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Abstract

Eddy covariance measurements quantify the magnitude and temporal variability of land-
atmosphere exchanges of water, heat, and carbon dioxide (COs) among others. However,
they also carry information regarding the influence of spatial heterogeneity within the flux
footprint, the temporally dynamic source/sink area that contributes to the measured fluxes.
A 25m tall eddy covariance flux tower in Central Illinois, USA, a region where drastic
seasonal land cover changes from intensive agriculture of maize and soybean occur, provides a
unique setting to explore how the organized heterogeneity of row crop agriculture contribute
to the estimates of land-atmosphere exchange from the observations. We characterize the
effects of this heterogeneity on latent heat (LE), sensible heat (H ), and CO5 fluxes (F,) using
a combined flux footprint and ecohydrological modeling approach. For three years from 2016
to 2019, we estimate the relative contribution of each crop type resulting from the structured
spatial organization of the land cover to the observed fluxes. Since the wind direction,
magnitude and stability varies at each time step, the net contribution of each crop to the
overall observed flux is a result of both the relative abundance of a crop and the magnitude
of its flux contribution in the dynamically changing flux footprint. The combined action of
hydroclimatological drivers and the organized heterogeneity of the land cover explains the
inter-annual variations of flux exchange. This study helps us understand how the observed
flux magnitudes and variability depend on the organized land cover heterogeneity and is

extensible to other intensively managed or otherwise heterogeneous landscapes.
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Plain Language Summary

Maize (corn) and soybean fields throughout the agricultural Midwest of the US create a
“patchwork quilt” of land cover types. This pattern impacts the exchange of water, heat, and
CO5 flux between the land and atmosphere. Here, we determine the relative contribution of
different land cover types to the total flux as measured by a tall eddy covariance flux tower.
We estimate the spatial extent contributing to every flux measurement. We combine it with
an ecohydrological model to obtain the temporally varying ratio of fluxes for different land
covers. Then we estimate how they contribute to the overall flux, which depends on how
the crop fields are spatially distributed. We find that the tower mostly “sees” fields located
between 168m and 268m away although areas as far away as several kilometers contribute
to the observations. Maize fields contributed more than soybean fields during the 2016
and 2018 growing seasons, and vice versa during 2017. We compare our results against a
hypothetical case where all vegetation is randomly distributed on the surface. We find that
the knowledge of footprint contributions combined with model results helps explain why the

observed fluxes vary from year to year.

1 Introduction

Agricultural landscapes dominate the US Midwest, influencing ecohydrological responses
where the root-soil-canopy-atmosphere continuum act as an integrated system. In this re-
gion, small-grain production was replaced about a century ago by maize and soybean row
crop agriculture. Today, a seasonal human-induced reorganization of vegetation to meet
agricultural ecosystem services determines the spatial distribution (Richardson & Kumar,
2017), and the region experiences seasonal transitions in land cover every year. Specifi-
cally, row crop agriculture consists of seed planting in early spring, rapid growth in early
summer, maturity in late summer, and harvest during autumn. During July, the US corn
belt is now 40% more productive than the Amazonian rain-forest (Foufoula-Georgiou et al.,
2015) as a result of steady agricultural intensification over the past two centuries. This
dense vegetated land cover during the growing season contrasts drastically with an almost
bare landscape of soil, roots, and litter left after harvest typically around mid-October to
November (NASS, 2010). During the growing season, a patchy mosaic of different crops is
the dominant landscape feature, which partially hides other sources of heterogeneity such

as soil properties and micro-topographic variability (Le & Kumar, 2014). In this study, we
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focus on the contribution of the “organized land cover heterogeneity”, which we define as
the human-induced spatial organization of the landscape, on the fluxes exchanged between
the landscape and the atmosphere when measured at a tall eddy covariance tower. For
example, to measure the dynamic land-atmosphere exchange of heat, water, and carbon
dioxide (C'O2) fluxes in intensively managed agricultural landscapes, such as that located
in Illinois, where maize and soybean plots dominate the landscape, a 25m-tall flux tower
sees hundreds of agricultural plots inside the dynamic flux footprint at each time step of the
measurements (Kirby et al., 2008). We quantitatively address one of the major challenges
facing the interpretation of eddy covariance measurements in heterogeneous landscapes: Be-
sides other sources of landscape heterogeneity, how does the human-induced “organized land

cover heterogeneity” contribute to the observed fluxes by a tall eddy covariance flux tower?

Eddy covariance measurements require a homogeneous flow field to provide an ac-
curate integration of fluxes at the land-atmosphere interface (Aubinet et al., 2012; Burba,
2013). However, for tall towers the dynamic upwind surface area where the land-atmosphere
exchange flux is generated, known as the flux footprint, generally exhibits spatial hetero-
geneities and fluxes from different sources mix at the observation point (Leclerc & Foken,
2014). The use of footprint models for interpreting micrometeorological observations is
a common practice, but the process of differential weighting within a temporally varying
flux footprint is a “well-known but frequently overlooked feature of eddy covariance mea-
surements” (Tuovinen et al., 2019; Chu et al., 2021). Previous studies have related eddy
covariance flux tower observations to individual land use, mostly using a combination of
different measurement techniques at different scales. One approach relies on in situ data,
from nearby towers at which flux footprints cover a specific vegetation type (Chi et al.,
2020, 2019; Biermann et al., 2014) or from flux chamber measurements (Tuovinen et al.,
2019). However, in highly heterogeneous systems with mixed vegetation and soil wetness,
it is known that there is a possibility for serious mismatch between eddy covariance flux
measurements and in situ measurements for determining specific fluxes associated with a
land cover classes. In our case, when tens of plots are located inside the several square
kilometers size dynamic flux footprint, on-site measurements might not be representative
of the average behavior of each land cover type inside the tower flux footprint, which can
potentially bias the conclusions of a study. Another approach relies on the use of remote
sensing or aircraft data to estimate fluxes from plots on the flight transect (Kirby et al.,

2008). However, the scale of heterogeneity discernible depends on the flight altitude, and if
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fluctuations occur during the acquisition of the data, the estimation of fluxes from different
sources can be affected. Typically, the use of in situ techniques, such as flux chambers, and
remote sensing including aircraft data, are limited to study cases due to their inability to
provide continuous observations. To answer our research question, we require to pair the
ecosystem scale observations from our tall flux tower, with a technique that can provide
continuous data of the average behavior of each land cover type inside its flux footprint.
Together, we can determine the relative contribution of each land cover type at every time
step of the measurements. Therefore, instead of using scattered observations as representa-
tive of the behavior of each land cover type, we estimate the average behavior of each land
cover type using an ecohydrological modeling approach. An advantage of pairing the tower
observations with modeling results for each land cover type, is the possibility of generalizing
the implementation to other land cover types in future studies. Other studies have focused
on extracting the time series associated with a plot-nearby to a flux tower. In that case, the
time series for the plot is obtained by extracting the fluxes observed by the tower when the
plot intermittently lies within the dynamically changing flux footprint. For that purpose,
TOVI software (Licor, 2021) can be useful, especially if the plot is located in the upwind
direction from the tower. However, many times it requires additional sources of information
such as nearby towers or flux chambers, to later recreate a full time series for a plot. Pre-
vious studies have used a set of towers with overlapping flux footprints or modeling results

for the times when the towers do not see the area of interest (Biermann et al., 2014).

Our work is distinct from these previous efforts, in that we combine observation and eco-
hydrologic modeling to disentangle the contributions of different crop types to the observed
fluxes where the organized heterogeneity plays a direct role in their relative contributions. In
particular, it is distinct from and provides further refinement to the approach by Chu et al.
(2021) in that we consider a structured heterogeneity in the flux footprint whose contribu-
tions are dynamically changing at every measurement time step (15 min). Therefore, it goes
beyond the monthly flux footprint climatologies for many Ameriflux sites used by Chu et
al. (2021). However, when aggregating over time, the flux footprint climatology blends the
sources and sinks of the flux while identifying the spatial extent and temporal dynamics of
the areas contributing to the observed fluxes at a tower site. We adopt a more detailed per-
spective to analyze the relative contribution of each land cover type inside the dynamic flux
footprint at each time step (15 min) that results in clear identifications of the contribution

to the observation from each crop type as a result of the structure heterogeneity.
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The distinctive contribution of this study is to investigate how the combined action
of (1) hydroclimatological drivers acting on the ecosystem, and (2) the difference in the
fraction of land cover types in the flux footprint due to the organized heterogeneity of the
land cover, creates the flux signal observed at the tower. Here we emphasize the role of
each land cover type on the measured exchange of water, heat, and COy fluxes at the
land-atmosphere interface, which is a critical aspect when accounting for fluxes’ sources and
sinks from agricultural landscapes (Masson-Delmotte et al., 2021). Given that the change
in flux observed at the tower could either correlate to a change in fluxes from the crops or
a shift in relative land cover contributions, we analyze the effect of the relative contribution
due to maize and soybean within the footprint as a result of wind speed and direction, and
atmospheric stability. Using the observations at the tall eddy covariance flux tower and other
available data sources in a complementary way, such as flux footprint and ecohydrological
modeling results, we are able to provide a more informed interpretation for the behavior of

the observed fluxes by a tall tower with respect to the origin of the fluxes in the landscape.

This paper is organized as follows: In Section 2, we describe the Intensively Managed
Landscape Critical Zone Observatory (IMLCZO) study site (Wilson et al., 2018), and in
Section 3, we present the methods to account for organized land cover spatial heterogeneity,
including the considerations for the estimation of the two-dimensional flux footprint and the
description of the use of the ecohydrological model to estimate the fluxes of the upwind area
sources. Results and discussion are presented in Section 4, where we describe the ecosystem
behavior at the study site as observed by the flux tower. Then we explain the results of
the flux footprint and the ecohydrological modeling, and we analyze the seasonal and inter-
annual evolution of the flux contribution due to each crop type. At the end of Section 4, we
connect maize and soybean crop yield at the study site to investigate COs flux dynamics.
In Section 5 we summarize the main findings and discuss some assumptions used in this

work that could be relaxed in future studies.

2 Study Site
2.1 Description

We use hydrometeorological data and flux measurements from a 25m tall eddy covari-
ance flux tower in the Intensively Managed Landscapes Critical Zone Observatory (IML-

CZ0), located at 40.155N, 88.578W, Goose Creek Township, Piatt County, Illinois, US
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(Figure 1). In the Upper Sangamon River Basin, both glacial and management legacies
have shaped soils, topography, and native land cover resulting in a low-relief landscape with
poorly drained soils (Kumar et al., 2018; Anders et al., 2018). Therefore, the use of tile-
drains is a common practice in the crop fields for subsurface drainage (Wilson et al., 2018).
The climate at the study site is humid continental (Koppen climate classification Dfa) with
warm and humid summers and cold winters. Historically, maximum precipitation occurs in
late spring and early summer (i.e. April to June) with an average of about 100 mm per
month (Mishra & Cherkauer, 2010) and long-term observations have shown that Illinois has

become wetter during the crop-growing season (Mishra & Cherkauer, 2010).

In this agricultural landscape, vegetation dynamics are a strong determinant of land-
atmosphere fluxes and their seasonality in the landscape. These dynamics are highly influ-
enced by crop rotation between maize and soybean fields every one or two years, which is a
prevalent practice, along with different intensities of tillage (Wilson et al., 2018). The region
has a return of one harvest per year. Planting occurs from early April to late May, and
harvest occurs from late September to early November. Maize is typically planted before
soybean and harvested after, such that it has a longer growing season (NASS, 2010). In this
study, we consider an April-March window as a “crop year” (e.g. April 2016 to March 2017
is denominated in this study as “crop year 2016”). Both crops have a peak vegetation cover
with very dense leaf area index (LAI) reaching 4 for maize and 6 to 7 for soybean (Drewry
et al., 2010). A distinctive feature of this agricultural region is how the dense vegetation
cover during the growing season contrasts drastically with the almost bare landscape left
after harvest until the following spring season when planting occurs (NASS, 2010) (Figure
2). After harvest, crop residues, i.e., mainly litter, stover and plant roots, remain on the
surface and in the shallow soil layers until the following spring when planting occurs (Warner

et al., 1989).

2.2 Instrumentation and Data

Our 25m-tall eddy covariance flux tower sees the combined response of hundred of
different plots every 15-min in the “patchwork quilt” landscape inside its several square
kilometers size dynamic flux footprint. We use a set of detailed land cover maps (NASS,
2016-2018) to characterize the annually varying spatial land cover composition. Although
the underlying vegetation is non homogeneous, the tower is situated on terrain that is

generally flat in all directions for an extended distance upwind, making the study site ideal
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Figure 1. Goose Creek flux tower location and components. (a) Location of the tower (green
dot) and the intensity of maize cultivation (the red area represents the corn harvested area fraction
(high=red, low= light ivory), (Monfreda et al., 2008)). (b) Fluxes measured by the 25m tall
eddy covariance tower come from the underlying heterogeneous landscape consisting of a mosaic
of maize and soybean fields, from a fetch that can reach up to 10 km upwind from the tower. (¢)
The prevailing wind direction is from the southwest (4/23/2016-4/30/2019). The relative frequency
with which the wind blows from a particular direction is proportional to the spoke’s length, and

colors indicate different wind speed categories.

to explore land-atmosphere fluxes dynamics resulting from land cover changes in a human-
induced agricultural landscape. The eddy covariance tower has recorded data from April
2016 to present day. The high-frequency instruments that estimate fluxes from the ecosystem
are deployed at 25m height (Li-7500 Infrared Gas Analyzer manufactured by LiCor Inc., and
CSAT3 Sonic Anemometer manufactured by Campbell Scientific Ltd) (See Supplemental
Information Section 1 and Table S1). These instruments sample at 10 Hz and are set to
record 15 minute averages. They point to the southwest, the prevailing wind direction
(Figure 1). However, constantly shifting wind directions with meteorological conditions
have implications for this study (described in detail in Section 3). For more information on
the variables used in the analysis and instrumentation at this flux tower, we refer the reader

to Supplemental Information Section 1 and Table S1.

3 Methods

Here we describe how we estimate the relative contribution of different land cover types

to land-atmosphere fluxes measured at the flux tower. First, we use the wind data to obtain
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Figure 2. Panoramic view of the intensively managed agricultural study site. (a) During the
growing season in July 2015, a row crop agriculture mosaic dominates the landscape, masking
features such as micro-topographic depressions and soil variability. The vegetated land cover con-
nects the heterogeneous ecosystem and the overlaying atmosphere during the growing season. (b)
Right after harvest (October 2017), only litter remains over the surface. “R” marks a common
reference point between the two pictures (Photo credit: (a) Allison Goodwell, (b) Leila Hernandez

Rodriguez).

the variability of the areal coverage by using a two-dimensional flux footprint parameteriza-
tion. Then we use a process-based ecohydrological model to obtain the temporally varying
ratio of the flux values for different land covers. We use both the observed data and the
modeled ratio of fluxes to estimate the contribution of each crop to the observed fluxes.
From this, we can characterize the patterns of magnitude and variability of fluxes. Know-
ing that the observed fluxes at the ecosystem scale also carry the influence of the spatial
heterogeneity within the flux footprint, we deconvolve the signal of the eddy covariance
observation by quantifying the differential weighting of the plots based on the land cover
types inside its dynamic flux footprint to find the relative contribution of each land cover

type on the observations.

3.1 Estimation of two-dimensional flux footprint

Latent heat (LE), sensible heat, (H), and COs fluxes (F.) estimated by the flux tower
at any given time point correspond to an uncertain origin on the landscape. This origin
can be estimated as the flux footprint, which is defined as the upwind landscape area that
contributes to the measured vertical flux or concentration at a specific time (Vesala et

al., 2008; Burba, 2013; Kljun et al., 2015). In this study, we use the two-dimensional
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flux footprint prediction model (FFP) proposed by Kljun et al. (2015), which considers
the effects of surface roughness, atmospheric stability, and the crosswind spread of the
footprint. For an agricultural landscape, surface roughness length changes as a function of
vegetation height through the growing season. Also, atmospheric thermal stability rapidly
changes with air temperature and density at a given pressure, impacting the vertical motion
of air parcels. As a result, the areal contribution associated with each land cover type
changes dynamically. The FFP model provides the width and shape of the two-dimensional
flux footprint at any give time, where the source/sink area of the fluxes is located on the
horizontal surface (x,y), and the tower height in the vertical direction, z (Figure 3). The
FFP model assumes stationarity over the eddy-covariance integration period (here, 15-min)

and horizontal homogeneity of the flow, but not of the scalar source/sink distribution.

When estimating the two-dimensional flux footprint, at each time interval the observed
fluxes have their origin in a different combination of maize or soybean fields. To derive the
source area up to a certain percent of flux contribution, we define a set of five contours (r)
that define the areas that contribute 20, 40, 60, 80, and 90% of the total flux estimated by the
flux tower. At farther locations beyond rggy that correspond to a contribution of 90%, the
contributions tail off, so we limit our study to rggy (We use rg or r to represent percentage
or equivalent fractional contribution, respectively). The associated fetch changes direction
and length at every time step. In this context, the fetch is the distance from the tower to
a specific fraction of the flux contribution. For example, the fetch for a 50% contribution

(rs0%) will be shorter than for a 90% contribution (rgqy ) (Burba, 2013).

We used the FFP model as a function on a loop in our Python code to estimate flux
footprints for each 15-min data point from April 2016 to April 2019. Here we describe the in-
puts required for the FFP model. The calculation of the boundary layer height, blh, is based
on the bulk Richardson number, R;, method (Vogelezang & Holtslag, 1996) which is suitable
for convective and stable boundary layer conditions and has been used in several previous
studies (Lee & De Wekker, 2016; Seidel et al., 2012). We used the blh retrieved from the fifth
generation reanalysis dataset for the global climate and weather, ERA5 (ECMWTF, 2018)
from the European Centre for Medium-Range Weather Forecasts (ECMWF). Near-surface
atmospheric turbulence is caused by thermal and mechanical effects. Thermal turbulence is
produced by temperature gradients and buoyant forces, while the mechanical turbulence is
generated by friction forces driven by wind shear, and therefore both control atmospheric

fluxes. To account for atmospheric stability we calculate the Obukhov length, L, (Foken,

—10-
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Figure 3. Illustration of a two-dimensional flux footprint that captures the organized hetero-
geneity of the maize-soybean mosaic. The land cover data from USDA 2016 (right) shows a mosaic
of maize and soybean surrounding the flux tower. The density profile over the mosaic (orange)
represents the relative contribution of the flux footprint as a function of the upwind distance, de-
nominated as the fetch (black dashed line). The density profile shows that higher contributions
come from locations close to the tower, but not immediately underneath. In the two-dimensional
approach (Kljun et al., 2015) the area defined by a set of contours (r¢) of increased percentage of
contribution (bottom) define the strength and location of the sources/sink areas that contribute to
the flux estimated at the tower. w is the weighted flux footprint contribution of each patch of area
(a) defined by a given contour. Therefore, the flux tower measurement is the combined response of
the fields inside the flux footprint (left).

2006), which is positive for stable and negative for unstable atmospheric stratification, and
becomes near-infinite in the limit of neutral stratification. Finally, the last input to the FFP
model corresponds to the standard deviation of the lateral velocity fluctuations, o, which
is estimated using the 15-minute root-mean-square of the cross main-wind component, v,
from the high-frequency data at the flux tower. The displacement height, d, is defined as
the distance above the ground at which a non-vegetated surface should be placed to provide
a logarithmic wind field equal to the observed one (Stull, 2012). We estimated the variation
of d during the growing season as a function of the average height of maize, d = 0.67 * h,,
(Jacobs & Van Boxel, 1988). The variation of canopy height and LAT has been proven to be
nearly simultaneous in crops like maize (Gao et al., 2013; Alekseychik et al., 2017), therefore
we used LAI as a proxy to define the average changes of height of the crops in the region.
The measurement height above displacement height, z,,, is calculated as z,, = z — d, where

z = 2bm is the tower height and d the displacement height.

—11-
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3.2 Heterogeneity and flux partitioning equations

Here we describe the approach to estimate the relative flux contribution due to hetero-
geneous land cover. Analytically, the distribution of a diffusive quantity in the lower layer
of the atmospheric boundary layer is described as an integral diffusion equation. Therefore,
the flux footprint relates the vertical eddy flux 7 from a flux tower located at the origin (0, 0)
and with an observation height, z,ps, to the spatial distribution of ground source (or sink)
fluxes .Z (z,y) at the ground (z = 0) at a upwind distance (x) and crosswind (y) direction
from the tower location (Pasquill & Smith, 1983; Schuepp et al., 1990; Horst & Weil, 1992;
Schmid, 1994; Vesala et al., 2008):

70,0, Zops) = /ﬂ F(e,y) - w(z, y)dedy (1)

where #Z denotes the flux footprint and w(z,y) is the relative contribution to the flux at
any location (x,y) (Kljun et al., 2015). % (z,y) is the source (or sink) flux from the surface
at location (z,y), with the same units as 7, where n = 7(0,0, zo55). The observed flux n
is then the weighted integration of all the surface fluxes inside the contour rggy of flux
contribution, and has units of W/m? for latent heat flux, LE, and sensible heat flux, H,
and pmol/m?s for CO, flux, F.. This approach assumes that the turbulent flow field is
horizontally homogeneous (Horst & Weil, 1992). Consequently, the relative contribution of

each field source or sink is a function of its location within the flux footprint.

We assume that fluxes are the same within a given patch of a crop, and there are n
landscape patches that contribute to the measured flux inside the flux footprint. To account
for a measure of surface heterogeneity, the source emission or sink rate for n different sources

(or sinks) Equation (1) is expressed as:

=1

where F; is the ground level flux for patch i and w; is the weighted flux footprint contribu-
tion of each patch of area a; located inside the contour described by any given fraction of
contribution from a defined set of contours r. We can account separately for the weighted
flux footprint from maize and soybean fields, represented by the subscripts m and s, inside

each contour respectively, as follows:

—12—
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W, = A -7 and  w,, = Ag -1 (3)

where the total fraction of the area covered by maize and soybean inside a contour can be

denoted by A,, and A, respectively, as follows:

Zv‘ a; Zv' , 44
A, ==3€em 7 A, =22 7 and ap = a; 4
m ar s ar T ; 7 ( )
where we can aggregate the patch areas a; by adding the contributions of each patch type
and the total area is ar. Here we assume that the fluxes are the same for all patches
of a given crop type, such that we can aggregate those patches to compute the relative

contribution of each crop/land cover type by summing the contributions as follows:

bm= > w; and ¢;=> w; (5)

Viem Vi€Es

where the subscripts m and s refer to maize and soybean, respectively. We now assume
that one “crop” flux value for all maize as C,, and for all soybean as Cs. This constitutes
the assumption that the vegetation type is the dominant source of flux variability, and
ignores influences such as soil moisture or nutrients along the fetch. This assumption could
be relaxed if detailed characteristics of each landscape patch were available. As described
in the next subsection, we use a multilayer canopy model to estimate the vegetation-level
fluxes (LE, H, F,) for each crop type. Since these fluxes are modeled, here denoted as C,,
and Cy for maize and soybean, respectively, their application to Equation (2) results in a

total “modeled” flux 7,,04:

Nmod = Cm¢m + Cs(bs (6)

Due to these simplifying assumptions, model error, and observation errors, we expect 7m04
to be different from the observed tower flux, . Therefore, our aim is not to validate our
modeled results against flux observations, but to merge flux tower observations, and models
to improve the crop-specific estimates. Lastly, we compute the partitions of the fluxes

observed at the tower for maize and soybean fields, respectively, as follows:

—13—
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(8)

Based on this, we combine the relative fluxes from a process-based model with a two-
dimensional footprint model to determine both the fractional and actual contributions to

the flux.

3.3 Ecohydrological modeling to simulate maize and soybean behavior

We use an annual land cover product from the United States Department of Agriculture
(USDA) Cropland Data Layer (CDL) at 30m spatial resolution (Figure 3) to determine
land cover in each footprint. Some fields see maize-soybean rotation while others see maize-
maize-soybean rotation. We assume that the land cover for a year does not change until
the planting the next year, and therefore define a single land cover from April through
March of the next year, a “crop year”. We use Equation (5) to compute the flux footprint

contribution for maize and soybean, ¢,, and ¢, respectively.

We use the well-tested and validated Multi-Layer Canopy model, MLCan (Drewry et
al., 2010; Le et al., 2012), to simulate the flux response of maize and soybean, C,, and Cj
respectively, under observed atmospheric drivers. MLCan uses a multilayer discretization
of the canopy and root zone, including a litter layer on the soil surface, to simulate the
below- and above-ground ecohydrological processes for different vegetation types. At the
leaf scale, ecophysiological (photosynthesis and stomatal conductance) and physical (leaf-
boundary layer conductance and energy balance) components are coupled to determine flux
densities of COs, and latent and sensible heat, and then integrated to the canopy scale. For
an extended description of the model and its validation for maize and soybean we refer to

Drewry et al. (2010).

We compute the fluxes associated with maize and soybean, which use C4 and C3 pho-
tosynthetic pathways, respectively. The model is driven by above-canopy measurements
of air temperature (Ta)[°C], barometric pressure (Pa)[kPa], global solar radiation (i.e.

incident shortwave radiation) (Rg)[W/m?], precipitation (PPT)[mm], and vapor pressure
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deficit (VPD)[kPa] from April 2016 to March 2019. Leaf Area Index (LAI) was obtained
from the Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day dataset at 500m
resolution (Myneni et al., 2015). Pixels around the tower that contained a single crop were
selected to estimate maize and soybean LAI. Satellite LAI measurements were comple-
mented with LAI estimates from field measurements of Normalized Difference Vegetation
Index (NDVI) calculated as described by Nguy-Robertson et al. (2012). LAI is assumed to
be zero during the non-growing season, when no vegetation is on the surface and only litter
from the previous season’s crops remain. Maize and soybean parameters for the model are
provided in SI Table S2. MLCan simulations provide LFE, H, and F, at 15 minute resolution
for maize (Cy,) and soybean (Cs). These are then used to compute the total modeled flux

and relative contributions (Equation (6)).

3.4 Illustration of the role of organized heterogeneity

At a single time step, we consider that the total contributions of the flux footprint
from maize and soybean (¢,, and ¢, respectively) are defined by the sum of their relative
contributions (Figure 4), as expressed in Equation (5). As an illustrative example, we
consider three cases (Figure 4, Table 1) where ¢5 = ¢,, = 0.5 (Case A), ¢ps=0.4 and ¢,,=0.6
(Case B), and ¢s=0.6 and ¢,,=0.4 (Case C). Case A corresponds to equal contributions from
the two crops as would be expected if the two were randomly distributed or the organized
heterogeneity incidentally reflected equal contributions, like in the hypothetical case shown
in Figure 4a. Cases B and C reflect relatively larger contributions from maize or soybean,
respectively. For all three cases,assume we know that the modeled fluxes are LFE;=120
W/m? and LE,,=80 W/m?, and the tower observed flux is n = 105 W/m?. For Case A
this leads to a total estimated flux nyeq = 100 W/m? (= (.5)120 + (.5)80). For Cases B and
C, we would estimate n,,04 as 96 W/m? and 104 W/m?, respectively. Since for all three
cases, the observed flux at the tower is the same, we can estimate the difference between
1 and Nmoq (Table 1). In this example, we see that the landscape heterogeneity of Case C
leads to the closest estimate to the flux measured at the tower. We can also consider the
percent difference in 7,,,4 relative to the equal contributions of Case A. Here, we see that
Case B leads to a -4% difference in LE, due to the higher contribution from maize, which

has a lower LE. The opposite occurs for Case C (Table 1).

This example also demonstrates that the change in the relative contribution of fluxes

due to two crop species can either increase or decrease the total flux observed at the tower
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Table 1. Comparison between the random and organized heterogeneous mosaic cases (Figure
4) towards the estimation of latent heat flux, n = LFE. Case A refers to the “equal contribution
assumption” (Figure 4a), whereas Case B (Figure 4b) & Case C are heterogeneous situations in

which soybean and maize are more dominant, respectively.

Case n(LE) o5 Om LE, LE.,.  Tmod 1—Tmoa diff

from A
W/m? frac  frac ~ W/m? W/m? W/m? W/m?*> %
A 105 0.5 0.5 120 80 100 5 0
B 105 0.4 0.6 120 80 96 9 -4
C 105 0.6 0.4 120 80 104 1 4

(n) relative to the hypothetical case of a random distribution of crops. In other words, an
incremental change in flux observed at a tower could either correlate to a change in flux from
the crops or a shift in relative land cover contributions. This has significant implications for

flux tower data interpretation in a heterogeneous landscape.

(a) (b)
Q= Zer. O, + O,

Ps = w, +Ws, = 0.4

@ Flux tower location
==+ Flux tower fetch
=== Flux density profile
- Maize field

- Soybean field

Figure 4. Conceptual illustration of the flux footprint responses of (a) a random land cover
mosaic where maize and soybean equally contributes to the total observed flux (¢m=¢s=0.5), and

(b) an organized heterogeneous land cover mosaic as observed at the study site.

4 Results and Discussion
4.1 Ecosystem fluxes dictated by agricultural management

To understand the general behavior of the study site, we analyze all 15 min data from
23 April 2016 to 15 April 2019 in terms of average diurnal ecosystem fluxes within the flux

footprint. H and LE both peak at midday as expected (Figures 5a and b), and negative
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values of COs flux, F., during the daytime reflect ecosystem uptake due to photosynthesis
(Figure 5¢). This absorbed CO2 can be fixed by plants to form tissue, remain in the soil
as litter and roots, or leave the system through lateral soil movement or harvested grain.
Positive values of F,. during nighttime reflect a combination of autotrophic and heterotrophic
respiration. We found that annually, the agricultural system acts as a sink for CO,, with
negative C'Oy annual budgets during a “crop year” (Table 2). Our analysis also shows that

crops evapotranspire on average 72% of the total annual ET during the growing season.

The difference in the net F. (COy released minus COy uptaked by the ecosystem)
between the three crop years (Table 2) is assumed to be primarily influenced by two sets
of factors: (1) hydroclimatological drivers acting on the ecosystem, such as precipitation
(PPT) and radiation; and (2) the difference in the fraction of maize and soybean in the flux
footprint due to the organized heterogeneity of the ecosystem. Here we evaluate the former
factor, while the latter, which is the main focus of this study, is discussed in the following
subsections. Specifically, in Subsection 4.5, we discuss the interpretation of the behavior of
the observed net F, and its relationship with the contribution of each land cover type. For
the first factor, we examined the cumulative rainfall during the crop growth period (Figure
5g), which shows differences across the three years. The lowest accumulated precipitation is
observed for the 2017 growing season, followed by 2018 and 2016. This reveals an opposing
relationship between cumulative growing season rainfall and annual COs uptake, since the
2017 growing season corresponds to the highest COs uptake (Table 2). Initially, these results
seem to contradict the notion that increased precipitation helps carbon uptake (Nemani et
al., 2002). Therefore, we investigate the relationship between PPT, LE, and COy flux
(Fe) at the intra-annual basis (Figure 6¢). During non-growing season months net F, is
positive, meaning more C'O, is released rather than taken up by the system. Also, right
after harvest, C'O is no longer taken up by crops and a release of COy is expected from
crop residues due to the organic matter decomposition of stover and roots that remains in
the field (Yan et al., 2019). On the other hand, more COjy is taken up during the growing
season than released to the atmosphere and therefore F, is negative. During non-growing
season LE corresponds to soil evaporation, and F|. corresponds to respiration, both of which
are very low. For this system, average monthly LF is limited to an upper threshold of about
100 W/m?, controlled by solar radiation (Figure 6¢). However, we observe a difference in

the diurnal behavior of the inter-annual variability of the Bowen ratio (H/LE) (Figure 5f).
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For the years of analysis, the Bowen ratio is less than 1, indicating that the system is not

water limited at the annual scale.

Since vegetation growth stages heavily influence land-atmosphere exchange dynamics,
we explored the intra-annual evolution of the daily average behavior using 6-week windows
for LE, H (Figure 6a, blue and orange lines, respectively) and F, (Figure 6b). The in-
traannual dynamics of the net COy flux (Figure 6¢) shows the windows when C'O5 uptake
(negative value) is prevalent. We observe the coupled behavior of F, and LE, for when
CO4 uptake higher LE also peaks, which means that water is evapotranspired at a higher
rate. During the period of this analysis, the highest C'O5 uptake is observed from July 16
to August 31, 2017 (Figure 6¢, window 11), the time of year when crop growth peaks. Soil
respiration might be positively related to precipitation and soil temperature (Lei & Han,
2020; Birch, 1958). Therefore, a lower cumulative rainfall in 2017 may have contributed
to a lower soil respiration rate in comparison with 2016 and 2018 (e.g. Figure 6¢, shows
lower C'O5 release in window 12 than in windows 4 and 20). Consequently, both a high
CO4 uptake during the growing season and low C'Os release during the non-growing season
contributed to the high net COs uptake in 2017. As observed at seasonal time-scales, the
non-stationary behavior of LE and C'O5 fluxes reveal a human-induced trend in which the
imposed land cover controls the energy and COy exchange between the land-surface and
the atmosphere. Consequently, the effect of vegetation on F, is relevant, and, therefore, we
quantify the relative contribution of each crop type to determine the origin of the higher

CO2 uptake observed by the tower during 2017 (See Subsection 4.5).

Table 2. Annual CO2 budget and mean C'O2 concentration inside the flux footprint

Crop year 2016 2017 2018
Net CO, budget (kg/m?) -0.15  -0.57  -0.23
Avg CO3 conc (ppm) 409.16 407.02 409.84

4.2 Flux footprints cover a wide range of landscape areas

The size of the flux footprint strongly depends on the highly variable atmospheric
stability at the sub-hourly time scale. At the annual scale or for observations over long
periods, the effect of the atmospheric stability on the footprint climatology, or average
footprint, is weaker (Kljun et al., 2015; Zhang & Wen, 2015; Tuovinen et al., 2019). The

changes on the climatological footprint for crop years 2016 (Figure 7a), 2017 (Figure 7c),
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Figure 5. Daily averaged observations of atmospheric fluxes and radiation, and inter-annual
rainfall at the study site (a), for crop year 2016 (i.e. April 2016 to March 2017) (black lines),
crop year 2017 (magenta lines), and crop year 2018 (cyan lines), for: (a) Latent heat flux, LE;
(b) Sensible heat flux, H; (c¢) Net F. (CO2 emitted minus uptaken by the system); (d) Carbon
dioxide concentration; (e) Net radiation; (f) Bowen ratio (H/LE); and (g) cumulative rainfall for
the growing seasons 2016, 2017 and 2018.
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Figure 6. Daily average ecosystem observations at the study site in windows of 6-weeks for: (a)
latent and sensible heat flux, LE and H; and (b) carbon dioxide flux, F.. (c) Net F., average LF,
and total precipitation PPT, for April 2016 - April 2019.
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Figure 7. Flux footprint plots with contours over the mosaic of maize (blue) and soybean (green)
crops with the center at the flux tower. Each flux footprint plot shows the source area defined by the
contours of 20, 40, 60, 80, and 90% (outer contour) of the total flux contribution. The climatological
(or average) flux footprint for crop years (a) 2016 (i.e. April 2016 to March 2017), (b) 2017, and
(c) 2018, correspond to the aggregation of all single footprints over the year. A sample of single 15-
minutes averaged flux footprints under (d) neutral (05/18/2016 06:00), (e) unstable (08/18/2017
12:00), and (f) stable (12/19/2018 15:15) atmospheric conditions show the changes in size and
location of the source area of the surface flux defined by the dynamic flux footprint. Histograms of
the 15-min FFP analysis for the upwind distance (fetch) to the (g) mode and to the (h) 90% of flux
contribution, illustrate the average behavior under stable (blue), unstable (orange), and neutral
(green) atmospheric conditions over the 3 years of analysis. The probability density function of the
upwind (i) area and (j) distance of the 90% of flux contribution show differences based on wind

direction.

21—



444

445

447

448

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

and 2018 (Figure 7e) show that the mean fetch for rggy is approximately 3km. A sample
of flux footprints under neutral (Figure 7a), unstable (Figure 7c) and, stable (Figure 7e)
atmospheric conditions show the different size of the flux footprint contours for each case.
Turbulent mixing plays an important role in the magnitude of fields’ relative contributions,
as the weighting of fields farther away from the tower increases with increasing stability. In
general, the flux footprint size decreases with decreasing z,,/L (Subsection 3.1). Therefore,
under unstable conditions (Figure 7d) we can expect a smaller flux footprint than under

stable conditions (Figure 7f).

We found that the average distance to the flux footprint peak is 168m for unstable
conditions and 268m for stable conditions (Figure 7g). Therefore, the fields of peak flux
contribution are located in between those distances. The footprint is wider as the standard
deviation of the lateral wind fluctuations increases and, therefore, the crosswind dispersion
increases (Zhang & Wen, 2015; Kljun et al., 2015). On average, the upwind area described by
the contour of the 90% of contribution corresponds to 1.51km? for unstable conditions and
3.17km? under stable conditions. Similarly, the upwind distance to the contour described by
the 90% of the flux contribution for unstable conditions is closer than for stable conditions,
with 5.8km and 9.2km, respectively (Figure 7h). The implications of these results for the
partitioning of flux contributions for each crop type due to the flux footprint are discussed

in the following subsections.

4.3 MLCan distinguishes between maize and soybean fluxes

We used MLCan as described in Subsection 3.3 (Le et al., 2012) to obtain LE, H,
and F, for maize and soybean, and to explore their intra-annual behavior (Figure 8). From
MLCan results, we observe that LE is higher for maize than for soybean (Figure 8a). This
occurs for all months except for June to July 2018 when LE is higher for soybean. However,
at night, we observe higher condensation rates (or dew formation), in the form of negative
LE, for maize relative to soybean. C'Os uptake patterns by both crops are consistent with
the observations at the flux tower (Subsection 4.1), with more uptake of COs by the soil-
crop system around noon due to photosynthesis, surpassing respiration (Figure 8b; negative
F. means the direction of the flux is downwards). At nighttime, positive F, is attributed to
respiration from the system. Given the dependence between LE and F., we explored their

coupled behavior during the growing season (See SI section 4 and Figure S1) and we found
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that the four stages -planting, growing, maturing, and harvest- cluster together for maize

and soybean.

4.4 Flux contributions evolve due to organized heterogeneity and hydrocli-

matological drivers

We estimated the relative contribution of average daily fluxes of maize and soybean
(Figure 9) using the observed flux tower data. The overall trend of LE, H and F, exhibit
a strong seasonality (Figures 9a, b, and c, respectively). In terms of flux footprint contri-
bution, ¢, (Figure 9d), a larger contribution from maize fields were observed in 2016 and
2018, when more fields were cultivated with maize in areas between 168m and 268m upwind
from the tower. In 2017, soybean was mostly planted in the same fields. However, both
crop types influence the magnitude of the observed fluxes. In terms of F. behavior across
seasons, we observe that a strong release of COy flux into the atmosphere occurs during
planting (i.e. starting around mid April) (Figure 9c, numerals 1, 9 and 17) that can be
explained by rising temperatures and soil moisture that support heterotrophic respiration
of existing biomass on and in the soil. During the peak of the growing season, soybean
fields in 2017 contributed more towards a higher CO5 uptake (Figure 9¢, numeral 11), while
maize fields in 2016 and 2018 contributed more towards a higher LE (Figure 9c¢, numeral 2
and 18). Accordingly, this 6-week window analysis shows that maize fields inside the flux
footprint contributed more towards daily LE and H than soybean fields during 2016 and
2018 growing season, whereas soybean contributed more than maize in 2017. Therefore, all
years have significant contributions from both crops given that the mosaic at a larger scale

is different every year (Figure 9).

Next, we explore the seasonal dominance of a given crop type in terms of flux magnitude
contribution, ¢, rather than area contribution. We calculated the difference of the percentage
of contribution for the two cases described in Subsection 3.4. First, for the hypothetical
randomly distributed mix of plants, in a manner that does not reflect any particular spatial
pattern, where the relative contribution of the flux footprint for each crop type is equal,
¢m = ¢s = 50%. Then, for the relative contribution of each crop from April 2016 to April
2019, where ¢,,, and ¢, are unequal and temporally variable (Figure 9). In other words, we
want to find what crop is dominant in each window resulting from a combination of fluxes
associated with each crop and the fraction they occupy in the flux footprint. . To estimate

the contribution percentage of each crop, we first calculated the average LE, H, and F for
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Figure 8. Modeled average daily fluxes of maize (blue) and soybean (green) in 6-week windows:
(a) latent heat flux, LE; and (b) carbon dioxide flux, F., using MLCan. Model parameter values
are shown in the supplemental material (“MLCan parameters” and Table S2). (c) Canopy leaf
area index (LAI) of maize and soybean inside the tower flux footprint for April 2016 - April 2019,

estimated as described in Subsection 3.3. s
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Seasonal evolution of average daily fluxes due to the relative contribution of maize

(blue) and soybean (green) in 6-week windows (corresponding to the windows shown in Figure 6),
for (a) latent heat flux, LE; (b) sensible heat flux, H; (c) carbon dioxide flux, F¢; and (d) relative

flux footprint contribution, ¢. Each stacked bar refers to 6-weeks averaged daily flux for each crop

type. Relative contributions due to soybean and maize were calculated with the method described

in Section 3 for 15-minute data from April 2016 to April 2019.
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maize and soybean for the 6-week windows, using Equations (6)-(8) and the corresponding
¢ for each case. Then, we subtracted the results assuming random (rather than organized)
distribution of crops from the heterogeneous results i.e., organized heterogeneity, to define
the dominant crop for each window. The 6-week averaged analysis shows the difference
between the percentage of the contributions for the organized heterogeneous mosaic and for
the hypothetical random contribution case (Figure 10). While maize fields contributed more
to the observed LE and H in crop years 2016 and 2018, soybean fields contributed more
in crop year 2017 (Figures 10a and b). The largest effect due to land cover heterogeneity
is observed for COs flux (F.) from June 1 to July 15, 2017, (Figure 10c, bar 10), when
on an average soybean fields contribution towards F is 24.5% larger than the random case

(Figure 10c).
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Figure 10. Seasonal evolution of the percent contribution due to organized heterogeneity in

6-week windows (corresponding to Figure 6), for (a) latent heat flux, LE; (b) sensible heat flux,
H; and (c) carbon dioxide flux, F.. These plots show the difference between the response of a

heterogeneous land cover mosaic and a hypothetical random assumption where ¢, = ¢s = 0.5.

Given that the change in flux observed at the tower could either correlate to a change
in flux from the crops or a shift in relative land cover contributions, we analyze the ef-
fect of the relative contribution due to maize and soybean based on atmospheric conditions
(Figure 11). Besides the overall high contribution due to maize and soybean areas nearby

the tower under unstable conditions, we observe that maize and soybean show a different
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cumulative distribution function based on atmospheric stability. We could have estimated
the contribution of individual crops to the total flux observed at the tower at each period
using a statistical approach to deconvolve the contributions from different types of vegeta-
tion. However, we would require a large amount of data to not lose resolution at times when
the flux tower only observes a small area of a certain field (e.g., if the wind does not blow
from a specific direction), otherwise, it is not possible to get an estimation for a given field.
Particularly under unstable conditions the flux footprint is smaller, and therefore there is a
higher probability to observe a single crop (Figure 11b). Consequently, we combine multiple
sources of information to synergistically inform the flux tower observations at the ecosystem
scaleand to decompose the relative contribution of each of the land cover types inside the flux
footprint. This combined framework can be used to study aspects about the heterogeneity

of the landscape beyond what a tower could provide.
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Figure 11. Cumulative seasonal behavior of the relative flux footprint contribution due to maize
and soybean. The cumulative distribution of the (a) area of 90% of flux footprint contribution and
the (b) flux footprint relative contribution, show the behavior of each crop type under stable (blue
and green, for maize and soybean, respectively) and unstable (red and orange, for maize and

soybean, respectively) atmospheric conditions.

4.5 Organized heterogeneity and hydroclimatological drivers explain high

2017 CO5 uptake

As mentioned in Section 4.1, the annual net COs budget is driven by the combined
action of (1) hydroclimatological drivers acting on the ecosystem and (2) the difference in
the fraction of maize and soybean in the flux footprint due to the organized heterogeneity
of the land cover. Here we use results from the relative contribution analysis to understand
the relationship between the lowest crop yield and the largest net COy budget observed
in 2017, in comparison to 2016 and 2018 (Table 2). The USDA provides crop yields at
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Figure 12. Difference between flux tower observations (red) and modeled (gray) daily averaged
fluxes in 6-week windows (corresponding to Figure 6), for (a) carbon dioxide flux, Fe, and (b)
latent heat flux, LE. The error bars show the standard deviation of the daily average over the
6-week period for the observed (red) and modeled data (black). The segmented line in red shows
the behavior of the daily averaged observations, while the continuous black line similarly shows the
modeled data.

the county scale for Piatt county, Illinois (NASS, 2016-2018)(Figure 13a), which we assume
is representative of yields at the study site. This low yield can be partially attributed to
the high solar radiation and low rainfall during the 2017 growing season (Figure 5). Next
we consider how the different contributions of maize and soybean inside the flux footprint
can also inform this feature. From MLCan we obtain the net C'O, budget for each crop
type during the growing seasons (Figure 13b). Assuming that the COs taken up is only
used to produce dry matter (DM), and that the weight per bushel of DM for maize is 25.4
Kg/bushel and 27.2 Kg/bushel for soybean (Murphy, 1981), we estimate the net CO5 budget
per unit yield for each crop type. Soybean has a larger CO5 uptake per unit yield than maize
(Figure 13c). From the flux footprint analysis, the relative flux footprint contribution due to
soybean is larger than from maize (Figure 13d). Using the previous results we estimate the
net C'Oy budget inside the flux footprint for each crop type and find that the highest CO2
uptake from soybean fields occurred in 2017 (Figure 13e). Given that soybean fields take
up more C'Os, even in a drier, low-yield year we see more C'O, uptake for a year in which
soybean is dominant inside the footprint. Also, C'Oy release is muted from respiration by

the drier conditions, further skewing the net flux towards high COy uptake (negative Fc).
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Therefore, we observe that the higher annual net COs budget in the crop year 2017 is not
only the effect of hydroclimatological conditions but to the particular contribution of soybean
fields, which play a significant role in the higher uptake of C'Oy observed that year. The
combination of COs taken up by soybean fields and the lower respiration rate due to high
temperatures and lower rainfall, influence the overall higher uptake of COs observed in 2017.
These results show how the knowledge provided by multiple sources besides the observed
F. (i.e., MLCan and flux footprint modeling, as well as crop yield data), provides elements
for an informed interpretation of the influence of the organized land cover heterogeneity on

the behavior of observed land-atmosphere fluxes.
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Figure 13. Relationship between crop yield and net CO2 during the growing season. (a) Crop
yields at Piatt county are combined with (b) the net CO2 budget for each crop type during the
growing seasons 2016-2018 estimated with MLCan, to calculate (¢) the net CO2 uptake per unit
yield of dry matter (DM) for soybean and maize. (d) The climatological flux footprint area for the
90% contribution is used to calculate (e) the net CO, uptaked by maize and soybean fields at the

study site during the growing season.
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5 Summary and Conclusions

This study illustrates the important role of organized land cover heterogeneity on the
observed land-atmosphere fluxes of heat, water, and CO, that are measured at a tall tower.
When the land cover is heterogeneous, inconsistencies in data interpretation can arise when
only accounting for the vegetation type in the nearest field, or alternatively assuming that
multiple crop types contribute equally to the observed flux. Area weighting based on the
relative distribution of crop areas will not work as the fractional contribution from each
crop changes with the dynamically changing flux footprint. Our framework combines flux
footprint and ecohydrological modeling together with flux tower data to improve upon the

understanding that could be obtained given any single information source.

Our approach of analyzing the flux contributions associated with the footprint of a
tall tower footprint has some limitations, many of which could be improved upon in future
studies. First, we consider that crops and soil components are the primary sources of
COs, and that extremely low traffic in the nearby farm roads and other local sources are
negligible contributors (the flux tower is strategically located away from major highways).
However, it is difficult to establish how low automobile or mechanized farm equipment
emissions may contribute to the observed C'O, fluxes, although we believe this will be very
small. Second, the estimation of the flux footprint is not the only source of error, but
tower observations and the ecohydrological model also have errors and as a result they
contribute some uncertainty to our estimations. Third, we do not consider the variability
in flux response across multiple fields cultivated with the same crop, but we assume a
representative modeled flux. Specifically, we distinguish between “maize” or “soybean”
patches and ignore other differentiating factors. In reality, all maize or soybean fields may
not behave the same due to differences in cultivars, soil type, microtopographic variability,
time of planting, etc. This assumption can be overcome through a distributed modeling
approach if detailed data to support such modeling is available. For example, given a detailed
map of soil texture or topography, the landscape could be divided into more than two
components which could be modeled and attributed at higher resolution, e.g., “well-drained
maize” or “drier soybean”. This would enable testing of the assumption that vegetation
type is the dominant differentiating factor between fluxes at different landscape patches.
We anticipate that our study could be extended to study other natural and human-induced

interventions on heterogeneous agricultural landscapes, such as varying wetness conditions,
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LAT or planting dates, or for comparison with a remote sensing product. However, specifying
spatially variable precipitation at these resolutions could remain a formidable challenge.
This approach could also be applied to model evaluation, in that the representation of
landscape heterogeneity should lead to an improved agreement between model results and
observations, relative to the assumption that the tower measurements represent a single
crop type or a homogeneous contribution from multiple crop types. In general, our method
is relevant for the understanding of land-atmosphere fluxes in heterogeneous landscapes and

can be extended towards the use of flux tower data as validation for models of these fluxes.

Our analyses show that the fluxes observed at the tall flux tower are the result of the
combined action of (1) hydroclimatological drivers acting on the ecosystem, and (2) the
difference in the fraction of maize and soybean in the flux footprint due to the organized
heterogeneity of the land cover. In other words, the change in flux observed at every time
of analysis at the tower (15 min) could either correlate to a change in flux from the crops
or a shift in relative land cover contributions within the footprint, or both. For instance,
we qualitatively demonstrated that the change in the relative contribution of fluxes due to
two different land cover types can either increase or decrease the total flux observed at the
tower. Therefore, we quantitatively showed that the spatial structure of the land cover,
described here as “organized land cover heterogeneity” and characterized by the mosaic of
crop fields, impacts the observed fluxes. Our focus on the relative contribution of maize and
soybean fields inside the flux footprint shows the importance of an accurate description of
the land cover and the use of an accurate flux footprint method. We recognize that it is
equally important to accurately simulate the flux response of each vegetation species under
the observed atmospheric drivers. All these are used to obtain the variability of the areal

coverage and the temporal variability of the flux.

In an intensively managed agricultural landscape, where each land cover patch is easily
identifiable by crop type (i.e. maize or soybean), we quantified the relative flux contribution
of LE, H, and CO5. At the study site, the cultivated fields where the flux contribution peaks
are mainly due to one crop type, which explains the dominance in fluxes contribution given
by maize-soybean-maize for 2016-2017-2018 crop years, respectively. This combined analysis
makes it feasible to investigate questions regarding real and hypothetical land cover changes
at an ecosystem scale and quantify the effects of different vegetation type on ecosystem

fluxes.
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