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A B S T R A C T   

Multifunctional tactile sensors that can mimic the sensory capabilities of human skin to perceive various external 
static and dynamic stimuli are essential to interact with the environment and humans for wearable electronics 
and soft intelligent robotics. Here, inspired by human skin, we report a textile-based tactile sensor capable of 
multifunctional sensing for personalized healthcare monitoring and soft robotic control. The tactile sensor 
consists of a triboelectric nanogenerator sensing layer to mimic the function of fast adapting (FA) mechanore
ceptors and a piezoresistive sensing layer to achieve the functionality of slow adapting (SA) mechanoreceptors. 
The tactile sensor has been demonstrated to be able to recognize voice and monitor physiological signals and 
human motions in a real-time manner. Combined with a machine learning framework, the tactile sensor is able to 
percept surface textures and material types with high accuracy. It is also demonstrated as an effective human- 
machine interface for the control of assistive robotics.   

1. Introduction 

Multifunctional tactile perception is of paramount importance to 
achieve environment awareness and human-machine interactions in 
sophisticated applications of smart wearables and intelligent robots 
[1–8]. Over the past decade, inspired by human skin, various tactile 
sensors and artificial electronic skins (E-skins) have been proposed for 
precise and rapid sensing use based on different technologies, including 
piezoresistive [9], capacitive [10], electret [11], magnetic [12], tribo
electric [13], etc. Furthermore, multiple sensors are integrated into a 
sensing network or array to enable multisensory functionality of the 
devices [7,14–16]. Although significant progress has been made in the 
development of tactile sensors and E-skins, some critical issues still need 
to be addressed urgently [14,16–20]. For example, most existing tactile 
sensors are designed based on a single sensing mechanism that cannot 
percept sufficient information and respond to complex stimuli [21]. The 
integration of multiple sensors remains very challenging, usually 

requiring the design of complicated structures and fabrication processes 
and may suffer from mutual interference in multiple stimuli perceptions 
[21–23]. In addition, polymer substrates such as polydimethylsiloxane 
(PDMS), polyethylene terephthalate (PET), and polyimide, are widely 
utilized for tactile sensors, resulting in poor air permeability and 
discomfort feeling for wearables [24]. Compared with polymers, textile 
is mechanically robust, soft, breathable, and comfortable to human skin, 
and an ideal material for wearable electronics [25]. However, due to the 
challenges in surface and interface integration, textile-based tactile 
sensors that can mimic the functions of mechanoreceptors are still 
lacking. Therefore, it is essential to develop new tactile sensors with 
excellent sensing performance and a simple fabrication process. 

This article reports a textile-based tactile sensor for multifunctional 
sensing applications in health monitoring and soft robotics (Fig. 1). 
Inspired by the fingertip skin, we rationally design the tactile sensor 
with two sensing layers (Fig. 1A and B): a piezoresistive layer for 
mimicking the SA mechanoreceptor and a triboelectric layer with 
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fingerprint-inspired microlines for mimicking FA mechanoreceptor. This 
tactile sensor has the ability to perceive complex and combined me
chanical stimuli, owing to its delicate fingerprint patterns and effective 
sensory receptors (Fig. 1C). With cotton fabric as the substrate material, 
the as-developed tactile sensors can easily conform to different body 
parts for health monitoring or complex surfaces of soft robotics for 
intelligent perceptions. The tactile sensors are demonstrated as wearable 
devices to monitor the voice, physiological signals, and joint motions of 
humans (Fig. 1D). Moreover, we develop a machine learning (ML)-based 
framework to integrate it with our tactile sensors for texture perception 
and material recognition. Finally, we demonstrate the use of the tactile 
sensor as a human-machine interface for assistive robotic control. This 
technology may significantly advance the development of wearable 
sensing devices and soft robotics. 

2. Results 

2.1. Design and fabrication of skin-inspired tactile sensors 

Human skin has four types of mechanoreceptors that are distributed 
over different regions of human skin to perceive static and dynamic 
mechanical stimuli [2,26]. As shown in Fig. 1A, the two slow adapting 
mechanoreceptors (SA-I and SA-II) of fingertip skin can sensitively 
respond to low-frequency stimuli and produce a sustained signal to 
describe the static properties of a sustained stimulus [27,28]. In 
contrast, the two fast adapting mechanoreceptors (FA-I and FA-II) can 
detect dynamic pressure or vibrations [29,30], which is essential for 
texture discrimination and slip detection [31–33]. Novel tactile sensors 
that can mimic the SA and FA mechanoreceptors are highly desired for 
humanoid robots, intelligent prostheses, and wearable health 

monitoring devices [33,34]. 
To achieve the required functionality, we design the textile-based 

tactile sensor by integrating a piezoresistive sensor for mimicking the 
SA mechanoreceptor and a triboelectric sensor with fingerprint-inspired 
microlines for mimicking FA mechanoreceptor (Fig. 1B). The tactile 
sensor consists of a Cu-coated textile electrode layer, a carbon nanotube 
(CNT) coated piezoresistive sensing layer, a medical textile layer, and a 
top triboelectric layer. Cotton fabrics are utilized as the substrate ma
terial since they are soft, breathable, and comfortable to human skin [25, 
35,36]. Two electrodes with interdigitated configurations are fabricated 
via brush coating Cu ink on the cotton fabrics. The CNT-coated piezor
esistive textile layer is fabricated by a low-cost and simple dip-coating 
method, stacking on top of the interdigitated electrodes [27,37]. 
Fig. S1a shows the scanning electron microscopy (SEM) image of the 
CNT-coated textile, indicating that the CNTs are uniformly covered on 
the surfaces of textile fibers. To encapsulate the electrodes, a biocom
patible medical textile tape is bonded on the top of the CNT-coated 
textile to ensure a conformal contact between the CNT-coated textile 
and the electrodes and prevent mutual interference between the two 
different sensing layers. 

Different from the previous fingerprint-like patterns fabricated with 
lithography methods, we utilize a facile approach to assemble a single- 
electrode triboelectric nanogenerator-based sensor by stitching struc
tured core-shell (Teflon- steel) yarns (diameter ~ 300 µm, Fig. S1B) onto 
the cotton textile. The steel fiber core works as the conductive electrode 
while the Teflon shell layer serves as the dielectric material for tribo
electrification because compared with other triboelectric materials such 
as PDMS and PET, Teflon exhibits a stronger ability of electron attrac
tion and good mechanical strength. The details for the fabrication pro
cess are presented in Materials and Methods and Fig. S2. Similar to the 

Fig. 1. Skin-inspired, self-powered, textile tactile sensors for multifunctional sensing in wearables and soft robotics. (A) Schematic of the skin-inspired all-textile 
tactile sensors capable of multifunctional tactile sensing. The basic structure of human skin versus all-textile tactile sensors (bottom); human skin has slow-adapting 
(SA) mechanoreceptors [Merkel (MD) and Ruffini corpuscles (RE)] for static stimuli, fast-adapting (FA) mechanoreceptors [Meissner (MC) and Pacinian corpuscles 
(PC)] for dynamic stimuli. (B) Detailed structure of the textile tactile sensors. (C) Schematics and representative output signals of the triboelectric sensor layer (top) 
and piezoresistive sensor layer (bottom) when subjected to pressure force. The triboelectric sensor can generate instantaneous pulse voltage signals at the moments of 
touching and separation with external dynamic stimuli as FA mechanoreceptors in human skin. The piezoelectric sensor has a similar function with the SA 
mechanoreceptors for detecting static or slowly varying stimuli. (D) Multifunctional applications of the textile sensors in health monitoring, material discriminating, 
and human-machine interface. 
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FA mechanoreceptor of skin, the triboelectric sensing layer generates a 
pulse electrical signal only at the moment of contact and separation with 
a mechanical stimulus. On the contrary, the piezoresistive sensing layer 
produces a maintained electrical signal during sustained indentation 
like the SA mechanoreceptor (Fig. 1C). Based on the synergistic effect of 
the triboelectric sensor and the piezoelectric sensor, our tactile sensor 
has the ability to detect complex physical stimuli such as human body 
motion, material discrimination, and work as a human-machine inter
face for the control of soft robotics (Fig. 1D). 

2.2. Characterization of the piezoresistive sensing layer 

Fig. 2 A illustrates the sensing mechanism of the proposed piezor
esistive sensor layer. Different from a bulk rigid planar metal, the CNT- 
coated textile and the Cu-coated textile electrode layer have porous 
structures and rough surfaces. The contact area between the CNT-coated 
textile and the bottom electrodes changes as the applied external pres
sure varies. As shown in Fig. 2B, when the external pressure is applied 
onto the sensor surface, the porous structures deform, leading to the 
approaching and/or contact between the CNT-coated textile and the 
interdigital electrodes. This deformation generates a larger contact area 
and more conductive pathways between CNTs and Cu electrodes, lead
ing to a significant increase of the current under an applied voltage. 

Once unloading, the CNT-coated textile and the bottom Cu electrode 
textile restore to their original states, resulting in the reduction of 
conductive pathways and thereby the decrease of the current. 

We build an electrical signal testing platform to measure the sensing 
performance of the textile sensor devices (Fig. S3). As shown in Fig. 2C, 
the current-voltage (I-V) curves of the piezoresistive sensor exhibit 
excellent linear relationships under a specific static pressure loading, 
indicating that the CNT-coated textile and the Cu electrode textile form 
ohmic contacts. It is also demonstrated that the piezoresistive sensor 
exhibits high sensitivity and reliability for a wide range of applied 
pressure. We also observe that the slope of the I-V curve significantly 
increases with the applied pressure, indicating that the electrical resis
tance of the sensor device reduces continuously, which is consistent with 
the underlying sensing mechanism. 

To facilitate the characterization of the performance of the piezor
esistive sensor, we define the sensitivity (S) as S = (ΔI/I0)/ΔP, where ΔI 
is the current change before and after applying pressure, I0 is the initial 
current without pressure applied, and ΔP represents the applied pres
sure change. Fig. 2D shows the relative current change (ΔI/I0) as the 
applied pressure increases from 0 to 35 kPa. It is found that the curve can 
be divided into two segments with different slopes, corresponding to two 
different sensitivities. In the low-pressure region (0–11 kPa), the sensi
tivity of the sensor is 11.2/kPa while in the high-pressure region 

Fig. 2. Characterization of the piezoresistive sensing layer in the textile-based tactile sensor. (A) Schematic illustration of the working mechanism of the textile-based 
piezoresistive sensor layer. (B) Current responses of the tactile sensor under loading and unloading conditions. (C) I-V curves of the tactile sensor under different 
applied pressures varying from 1 kPa to 22.5 kPa. (D) Pressure sensitivity of the tactile sensor measured with different applied pressures. The pressure sensitivity (S =
(ΔI/I0)/ΔP) is estimated as 11.2 kPa−1 in the range of 0.5 kPa to 11 kPa and 3.1 kPa−1 in the range of 13.5 kPa to 33.5 kPa. (E) Real-time measurements of the 
relative current change by the tactile sensor under three cyclic loadings/unloading at different pressure levels. (F) The response time (40 ms) and recovery time 
(20 ms) of the tactile sensor in operations. (G) The current response curves of the sensor when loaded with a plant leaf (70 mg) and a seed (180 mg). The insets are 
the optical images of the leave and the seed in testing. (H) Reliability and stability tests of the textile sensor under the conditions of loading/unloading pressure of 10 
kPa for 1500 cycles. 
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(13.5–33.5 kPa), the sensitivity is around 3.1/kPa. Fig. 2E shows the 
real-time measurement of the relative current change under cyclic 
loadings with different pressure magnitudes. All the measured current 
changes are varying with the applied pressures repeatedly, demon
strating its robustness and reliability. The measured response time for 
the tactile sensor is ~40 ms while the measured recovery time in sensing 
is ~20 ms (Fig. 2F). The sensitivity of the tactile sensor is excellent, and 
it can detect the small changes induced by loading–unloading a plant 
leaf (70 mg) and a seed (180 mg) (Fig. 2G). Moreover, the piezoresistive 
sensor exhibits excellent reproducibility and durability (Fig. 2H). It is 
demonstrated that for more than 1500 cycles of repeated loading- 
unloading of a pressure of 10 kPa, there is no obvious change of the 
relative current signals. 

Additionally, we demonstrate the tactile sensor can be used for 
monitoring various physiological signals and joint motions of wearers in 
a real-time manner when it is deployed at different body parts (Fig. 3A). 
For example, when the textile-based sensor is attached to the throat 
region of a volunteer, it can accurately sense the muscle movement at 
the throat region when speaking and thereby recognize the voice pat
terns (Fig. 3B, C, and S4). As shown in Fig. 3B, the sensor can recognize 
the different words spoken by the person in a sentence through the 
unique signal patterns detected through the different epidermis move
ments induced by laryngeal prominence. Furthermore, the sensor 
demonstrates good repeatability in recognizing the specific words in 
speaking (Fig. 3C). For example, when the volunteers say the same word 

“hello” repeatedly five times, it obtains nearly identical signal patterns 
of voice signals. Therefore, this sensor has the potential to be used for 
natural language-based human-machine interfaces and phonation 
rehabilitation exercises [38]. 

In personalized healthcare, vital physiological signals such as heart 
or pulse rate are valuable information for evaluating the medical con
ditions of patients with cardiovascular disease [39]. As a demonstration, 
we attach the textile sensor onto the wrist surface of a volunteer to 
monitor the pulse rate and pulse waveform in a real-time manner 
(Fig. 3D). Fig. 3E shows the pulse signals recorded for a period of 9 s, 
indicating a recorded pulse rate of ~68 beats/min, within the normal 
range of a healthy adult. Furthermore, from the recorded regular and 
repeated signal patterns, the sensor is able to distinguish the three 
characteristic peaks of a standard pulse waveform, i.e., “P” (percussion 
wave), “T” (tidal wave), and “D” (diastolic wave) [40,41], indicating the 
great potential of such sensors in biomedical applications. 

We further demonstrate the textile sensor worked as a motion de
tector to record the current response under the bending-releasing cycles 
when mounted at the joints of the human body, such as elbow, wrist, 
knee, and ankle (Fig. 3A). If the piezoresistive sensor is directly attached 
on the elbow, the sensor is compressed as the elbow bends, causing an 
increase of conductive pathway and thereby a decrease of the con
ducting resistance and an increase of the current. When the bending 
angle decreases, the current signal becomes smaller (Fig. 3F). Similarly, 
the sensor is capable of accurately detecting the bending motions of the 

Fig. 3. Real-time monitoring of physiological signals and body motions using the textile-based tactile sensor. (A) Schematic illustration of a human body with the 
possible monitoring positions marked by blue color. (B) Real-time current signal measured by the tactile sensor when a volunteer wears the sensor in throat region 
and speaks “Nice to meet you, it’s a beautiful day”. Different words can be recorded and distinguished based on the unique signal patterns of pronunciation. (C) Real- 
time current signal responding to the words “hello” five times. It demonstrates excellent repeatability in voice recognition. (D) Photograph of the sensor device 
bonded on the wrist surface for detecting artery pulse pressure. (E) Real-time current signal responding to the artery pulse pressure. Each pulse waveform can clearly 
show the typical P-wave, T-wave, and D-wave. (F-H) Real-time current signals measured by the tactile sensors for the bending-releasing movement of (F) elbow, (G) 
wrist, (H) knee under different bending angles. (I) Real-time current signal measured by the tactile sensor attached on the ankle to detect human movement states: 
running and walking. 
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wrist and knee (Fig. 3G and H). Furthermore, we find that the sensor 
attached to the ankle joint can detect and discriminate human move
ment states. When the person is walking or running, the amplitude and 
frequency of human motion are quite different, which can be reflected 
through the induced current change in the sensor at different motion 
states (Fig. 3I). These results indicate that our sensor can be readily 
utilized for detecting kinematic signals and joint motions and should 
promising applications in the fields of personalized health monitoring, 
human-machine interface, athletic performance monitoring, and patient 
rehabilitation. 

2.3. Characterization of the triboelectric sensing layer 

Fig. 4 A illustrates the working mechanism of the triboelectric 
sensing layer for the tactile sensor which is essentially a single-electrode 
TENG based on the coupling effect of contact electrification and elec
trostatic induction. This design of the single-electrode mode is especially 
suitable for tactile sensing owing to its simple structure and design [42]. 
When an active object contacts the Teflon surface, negative triboelectric 
charges are gained by Teflon due to its stronger electron affinities while 
the active object becomes positive charged (Fig. S5). Once the active 
object separates from the Teflon surface, the potential difference be
tween the two triboelectric layers will gradually increase, resulting in an 
instantaneous electron flow from the Cu electrode to the ground and 
generating an output voltage to the external load. When the two kinds of 
materials approach each other again, the electrons will flow back from 
the ground to the Cu electrode with a reversed output signal appearing. 
To test its sensing performance, we use an Ecoflex film (15 ×15 mm2) as 
the contact material and a linear motor to provide repetitive 
contact-separation motions. Fig. 4b presents the output voltages of the 
TENG with pressures varying from 0 to 56 kPa. It is obvious that the 
output voltages have a nearly linear relationship with the applied 
pressure that is not larger than 22 kPa. The output voltage also depends 
on the touching frequency, and an increased frequency leads to a higher 
voltage, consistent with our previous studies [43,44] (Fig. 4C). 

In addition, the unique working mechanism of the TENG-based 
sensor enables it to be able to sense different kinds of materials based 
on their inherent ability to lose/gain electrons. After the possible ma
terials’ properties are gathered, the proposed design and method can be 
extended for use in sorting more different materials [45]. As shown in 
Fig. S6, twelve kinds of materials are screened for demonstration in our 
experiments. The amplitude and polarity of the output voltage by the 
TENG sensing layer change with the different contacting materials. The 
insets in Fig. S6 illustrate the voltage signals in one cycle with the two 
contacting materials: polyethylene (bottom) and Ecoflex (top). 
Compared with Teflon used in our sensor fabrication, polyethylene (PE), 
Nylon, polylactic acid (PLA), Cu, polyethylene terephthalate (PET), 
natural latex, and polypropylene (PP) are tending to lose electrons when 
they are in contact with Teflon, resulting in a positive voltage signal. On 
the contrary, Kapton, polyvinyl chloride (PVC), polytetrafluoroethylene 
(PTFE), and fluorinated ethylene propylene (FEP) exhibit a stronger 
ability to gain electrons, resulting in a negative voltage signal. Through 
the comparison of the amplitude and polarity of the output voltage, we 
can use the tactile senor to identify the type of the contact materials, 
which may be useful for automatic object sorting and separation in 
recycling and fabrication processes. 

The TENG-based sensing layer can also recognize the surface 
morphology or texture. In our design, the fabricated sensor is attached 
onto a semicylindrical micro stage and then scans over the sample sur
faces that have parallel line textures (Fig. 4D). Different from the 
contact-separation working mode shown in Fig. 4A, for the surface 
morphology and texture recognition the TENG sensor works in a single- 
electrode-based sliding mode (Fig. S7). As the sensor slides on the 
sample surface at the velocity of 0.5 mm s−1, the fingerprint-like steel/ 
Teflon fiber contacts and separates with the ridges of the micropatterns, 
resulting in the corresponding variations of the voltage signals (Fig. 4E). 

The observed voltage signals decrease with the increasing wavelength of 
the periodic patterns at the same scanning speed. The voltage signals in 
the frequency domain obtained by Fast Fourier transform (FFT) can give 
the characteristic frequencies that agree with the spatial frequencies of 
the micropatterns (Fig. 4F). For a defined texture pattern, the number of 
voltage signals and the corresponding characteristic frequencies in
crease with the scanning speeds (0.3–1 mm s−1) (Fig. S8). 

For possible large-scale applications of dense sensor arrays, it is 
impossible to get identical devices and sensing data with the same 
quality in practical fabrications and operations, especially for low- 
resolution soft electronics. Therefore, we propose a machine learning 
(ML) based framework to analyze and classify the voltage signals ob
tained from the TENG sensors, aiming to achieve robust sensing capa
bility in material recognition and surface texture detection. We select 
the artificial neural network (ANN) method to build the model, which 
consists of an input layer, three hidden layers, and an output layer 
(Fig. 4G). We use the LM training function and the nine different ma
terials with different textures as the training data to minimize the ANN’s 
MSE by adjusting the connection weights and bias (Fig. 4H). Perfor
mance and generalization of the ANNs are further tested using inde
pendent testing data for cross-validation. As shown in Fig. 4I, the 
training accuracy can reach up to 99.98%. More details on the training 
method and error analysis are in Materials and Methods and Supple
mentary note. Fig. 4J presents the confusion map of the machine 
learning outcome in predicting the materials from M1-M9, where the 
prediction accuracy is about 94.44%. 

2.4. Demonstration and evaluation of the textile-based tactile sensor 

Human skin can sense the material hardness in touching the objects. 
However, it is generally difficult for robotics to achieve that task using 
one single sensor. Here, we further demonstrate our tactile sensor for 
sensing the relative hardness of objects through a simple operation 
mechanism (Fig. 5A). The latex balloons inflated by different air pres
sures are used to represent the relative hardness of the touching objects. 
When the tactile sensor contacts or separates with the touching objects 
(balloons), the TENG sensing layer generates instantaneous negative 
and positive voltage signals due to the contact electrification, respec
tively (Fig. 5B, top). In comparison, the pressing and releasing motions 
are detected by the recorded signals from the piezoresistive sensing 
layer (Fig. 5B, bottom). The up-hill side and down-hill side of a current 
curve represented the pressing and releasing state, and the current value 
increases with the hardness of the object (balloon) because a larger 
hardness results in a large pressure applied to the sensor. Such a sensing 
capability enables the use of the new tactile sensors in advanced ma
nipulations such as fruit picking to avoid potential physical damage. 

We finally demonstrate the tactile sensors as an effective human- 
machine interface to control a soft robotic manipulator (Movie S1). As 
shown in Fig. 5C, the whole system consists of a soft robotic gripper, a 
soft arm, a signal processing and transmitting module, and a tactile 
sensor. The control signals performed by the human (e.g., wrist bending 
and sensor pressing) are first processed and sent to the analog ports of 
the Arduino board in the circuit. Then, the analog-to-digital converter 
(ADC) converts the analog signals into digital values and transmitted 
them to a control board [46]. After that, the received signals will be 
compared with the pre-defined thresholds to determine whether and 
how to activate the DC motors to actuate the soft manipulator. Fig. 5D 
and E illustrate the real-time signals recorded in the manipulation and 
the corresponding motion states of the soft robotic manipulator. In the 
original state (I), the tactile sensor is attached on the wrist and the soft 
arm is vertically standing on a table. When the human wrist bends (II), a 
continuous current signal output is detected due to the flexion of the 
wrist, and thereby the soft arm bends to the right side with a small 
bending angle. In state III, the wrist ends to a larger angle, the current 
signal increases further, leading to a larger bending angle of the soft 
robotic arm. When the tactile sensor is pressed slightly using a finger 
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Fig. 4. Characterization and demonstration of the triboelectric sensing layer in tactile sensor for texture perception and material discrimination. (A) Working 
principle of the triboelectric sensor layer. (B) Variations of the output voltage of the triboelectric sensor as a function of loading force. (C) Output voltages of the 
triboelectric sensor under different frequencies (0.25–2 Hz). (D) Schematic illustration of the texture perception through a sliding touch by the tactile sensor. The 
triboelectric sensor is attached to a semicylindrical stage and scanned over a surface with parallel line patterns. The bottom is the photographs of the micropatterned 
surfaces fabricated by a laser cutter (scale bar: 500 µm). (E) The voltage signals obtained by the triboelectric sensor when it is scanned over different micropatterns. 
(F) Fast Fourier transform (FFT) spectra of time-dependent voltage signals in (E), showing the spatial frequency of the micropatterns. (G) Schematic diagram of the 
artificial neural network (ANN) used for material identification. The ANN consists of an input layer, 3 hidden layers, and an output layer where all the neurons 
between each layer are fully connected to each other. (H) The material list with real material images and its corresponding time-domain signal for training. (I) The 
confusion map for classifying the materials from M1~M9. (J) The confusion map for classifying the materials in predicting materials from M1~M9. 
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(IV), the induced voltage signal in the TENG sensing layer actuates the 
grasping operation of the soft gripper. When pressing the sensor again, 
the soft gripper can open its fingers to its initial releasing state (V). It is 
expected that our textile tactile sensor can be used as a useful 
human-machine interface for controlling soft robots to complete more 
complex tasks in the future. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2022.107137. 

3. Conclusion 

We have reported a textile-based multifunctional tactile sensor that 
can mimic the SA and FA mechanoreceptors of human skins through the 
integration of triboelectric and piezoresistive sensors. The piezoresistive 
part utilizes CNT-textile as piezoresistive materials shows a high sensi
tivity of 11.2 kPa−1, short response time (<40 ms), and good stability. 
The TENG-based sensing part fabricated by stitching Teflon-steel yarns 
onto a cotton textile successfully achieves the functionality of FA 

mechanoreceptor. With these superior performances of the two com
ponents, our textile tactile sensing layer has been demonstrated to 
monitor various human physiological signals and human joint motions 
in a real-time manner. We have also explored its potential applications 
in material identification and texture recognition with the assistance of 
an ML-based approach. Moreover, the device also enables the detection 
of complex stimuli and controlling of soft robotics as a wearable human- 
machine interface. It is expected that this study will provide a new 
strategy for developing novel multifunctional sensors with promise in 
smart textiles, wearable electronics, and robotics. 

4. Materials and methods 

4.1. Fabrication of textile sensors 

A 10 × 10 mm2 cotton textile was dipped into a CNT solution for 10 s 
and dried on a hot plate for 10 min at 70 ℃ to evaporate the solvent. 
This dip-coating and drying process was repeated for about 10 cycles 

Fig. 5. Demonstration of the textile based tactile sensor for resolving complex stimuli and controlling soft robots. (A) Schematic of the detection of the touching 
objects using a soft robotic hand equipped with our tactile sensors on its fingers. (B) Real-time signals of the tactile sensors induced in the touching process with an 
object. The triboelectric layer generates instantaneous pulse voltage signals once it contacts or separates with an object. The current signal can be used to identify the 
relative hardness of the touched object in the pressing and releasing processes. (C) Schematic diagram of the remote soft robotic control system using our tactile 
sensor as a human-machine interface (ADC: analog-digital converter). (D) Real-time signals of the tactile sensors generated at five different operation states: three 
bending angles of the wrist and switching on and off by finger. (E) Photographs of the soft robotic manipulator and human arm under different control commands 
controlled by the sensor, which are compounding to the control signals shown in (D). 
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and the color of the textile changed from white to black. Then, cotton 
textile was covered by a tape tightly as a mask layer. An interdigital 
electrode pattern was designed by AutoCAD and then written onto the 
surface of the tape without damaging the textile substrate by using a 
computer-controlled commercial laser cutter system (Glowforge plus). 
Cu ink was coated on the surface of the cotton textile with a mask by a 
brush coating method and dried in a vacuum oven for about 1 h. Com
mercial Teflon/steel fiber was stitched onto a cotton textile to assemble 
a signal electrode triboelectric sensor. Finally, the electrode layer, CNT- 
coated piezoresistive layer, medical textile tape, and triboelectric layer 
were integrated together. 

4.2. Morphological characterization 

The microstructures of the CNT-coated textile and the stain-Teflon 
fiber were characterized using a Zeiss Auriga Cross Beam. The photo
graphs of the micropatterns were characterized using optical micro
scopy (Olympus SZX12). 

4.3. Measurements of the sensing performance 

The current and voltage signals were measured by a current pre
amplifier (Keithley 6514 System Electrometer) and a digital storage 
oscilloscope (GDS-2202). A linear motor (LinMot MBT-37 120) was 
employed to apply different pressures onto the device. The software 
LabVIEW was programmed to acquire real-time control and data 
extraction. A force gauge (ZP-100 N) was used to detect applied 
pressure. 

4.4. Modeling of the sensing mechanism 

The potential distribution of the TENG sensor was simulated by using 
the software package COMSOL. For simplicity’s purpose, the TENG 
sensor is treated as a parallel-plate capacitor in the established model, 
where the Teflon plate with steel electrode was placed parallelly with 
the PE plate. The triboelectric charge density on the inner surface of the 
Teflon plate was assigned as 1 μC/m2. 

4.5. Machine learning for material recognition 

All the neurons between every layer are fully connected by each 
other and the input time-domain signals of each material have i = 400 
neurons, where n∈[1, 2, …, N] and N is the types of materials that have 
been used to train the network and output layer are their list number of 
materials types from 1 to N. We used the ‘fitnet’ function in the software 
package MATLAB to develop fully connected propagation ANNs, which 
has an input, output, and one or more hidden layers designed for 
function approximation and nonlinear regression. Compared to the CNN 
net, we use the time domain signal other than material figures as input, 
and the material label is used as a regression target. In this process, the 
input time-domain data of N types of materials are reorganized to N 
types of 400 × 720 matrix. For each input vector and output layer, we 
have 400 neurons and 1 neuron, respectively. The training function can 
be regarded as f(Xinput)=Youtput. The different numbers of neurons in 
hidden layers are used to optimize the training accuracy of ANN. In our 
analysis, ten neurons in the three hidden layers are chosen to predict the 
material types from the tested signals. 
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