doi.org/10.1145/3313950.3313952
https://www.sciencedirect.com/science/article/pii/S0167404816301699
https://www.sciencedirect.com/science/article/pii/S0167404816301699
https://www.sciencedirect.com/science/article/pii/S0020025518301452
https://www.sciencedirect.com/science/article/pii/S0020025518301452
https://www.sciencedirect.com/science/article/pii/S0925231219300955
https://www.mdpi.com/2079-9292/10/8/932
https://www.mdpi.com/2079-9292/10/8/932
https://arxiv.org/abs/1804.03209

	Introduction
	 The proposed scheme 
	WM Network
	The Encoder and Decoder Nets
	The Embedder and the Extractor Nets

	Similarity Network
	Training and Loss Functions
	Encoder-Decoder Net Pre-training
	Training the WM Network
	Training the Similarity Network


	Experiments and Analysis
	Data Preparation
	Training, Validation, and Testing Results
	Robustness
	Ablation Study of the Similarity Network

	Conclusion
	References

