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Constructing Corequisites: How Community Colleges Structure Corequisite Math
Coursework and the Implications for Student Success

Roughly 60% of two-year college entrants do not meet college-readiness standards for
college math (Bailey et al., 2010). These students are typically required to complete prerequisite
developmental education (dev-ed) courses—which do not count toward a degree—before
enrolling in introductory college courses. Because students placed into dev-ed are more likely to
come from racially minoritized and lower socioeconomic status backgrounds, dev-ed, in its
current form, appears to exacerbate inequities in academic outcomes (Bailey et al., 2010,
Marshall & Leahy, 2020). In response to dismal rates of dev-ed completion and calls for reform,
states and college systems are adopting corequisite coursework: a model where students
concurrently enroll in college-level and developmental coursework.

The corequisite model enables students to earn college-level credits immediately while
providing hands-on support through a paired dev-ed (or “corequisite’’) course. Moving students
through their dev-ed requirements and gateway math course can improve their momentum
toward graduation (Adelman, 2006; Calcagno et al., 2007; Jenkins & Bailey, 2017; Wang et al.,
2017). Inspired by promising evidence from early corequisite-adopters across the country (e.g.,
Denley, 2015, 2016; Logue et al., 2016, 2019; Ran & Lin, 2019), there has been a recent flurry
of dev-ed policy reform toward corequisite coursework, where 24 states now include corequisite
supports as a means to accelerate student access to college-level coursework (Education
Commission of the States, 2021). As a result, states and colleges across the country are rapidly
replacing the traditional dev-ed sequence with corequisite coursework.

As corequisite reforms proliferate, colleges must determine how to pair courses and

which faculty should teach them. Despite evidence that corequisite models improve efficiency



for completing introductory—or “gateway”—college-level courses (Logue et al., 2016, 2019;
Meiselman & Schudde, 2020; Miller et al., 2021; Ran & Lin, 2019), some faculty and staff resist
adopting them (Brower et al., 2017; Daugherty et al., 2018), with adoption lagging considerably
in math compared with English (Cuellar Mejia et al., 2020; Morales-Vale, 2019). As personnel
work to scale reforms, evidence of best practices can overcome faculty concerns and inform
decision-making.

This study can inform corequisite model development by illuminating how corequisite
math course features predict student outcomes. We leverage state administrative data to examine
how public two-year colleges in Texas implemented a statewide mandate for corequisite
coursework. Our results offer insights into how colleges structure corequisite courses in response
to reforms and how corequisite coursework characteristics predict student outcomes.

Literature Review

Many students placed in dev-ed never complete their dev-ed coursework (Bailey et al.,
2010; Clotfelter et al., 2015). Long multi-course dev-ed sequences may impede student progress
and cost students time and money (Deil-Amen & Rosenbaum, 2002; Melguizo et al., 2016).
Restructuring dev-ed pathways so that students quickly accrue college-level credits could
expedite student progress, where corequisites immediately offer students access to college credit.
Below, we describe evidence for the impacts of corequisite coursework, followed by an
overview of research on corequisire course characteristics.

Background on Corequisites

Descriptive findings from Tennessee—the first state to mandate corequisite reforms—

suggest that corequisite models improve completion rates of gateway college math (Denley,

2015, 2016). To date, one experimental study (Logue et al., 2016, 2019) and two



quasiexperimental studies (Ran & Lin, 2019; Meiselman & Schudde, 2020) illustrate positive
short-term outcomes of corequisite math coursework and one experimental study and one quasi
experimental study illustrate positive short-term outcomes of corequisite English coursework
(Cho et al., 2012; Miller et al., 2021). In a randomized controlled trial at City University of New
York (CUNY), students were placed in either prerequisite algebra—the traditional dev-ed math
course (the control group)—or a college-level statistics course with a developmental support
course (the treatment group) (Logue et al., 2016). Those in the corequisite statistics coursework
were more likely to pass college-level math and—3 years later—had completed more math
courses, finished required coursework more quickly, and graduated at higher rates than those in
prerequisite algebra. Studies in Tennessee and Texas found similar short-term positive impacts
on passing college-level math, though they showed no increase in degree attainment after 3 years
(Ran & Lin, 2019; Meiselman & Schudde, 2020).

Combined, the evidence of these three studies in different contexts supports the notion
that corequisite math is more effective than prerequisite dev-ed math at increasing gateway math
completion. At the same time, colleges implementing corequisites face logistical and financial
concerns and need information about how to structure corequisites for student success.

The Role of Varied Course Designs

In response to policies aimed at increasing corequisite coursework, many institutions are
scrambling to pair college-level math courses with corequisite developmental supports.
Corequisite models can include several different structural components: Colleges must determine
the timing of the corequisite support course, how to assign faculty to teach paired courses,
instructional modality, whether to include college-ready students in the college-level course, and

which math pathways (e.g., algebra, statistics) to prioritize.



Timing of Developmental Support

Many corequisite advocates envision that colleges will provide “just-in-time” support for
the college-level course, with dev-ed course material concurrently supplementing college-level
material; however, this is not always the case (Daugherty et al., 2018). Some corequisite courses
are organized sequentially: The dev-ed component is taken first—serving as an embedded
prerequisite—and the college-level second within the same term (Daugherty et al., 2018;
Meiselman & Schudde, 2020). Currently, little evidence exists about how timing the corequisite
support course predicts student outcomes. Meiselman and Schudde (2020) offered preliminary
evidence that students in “embedded prerequisites” were slightly more likely to pass college-
level math and persist in college than “true corequisite” students, but their identification strategy
did not fully account for selection into the embedded prerequisite model.

Instructor Structure and Characteristics

Another structural component concerns whether the college-level course and dev-ed
support course are taught by the same instructor. If two instructors teach the courses, they must
collaborate and communicate to maintain similar pacing and align content. The extent of the
alignment between the two courses can improve the student experience; using the same
instructor may facilitate alignment (Daugherty et al., 2021).

Non-tenure-track (NTT) faculty have traditionally taught the bulk of developmental
coursework (Datray et al., 2014; Grubb & Cox, 2005), but corequisite reforms may shift some of
that responsibility to tenure-track (TT) faculty. Faculty with different contractual forms often
face different responsibilities and levels of job security (Conley et al., 2002; Ran & Xu, 2018). In
a public two-year college system with no TT faculty, Ran and Xu (2018) found that students in

introductory courses with short-term NTT instructors (i.e., non-tenure-track faculty with



temporary adjunct contracts)}—compared with long-term NTTs (those with longer term
contracts)—experienced higher grades but lower probabilities of taking and passing additional
courses in the sequence. Research suggests that contextual and institutional factors related to
part-time employment rather than instructor characteristics (e.g., race/ethnicity, gender, and
highest degree earned) explain the association between NTT faculty status and student outcomes
(Ran & Sanders, 2020).
Instruction Modality and Type

Research suggests that taking an introductory college-level math course online, as
opposed to face-to-face, is associated with a 10-percentage-point decrease in the probability of
passing it and a 15-percentage-point increase in the probability of course withdrawal (Xu &
Jaggars, 2011). Taking developmental courses online is also negatively associated with student
outcomes, including enrolling in and passing subsequent gateway courses (Jaggars & Xu, 2010),
although research on hybrid developmental courses offers more optimistic findings. Research
from Kentucky suggests that public two-year college students in a hybrid developmental math
course—a mix of in-person and online sessions— were more likely to persist to the following
semester than were those in a face-to-face class (Davidson & Petrosko, 2015). Identifying the
effects of instructional modality is challenging because students select course modality aligned
with their preferences, where students with the greatest external obligations (working for pay,
caring for dependents) are more likely to select online options (Dutton et al., 2002).

The dev-ed support course can be structured in several ways. It can be course-based—
structured primarily as a lecture in a traditional course format—or non-course-based, where the
supports are offered outside of traditional classroom instruction (Daugherty et al., 2018). A non-

course-based dev-ed section has the potential to align content with student needs; for example, it
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can include sections offered at a tutoring center with modularized computer-adaptive instruction
or with an instructor who supports students with various levels of needs at their own pace. To
date, no studies have explored the roles instructional modality or type play in student outcomes
within a corequisite model.
Class Composition and Size

In structuring corequisite coursework, practitioners must decide whether to include both
college-ready and dev-ed students in the college-level course. The mixed-ability model has some
support in K—12 math settings, where research indicates that students with lower prior
achievement benefit the most from collaborating with peers on math problems (Boaler, 2008;
Fuchs et al., 1997; Fuchs et al., 2001). Some evidence suggests that similar peer effects occur in
college STEM classrooms, although the only work in this area examines students at an elite
university (Ost, 2010). In the only study (to our knowledge) on peer effects on course outcomes
at community colleges, Liu and Xu (2021) found that the percentage of dual-enrollment students
(those taking college coursework for credit during high school) enrolled in a community college
course was negatively correlated with academic performance among non-dual-enrollment
students (Liu & Xu, 2021). Parallels may exist with mixed-ability classrooms in which students
who need developmental support take college-level math with college-ready peers, but because
those students are also college students, their presence may not evoke the same response. Mixed-
ability classes may also increase teacher expectations for students with the lowest prior
achievement, as teachers tend to teach to the middle-range ability group when confronted with
varied student ability (Tomlinson, 2014).

Class size is also linked with student outcomes, where K-12 research suggests that

smaller classes improve students’ academic performance, perhaps through shifts in teacher’s



instructional strategies or increased social and academic engagement compared with larger
classes (Finn et al. 2003). Class size has not been focal in higher education research, though
some studies in university settings link larger class sizes to fewer interactions with faculty and
peers and lower grades (Beattie & Thiele, 2016; Johnson, 2010; Kokkelenberg et al., 2008).
Math Pathways

Dev-ed reforms have often coincided with math pathways reforms, which reconsider the
status quo algebra-for-all approach to college math requirements. Under math pathways, students
can select quantitative reasoning (QR), statistics, or algebra depending on their desired major
(Bryk & Treisman, 2010). Math pathways reforms focus on changing both the content and
instruction of math in college, offering options for math content and shifting instructional
approaches for how they learn it (Zachry Rutschow et al., 2019). In a randomized controlled trial
in Texas, Zachry Rutschow and colleagues (2019) illustrated that the Dana Center Math
Pathways model, which accelerated dev-ed course sequences and reformed math curricula across
three math pathways, positively impacted college-level math course completion and number of
math credits earned.

Research on the link between math pathway—which type of math course students take—
and student outcomes is limited. Extant experimental research on corequisite math in the CUNY
system (Logue et al., 2016, 2019) targeted students whose majors did not require algebra. The
experiment identified stronger effects of corequisite statistics coursework on several long-term
academic outcomes, including transfer and degree attainment, compared with studies focused on
corequisites in contexts with a mix of math pathways or primarily algebra (Ran & Lin, 2019;
Meiselman & Schudde, 2020); it is difficult to know whether the differences in findings result

from math pathways or different study contexts. Ran and Lin (2019) found that there were



differential effects of corequisite math coursework across math pathways, where the positive
effects of corequisite math coursework on completing college-level math were largely driven by
students taking non-algebra college math rather than college algebra.

Although interest in corequisite models has increased, little research has explored the
efficacy of different approaches and how students in corequisite coursework respond to
corequisite course structures and characteristics. College personnel implementing corequisite
reforms need this information to build efficient, effective math pipelines for students.

Research Questions

To help meet the pressing need for information about the link between corequisite
coursework characteristics and student outcomes, we address the following research questions
(RQs):

1. As colleges worked to implement a statewide corequisite mandate, how did they
structure corequisite math coursework, including timing of course pairings,
instructional modalities, math pathway offerings, and instructor assignments?

2. How do corequisite course structures and characteristics predict student outcomes?

Policy Contexts

Half of all first-time college students at Texas public two-year institutions do not meet
college readiness standards in math—a score of 350 on the math Texas Success Initiative (TSI)
assessment, a placement test taken at college entrance (Texas Higher Education Coordinating
Board [THECB], 2016). Seeking stronger student outcomes, some colleges implemented
corequisite coursework as early as 2014 but enrolled only a small fraction of students in
corequisite math offerings (Meiselman & Schudde, 2020). In 2017, Texas’s 85th Texas

Legislature passed House Bill 2223 (HB2223), a mandate for colleges to scale corequisites for



students who do not meet college-readiness standards. HB2223 required colleges to enroll at
least 25% of all developmental students in each subject (i.e., math and English) in corequisite
coursework by fall 2018, 50% by fall 2019, and 75% by fall 2020 (THECB, 2018). Using
rulemaking authority, the THECB recently amended the policy to require that colleges move to
100% corequisites by fall 2021 (THECB, 2020).

HB2223 allowed colleges to determine how to structure corequisite math coursework.
The recently enacted policy allows for sequential corequisite models as long as the dev-ed and
college-level courses are offered within the same term. State policy requires that faculty with
appropriate credentials teach the college-level component; this standard may shape colleges’
decisions to assign the same instructor across paired courses, because dev-ed instructors may
lack the credential needed to teach college-level courses.

Methods

To answer our research questions, we used statewide administrative data provided
through a restricted-use agreement with the Texas Education Research Center (ERC), a research
center and data clearinghouse at the University of Texas at Austin. We defined corequisite math
coursework as enrolling in dev-ed and introductory college-level math courses in the same
semester. Our analytic sample includes community college students who enrolled in corequisite
math in a fall or spring term between fall 2018 and spring 2020. We relied on descriptive
statistics to capture the structure and characteristics of corequisite math coursework. We used
regression to explore the relationship between course characteristics and student outcomes, such

as course passing, persistence in college, and vertical transfer.
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Data

The ERC data includes student-level data for the entire population of secondary and
postsecondary students in Texas. We used student-level data collected by the THECB, including
files capturing student demographics, college enrollment, course enrollment and grades,
placement test scores, and financial aid information, along with demographic and occupational
information on course instructors.

To create the analytic sample, we first identified community college students who
enrolled in dev-ed and college-level math within the same semester in the period after HB2223
was enacted (fall 2018—spring 2020) (N = 103,260). We restricted the analytic sample to students
who had placement test scores (N =69,301), so that we could include the TSI score as a proxy
for math ability.! In the final analytic sample, 1% of students took module-based dev-ed math or
multiple corequisite math courses in the same term, which resulted in two or more dev-ed math
attempts in the same semester as the college-level course. Thus, the final analytic sample
captured 70,026 corequisite dev-ed course enrollments among 69,301 students between fall 2018
and spring 2020.

Variables

Our main independent variables of interest capture corequisite math course structures and
characteristics. For the college-level math course, we included class size, instructional modality,
an indicator of mixed-ability composition (mix of developmental and college-ready students),

and math pathway—college algebra, math for business, quantitative reasoning, and statistics. For

! About one-third of the population of interest lacked TSI scores, a result that aligns with prior research (e.g.,
Schudde & Keisler, 2019; Meiselman & Schudde, 2020). These scores may be missing because students did not plan
to enroll in any math courses in their first semester or their initial degree plan did not require math (e.g., certificates
or technical associate degrees). For a further discussion of placement score missingness in Texas, see Schudde and
Meiselman (2019). We ran supplemental models on the restricted sample (those with test scores) and full sample
(those with and without TSI scores) and present the results in Appendix C.
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the developmental-level math course, we used measures of class size, semester credit hours,
instructional modality, whether the course was lecture-based? (as opposed to a lab or independent
study), and whether the college-level course was taught by the same instructor as the
developmental course. We also captured four categories of dev-ed support courses based on the
timing and duration of support: full-term concurrent, compressed concurrent, embedded
prerequisite, and boot camp prerequisite (where the boot camp prerequisite is shorter than the
embedded prerequisite, but both occur before the college-level course).

We also capture characteristics of developmental math course instructors,?® including
gender, race/ethnicity, age, faculty type (NTT vs. TT) and employment intensity, educational
attainment, and 9-month salary. Our regression models include student characteristics and
academic and financial background information as statistical controls. For example, we used
math placement scores as a proxy for student ability. Because some students had non-TSI
placement scores, we calculated each student’s z-score on the placement test taken. Appendix A
includes definitions and descriptive statistics for variables used in our main and supplemental
analytic models.

We focus on five separate outcome measures that capture student performance in the
college-level course and subsequent college outcomes. We created measures for passing the
college-level math course (as opposed to either failing or withdrawing) and withdrawing from it

(as opposed to persisting to the end of the course). To measure academic progress, we captured

2 We relied on an indicator of instruction type, capturing whether a section is lecture-based (vs. lab or tutoring),
instead of course prefixes suggesting a section is a non-course-based-option (NCBO) because several colleges
designated all their dev-ed courses with NCBO prefixes despite variation in the instruction type measure. We spoke
with faculty at some of the departments to confirm that instruction type varied, informing our decision not rely on
the NCBO course prefix.

3 In supplemental analyses (available upon request), we captured college-level instructor characteristics. Given that
the majority of paired courses are taught by the same instructor (see Table 1), we focus on characteristics of
developmental faculty in our descriptives and regression models.
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whether students persisted into the subsequent semester and into the subsequent year, and
whether they transferred to a four-year institution within 1 year. We ran analyses for several
additional outcomes, including dev-ed math course outcomes, subsequent math course
enrollment, and major switching, and present them in Appendix B.
Analytic Approach

To understand the structure and characteristics of corequisite coursework implemented at
Texas community colleges (RQ1), we leveraged descriptive statistics. We then used logistic
regression, given the dichotomous nature of our dependent variables, to examine which variables
predict student outcomes while controlling for student background (RQ 2).

We used the following model for student i at college j in semester ¢:

Logit (pij) =bo+ biX1+b2Xo+ ...+ bnXn + &+ At

where pij: is the probability of a discrete outcome’s occurring, bo is the intercept, X;—X, are the
independent variables, b/—bn are the associated regression weights, ¢ is a college fixed effect,
and A, is a semester fixed effect. The logit transformation ensures that the predicted probability of
the outcome’s occurring lies within the 0—1 bound. This approach allows for a more realistic
representation of the curvilinear association because of the dichotomous outcome variable, and it
tends to linearize the association between the predicted outcome and the set of predictors
(Raudenbush & Bryk, 2002). We included college and semester fixed effects to control for other
sources of between-college variation and factors changing each semester.

Because we rely on regression, the results do not represent causal relationships. When we
use observational data, a regression with rich covariates is our strongest analytic strategy for
examining which course features predict student success. We included a variety of control

variables capturing student and instructor background; nevertheless, the estimated relationships
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could still partially be explained by unobserved factors. Several factors we expect to predict
course selection and student outcomes, such as student motivation, social networks, and
instructional quality, are unobservable in the data. Thus, the results are correlations that partially
reflect sorting into specific courses (i.e., some students are more inclined to enter a given math
course type than others, and those unobserved characteristics may also predict subsequent
academic outcomes). Despite these limitations, the results stand to inform the extant literature on
corequisite implementation.
Results

Description of Corequisite Math Coursework

We begin by describing, in Table 1, course and instructor characteristics for the
developmental and college-level courses within community colleges’ corequisite offerings since
HB2223. The average developmental-support course was larger than the college-level course (by
about 1.5 students) and worth fewer credits. Both courses were predominantly lecture based
(95% of college-level courses and 77% of dev-ed courses) and taught in person. Over one-half of
the paired college-level and developmental-support courses were taught by the same instructor.
Colleges primarily offered dev-ed math corequisite courses that ran concurrently with the
college-level course. Most—=88%—of the dev-ed support courses were run as full-term
concurrent courses: Students co-enrolled in the support course and college-level math course
throughout the semester. The remaining dev-ed support courses were structured as compressed
concurrent dev-ed (6% coincided with the college-level course but were shorter in duration) and
embedded prerequisites (5% of dev-ed courses preceded the college-level course within the same
term). Very few courses (approximately 1%) were set up as “boot camp” prerequisites, where the

developmental course occurred before the college-level course and lasted under 2 weeks. Nearly
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one-half of the college-level courses were college algebra, with the remainder offered as QR and
statistics and, less often, math for business.

In addition to corequisite course structures and characteristics, Table 1 describes
instructor characteristics. Over one-half of all courses were taught by female instructors, and the
racial-ethnic representations looked fairly similar across both course types, with White faculty
teaching approximately 61% of courses. The age of instructors was also similar, with an average
age of 50. Only 17-18% of instructors were TT or tenured in either course type. The majority of
instructors for both courses were NTT, where the bulk of instructors were full-time NTT (48.3%
for dev-ed and 52.5% for college-level). A larger portion of dev-ed instructors than of college-
level instructors were part-time NTT (27% and 20%, respectively). The educational backgrounds
of instructors differed across college-level and dev-ed courses. A smaller portion of dev-ed
instructors held a graduate degree (about 80%) compared with college-level instructors (about
95%). On average, college-level instructors earned more, by about $4,000, than dev-ed
instructors per academic year.

Regression Results: Course and College Outcomes

Table 2 presents the results for a series of logistic regression models predicting college-
level course outcomes and subsequent college outcomes. For ease of interpretation, we present
results using average marginal effects (AMEs) rather than log-odds or odd ratios; AMEs can be
interpreted as the change in predicted probability for a one-unit change in the independent
variable (holding other independent variables at their mean). The first and second columns
present results from regressions on passing or withdrawing from the college-level math course,
while the final three columns present results for persistence into next semester, persistence into

the next year, and transferring to a university within 1 year.
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Predictors of College-Level Math Course Passing and Withdrawal

Looking at predictors of college-level course outcomes, we note several patterns. The
class size of the college-level course appeared to have a small positive association with passing
and negative association with withdrawal—the larger the class size, the more likely students
were to pass and less likely they were to withdraw. Taking a mixed-ability college-level math
section was associated with a three-percentage-point increase in the probability of passing
compared with taking a section where all students did not meet college-readiness standards. In
terms of instructional modality, students in an online college-level course were eight percentage
points less likely to pass the course than students in a face-to-face course. Students in hybrid
courses, however, appeared less likely to withdraw than those in face-to-face courses. Finally,
the math pathway of the college-level course was associated with both passing and withdrawal.
Compared with the students taking college algebra, taking QR was associated with a 10.7-
percentage-point increase in the probability of passing the course. Taking either QR or
statistics—as opposed to algebra—negatively predicted course withdrawal.

Several developmental course characteristics also predicted college-level course
outcomes. Increased credit hours of the dev-ed section positively predicted passing the college-
level math course (and negatively predicted withdrawal), possibly indicating that students benefit
from more time-intensive developmental support courses. Enrolling in a lecture-based dev-ed
course—as opposed to a lab or independent study—predicted a decrease in withdrawal from the
college-level course. Instructional modality of developmental courses also predicted college
math course outcomes, where taking online or hybrid developmental courses, compared with
face-to-face courses, was associated with a decreased probability of passing college-level math

and an increased probability of course withdrawal. Taking corequisite coursework where the
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same instructor taught the college-level math and the dev-ed math support courses was
associated with a 3.7-percentage-point increase in the probability of passing college-level math
and 1.9-percentage-point decrease in the probability of withdrawing, compared with a
corequisite model in which the paired courses were taught by different instructors. Finally, the
timing and duration of the developmental support course (dev-ed math course type) did not
appear to predict passing college-level math, but enrolling in a boot camp—style prerequisite dev-
ed course was associated with a somewhat lower probability of withdrawing from the college-
level course than was enrolling in a full-term concurrent dev-ed support course.

Regarding developmental instructors’ characteristics, we found that those taking the dev-
ed support course with a full-time NTT experienced a 4.7-percentage-point boost in the
probability of passing college math compared with those taking the course with a tenured
professor. (We similarly see a decrease in their probability of withdrawal.) The “unknown”
faculty category was also associated with improved passing and decreased course withdrawals.
Although we cannot avow that all the faculty in that category are full-time NTTs, we suspect that
they are—that group largely comprises faculty at a handful of colleges that do not classify
faculty and have no tenure (although we can see that most “unknown” instructors work full
time).

Predictors of Persistence and Transfer

As we turn to longer-term outcomes, a prominent predictor of student success was
whether the student had passed their college-level math course. Passing the college-level math
course was associated with a 30- and 34-percentage-point increase in the probability of persisting
into the subsequent semester and the following year, respectively, and with a 3.8-percentage-

point increase in the probability of transferring to a university within a year.
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Although several college-level math and developmental course characteristics that
predicted short-term success in college-level math did not predict persistence and transfer, the
math pathway of the college-level course and the timing of the dev-ed course appeared
consequential for those outcomes. Taking QR or statistics—compared with algebra—negatively
predicted persistence and vertical transfer, though the observed pattern for statistics was
significant only for persistence into the next year. Students in math for business were more likely
to persist into the subsequent year than algebra students, but the relationship was no longer
significant a year out. The timing of the developmental support course appeared to predict
persistence in college, where the embedded prerequisite and compressed concurrent models
positively predicted persistence into the next term, compared with a full-term concurrent dev-ed
course structure. The relationships are no longer significant (and, for compressed concurrent,
actually reverse direction) for the outcome capturing persistence into the next year. Boot camp-
style prerequisites appeared more negatively related to transferring to a four-year institution
within 1 year, compared with full-term concurrent dev-ed.

We also examined whether developmental course instructor characteristics were
associated with the probabilities of persistence and transfer, but the results yielded no notable
significant patterns. In Appendix B we present results for additional outcomes, including
developmental course outcomes, math course taking, and major choice.

Discussion

Over the past few years, colleges across the country began to revise decades-old
approaches to dev-ed. Faced with pressure to implement corequisite reforms, college
administrators and faculty need evidence for how to build effective course pairings of

introductory college-level math and corequisite developmental support. In this paper, we used
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administrative data from Texas to illustrate how colleges structured corequisite coursework in
response to a statewide mandate and how different corequisite course characteristics and
structures predict student outcomes.

For the most part, our results suggest that, among students taking corequisite coursework,
some course design decisions moderately improve passing rates of college-level math but do not
trickle down to longer term outcomes like persistence and transfer. Our results suggest that
mixed-ability college-level math classes boost pass rates for students who tested as not college-
ready, which presents an actionable approach colleges might consider when designing
corequisite coursework. Other characteristics, like course modality, are also linked
improvements in course outcomes, though it is unclear whether those results are driven by
selection (i.e., students in face-to-face vs. online courses, or in different math pathways, likely
differ systematically in a way that may not be captured in our models). Experiencing the college-
level math course face-to-face is associated with higher pass rates than taking the course online,
although hybrid modality may boost course retention (though we should note that hybrid courses
made up a very small proportion in our sample and may not be representative of hybrid courses
generally).

The math pathway of the college-level course significantly predicts course outcomes and
subsequent college outcomes, whereas other college-level course characteristics do not appear to
explain the longer-term college outcomes, but we anticipate that students’ differential selection
into math pathway may also play a role in these observed relationships. Taking QR—compared
with taking algebra—is positively associated with passing college math but negatively associated
with persistence and vertical transfer. Taking statistics is also associated with a decrease in the

probability of persistence into the subsequent year. Students in math for business, however, are
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more likely to persist into the next term than those who take algebra, though the relationship
diminishes by the subsequent term. Overall, our results suggest that students in the college
algebra pathway are more likely to persist in college than those in other pathways. Our
supplemental analyses (see Appendix B) suggest they are also more likely to switch into STEM
majors and to enroll in advanced math coursework. Ran and Lin (2019) similarly reported that
students in non-algebra corequisite coursework experienced a larger boost in passing college-
level math than those in algebra, with minimal long-term impacts. In their study of corequisite
statistics coursework, Logue and colleagues (2016, 2019) observed both greater short-term
improvements in course outcomes and longer-term benefits for credit accrual and degree
attainment than in the traditional prerequisite algebra course. Although our results suggest that
non-algebra corequisite coursework is correlated with higher passing rates than algebra
corequisites, it is possible that the statistical model does not fully capture selection into math
pathways; we also expect there could be differences in student support structures and subsequent
course sequences across math pathways that are correlated with persistence and transfer.
Selection into and impacts of math pathways are beyond the scope of our study, but we hope
these results spur relevant future research.

Our regression results suggest that developmental supports also shape student outcomes
in the college-level course. The number of credits for the dev-ed support course is positively
associated with passing the college-level course. Likewise, face-to-face instruction and taking a
lecture-based course also appear to boost success in the college-level math course.

Structuring corequisite coursework to use the same instructor across both courses
positively predicts passing and persisting in the college-level course. Although we cannot know

the mechanism driving this result, it is possible that when the two courses have the same
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instructor, the content is better aligned (Daugherty et al., 2018). Taking the developmental
course with a full-time NTT instructor appears to positively predict passing the college-level
course and course retention. Although we cannot discern experience teaching dev-ed from the
administrative data we have access to, prior research (e.g., Datray et al., 2014; Daugherty et al.,
2018) and our ongoing interviews in the field suggest that NTTs, especially those appointed at
full time, have historically taught dev-ed courses. We hope that future research can capture the
role teaching experience plays in student outcomes and can delineate between how prior
experience teaching dev-ed intersects with conditions of having paired instructors.

Corequisite course design decisions appear to shape immediate student outcomes, such as
persisting in and passing their required college-level math course. Our study offers a first look at
how Texas community colleges—which educate 12% of the nation’s public two-year college
students (Snyder et al., 2019)—implemented a statewide mandate for corequisites. By fall 2019
(the second fall cohort in our analytic sample), one-half of all developmental math students were
enrolled in the corequisite courses we examined. Our results suggest that some course design
elements, such as mixed-ability classes for the college-level course, higher credit loads (as
opposed to 1-credit courses) for the dev-ed corequisite support course, and using the same
instructor across both the college-level and dev-ed course, improve immediate outcomes for
students. The relationships we illuminate offer insights for policymakers, administrators, and

practitioners seeking evidence for how to put corequisite models into practice.
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Tables
Table 1

Descriptive Statistics of Corequisite Math Coursework: Developmental and College-Level
Course Characteristics

Math Course Level
Dev-Ed College-Level
Variable (% or M) (% or M)
Course N 6,671 7,290
Course characteristics
Class size 15.7 14.2
Number of credits 2.3 3.0
Lecture section 76.65% 94.84%
Instruction modality
Face-to-face 88.01% 84.65%
Online 10.54% 13.47%
Hybrid 1.45% 1.88%
Same-instructor for paired courses 55.81% 51.59%
Dev-ed course type
Boot camp prerequisite 1.09% —
Embedded prerequisite 4.96% —
Compressed concurrent 6.09% —
Full-term concurrent 87.86% —
College-level composition
Mixed ability — 43.61%
All dev-ed students — 56.39%
College-level math pathway
Algebra — 49.97%
Math for business — 12.04%
Quant reasoning — 19.22%
Statistics — 18.77%
Instructor characteristics
Female 57.40% 53.40%
Race
White 60.58% 61.32%
Black 10.03% 8.55%
Hispanic 18.33% 18.74%
Asian 7.99% 8.68%
Other 3.07% 2.72%
Age 50.2 49.9

Faculty type
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Math Course Level
Dev-Ed College-Level
Variable (% or M) (% or M)
Tenured 13.58% 14.10%
Tenure-track 3.42% 4.36%
Full-time non-tenure-track 48.34% 52.47%
Part-time non-tenure-track 26.47% 19.56%
Unknown 8.18% 9.51%
Highest education level
Doctoral degree 9.29% 11.21%
Master’s degree 70.47% 83.48%
Bachelor’s degree 17.45% 2.95%
Associate degree or certificate <1% <1%
No degree 2.07% 2.13%
Full-time employed 73.36% 80.26%
Calculated 9-month salary $44,910 $48,770

Note. The table describes characteristics of corequisite math courses and instructors (reported at the
course level, where column 1 and 2 show results for the dev-ed support course and college-level course,
respectively). We provide means for continuous variables and percentages for categorical measures. The
measures of college-level course instructor characteristics are not included in the regression models
because the majority of corequisites were taught by same instructor.



Table 2

Regression Model Predicting Student Outcomes

College-Level Math Course Persistence and Transfer
Persistence into Persistence into Transfer to a 4-
Passed Withdrew the subsequent  the subsequent year institution
the course  from the course semester year within 1 year
AME AME AME AME AME
Variable (SE) (SE) (SE) (SE) (SE)
Passed the college-level 0.298%#* (0.342%** 0.038 ***
math course? (0.006) (0.007) (0.003)
College-level course characteristics
Class size 0.002%** -0.002%** 0.000 0.000 0.000
(0.001) (0.001) (0.000) (0.001) (0.000)
Mixed ability 0.029* -0.012 0.006 0.014 -0.002
(0.013) (0.007) (0.009) (0.014) (0.005)
Instruction modality (Ref.
Face-to-face)
Online -0.080** 0.014 -0.011 -0.014 0.009
(0.029) (0.014) (0.012) (0.017) (0.007)
Hybrid 0.070 -0.085%* 0.019 0.017 0.001
(0.043) (0.021) (0.024) (0.030) (0.017)
Math pathway (Ref. Algebra)
-0.003 0.004 0.014* 0.005 0.007

Math for business (0.016) (0.017) (0.006) (0.008) (0.005)




College-Level Math Course Persistence and Transfer

Persistence into Persistence into Transfer to a 4-

Passed Withdrew the subsequent  the subsequent year institution
the course  from the course semester year within 1 year
AME AME AME AME AME
Variable (SE) (SE) (SE) (SE) (SE)
Quantitative reasoning 0.107%** -0.080%*** -0.048%*** -0.066*** -0.014%**
(0.013) (0.006) (0.008) (0.011) (0.004)
Statistics 0.005 -0.016* -0.012 -0.028*** -0.001
(0.015) (0.008) (0.007) (0.008) (0.004)
Dev-ed support course characteristics
Class size 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)
Number of credits 0.016* -0.011%* -0.013 -0.014 0.000
(0.008) (0.004) (0.008) (0.008) (0.003)
Lecture section 0.017 -0.037* -0.002 -0.015 0.002
(0.024) (0.018) (0.012) (0.014) (0.006)
Instruction modality (Ref.
Face-to-face)
Online -0.054* 0.028* 0.014 0.009 0.006
(0.026) (0.014) (0.012) (0.017) (0.007)
Hybrid -0.127%%* 0.112%%* -0.012 0.040 0.019
(0.032) (0.034) (0.019) (0.027) (0.019)
0.037* -0.019* -0.010 -0.008 -0.001

Same instructor (0.015) (0.009) (0.012) (0.014) (0.003)




College-Level Math Course Persistence and Transfer

Persistence into Persistence into Transfer to a 4-

Passed Withdrew the subsequent  the subsequent year institution
the course  from the course semester year within 1 year
AME AME AME AME AME
Variable (SE) (SE) (SE) (SE) (SE)
Dev-ed course type (Ref.
Full-term concurrent)
Boot camp prerequisite 0.039 -0.064* 0.028 -0.012 -0.033*
(0.041) (0.026) (0.026) (0.042) (0.009)
Embedded prerequisite -0.007 -0.032 0.085* 0.003 -0.015
(0.050) (0.031) (0.033) (0.024) (0.006)
Compressed concurrent 0.013 -0.014 0.129%* -0.036* -0.008
(0.022) (0.016) (0.032) (0.015) (0.005)
Dev-ed support course instructor characteristics
0.015 -0.006 0.006 0.009 0.001
Female
(0.011) (0.007) (0.004) (0.005) (0.002)
Race (Ref. White)
Black -0.003 0.000 0.000 0.004 0.000
(0.017) (0.012) (0.007) (0.008) (0.005)
Hispanic 0.024 -0.016 -0.009 -0.008 -0.007
(0.017) (0.011) (0.006) (0.009) (0.004)
Asian -0.017 0.005 0.002 0.010 -0.008
(0.016) (0.007) (0.007) (0.009) (0.007)
Other -0.064*** 0.031%* -0.016 0.001 -0.016

(0.018) (0.015) (0.011) (0.010) (0.012)




College-Level Math Course Persistence and Transfer

Persistence into Persistence into Transfer to a 4-

Passed Withdrew the subsequent  the subsequent year institution
the course  from the course semester year within 1 year
AME AME AME AME AME
Variable (SE) (SE) (SE) (SE) (SE)
Age 0.000 0.000 0.000 0.000 0.000%*
(0.000) (0.000) (0.000) (0.000) (0.000)
Faculty type (Ref. Tenured)
Tenure-track 0.041 -0.035 -0.009 0.011 -0.011
(0.036) (0.022) (0.011) (0.014) (0.007)
Full-time non-tenure-track 0.047** -0.037%* -0.005 -0.011 0.009
(0.018) (0.012) (0.008) (0.011) (0.006)
Part-time non-tenure-track 0.048 -0.025 -0.021 -0.015 -0.007
(0.026) (0.017) (0.014) (0.016) (0.011)
Unknown 0.058%* -0.049%** -0.005 0.006 0.003
(0.027) (0.017) (0.010) (0.013) (0.006)
Highest education level (Ref.
No degree)
Doctoral degree 0.004 0.005 0.005 -0.019 -0.002
(0.029) (0.023) (0.024) (0.028) (0.008)
Master’s degree 0.002 -0.001 0.004 -0.012 0.002
(0.023) (0.022) (0.023) (0.023) (0.006)
Bachelor’s degree 0.002 0.002 0.010 0.000 0.000
(0.026) (0.023) (0.023) (0.025) (0.007)
0.014 0.005 -0.050 -0.015 -0.013

Associate degree (0.035) (0.054) (0.042) (0.035) (0.016)
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College-Level Math Course Persistence and Transfer
Persistence into Persistence into Transfer to a 4-
Passed Withdrew the subsequent  the subsequent year institution
the course  from the course semester year within 1 year
AME AME AME AME AME
Variable (SE) (SE) (SE) (SE) (SE)
Calculated 9-month salary 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)
Sample Size 70,026 70,019 70,026 52,307 52,029

Notes. Table presents full logistic regression results, where each column represents a separate logistic regression model. All
models included the following student characteristics: gender, race/ethnicity, age, major, financial aid application, Pell grant
recipient, enrollment intensity, first time in college, and a z-score for their math placement test score. All models also included
semester and college fixed effects and used robust standard errors clustered by semester and college. We present average marginal
effects (AME) and standard errors (SE) for each covariate included in the binary logistic regression models. For statistical
significance tests, we rely on raw p values in the table. To adjust for multiple comparisons across regression models, we also
estimated Benjamini et al.’s (2006) sharpened g values, following guidance from Anderson (2008), and present the results in
Appendix D. The first three analyses included the entire sample, and the subsequent analyses excluded students in spring 2020
from the analytic sample because the follow-up data has not yet been released to capture outcomes after 1 year. The sample size
across outcomes varies slightly because of the inclusion of both semester and college fixed effects, where some colleges with no
variation in a given outcome (e.g., course withdrawal and transfer) during a given term were dropped from those analyses. For
ease of interpretation, the sample means for the outcomes of interest in each of the five regressions are: passed college math:
0.613; withdrew from college math: 0.171; persistence next semester: 0.741; persistence next year: 0.558; transfer: 0.047.

2 “Passed the college-level math course” is included as an independent variable only in regressions on persistence and transfer
outcomes.

*p <.05,"p <.01,™p<.001.



Table Al. Description of Variables

Appendix A: Description of Variables and Samples

Variable

Description

Analytic Sample

All Students
[1]

Students Who Passed

College Math
[2]

Dependent Variables
College-level math course
Passed the course
Withdrew from the course

Grade

Dev-ed math course
Passed the course

Withdrew from the course

Numerical grade

Indicates whether the student passed college-level
math, including grades of A, B, C, D, or P (for Pass)
Indicates whether the student withdrew from
college-level math

Numerical grade on a 4-point scale, college math

Indicates whether the student passed dev-ed math
(A, B, C,D,orP)

Indicates whether the student withdrew from dev-ed
math

Numerical grade on a 4-point scale, dev-ed math

Course enrollment in the subsequent semester

Enrolled in any college-level
math
Enrolled in entry-level math

Enrolled in advanced math
Persistence and transfer

Persistence into the subsequent
semester

Indicates whether the student enrolled in any
college-level math in the following term

Indicates whether the student enrolled in entry-level
math in the following term

Indicates whether the student enrolled in advanced-
level math in the following term

Indicates whether the student continued to enroll in
any courses in the following term

0.613 (0.487)
0.171 (0.377)

1.943 (1.423)

0.649 (0.477)
0.154 (0.361)

2.218 (1.493)

0.143 (0.351)
0.087 (0.282)

0.055 (0.228)

0.741 (0.438)

2,607 (0.993)

0.934 (0.249)
0.001 (0.032)

2.850 (1.106)

0.147 (0.354)
0.058 (0.233)

0.088 (0.283)

0.858 (0.349)




Variable

Description

Analytic Sample

All Students
[1]

Students Who Passed

College Math
[2]

Persistence into the subsequent

year

Transfer to a 4-year institution

within 1 year

Indicates whether the student continued to enroll in

any courses throughout the following year

Indicates whether the student transferred to a 4-year

institution within the following year

Major switching in the subsequent semester

Switched out of a broad major

field
Entered STEM

Independent Variables
Student characteristics
Female
Race
White
Black
Hispanic
Asian
Other
Age
Broad major field
Humanities, Liberal Arts,
and General Studies
Social and Behavior
Sciences
STEM

Indicates whether the student changed a broad major

field in the following term

Indicates whether the student changed from a non-

STEM major filed to a STEM major field in the
following term

Identifies as female

Identifies as White, non-Hispanic

Identifies as Black, non-Hispanic

Identifies as Hispanic

Identifies as Asian, non-Hispanic

Identifies as Other race, non-Hispanic

Age at corequisite course enrollment

Eight classification for broad major fields
Majors in Humanities, Liberal Arts, and General
Studies

Majors in Social and Behavior Sciences

Majors in STEM

0.558 (0.497)

0.047 (0.212)

0.116 (0.321)

0.017 (0.490)

0.598 (0.490)

0.284 (0.451)
0.147 (0.354)
0.494 (0.500)
0.021 (0.144)
0.054 (0.225)

21.250 (5.871)

0.493 (0.500)
0.049 (0.215)

0.126 (0.332)

0.691 (0.462)

0.061 (0.240)

0.114 (0.318)

0.017 (0.129)

0.630 (0.483)

0.294 (0.456)
0.126 (0.332)
0.501 (0.500)
0.025 (0.155)
0.055 (0.227)
21.411 (6.068)

0.497 (0.500)
0.051 (0.220)

0.127 (0.333)




Analytic Sample

Students Who Passed
All Students College Math
Variable Description [1] [2]
Education Majors in Education 0.070 (0.254) 0.070 (0.254)
Business Majors in Business 0.094 (0.292) 0.088 (0.283)
Health Majors in Health 0.081 (0.272) 0.082 (0.275)
Industry/Agngulture/ Majors in Industry/Agriculture/Manufacturing/ 0.038 (0.191) 0.039 (0.194)
Manufacturing/ .
. Construction
Construction

Service Oriented
Financial aid applicant

Pell grant recipient
Full-time enrollment
First year of college

Math placement test z-score
(any test)

Majors in Service Oriented

Indicates whether the student ever filed for federal
or state student aid

Indicates whether the student ever received Pell
Grant

Indicates whether the student enrolled full time in
the current semester

Indicates whether the student was in the first year of
college

Constructed z-score by test type (e.g., TSI,
ACCUPLACER, COMPASS) and semester of
student’s test results among all students in all Texas
public postsecondary institutions

College-level course characteristics

Class size
Mixed ability

Instruction modality
Face-to-face
Online
Hybrid

The number of students enrolled in the college-level
math course

Indicates whether class included students assessed
as college ready and below college ready

The college-level math course was taught in person
The college-level math course was taught online
The college-level math course was taught hybrid

0.049 (0.216)
0.819 (0.385)

0.576 (0.494)
0.597 (0.490)
0.458 (0.498)

0.000 (1.000)

20.658 (7.930)
0.244 (0.430)
0.900 (0.300)

0.086 (0.281)
0.014 (0.116)

0.046 (0.209)
0.821 (0.383)

0.569 (0.495)
0.611 (0.488)
0.458 (0.498)

0.070 (0.985)

20.729 (7.883)
0.245 (0.430)
0.910 (0.286)

0.076 (0.265)
0.014 (0.118)




Analytic Sample

Students Who Passed
All Students College Math
Variable Description [1] [2]
Math pathway
Algebra College algebra course 0.508 (0.500) 0.507 (0.500)
Math for business Math for business course 0.119 (0.324) 0.109 (0.312)
Quant reasoning Quantitative reasoning course 0.215(0.411) 0.236 (0.425)

Statistics

Introductory statistics course

Dev-ed support course characteristics

Class size
Number of credits
Lecture section
Instruction modality
Face-to-face
Online
Hybrid

Same-instructor
Dev-ed course type
Boot camp prerequisite

Embedded prerequisite

Compressed concurrent

Full-term concurrent

The number of students enrolled, dev-ed math
Credit hours, dev-ed math
The dev-ed math support course is lecture-based

The dev-ed math course was taught in person

The dev-ed math course was taught online

The dev-ed math course was taught hybrid (mix of
in-person and online)

The dev-ed math course taught by same instructor as
college-level math course

Less-than-2-week dev-ed course taken within same
semester as, but before, students enroll in the
college-level course

Dev-ed math that occurs within the same semester
as, but before, students enroll in the college-level
course

Dev-ed math course taken at same time as college-
level course but duration is under 12 weeks
Dev-ed math course taken at same time and more
same duration as college-level course

0.159 (0.365)

22.827 (15.640)

2.234 (0.984)
0.826 (0.379)

0.907 (0.290)
0.081 (0.272)
0.012 (0.108)

0.629 (0.483)

0.001 (0.035)

0.032 (0.176)

0.043 (0.202)

0.924 (0.265)

0.148 (0.355)

22.847 (15.497)
2.222 (1.002)
0.824 (0.381)
0.917 (0.275)
0.071 (0.257)
0.012 (0.108)

0.633 (0.482)

0.001 (0.035)

0.036 (0.186)

0.045 (0.207)

0.918 (0.275)




Analytic Sample

Students Who Passed
All Students College Math
Variable Description [1] [2]
Dev-ed support course instructor characteristics
Female Identifies as female 0.589 (0.492) 0.593 (0.491)
Race
White Identifies as White, non-Hispanic 0.634 (0.482) 0.629 (0.483)
Black Identifies as Black, non-Hispanic 0.073 (0.260) 0.075 (0.263)
Hispanic Identifies as Hispanic 0.182 (0.386) 0.192 (0.394)
Asian Identifies as Asian, non-Hispanic 0.078 (0.268) 0.074 (0.262)
Other Identifies as Other race, non-Hispanic 0.033 (0.179) 0.030 (0.170)
Age Age at the time of teaching 49.803 (12.247) 49.805 (12.104)
Faculty type
Tenured Full or associate professor with tenure 0.105 (0.307) 0.103 (0.304)

Tenure-track

Full-time non-tenure-track
Part-time non-tenure-track
Unknown

Highest education level
Doctorate degree
Master’s degree
Bachelor’s degree
Associate degree
No degree

Calculated 9-month salary

Assistant professor, tenure-track

Full-time non-tenure-track faculty

Part-time non-tenure-track faculty

Faculty in colleges without ranking system and no
other information on faculty type

Doctoral degree or equivalent

Master’s degree

Bachelor’s degree

Associate degree or certificate

No college degree

The calculated 9-month salary based on the length
of employment contract and total salary

0.043 (0.204)
0.541 (0.498)
0.203 (0.403)
0.107 (0.309)

0.073 (0.261)
0.756 (0.429)
0.157 (0.364)
0.002 (0.042)
0.011 (0.105)
$47,415.24
($22,019.57)

0.044 (0.204)
0.546 (0.498)
0.203 (0.402)
0.105 (0.306)

0.072 (0.258)
0.754 (0.431)
0.162 (0.368)
0.002 (0.044)
0.010 (0.101)
$47,287.47
($22,051.62)

Notes. All student N = 69,301; Students who passed college-level math N = 42,482. The table describes analytic variables and presents means and
standard deviations (SD), reported at the student level. It includes several additional outcome variables (aligned with those in Appendix B),
including dev-ed course, subsequent math course, and major switching outcomes. Columns [1] and [2] show results for all students and students
who passed college-level math, respectively, where [1] corresponds to the analytic sample in the main paper and [2] corresponds to the results for
the restricted analytic sample used to examine subsequent math course-taking outcomes in Appendix B (Table B2).



Appendix B: Regression Results from Additional Outcomes

In our main results, we presented logistic regression estimating the relationship between
corequisite math coursework characteristics and student outcomes, such as college-level course
completion patterns, continued college attendance, and vertical transfer. Here, we include
regression results from several additional outcomes, including dev-ed math course outcomes,
subsequent math course enrollment, and major switching in the following semester. Table B1
presents regression results from additional corequisite course-level outcomes: college-level math
course grade, dev-ed course passing, dev-ed course withdrawal, and dev-ed course grade. For the
course grade outcomes, students earned whole letter grades ranging from 0 (F) to 4 (A). We
fitted OLS regression models and ordered logistic regression models (because the outcome was
ultimately in 5 ordinal categories) to examine how corequisite course structures predict course
grades. We found very similar results across the two approaches and ultimately present those
from the OLS regression modeling (an approach referred to as a linear probability model) for
ease of interpretability. In Table B2, we present additional logistic regression results for math
course taking and major-switching patterns in the subsequent semester. In our analyses across
additional outcomes, we used the same predictive variables as in the main results tables.



Table B1. Regression Model Predicting Additional Course-Level Outcomes

College-Level

Math Course Dev-Ed Math Course
Withdrew from
Grade Grade Passed the course the course
Coefficient Coefficient AME AME
Variable (SE) (SE) (SE) (SE)
College-level course characteristics
Class size 0.006** 0.006 -0.001 -0.001
(0.002) (0.004) (0.001) (0.001)
Mixed ability 0.074 0.080 0.023* -0.006
(0.044) (0.060) (0.011) (0.007)
Instruction modality (Ref. Face-to-face)
Online -0.179* 0.041 -0.042 0.024
(0.085) (0.090) (0.025) (0.018)
Hybrid -0.050 0.386* 0.103** -0.069**
(0.104) (0.151) (0.035) (0.021)
Math pathway (Ref. Algebra)
Math for business 0.040 -0.039 0.003 0.000
(0.045) (0.049) (0.012) (0.017)
Quant reasoning (0.233 %% 0.095 0.084 % -0.073%**
(0.047) (0.049) (0.011) (0.007)
Statistics 0.002 0.031 0.009 -0.016
(0.051) (0.036) (0.012) (0.008)
Dev-ed support course characteristics
Class size -0.001 -0.005 0.002* 0.000
(0.001) (0.003) (0.001) (0.000)
Number of credits 0.027 0.212 0.030%** -0.010*
(0.024) (0.120) (0.007) (0.004)
Lecture section -0.064 0.011 -0.039 0.003
(0.068) (0.084) (0.037) (0.014)




College-Level

Math Course Dev-Ed Math Course
Withdrew from
Grade Grade Passed the course the course
Coefticient Coefticient AME AME
Variable (SE) (SE) (SE) (SE)
Instruction modality (Ref. Face-to-face)
Online -0.232%* -0.253** -0.080%*** 0.023
(0.075) (0.094) (0.024) (0.017)
Hybrid -0.229%* -0.574%** -0.203%*** 0.099**
(0.076) (0.111) (0.054) (0.038)
Same-instructor 0.125%** 0.219%** 0.011 0.002
(0.041) (0.073) (0.010) (0.007)
Dev-ed course type (Ref. Full-term
concurrent)
Boot camp prerequisite 0.023 -2.149%** 0.213 -0.141%**
(0.180) (0.358) (0.084) (0.010)
Embedded prerequisite -0.163 -0.011 0.160 -0.159%**
(0.105) (0.135) (0.079) (0.002)
Compressed concurrent -0.019 -0.135%* 0.010 -0.035%*
(0.088) (0.067) (0.030) (0.011)
Dev-ed support course instructor characteristics
Female 0.033 0.020 0.020 -0.002
(0.033) (0.039) (0.012) (0.006)
Race (Ref. White)
Black -0.028 -0.012 0.000 -0.004
(0.046) (0.064) (0.015) (0.010)
Hispanic 0.117* -0.009 0.017 -0.014
(0.052) (0.059) (0.017) (0.010)
Asian -0.045 -0.036 -0.030** 0.012
(0.058) (0.058) (0.010) (0.008)




College-Level

Math Course Dev-Ed Math Course
Withdrew from
Grade Grade Passed the course the course
Coefticient Coefticient AME AME
Variable (SE) (SE) (SE) (SE)
Other -0.176** -0.139%* -0.041* 0.039%**
(0.054) (0.061) (0.018) (0.015)
Age 0.001 0.001 0.000 0.000
(0.001) (0.002) (0.000) (0.000)
Faculty type (Ref. Tenured)
Tenure-track 0.168 0.019 0.039 -0.027
(0.121) (0.114) (0.032) (0.023)
Full-time non-tenure-track 0.159* 0.027 0.042%* -0.040%**
(0.063) (0.051) (0.019) (0.013)
Part-time non-tenure-track 0.208* 0.006 0.032 -0.036*
(0.093) (0.075) (0.027) (0.017)
Unknown 0.264** 0.067 0.059* -0.054***
(0.086) (0.110) (0.026) (0.016)
Highest education level (Ref. No degree)
Doctorate degree 0.154 0.083 0.024 0.018
(0.085) (0.104) (0.036) (0.021)
Master’s degree 0.114 0.073 0.017 0.012
(0.064) (0.071) (0.032) (0.019)
Bachelor’s degree 0.132 0.120 0.020 0.008
(0.078) (0.088) (0.034) (0.020)
Associate degree 0.203 0.270 0.077 -0.024
(0.180) (0.140) (0.050) (0.057)
Calculated 9-month salary 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)
Sample Size 57,396 42,743 68,482 68,672

Notes. Table presents regression results, where each column represents a separate regression model. We used OLS regression for numerical letter
grades captured on a 4-point scale (The top grade is an A which equals 4, the lowest grade is a F which equals 0, and the other grades are B, C, and



D.) and logistic regression for course passing and withdrawing. All models included the following student characteristics: gender, race/ethnicity,
age, major, financial aid application, Pell grant recipient, enrollment intensity, first time in college, and a z-score for their math placement test
score. All models also included semester and college fixed effects and used robust standard errors clustered by semester and college. We present
average marginal effects (AME) and standard errors (SE) for each covariate included in the binary logistic regression models. The first two
analyses included students who earned numerical course grades and the subsequent analyses included the entire sample. The sample size across
outcomes varies slightly due to the inclusion of both semester and college fixed effects, where some colleges with no variation in a given outcome
during a given term were dropped from those analyses. For ease of interpretation of the sample mean for the outcomes of interest in each of the
four regressions are: Grade in college math: 1.943; grade in dev-ed math: 2.218; passed dev-ed math: 0.649; withdrew from dev-ed math: 0.154.
*p <.05,"p <.01,™p<.001.



Table B2. Regression Model Predicting Course Enrollment and Major Switching in the Subsequent Semester

Variable

Course Enrollment in the Subsequent Semester

Major Switching in the
Subsequent Semester

Enrolled in
any college-

Enrolled in

Enrolled in

Switched out
of a broad

Passed the college-level math course?

College-level course characteristics

Class size

Mixed ability

Instruction modality (Ref. Face-to-face)
Online
Hybrid

Math pathway (Ref. Algebra)
Math for business

Quant reasoning

Statistics

Dev-ed support course characteristics

Class size

level math entry-level math advanced math major field Entered STEM
AME AME AME AME AME
(SE) (SE) (SE) (SE) (SE)
-0.009* 0.001
(0.004) (0.002)
0.000 0.000 0.000 -0.001* 0.000
(0.001) (0.000) (0.001) (0.000) (0.000)
0.003 0.002 0.001 -0.003 0.003
(0.009) (0.005) (0.007) (0.0006) (0.003)
-0.015 -0.019* 0.002 0.001 0.002
(0.022) (0.007) (0.017) (0.010) (0.004)
0.106 0.035 0.074 0.012 0.006
(0.081) (0.027) (0.081) (0.024) (0.019)
0.053 -0.021%** 0.072 -0.011 -0.016%***
(0.037) (0.007) (0.044) (0.0006) (0.003)
-0.112%** -0.006 -0.109%** -0.012 -0.013***
(0.012) (0.007) (0.007) (0.0006) (0.002)
-0.109*** -0.006 -0.109%*** -0.006 -0.010*
(0.010) (0.004) (0.0006) (0.0006) (0.004)
0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)




Course Enrollment in the Subsequent Semester

Major Switching in the
Subsequent Semester

Enrolled in

Switched out

any college- Enrolled in Enrolled in of a broad
level math entry-level math advanced math major field Entered STEM
AME AME AME AME AME
Variable (SE) (SE) (SE) (SE) (SE)
Number of credits -0.002 0.000 -0.003 0.003 0.001
(0.005) (0.002) (0.004) (0.004) (0.002)
Lecture section 0.001 0.012* -0.004 -0.020 -0.002
(0.025) (0.006) (0.024) (0.014) (0.003)
Instruction modality (Ref. Face-to-face)
Online 0.035 0.048*** -0.001 0.000 -0.003
(0.026) (0.016) (0.015) (0.011) (0.003)
Hybrid -0.001 -0.009 0.010 -0.031* -0.008
(0.026) (0.015) (0.023) (0.014) (0.008)
Same-instructor 0.004 -0.004 0.004 -0.002 -0.001
(0.010) (0.004) (0.007) (0.005) (0.002)
Dev-ed course type (Ref. Full-term
concurrent)
Boot camp prerequisite 0.067 -0.025 0.101** -0.010 0.018
(0.054) (0.022) (0.046) (0.022) (0.022)
Embedded prerequisite 0.079 0.001 0.074* -0.022 0.000
(0.048) (0.005) (0.042) (0.017) (0.005)
Compressed concurrent 0.006 -0.010%* 0.015 0.012 0.000
(0.018) (0.004) (0.015) (0.017) (0.004)
Dev-ed support course instructor characteristics
0.003 -0.003 0.003 -0.004 -0.001
Female
(0.004) (0.003) (0.002) (0.004) (0.001)
Race (Ref. White)
Black 0.010 0.000 0.013 -0.009 -0.003
(0.009) (0.005) (0.008) (0.008) (0.002)




Course Enrollment in the Subsequent Semester

Major Switching in the
Subsequent Semester

Enrolled in

Switched out

any college- Enrolled in Enrolled in of a broad
level math entry-level math advanced math major field Entered STEM
AME AME AME AME AME
Variable (SE) (SE) (SE) (SE) (SE)
Hispanic -0.009 -0.001 -0.005 0.006 -0.001
(0.008) (0.003) (0.007) (0.006) (0.002)
Asian 0.001 0.001 0.003 -0.010 -0.002
(0.008) (0.005) (0.005) (0.008) (0.002)
Other 0.010 -0.006 0.019 -0.015 0.004
(0.011) (0.009) (0.011) (0.014) (0.007)
Age 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)
Faculty type (Ref. Tenured)
Tenure-track 0.013 -0.007 0.026 -0.013 0.001
(0.014) (0.012) (0.020) (0.011) (0.005)
Full-time non-tenure-track -0.021%** -0.020%** -0.007 0.010 -0.001
(0.006) (0.007) (0.006) (0.006) (0.003)
Part-time non-tenure-track -0.027%* -0.030%** -0.004 -0.004 0.003
(0.010) (0.009) (0.010) (0.011) (0.006)
Unknown -0.018 -0.020* -0.009 0.008 0.001
(0.010) (0.008) (0.014) (0.009) (0.004)
Highest education level (Ref. No degree)
Doctorate degree -0.019 -0.006 -0.025 -0.052%* -0.012
(0.016) (0.012) (0.021) (0.021) (0.011)
Master’s degree -0.008 -0.006 -0.015 -0.051** -0.010
(0.014) (0.010) (0.019) (0.021) (0.010)
Bachelor’s degree -0.002 -0.006 -0.011 -0.051** -0.012
(0.015) (0.011) (0.019) (0.022) (0.010)
Associate degree -0.089* -0.033 -0.070* -0.014 -0.013
(0.033) (0.030) (0.025) (0.021) (0.012)




Course Enrollment in the Subsequent Semester

Major Switching in the
Subsequent Semester

Enrolled in

Switched out

any college- Enrolled in Enrolled in of a broad
level math entry-level math advanced math major field Entered STEM
AME AME AME AME AME
Variable (SE) (SE) (SE) (SE) (SE)
Calculated 9-month salary 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)
Sample Size 42,896 42,876 42,851 51,891 44,668

Notes. Table presents logistic regression results, where each column represents a separate logistic regression model. All models included the
following student characteristics: gender, race/ethnicity, age, major, financial aid application, Pell grant recipient, enrollment intensity, first time in
college, and a z-score for their math placement test score. All models also included semester and college fixed effects and used robust standard
errors clustered by semester and college. We present average marginal effects (AME) and standard errors (SE) for each covariate included in the
binary logistic regression models. The first three analyses included a subset of the main analytic sample comprised of students who passed college
math (these students were most appropriate for examining subsequent math course enrollment). The fourth and fifth analyses included only
students who continued to enroll in college in the subsequent semester, where the fifth analysis also focuses only on students who initially majored
in non-STEM fields (most appropriate for capturing major movement from non-STEM to STEM). The sample size across outcomes also varies
slightly due to the inclusion of both semester and college fixed effects, where some colleges with no variation in a given outcome during a given
term were dropped from those analyses. For ease of interpretation of the sample mean for the outcomes of interest in each of the five regressions
are: Enrolled in any college math: 0.143; enrolled in entry-level college math: 0.087; Enrolled in advanced math: 0.055; switched out of a broad
major field: 0.116; entered STEM: 0.017.

 “Passed the college-level math course” is included as an independent variable only in regressions on major switching outcomes.

p <.05,%p<.01,"p<.00l.



Appendix C: Regression Results Without Conditioning on Test Scores

In the paper, we presented the regression results for the main analytic sample, where inclusion in
the analytic sample was conditional on students having placement test scores in math. In Table
C1 and C2, we present the results for both the main analytic sample (those with test scores,
which allowed us to include test score in the regression model) and the full sample (those with
and without test scores) to inform readers of how the exclusion of students without test scores
from the analysis might change the estimated relationship between corequisite math coursework
characteristics and student outcomes. The results show some differences in results obtained using
our preferred analytic sample and model (sample inclusion conditional on having a placement
test score and model specification controls for test score) and the full analytic sample, which is
not conditional on having a placement test and therefore does not control for test scores.

When we no longer restrict the sample to students with a placement test score, the sample size
increases from 70,026 to 104,179 (note that analytic samples differ slightly across
models/outcomes). In Table C1 and C2, we highlight in green the differences in statistically
significant results across models performed on the conditional and full sample. In some cases,
results that appeared significant in the preferred conditional sample are not significant in the full
sample. For example, for the passing college math outcome, the credit hours of the dev-ed
section were associated with an increased probability of passing the college-level math course in
our preferred model, but the relationship was not significant in the results for the full sample. It
is difficult to say whether the differences in the observed relationship are due to the change in the
sample or because the variable of interest—in this case, credits in dev-ed—is correlated with an
omitted variable that would otherwise capture individual ability (in our preferred model, test
score is a proxy for math ability/performance). Both explanations seem plausible because
removing the inclusion criteria increased the sample size by a third (and students without test
scores likely systematically differ from those with scores, though we cannot say precisely how)
and the number of credits in dev-ed support are likely determined by students’ performance on
the math placement test.

Because restricting the sample to only students with math placement scores substantially reduces
the sample, we anticipate it may reduce our statistical power compared with capturing the full
sample. Some of the differences in results suggest that could be the case. For example, in
predicting both persistence into the next semester and vertical transfer, the results for the full
sample suggest that taking hybrid and online courses—compared with face-to-face courses—
positively predict the outcomes, whereas the results from the analytic sample conditional on test
scores yield no significant relationship. Both the hybrid and online sections had smaller cell sizes,
so it does seem plausible that increasing the sample size by approximately a third could improve
our power to detect a statistically significant results. Unfortunately, since we do not have another
proxy of individual ability or prior achievement in math to use as a statistical control in the full
sample, we prefer to focus on the more comprehensive model, which includes the placement test
score (and necessitates restricting the sample base on having a test score). Ultimately, despite the
sacrifice in sample size and statistical power, we prefer to capture a measure of prior math ability,
as it is important for predicting the outcomes, particularly immediate outcomes in the college-
level math course.



Table C1. Comparison of Regression Models Predicting Outcomes of Corequisite College-Level Math Course: Preferred
Analytic Sample Conditional on Math Placement Test Scores Versus Full Sample (No Test Scores)

College-Level Math Course Outcomes

Passed the course

Withdrew from the course

Conditional on test
score

Full sample, no test
score

Conditional on test
score

Full sample, no test
score

AME AME AME AME
Variable (SE) (SE) (SE) (SE)
College-Level Course Characteristics
Class size 0.002** 0.001 -0.002%%*%* -0.001*
(0.001) (0.001) (0.001) (0.000)
: . 0.029* 0.030** -0.012 -0.014
Mixed ability (0.013) (0.012) (0.007) (0.007)
Instruction modality (Ref. Face-to-face)
Online -0.080** -0.086*** 0.014 0.022
(0.029) (0.025) (0.014) (0.013)
Hybrid 0.070 0.057 -0.085%* -0.082%**
(0.043) (0.037) (0.021) (0.017)
Math pathway (Ref. Algebra)
. -0.003 -0.007 0.004 0.006
Math for Business (0.016) (0.015) (0.017) (0.014)
. 0.107*** 0.089%** -0.080*** -0.070%***
Quant reasoning (0.013) (0.012) (0.006) (0.005)
Statistics 0.005 -0.011 -0.016%* -0.007
(0.015) (0.012) (0.008) (0.007)
Dev-Ed Support Course Characteristics
Class size 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)
Number of credits 0.016* 0.010 -0.011%* -0.008*
(0.008) (0.008) (0.004) (0.004)
Lecture section 0.017 0.019 -0.037* -0.024
(0.024) (0.019) (0.018) (0.015)




College-Level Math Course Outcomes

Passed the course

Withdrew from the course

Conditional on test ~ Full sample, no test

SCOore

SCore

Conditional on test
score

Full sample, no test
score

AME AME AME AME
Variable (SE) (SE) (SE) (SE)
Instruction modality (Ref. Face-to-face)
Online -0.054* -0.049* 0.028%* 0.035%*
(0.026) (0.024) (0.014) (0.016)
Hybrid -0.127%%* -0.122%%* 0.112%%* 0.132%**
(0.032) (0.029) (0.034) (0.030)
Same-instructor for paired courses 0.037* 0.043** -0.019* -0.020*
(0.015) (0.015) (0.009) (0.009)
Dev-ed course type (Ref. Full-term
concurrent dev-ed)
Boot camp prerequisite 0.039 0.007 -0.064* -0.010
(0.041) (0.039) (0.026) (0.023)
. -0.007 -0.013 -0.032 -0.026
Embedded prerequisite (0.050) (0.039) (0.031) (0.028)
Compressed concurrent dev-ed 0.013 0.005 -0.014 “0.016
(0.022) (0.025) (0.016) (0.016)
Dev-Ed Support Course Instructor Characteristics
Female 0.015 0.008 -0.006 0.001
(0.011) (0.010) (0.007) (0.007)
Race (Ref. White, non-Hispanic)
Black, non-Hispanic -0.003 -0.005 0.000 0.004
’ (0.017) (0.012) (0.012) (0.009)
Hispanic 0.024 0.023 -0.016 -0.013
(0.017) (0.015) (0.011) (0.009)
Asian, non-Hispanic -0.017 -0.022 0.005 0.010
’ (0.016) (0.012) (0.007) (0.007)
Other races, non-Hispanic -0.064% -0.057%* 0.031* 0.028
’ (0.018) (0.016) (0.015) (0.012)




College-Level Math Course Outcomes

Passed the course

Withdrew from the course

Conditional on test ~ Full sample, no test ~ Conditional on test ~ Full sample, no test
score score score score
AME AME AME AME
Variable (SE) (SE) (SE) (SE)
Age 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)
Faculty type (Ref. Tenured)
Tenure-track 0.041 0.037 -0.035 -0.031
(0.036) (0.029) (0.022) (0.018)
Full-time non-tenure-track 0.047* 0.033* -0.037%% -0.025%
(0.018) (0.015) (0.012) (0.010)
Part-time non-tenure-track 0.048 0.024 -0.025 -0.010
(0.026) (0.020) (0.017) (0.014)
Unknown 0.058%* 0.035 -0.049** -0.031*
(0.027) (0.022) (0.017) (0.014)
Highest education level (Ref. No degree)
Doctorate degree 0.004 -0.035 0.005 0.018
(0.029) (0.023) (0.023) (0.016)
Master’s degree 0.002 -0.040* -0.001 0.018
(0.023) (0.018) (0.022) (0.013)
Bachelor’s degree 0.002 -0.037 0.002 0.017
(0.026) (0.020) (0.023) (0.015)
Associate degree 0.014 -0.014 0.005 -0.001
(0.035) (0.052) (0.054) (0.037)
0.000 0.000 0.000 0.000
Calculated 9-month salary (0.000) (0.000) (0.000) (0.000)
Sample Size 70,026 104,179 70,019 104,169

Notes. Table presents full logistic regression results, where each column represents a separate logistic regression model. All models included
semester and college fixed effects and used robust standard errors clustered by semester and college. We present average marginal effects (AME)
and standard errors (SE) for each covariate included in the binary logistic regression models. For each outcome, we present results from our
preferred model run on a restricted sample, conditional on students’ having a placement test score (which aligns with results from Table 2), and a



full sample, with no such restrictions. The first and third analyses—performed on the restricted sample—include z-scores for students’ math
placement test score and the second and fourth analyses do not include students’ math placement test score (because not all students had a test
score). The sample size across outcomes varies slightly due to the inclusion of both semester and college fixed effects, where some colleges with
no variation in a given outcome (e.g., course withdrawal) during a given term were dropped from those analyses. Differences in significant results
across the restricted and full analytic samples are highlighted in green. For ease of interpretation, the sample means for the outcomes of interest in
each of the five regressions are: passed college math — with test scores: 0.613, without test scores: 0.609; withdrew from college math — with test
scores: 0.171, without test scores: 0.172.

*p <.05,"p<.01,™p<.001.



Table C2. Comparison of Regression Models Predicting Persistence and Transfer Outcomes: Preferred Analytic Sample
Conditional on Math Placement Test Scores Versus Full Sample (No Test Scores)

Persistence

Transfer

Persistence into the
subsequent semester

Persistence into the
subsequent year

Transfer to a 4-year institution

within 1 year

Conditional ~ Full Sample, Conditional Full sample,  Conditional  Full sample,
on test score  no test score on test score no test score  on test score  no test score
AME AME AME AME AME AME
Variable (SE) (SE) (SE) (SE) (SE) (SE)
Passed the college-level math course LGN LS 0.342°%% 0.335%*= 0.038 **= 0.040%*
(0.006) (0.006) (0.007) (0.007) (0.003) (0.002)
College-Level Course Characteristics
. 0.000 0.001 0.000 0.000 0.000 0.000
Class size
(0.000) (0.000) (0.001) (0.001) (0.000) (0.000)
Mixed ability 0.006 -0.002 0.014 0.009 -0.002 -0.001
(0.009) (0.009) (0.014) (0.012) (0.005) (0.003)
Instruction modality (Ref. Face-to-
face)
Online -0.011 -0.004 -0.014 -0.017 0.009 0.012**
(0.012) (0.009) (0.017) (0.013) (0.007) (0.005)
Hybrid 0.019 0.036* 0.017 0.012 0.001 -0.011
(0.024) (0.016) (0.030) (0.027) (0.017) (0.012)
Math pathway (Ref. Algebra)
Math for Business 0.014* 0.012* 0.005 0.010 0.007 0.009%*
(0.006) (0.006) (0.008) (0.007) (0.005) (0.004)
Quant reasoning -0.048%** -0.044%** -0.066%** -0.064*** -0.014%** -0.013%**
(0.008) (0.007) (0.011) (0.009) (0.004) (0.004)
Statistics -0.012 -0.005 -0.028%** -0.020%** -0.001 -0.004
(0.007) (0.006) (0.008) (0.007) (0.004) (0.003)
Dev-Ed Support Course Characteristics
Class size 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)




Persistence

Transfer

Persistence into the
subsequent semester

Persistence into the
subsequent year

Transfer to a 4-year institution

within 1 year

Conditional ~ Full Sample, Conditional Full sample,  Conditional  Full sample,
on test score  no test score on test score no test score  on test score  no test score
AME AME AME AME AME AME
Variable (SE) (SE) (SE) (SE) (SE) (SE)
Number of credits -0.013 -0.015* -0.014 -0.013 0.000 -0.003
(0.008) (0.007) (0.008) (0.007) (0.003) (0.002)
Lecture section -0.002 0.013 -0.015 -0.002 0.002 0.001
(0.012) (0.011) (0.014) (0.012) (0.006) (0.005)
Instruction modality (Ref. Face-to-
face)
Online 0.014 0.014 0.009 0.017 0.006 0.003
(0.012) (0.010) (0.017) (0.013) (0.007) (0.005)
Hybrid -0.012 -0.011 0.040 0.034 0.019 0.023
(0.019) (0.017) (0.027) (0.026) (0.019) (0.019)
Same-instructor for paired courses -0.010 -0.017 -0.008 -0.008 -0.001 -0.002
(0.012) (0.010) (0.014) (0.011) (0.003) (0.003)
Dev-ed course type (Ref. Full-term
concurrent dev-ed)
Boot camp prerequisite 0.028 0.067 -0.012 0.055 -0.033* -0.036**
(0.026) (0.033) (0.042) (0.033) (0.009) (0.005)
Embedded prerequisite 0.085%* 0.102%** 0.003 0.021 -0.015 -0.011*
(0.033) (0.033) (0.024) (0.023) (0.006) (0.004)
Compressed concurrent dev-ed 0.129** 0.140%** -0.036* -0.022 -0.008 -0.002
(0.032) (0.031) (0.015) (0.012) (0.005) (0.004)
Dev-Ed Support Course Instructor Characteristics
Female 0.006 0.004 0.009 0.006 0.001 0.000
(0.004) (0.004) (0.005) (0.005) (0.002) (0.002)
Race (Ref. White, non-Hispanic)
Black, non-Hispanic 0.000 -0.009 0.004 -0.004 0.000 -0.001
’ (0.007) (0.006) (0.008) (0.007) (0.005) (0.004)




Persistence

Transfer

Persistence into the
subsequent semester

Persistence into the
subsequent year

Transfer to a 4-year institution
within 1 year

Conditional ~ Full Sample, Conditional Full sample,  Conditional  Full sample,
on test score  no test score  on test score no test score  on test score  no test score
AME AME AME AME AME AME
Variable (SE) (SE) (SE) (SE) (SE) (SE)
Hispanic -0.009 -0.010 -0.008 -0.005 -0.007 -0.005
(0.006) (0.006) (0.009) (0.008) (0.004) (0.003)
Asian, non-Hispanic 0.002 -0.004 0.010 -0.003 -0.008 -0.009
’ (0.007) (0.006) (0.009) (0.009) (0.007) (0.006)
Other races, non-Hispanic -0.016 -0.018%* 0.001 -0.001 -0.016 -0.017
’ (0.011) (0.009) (0.010) (0.011) (0.012) (0.008)
Age 0.000 0.000 0.000 0.001* 0.000* 0.000*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Faculty type (Ref. Tenured)
Tenure-track -0.009 -0.010 0.011 0.007 -0.011 -0.009
(0.011) (0.012) (0.014) (0.011) (0.007) (0.007)
Full-time non-tenure-track -0.005 -0.009 -0.011 -0.009 0.009 0.008
(0.008) (0.006) (0.011) (0.008) (0.0006) (0.005)
Part-time non-tenure-track -0.021 -0.025%* -0.015 -0.014 -0.007 -0.005
(0.014) (0.010) (0.016) (0.011) (0.011) (0.008)
Unknown -0.005 -0.011 0.006 0.004 0.003 0.000
(0.010) (0.008) (0.013) (0.008) (0.0006) (0.005)
Highest education level (Ref. No
degree)
Doctorate degree 0.005 0.007 -0.019 -0.003 -0.002 -0.007
(0.024) (0.015) (0.028) (0.016) (0.008) (0.005)
Master’s degree 0.004 0.011 -0.012 0.005 0.002 -0.004
(0.023) (0.013) (0.023) (0.014) (0.0006) (0.004)
Bachelor’s degree 0.010 0.012 0.000 0.011 0.000 -0.004
(0.023) (0.014) (0.025) (0.015) (0.007) (0.004)




Persistence Transfer

Persistence into the Persistence into the Transfer to a 4-year institution
subsequent semester subsequent year within 1 year
Conditional ~ Full Sample, Conditional Full sample,  Conditional  Full sample,
on test score  no test score on test score no test score  on test score  no test score
AME AME AME AME AME AME
Variable (SE) (SE) (SE) (SE) (SE) (SE)
Associate degree -0.050 -0.024 -0.015 0.012 -0.013 -0.021
(0.042) (0.037) (0.035) (0.044) (0.016) (0.013)
Calculated 9-month salary 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Sample Size 70,026 104,179 52,307 76,423 52,029 76,189

Notes. Table presents full logistic regression results, where each column represents a separate logistic regression model. All models included
semester and college fixed effects and used robust standard errors clustered by semester and college. We present average marginal effects (AME)
and standard errors (SE) for each covariate included in the binary logistic regression models. For each outcome, we present results from our
preferred model run on a restricted sample, conditional on students’ having a placement test score (which aligns with results from Table 2), and a
full sample, with no such restrictions. The first, third, and fifth analyses—performed on the restricted sample—include z-scores for students’ math
placement test score and the second, fourth, and sixth analyses do not include the math placement test score (because not all students had a test
score). The sample size across outcomes varies slightly due to the inclusion of both semester and college fixed effects, where some colleges with
no variation in a given outcome (e.g., transfer) during a given term were dropped from those analyses. Differences in significant results across the
restricted and full analytic samples are highlighted in green. For ease of interpretation, the sample means for the outcomes of interest in each of the
five regressions are: persistence next semester — with test scores: 0.741, without test scores: 0.733; persistence next year — with test scores: 0.558,
without test scores: 0.545; transfer — with test scores: 0.047, without test scores: 0.046.

*p <.05,"p<.01,™p<.001.



Appendix D: Regression Results with Adjustment for Multiple Comparisons

In our main results presented in Table 2 of the paper, we presented logit model estimates for the
various outcomes regressed on a large number of corequisite course characteristic variables.
Given the large number of predictors and multiple outcome variables across our regression
models, we anticipate that performing multiple comparisons (or multiple statistical testing) could
increase the probability of false rejections where our significant findings might be due to chance.
To address the possible concern about over-rejection of the null hypothesis, we computed
sharpened ¢ values, which control for the false discovery rate (FDR) (i.e., the expected
proportion of rejections which are Type I errors), using a two-stage procedure proposed by
Benjamini et al. (2006)' and following Anderson’s (2008)? guidance for implementation in Stata.
The sharpened ¢ values—which are an analog to the original p values—represent the
probabilities of type I errors after adjustment for multiple testing, allowing us to offer a
significance level to describe the likelihood of a false statistically significant result. We present
the results of our analyses here, with ¢ values for our models presented side by side with the
original p values.

For the primary models presented in the paper, we identified two groups of analyses that used
distinct model specifications and outcome types; adjusting for multiple comparisons requires
adjusting the p values within those two groups. Group 1 includes college-level math course
outcomes (passed or withdrew from the course), where analyses for both outcomes used the
same model specification. We adjusted the p values for multiple comparisons and present the
results—including the original AMEs, SEs, and p values, and the newly calculated ¢ values—in
Table D1. Group 2 includes the models for the persistence and transfer outcomes, where the
regression model was distinct from the specification in Group 1 because it included “passed the
college-level math course” as an additional independent variable. For Group 2 models, Table D2
present unadjusted and adjusted p values (i.e., sharpened g values) along with AMEs and SEs.

We find our results are relatively robust to the adjustment. All estimates significant at p <.01 in
Table 2 of the main paper have sharpened ¢ values below .05, but some estimates significant at p
<.05 do not have sharpened g values below .05 (though most are marginally significant with ¢
values below .1). For example, the class size of the college-level course was positively
associated with passing the college-level math course (AME = .002, SE =.001, p =.004) and the
sharpened ¢ value for the class size remains significant at the 5 percent test level. The credit
hours of the dev-ed section also appeared to have a positive association with passing the college-
level math course (AME = .016, SE = .008, p = .039), but the association did not persist after
FDR adjustment (sharpened g value =.097). In Table D1 and D2, we highlight differences in
statistically significant results across unadjusted and adjusted p values in green, for readers’
convenience.

! Benjamini, Y., Krieger, A. M., & Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false
discovery rate. Biometrika, 93(3), 491-507.

2 Anderson M. L. (2008). Multiple inference and gender differences in the effects of early intervention: A
reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects. Journal of the American statistical
Association, 103(484), 1481-1495.



Table D1. Comparison of P Values in Regression Analyses for Outcomes of Corequisite
College-Level Math Course: Unadjusted P Value Versus Sharpened Q Value

College-Level Math Course

Passed the course Withdrew from the course
AME Unadjusted Sharpened AME Unadjusted Sharpened
Variable (SE) p value q value (SE) p value q value
College-level course characteristics
. 0.002 -0.002
Class size (0.001) 0.004 0.022 (0.001) <0.001 0.007
. o 0.029 -0.012
Mixed ability (0.013) 0.021 0.075 (0.007) 0.091 0.155
Instruction modality (Ref.
Face-to-face)
. -0.080 0.014
Online (0.029) 0.005 0.023 (0.014) 0.333 0.443
. 0.070 -0.085
Hybrid (0.043) 0.122 0.202 (0.021) 0.003 0.017
Math pathway (Ref.
Algebra)
. -0.003 0.004
Math for Business (0.016) 0.844 0.852 (0.017) 0.830 0.852
. 0.107 -0.080
Quant reasoning (0.013) <0.001 0.001 (0.006) <0.001 0.001
. 0.005 -0.016
Statistics (0.015) 0.731 0.791 (0.008) 0.049 0.107
Dev-ed support course characteristics
. 0.000 0.000
Class size (0.000) 0.916 0.852 (0.000) 0.608 0.683
. 0.016 -0.011
Number of credits (0.008) 0.039 0.097 (0.004) 0.002 0.016
. 0.017 -0.037
Lecture section (0.024) 0.498 0.532 (0.018) 0.030 0.093
Instruction modality (Ref.
Face-to-face)
. -0.054 0.028
Online (0.026) 0.033 0.094 (0.014) 0.043 0.102
. -0.127 0.112
Hybrid (0.032) <0.001 0.002 (0.034) <0.001 0.002
Same-instructor for paired 0.037 -0.019
COUTSES (0.015) 0.016 0.058 (0.009) 0.046 0.104
Dev-ed course type (Ref.
Full-term concurrent dev-
ed)
Boot camp prerequisite 0.039 0.343 0.443 -0.064 0.039 0.097

(0.041) (0.026)




College-Level Math Course

Passed the course

Withdrew from the course

AME Unadjusted Sharpened

AME Unadjusted Sharpened

Variable (SE) p value q value (SE) p value q value
Embedded prerequisite -0.007 0.888 0.852 -0.032 0.337 0.443
prereq (0.050) ' ' (0.031) ' '
Compressed concurrent 0.013 -0.014
devoed (0.022) 0.575 0.645 (0.016) 0.393 0.458
Dev-ed support course instructor characteristics
0.015 -0.006
Female (0.011) 0.152 0.231 (0.007) 0.380 0.457
Race (Ref. White, non-
Hispanic)
. . -0.003 0.000
Black, non-Hispanic (0.017) 0.848 0.852 (0.012) 0.983 0.852
. ) 0.024 -0.016
Hispanic (0.017) 0.174 0.252 (0.011) 0.162 0.239
. . . -0.017 0.005
Asian, non-Hispanic (0.016) 0.275 0.391 (0.007) 0.466 0.507
. . -0.064 0.031
Other races, non-Hispanic (0.018) <0.001 0.005 (0.015) 0.034 0.094
0.000 0.000
Age (0.000) 0.727 0.791 (0.000) 0.970 0.852
Faculty type (Ref. Tenured)
0.041 -0.035
Tenure-track (0.036) 0.260 0.381 (0.022) 0.128 0.203
. 0.047 -0.037
Full-time non-tenure-track (0.018) 0.009 0.037 (0.012) 0.002 0.014
. 0.048 -0.025
Part-time non-tenure-track (0.026) 0.064 0.125 (0.017) 0.144 0.225
0.058 -0.049
Unknown (0.027) 0.030 0.093 (0.017) 0.004 0.022
Highest education level (Ref.
No degree)
0.004 0.005
Doctorate degree (0.029) 0.881 0.852 (0.023) 0.818 0.852
, 0.002 -0.001
Master’s degree (0.023) 0.946 0.852 (0.022) 0.978 0.852
, 0.002 0.002
Bachelor’s degree (0.026) 0.949 0.852 (0.023) 0.941 0.852
. 0.014 0.005
Associate degree (0.035) 0.688 0.767 (0.054) 0.921 0.852
0.000 0.000
Calculated 9-month salary (0.000) 0.378 0.457 (0.000) 0.222 0.321
Sample Size 70,026 70,019




Notes. Table presents full logistic regression results, where each column represents a separate logistic
regression model. All models included semester and college fixed effects and used robust standard errors
clustered by semester and college. We present unadjusted p values and sharpened ¢ values together with
average marginal effects (AME) and standard errors (SE) for each covariate included in the binary
logistic regression models. The sample size across outcomes varies slightly due to the inclusion of both
semester and college fixed effects, where some colleges with no variation in a given outcome (e.g., course
withdrawal) during a given term were dropped from those analyses. Differences in significant results
across unadjusted p values and sharpened ¢ values are highlighted in green. For ease of interpretation, the

sample means for the outcomes of interest in each of the two regressions are: passed college math: 0.613;
withdrew from college math: 0.171.



Table D2. Comparison of P Values in Regression Analyses for College Outcomes: Unadjusted P Value Versus Sharpened Q

Value
Persistence and Transfer
Persistence into the subsequent  Persistence into the subsequent ~ Transfer to a 4-year institution
semester year within 1 year
AME Unadjusted Sharpened AME Unadjusted Sharpened AME Unadjusted Sharpened
Variable (SE) p value q value (SE) p value q value (SE) p value q value
Passed the college-level 0.298 0.342 0.038
math course (0.006) <0.001 0.001 (0.007) <0.001 0.001 (0.003) <0.001 0.001
College-level course characteristics
. 0.000 0.000 0.000
Class size (0.000) 0.333 1.000 (0.001) 0.761 1.000 (0.000) 0.772 1.000
. o 0.006 0.014 -0.002
Mixed ability (0.009) 0.469 1.000 (0.014) 0.338 1.000 (0.005) 0.728 1.000
Instruction modality (Ref.
Face-to-face)
. -0.011 -0.014 0.009
Online (0.012) 0.348 1.000 (0.017) 0.406 1.000 (0.007) 0.146 0.777
. 0.019 0.017 0.001
Hybrid (0.024) 0.436 1.000 (0.030) 0.582 1.000 (0.017) 0.965 1.000
Math pathway (Ref. Algebra)
. 0.014 0.005 0.007
Math for Business (0.006) 0.020 0.182 (0.008) 0.478 1.000 (0.005) 0.120 0.777
. -0.048 -0.066 -0.014
Quant reasoning (0.008) <0.001 0.001 (0.011) <0.001 0.001 (0.004) <0.001 0.012
. -0.012 -0.028 -0.001
Statistics (0.007) 0.065 0.567 (0.008) <0.001 0.009 (0.004) 0.759 1.000
Dev-ed support course characteristics
. 0.000 0.000 0.000
Class size (0.000) 0.410 1.000 (0.000) 0.435 1.000 (0.000) 0.288 1.000
. -0.013 -0.014 0.000
Number of credits (0.008) 0.092 0.719 (0.008) 0.096 0.719 (0.003) 0.947 1.000




Persistence and Transfer

Persistence into the subsequent

semester

Persistence into the subsequent

year

Transfer to a 4-year institution
within 1 year

AME  Unadjusted Sharpened

AME  Unadjusted Sharpened

AME Unadjusted Sharpened

Variable (SE) p value q value (SE) p value q value (SE) p value q value
. -0.002 -0.015 0.002
Lecture section (0.012) 0.864 1.000 (0.014) 0.305 1.000 (0.006) 0.787 1.000
Instruction modality (Ref.
Face-to-face)
. 0.014 0.009 0.006
Online (0.012) 0.262 1.000 (0.017) 0.605 1.000 (0.007) 0.367 1.000
. -0.012 0.040 0.019
Hybrid (0.019) 0.514 1.000 (0.027) 0.144 0.777 (0.019) 0.254 1.000
Same-instructor for paired -0.010 -0.008 -0.001
COUTSES 0.012) 0.441 1.000 (0.014) 0.597 1.000 (0.003) 0.673 1.000
Dev-ed course type (Ref.
Full-term concurrent dev-
ed)
Boot camp prerequisite (0(.)6()2262; 0.307 1.000 (6%3122) 0.768 1.000 (696%393) 0.043 0.379
.. 0.085 0.003 -0.015
Embedded prerequisite (0.033) 0.021 0.182 (0.024) 0.900 1.000 (0.006) 0.053 0.458
Compressed concurrent 0.129 -0.036 -0.008
dev-ed (0.032) 0.001 0.016 (0.015) 0.015 0.177 (0.005) 0.143 0.777
Dev-ed support course instructor characteristics
0.006 0.009 0.001
Female (0.004) 0.155 0.777 (0.005) 0.079 0.686 (0.002) 0.632 1.000
Race (Ref. White, non-
Hispanic)
. . 0.000 0.004 0.000
Black, non-Hispanic (0.007) 0.983 1.000 (0.008) 0.656 1.000 (0.005) 0.956 1.000
. . -0.009 -0.008 -0.007
Hispanic (0.006) 0.162 0.777 (0.009) 0.398 1.000 (0.004) 0.104 0.733




Persistence and Transfer

Persistence into the subsequent

Persistence into the subsequent

Transfer to a 4-year institution

semester year within 1 year
AME Unadjusted Sharpened AME Unadjusted Sharpened AME Unadjusted Sharpened
Variable (SE) p value q value (SE) p value q value (SE) p value q value
. ) . 0.002 0.010 -0.008
Asian, non-Hispanic (0.007) 0.773 1.000 (0.009) 0.311 1.000 (0.007) 0.280 1.000
. . -0.016 0.001 -0.016
Other races, non-Hispanic 0.011) 0.135 0.777 (0.010) 0.896 1.000 0.012) 0.242 1.000
0.000 0.000 0.000
Age (0.000) 0.590 1.000 (0.000) 0.192 0.977 (0.000) 0.020 0.182
Faculty type (Ref. Tenured)
-0.009 0.011 -0.011
Tenure-track 0.011) 0.419 1.000 (0.014) 0.427 1.000 (0.007) 0.138 0.777
. -0.005 -0.011 0.009
Full-time non-tenure-track (0.008) 0.530 1.000 0.011) 0.303 1.000 (0.006) 0.162 0.777
. -0.021 -0.015 -0.007
Part-time non-tenure-track (0.014) 0.126 0.777 (0.016) 0.364 1.000 (0.011) 0.518 1.000
-0.005 0.006 0.003
Unknown (0.010) 0.619 1.000 (0.013) 0.613 1.000 (0.006) 0.608 1.000
Highest education level (Ref.
No degree)
0.005 -0.019 -0.002
Doctorate degree (0.024) 0.847 1.000 (0.028) 0.499 1.000 (0.008) 0.800 1.000
, 0.004 -0.012 0.002
Master’s degree (0.023) 0.864 1.000 (0.023) 0.609 1.000 (0.006) 0.685 1.000
, 0.010 0.000 0.000
Bachelor’s degree (0.023) 0.667 1.000 (0.025) 0.990 1.000 (0.007) 0.965 1.000
. -0.050 -0.015 -0.013
Associate degree (0.042) 0.225 1.000 (0.035) 0.661 1.000 (0.016) 0.473 1.000
0.000 0.000 0.000
Calculated 9-month salary (0.000) 0.786 1.000 (0.000) 0.098 0.719 (0.000) 0.641 1.000
Sample Size 70,026 52,307 52,029




Notes. Table presents full logistic regression results, where each column represents a separate logistic regression model. All models included
semester and college fixed effects and used robust standard errors clustered by semester and college. We present unadjusted p values and
sharpened ¢ values together with average marginal effects (AME) and standard errors (SE) for each covariate included in the binary logistic
regression models. The sample size across outcomes varies slightly due to the inclusion of both semester and college fixed effects, where some
colleges with no variation in a given outcome (e.g., course withdrawal) during a given term were dropped from those analyses. Differences in
significant results across unadjusted p values and sharpened ¢ values are highlighted in green. For ease of interpretation, the sample means for the
outcomes of interest in each of the three regressions are: persistence next semester: 0.741; persistence next year: 0.558; transfer: 0.047.
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