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Abstract10

Eddy covariance measurements quantify the magnitude and temporal variability of land-11

atmosphere exchanges of water, heat, and carbon dioxide (CO2) among others. However,12

they also carry information regarding the influence of spatial heterogeneity within the flux13

footprint, the temporally dynamic source/sink area that contributes to the measured fluxes.14

A 25m tall eddy covariance flux tower in Central Illinois, USA, a region where drastic15

seasonal land cover changes from intensive agriculture of maize and soybean occur, provides a16

unique setting to explore how the organized heterogeneity of row crop agriculture contribute17

to the estimates of land-atmosphere exchange from the observations. We characterize the18

e↵ects of this heterogeneity on latent heat (LE), sensible heat (H), and CO2 fluxes (Fc) using19

a combined flux footprint and ecohydrological modeling approach. For three years from 201620

to 2019, we estimate the relative contribution of each crop type resulting from the structured21

spatial organization of the land cover to the observed fluxes. Since the wind direction,22

magnitude and stability varies at each time step, the net contribution of each crop to the23

overall observed flux is a result of both the relative abundance of a crop and the magnitude24

of its flux contribution in the dynamically changing flux footprint. The combined action of25

hydroclimatological drivers and the organized heterogeneity of the land cover explains the26

inter-annual variations of flux exchange. This study helps us understand how the observed27

flux magnitudes and variability depend on the organized land cover heterogeneity and is28

extensible to other intensively managed or otherwise heterogeneous landscapes.29
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• Land cover heterogeneity31

• Eddy covariance32

• Flux footprint33

• Ecohydrological modeling34

• Critical Zone Science35

• Intensively Managed Landscapes36

–2–

Electronic copy available at: https://ssrn.com/abstract=4034618



manuscript submitted to Agricultural and Forest Meteorology

Plain Language Summary37

Maize (corn) and soybean fields throughout the agricultural Midwest of the US create a38

“patchwork quilt” of land cover types. This pattern impacts the exchange of water, heat, and39

CO2 flux between the land and atmosphere. Here, we determine the relative contribution of40

di↵erent land cover types to the total flux as measured by a tall eddy covariance flux tower.41

We estimate the spatial extent contributing to every flux measurement. We combine it with42

an ecohydrological model to obtain the temporally varying ratio of fluxes for di↵erent land43

covers. Then we estimate how they contribute to the overall flux, which depends on how44

the crop fields are spatially distributed. We find that the tower mostly “sees” fields located45

between 168m and 268m away although areas as far away as several kilometers contribute46

to the observations. Maize fields contributed more than soybean fields during the 201647

and 2018 growing seasons, and vice versa during 2017. We compare our results against a48

hypothetical case where all vegetation is randomly distributed on the surface. We find that49

the knowledge of footprint contributions combined with model results helps explain why the50

observed fluxes vary from year to year.51

1 Introduction52

Agricultural landscapes dominate the USMidwest, influencing ecohydrological responses53

where the root-soil-canopy-atmosphere continuum act as an integrated system. In this re-54

gion, small-grain production was replaced about a century ago by maize and soybean row55

crop agriculture. Today, a seasonal human-induced reorganization of vegetation to meet56

agricultural ecosystem services determines the spatial distribution (Richardson & Kumar,57

2017), and the region experiences seasonal transitions in land cover every year. Specifi-58

cally, row crop agriculture consists of seed planting in early spring, rapid growth in early59

summer, maturity in late summer, and harvest during autumn. During July, the US corn60

belt is now 40% more productive than the Amazonian rain-forest (Foufoula-Georgiou et al.,61

2015) as a result of steady agricultural intensification over the past two centuries. This62

dense vegetated land cover during the growing season contrasts drastically with an almost63

bare landscape of soil, roots, and litter left after harvest typically around mid-October to64

November (NASS, 2010). During the growing season, a patchy mosaic of di↵erent crops is65

the dominant landscape feature, which partially hides other sources of heterogeneity such66

as soil properties and micro-topographic variability (Le & Kumar, 2014). In this study, we67
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focus on the contribution of the “organized land cover heterogeneity”, which we define as68

the human-induced spatial organization of the landscape, on the fluxes exchanged between69

the landscape and the atmosphere when measured at a tall eddy covariance tower. For70

example, to measure the dynamic land-atmosphere exchange of heat, water, and carbon71

dioxide (CO2) fluxes in intensively managed agricultural landscapes, such as that located72

in Illinois, where maize and soybean plots dominate the landscape, a 25m-tall flux tower73

sees hundreds of agricultural plots inside the dynamic flux footprint at each time step of the74

measurements (Kirby et al., 2008). We quantitatively address one of the major challenges75

facing the interpretation of eddy covariance measurements in heterogeneous landscapes: Be-76

sides other sources of landscape heterogeneity, how does the human-induced “organized land77

cover heterogeneity” contribute to the observed fluxes by a tall eddy covariance flux tower?78

Eddy covariance measurements require a homogeneous flow field to provide an ac-79

curate integration of fluxes at the land-atmosphere interface (Aubinet et al., 2012; Burba,80

2013). However, for tall towers the dynamic upwind surface area where the land-atmosphere81

exchange flux is generated, known as the flux footprint, generally exhibits spatial hetero-82

geneities and fluxes from di↵erent sources mix at the observation point (Leclerc & Foken,83

2014). The use of footprint models for interpreting micrometeorological observations is84

a common practice, but the process of di↵erential weighting within a temporally varying85

flux footprint is a “well-known but frequently overlooked feature of eddy covariance mea-86

surements” (Tuovinen et al., 2019; Chu et al., 2021). Previous studies have related eddy87

covariance flux tower observations to individual land use, mostly using a combination of88

di↵erent measurement techniques at di↵erent scales. One approach relies on in situ data,89

from nearby towers at which flux footprints cover a specific vegetation type (Chi et al.,90

2020, 2019; Biermann et al., 2014) or from flux chamber measurements (Tuovinen et al.,91

2019). However, in highly heterogeneous systems with mixed vegetation and soil wetness,92

it is known that there is a possibility for serious mismatch between eddy covariance flux93

measurements and in situ measurements for determining specific fluxes associated with a94

land cover classes. In our case, when tens of plots are located inside the several square95

kilometers size dynamic flux footprint, on-site measurements might not be representative96

of the average behavior of each land cover type inside the tower flux footprint, which can97

potentially bias the conclusions of a study. Another approach relies on the use of remote98

sensing or aircraft data to estimate fluxes from plots on the flight transect (Kirby et al.,99

2008). However, the scale of heterogeneity discernible depends on the flight altitude, and if100
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fluctuations occur during the acquisition of the data, the estimation of fluxes from di↵erent101

sources can be a↵ected. Typically, the use of in situ techniques, such as flux chambers, and102

remote sensing including aircraft data, are limited to study cases due to their inability to103

provide continuous observations. To answer our research question, we require to pair the104

ecosystem scale observations from our tall flux tower, with a technique that can provide105

continuous data of the average behavior of each land cover type inside its flux footprint.106

Together, we can determine the relative contribution of each land cover type at every time107

step of the measurements. Therefore, instead of using scattered observations as representa-108

tive of the behavior of each land cover type, we estimate the average behavior of each land109

cover type using an ecohydrological modeling approach. An advantage of pairing the tower110

observations with modeling results for each land cover type, is the possibility of generalizing111

the implementation to other land cover types in future studies. Other studies have focused112

on extracting the time series associated with a plot-nearby to a flux tower. In that case, the113

time series for the plot is obtained by extracting the fluxes observed by the tower when the114

plot intermittently lies within the dynamically changing flux footprint. For that purpose,115

TOVI software (Licor, 2021) can be useful, especially if the plot is located in the upwind116

direction from the tower. However, many times it requires additional sources of information117

such as nearby towers or flux chambers, to later recreate a full time series for a plot. Pre-118

vious studies have used a set of towers with overlapping flux footprints or modeling results119

for the times when the towers do not see the area of interest (Biermann et al., 2014).120

Our work is distinct from these previous e↵orts, in that we combine observation and eco-121

hydrologic modeling to disentangle the contributions of di↵erent crop types to the observed122

fluxes where the organized heterogeneity plays a direct role in their relative contributions. In123

particular, it is distinct from and provides further refinement to the approach by Chu et al.124

(2021) in that we consider a structured heterogeneity in the flux footprint whose contribu-125

tions are dynamically changing at every measurement time step (15 min). Therefore, it goes126

beyond the monthly flux footprint climatologies for many Ameriflux sites used by Chu et127

al. (2021). However, when aggregating over time, the flux footprint climatology blends the128

sources and sinks of the flux while identifying the spatial extent and temporal dynamics of129

the areas contributing to the observed fluxes at a tower site. We adopt a more detailed per-130

spective to analyze the relative contribution of each land cover type inside the dynamic flux131

footprint at each time step (15 min) that results in clear identifications of the contribution132

to the observation from each crop type as a result of the structure heterogeneity.133
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The distinctive contribution of this study is to investigate how the combined action134

of (1) hydroclimatological drivers acting on the ecosystem, and (2) the di↵erence in the135

fraction of land cover types in the flux footprint due to the organized heterogeneity of the136

land cover, creates the flux signal observed at the tower. Here we emphasize the role of137

each land cover type on the measured exchange of water, heat, and CO2 fluxes at the138

land-atmosphere interface, which is a critical aspect when accounting for fluxes’ sources and139

sinks from agricultural landscapes (Masson-Delmotte et al., 2021). Given that the change140

in flux observed at the tower could either correlate to a change in fluxes from the crops or141

a shift in relative land cover contributions, we analyze the e↵ect of the relative contribution142

due to maize and soybean within the footprint as a result of wind speed and direction, and143

atmospheric stability. Using the observations at the tall eddy covariance flux tower and other144

available data sources in a complementary way, such as flux footprint and ecohydrological145

modeling results, we are able to provide a more informed interpretation for the behavior of146

the observed fluxes by a tall tower with respect to the origin of the fluxes in the landscape.147

This paper is organized as follows: In Section 2, we describe the Intensively Managed148

Landscape Critical Zone Observatory (IMLCZO) study site (Wilson et al., 2018), and in149

Section 3, we present the methods to account for organized land cover spatial heterogeneity,150

including the considerations for the estimation of the two-dimensional flux footprint and the151

description of the use of the ecohydrological model to estimate the fluxes of the upwind area152

sources. Results and discussion are presented in Section 4, where we describe the ecosystem153

behavior at the study site as observed by the flux tower. Then we explain the results of154

the flux footprint and the ecohydrological modeling, and we analyze the seasonal and inter-155

annual evolution of the flux contribution due to each crop type. At the end of Section 4, we156

connect maize and soybean crop yield at the study site to investigate CO2 flux dynamics.157

In Section 5 we summarize the main findings and discuss some assumptions used in this158

work that could be relaxed in future studies.159

2 Study Site160

2.1 Description161

We use hydrometeorological data and flux measurements from a 25m tall eddy covari-162

ance flux tower in the Intensively Managed Landscapes Critical Zone Observatory (IML-163

CZO), located at 40.155N, 88.578W, Goose Creek Township, Piatt County, Illinois, US164
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(Figure 1). In the Upper Sangamon River Basin, both glacial and management legacies165

have shaped soils, topography, and native land cover resulting in a low-relief landscape with166

poorly drained soils (Kumar et al., 2018; Anders et al., 2018). Therefore, the use of tile-167

drains is a common practice in the crop fields for subsurface drainage (Wilson et al., 2018).168

The climate at the study site is humid continental (Koppen climate classification Dfa) with169

warm and humid summers and cold winters. Historically, maximum precipitation occurs in170

late spring and early summer (i.e. April to June) with an average of about 100 mm per171

month (Mishra & Cherkauer, 2010) and long-term observations have shown that Illinois has172

become wetter during the crop-growing season (Mishra & Cherkauer, 2010).173

In this agricultural landscape, vegetation dynamics are a strong determinant of land-174

atmosphere fluxes and their seasonality in the landscape. These dynamics are highly influ-175

enced by crop rotation between maize and soybean fields every one or two years, which is a176

prevalent practice, along with di↵erent intensities of tillage (Wilson et al., 2018). The region177

has a return of one harvest per year. Planting occurs from early April to late May, and178

harvest occurs from late September to early November. Maize is typically planted before179

soybean and harvested after, such that it has a longer growing season (NASS, 2010). In this180

study, we consider an April-March window as a “crop year” (e.g. April 2016 to March 2017181

is denominated in this study as “crop year 2016”). Both crops have a peak vegetation cover182

with very dense leaf area index (LAI) reaching 4 for maize and 6 to 7 for soybean (Drewry183

et al., 2010). A distinctive feature of this agricultural region is how the dense vegetation184

cover during the growing season contrasts drastically with the almost bare landscape left185

after harvest until the following spring season when planting occurs (NASS, 2010) (Figure186

2). After harvest, crop residues, i.e., mainly litter, stover and plant roots, remain on the187

surface and in the shallow soil layers until the following spring when planting occurs (Warner188

et al., 1989).189

2.2 Instrumentation and Data190

Our 25m-tall eddy covariance flux tower sees the combined response of hundred of191

di↵erent plots every 15-min in the “patchwork quilt” landscape inside its several square192

kilometers size dynamic flux footprint. We use a set of detailed land cover maps (NASS,193

2016-2018) to characterize the annually varying spatial land cover composition. Although194

the underlying vegetation is non homogeneous, the tower is situated on terrain that is195

generally flat in all directions for an extended distance upwind, making the study site ideal196
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Figure 1. Goose Creek flux tower location and components. (a) Location of the tower (green

dot) and the intensity of maize cultivation (the red area represents the corn harvested area fraction

(high=red, low= light ivory), (Monfreda et al., 2008)). (b) Fluxes measured by the 25m tall

eddy covariance tower come from the underlying heterogeneous landscape consisting of a mosaic

of maize and soybean fields, from a fetch that can reach up to 10 km upwind from the tower. (c)

The prevailing wind direction is from the southwest (4/23/2016-4/30/2019). The relative frequency

with which the wind blows from a particular direction is proportional to the spoke’s length, and

colors indicate di↵erent wind speed categories.

to explore land-atmosphere fluxes dynamics resulting from land cover changes in a human-197

induced agricultural landscape. The eddy covariance tower has recorded data from April198

2016 to present day. The high-frequency instruments that estimate fluxes from the ecosystem199

are deployed at 25m height (Li-7500 Infrared Gas Analyzer manufactured by LiCor Inc., and200

CSAT3 Sonic Anemometer manufactured by Campbell Scientific Ltd) (See Supplemental201

Information Section 1 and Table S1). These instruments sample at 10 Hz and are set to202

record 15 minute averages. They point to the southwest, the prevailing wind direction203

(Figure 1). However, constantly shifting wind directions with meteorological conditions204

have implications for this study (described in detail in Section 3). For more information on205

the variables used in the analysis and instrumentation at this flux tower, we refer the reader206

to Supplemental Information Section 1 and Table S1.207

3 Methods208

Here we describe how we estimate the relative contribution of di↵erent land cover types209

to land-atmosphere fluxes measured at the flux tower. First, we use the wind data to obtain210
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Figure 2. Panoramic view of the intensively managed agricultural study site. (a) During the

growing season in July 2015, a row crop agriculture mosaic dominates the landscape, masking

features such as micro-topographic depressions and soil variability. The vegetated land cover con-

nects the heterogeneous ecosystem and the overlaying atmosphere during the growing season. (b)

Right after harvest (October 2017), only litter remains over the surface. “R” marks a common

reference point between the two pictures (Photo credit: (a) Allison Goodwell, (b) Leila Hernandez

Rodriguez).

the variability of the areal coverage by using a two-dimensional flux footprint parameteriza-211

tion. Then we use a process-based ecohydrological model to obtain the temporally varying212

ratio of the flux values for di↵erent land covers. We use both the observed data and the213

modeled ratio of fluxes to estimate the contribution of each crop to the observed fluxes.214

From this, we can characterize the patterns of magnitude and variability of fluxes. Know-215

ing that the observed fluxes at the ecosystem scale also carry the influence of the spatial216

heterogeneity within the flux footprint, we deconvolve the signal of the eddy covariance217

observation by quantifying the di↵erential weighting of the plots based on the land cover218

types inside its dynamic flux footprint to find the relative contribution of each land cover219

type on the observations.220

3.1 Estimation of two-dimensional flux footprint221

Latent heat (LE), sensible heat, (H), and CO2 fluxes (Fc) estimated by the flux tower222

at any given time point correspond to an uncertain origin on the landscape. This origin223

can be estimated as the flux footprint, which is defined as the upwind landscape area that224

contributes to the measured vertical flux or concentration at a specific time (Vesala et225

al., 2008; Burba, 2013; Kljun et al., 2015). In this study, we use the two-dimensional226
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flux footprint prediction model (FFP) proposed by Kljun et al. (2015), which considers227

the e↵ects of surface roughness, atmospheric stability, and the crosswind spread of the228

footprint. For an agricultural landscape, surface roughness length changes as a function of229

vegetation height through the growing season. Also, atmospheric thermal stability rapidly230

changes with air temperature and density at a given pressure, impacting the vertical motion231

of air parcels. As a result, the areal contribution associated with each land cover type232

changes dynamically. The FFP model provides the width and shape of the two-dimensional233

flux footprint at any give time, where the source/sink area of the fluxes is located on the234

horizontal surface (x, y), and the tower height in the vertical direction, z (Figure 3). The235

FFP model assumes stationarity over the eddy-covariance integration period (here, 15-min)236

and horizontal homogeneity of the flow, but not of the scalar source/sink distribution.237

When estimating the two-dimensional flux footprint, at each time interval the observed238

fluxes have their origin in a di↵erent combination of maize or soybean fields. To derive the239

source area up to a certain percent of flux contribution, we define a set of five contours (r)240

that define the areas that contribute 20, 40, 60, 80, and 90% of the total flux estimated by the241

flux tower. At farther locations beyond r90% that correspond to a contribution of 90%, the242

contributions tail o↵, so we limit our study to r90% (we use r% or r to represent percentage243

or equivalent fractional contribution, respectively). The associated fetch changes direction244

and length at every time step. In this context, the fetch is the distance from the tower to245

a specific fraction of the flux contribution. For example, the fetch for a 50% contribution246

(r50%) will be shorter than for a 90% contribution (r90%)(Burba, 2013).247

We used the FFP model as a function on a loop in our Python code to estimate flux248

footprints for each 15-min data point from April 2016 to April 2019. Here we describe the in-249

puts required for the FFP model. The calculation of the boundary layer height, blh, is based250

on the bulk Richardson number, Ri, method (Vogelezang & Holtslag, 1996) which is suitable251

for convective and stable boundary layer conditions and has been used in several previous252

studies (Lee & De Wekker, 2016; Seidel et al., 2012). We used the blh retrieved from the fifth253

generation reanalysis dataset for the global climate and weather, ERA5 (ECMWF, 2018)254

from the European Centre for Medium-Range Weather Forecasts (ECMWF). Near-surface255

atmospheric turbulence is caused by thermal and mechanical e↵ects. Thermal turbulence is256

produced by temperature gradients and buoyant forces, while the mechanical turbulence is257

generated by friction forces driven by wind shear, and therefore both control atmospheric258

fluxes. To account for atmospheric stability we calculate the Obukhov length, L, (Foken,259
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Figure 3. Illustration of a two-dimensional flux footprint that captures the organized hetero-

geneity of the maize-soybean mosaic. The land cover data from USDA 2016 (right) shows a mosaic

of maize and soybean surrounding the flux tower. The density profile over the mosaic (orange)

represents the relative contribution of the flux footprint as a function of the upwind distance, de-

nominated as the fetch (black dashed line). The density profile shows that higher contributions

come from locations close to the tower, but not immediately underneath. In the two-dimensional

approach (Kljun et al., 2015) the area defined by a set of contours (r%) of increased percentage of

contribution (bottom) define the strength and location of the sources/sink areas that contribute to

the flux estimated at the tower. w is the weighted flux footprint contribution of each patch of area

(a) defined by a given contour. Therefore, the flux tower measurement is the combined response of

the fields inside the flux footprint (left).

2006), which is positive for stable and negative for unstable atmospheric stratification, and260

becomes near-infinite in the limit of neutral stratification. Finally, the last input to the FFP261

model corresponds to the standard deviation of the lateral velocity fluctuations, �v, which262

is estimated using the 15-minute root-mean-square of the cross main-wind component, v,263

from the high-frequency data at the flux tower. The displacement height, d, is defined as264

the distance above the ground at which a non-vegetated surface should be placed to provide265

a logarithmic wind field equal to the observed one (Stull, 2012). We estimated the variation266

of d during the growing season as a function of the average height of maize, d = 0.67 ⇤ hm267

(Jacobs & Van Boxel, 1988). The variation of canopy height and LAI has been proven to be268

nearly simultaneous in crops like maize (Gao et al., 2013; Alekseychik et al., 2017), therefore269

we used LAI as a proxy to define the average changes of height of the crops in the region.270

The measurement height above displacement height, zm, is calculated as zm = z� d, where271

z = 25m is the tower height and d the displacement height.272
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3.2 Heterogeneity and flux partitioning equations273

Here we describe the approach to estimate the relative flux contribution due to hetero-274

geneous land cover. Analytically, the distribution of a di↵usive quantity in the lower layer275

of the atmospheric boundary layer is described as an integral di↵usion equation. Therefore,276

the flux footprint relates the vertical eddy flux ⌘ from a flux tower located at the origin (0, 0)277

and with an observation height, zobs, to the spatial distribution of ground source (or sink)278

fluxes F (x, y) at the ground (z = 0) at a upwind distance (x) and crosswind (y) direction279

from the tower location (Pasquill & Smith, 1983; Schuepp et al., 1990; Horst & Weil, 1992;280

Schmid, 1994; Vesala et al., 2008):281

⌘(0, 0, zobs) =

Z

R
F (x, y) · !(x, y)dxdy (1)

where R denotes the flux footprint and !(x, y) is the relative contribution to the flux at282

any location (x, y) (Kljun et al., 2015). F (x, y) is the source (or sink) flux from the surface283

at location (x, y), with the same units as ⌘, where ⌘ = ⌘(0, 0, zobs). The observed flux ⌘284

is then the weighted integration of all the surface fluxes inside the contour r90% of flux285

contribution, and has units of W/m2 for latent heat flux, LE, and sensible heat flux, H,286

and µmol/m2s for CO2 flux, Fc. This approach assumes that the turbulent flow field is287

horizontally homogeneous (Horst & Weil, 1992). Consequently, the relative contribution of288

each field source or sink is a function of its location within the flux footprint.289

We assume that fluxes are the same within a given patch of a crop, and there are n290

landscape patches that contribute to the measured flux inside the flux footprint. To account291

for a measure of surface heterogeneity, the source emission or sink rate for n di↵erent sources292

(or sinks) Equation (1) is expressed as:293

⌘ =
nX

i=1

Fi · wi (2)

where Fi is the ground level flux for patch i and wi is the weighted flux footprint contribu-294

tion of each patch of area ai located inside the contour described by any given fraction of295

contribution from a defined set of contours r. We can account separately for the weighted296

flux footprint from maize and soybean fields, represented by the subscripts m and s, inside297

each contour respectively, as follows:298
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wmi = Am · r and wsi = As · r (3)

where the total fraction of the area covered by maize and soybean inside a contour can be299

denoted by Am and As, respectively, as follows:300

Am =

P
8i2m ai
aT

, As =

P
8i2s ai
aT

, and aT =
X

i

ai (4)

where we can aggregate the patch areas ai by adding the contributions of each patch type301

and the total area is aT . Here we assume that the fluxes are the same for all patches302

of a given crop type, such that we can aggregate those patches to compute the relative303

contribution of each crop/land cover type by summing the contributions as follows:304

�m =
X

8i2m

wi and �s =
X

8i2s

wi (5)

where the subscripts m and s refer to maize and soybean, respectively. We now assume305

that one “crop” flux value for all maize as Cm, and for all soybean as Cs. This constitutes306

the assumption that the vegetation type is the dominant source of flux variability, and307

ignores influences such as soil moisture or nutrients along the fetch. This assumption could308

be relaxed if detailed characteristics of each landscape patch were available. As described309

in the next subsection, we use a multilayer canopy model to estimate the vegetation-level310

fluxes (LE,H, Fc) for each crop type. Since these fluxes are modeled, here denoted as Cm311

and Cs for maize and soybean, respectively, their application to Equation (2) results in a312

total “modeled” flux ⌘mod:313

⌘mod = Cm�m + Cs�s (6)

Due to these simplifying assumptions, model error, and observation errors, we expect ⌘mod314

to be di↵erent from the observed tower flux, ⌘. Therefore, our aim is not to validate our315

modeled results against flux observations, but to merge flux tower observations, and models316

to improve the crop-specific estimates. Lastly, we compute the partitions of the fluxes317

observed at the tower for maize and soybean fields, respectively, as follows:318
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⌘m = ⌘ · Cm · �m

⌘mod
= ⌘ · Cm · �m

Cm · �m + Cs · �s
(7)

⌘s = ⌘ · Cs · �s

⌘mod
= ⌘ · Cs · �s

Cm · �m + Cs · �s
. (8)

Based on this, we combine the relative fluxes from a process-based model with a two-319

dimensional footprint model to determine both the fractional and actual contributions to320

the flux.321

3.3 Ecohydrological modeling to simulate maize and soybean behavior322

We use an annual land cover product from the United States Department of Agriculture323

(USDA) Cropland Data Layer (CDL) at 30m spatial resolution (Figure 3) to determine324

land cover in each footprint. Some fields see maize-soybean rotation while others see maize-325

maize-soybean rotation. We assume that the land cover for a year does not change until326

the planting the next year, and therefore define a single land cover from April through327

March of the next year, a “crop year”. We use Equation (5) to compute the flux footprint328

contribution for maize and soybean, �m and �s respectively.329

We use the well-tested and validated Multi-Layer Canopy model, MLCan (Drewry et330

al., 2010; Le et al., 2012), to simulate the flux response of maize and soybean, Cm and Cs331

respectively, under observed atmospheric drivers. MLCan uses a multilayer discretization332

of the canopy and root zone, including a litter layer on the soil surface, to simulate the333

below- and above-ground ecohydrological processes for di↵erent vegetation types. At the334

leaf scale, ecophysiological (photosynthesis and stomatal conductance) and physical (leaf-335

boundary layer conductance and energy balance) components are coupled to determine flux336

densities of CO2, and latent and sensible heat, and then integrated to the canopy scale. For337

an extended description of the model and its validation for maize and soybean we refer to338

Drewry et al. (2010).339

We compute the fluxes associated with maize and soybean, which use C4 and C3 pho-340

tosynthetic pathways, respectively. The model is driven by above-canopy measurements341

of air temperature (Ta)[�C], barometric pressure (Pa)[kPa], global solar radiation (i.e.342

incident shortwave radiation) (Rg)[W/m2], precipitation (PPT )[mm], and vapor pressure343
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deficit (V PD)[kPa] from April 2016 to March 2019. Leaf Area Index (LAI) was obtained344

from the Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day dataset at 500m345

resolution (Myneni et al., 2015). Pixels around the tower that contained a single crop were346

selected to estimate maize and soybean LAI. Satellite LAI measurements were comple-347

mented with LAI estimates from field measurements of Normalized Di↵erence Vegetation348

Index (NDV I) calculated as described by Nguy-Robertson et al. (2012). LAI is assumed to349

be zero during the non-growing season, when no vegetation is on the surface and only litter350

from the previous season’s crops remain. Maize and soybean parameters for the model are351

provided in SI Table S2. MLCan simulations provide LE, H, and Fc at 15 minute resolution352

for maize (Cm) and soybean (Cs). These are then used to compute the total modeled flux353

and relative contributions (Equation (6)).354

3.4 Illustration of the role of organized heterogeneity355

At a single time step, we consider that the total contributions of the flux footprint356

from maize and soybean (�m and �s respectively) are defined by the sum of their relative357

contributions (Figure 4), as expressed in Equation (5). As an illustrative example, we358

consider three cases (Figure 4, Table 1) where �s = �m = 0.5 (Case A), �s=0.4 and �m=0.6359

(Case B), and �s=0.6 and �m=0.4 (Case C). Case A corresponds to equal contributions from360

the two crops as would be expected if the two were randomly distributed or the organized361

heterogeneity incidentally reflected equal contributions, like in the hypothetical case shown362

in Figure 4a. Cases B and C reflect relatively larger contributions from maize or soybean,363

respectively. For all three cases,assume we know that the modeled fluxes are LEs=120364

W/m2 and LEm=80 W/m2, and the tower observed flux is ⌘ = 105 W/m2. For Case A365

this leads to a total estimated flux nmod = 100 W/m2 (= (.5)120+(.5)80). For Cases B and366

C, we would estimate nmod as 96 W/m2 and 104 W/m2, respectively. Since for all three367

cases, the observed flux at the tower is the same, we can estimate the di↵erence between368

⌘ and ⌘mod (Table 1). In this example, we see that the landscape heterogeneity of Case C369

leads to the closest estimate to the flux measured at the tower. We can also consider the370

percent di↵erence in ⌘mod relative to the equal contributions of Case A. Here, we see that371

Case B leads to a -4% di↵erence in LE, due to the higher contribution from maize, which372

has a lower LE. The opposite occurs for Case C (Table 1).373

This example also demonstrates that the change in the relative contribution of fluxes374

due to two crop species can either increase or decrease the total flux observed at the tower375
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Table 1. Comparison between the random and organized heterogeneous mosaic cases (Figure

4) towards the estimation of latent heat flux, ⌘ ⌘ LE. Case A refers to the “equal contribution

assumption” (Figure 4a), whereas Case B (Figure 4b) & Case C are heterogeneous situations in

which soybean and maize are more dominant, respectively.

Case ⌘(LE) �s �m LEs LEm ⌘mod ⌘�⌘mod di↵
from A

W/m2 frac frac W/m2 W/m2 W/m2 W/m2 %

A 105 0.5 0.5 120 80 100 5 0
B 105 0.4 0.6 120 80 96 9 -4
C 105 0.6 0.4 120 80 104 1 4

(⌘) relative to the hypothetical case of a random distribution of crops. In other words, an376

incremental change in flux observed at a tower could either correlate to a change in flux from377

the crops or a shift in relative land cover contributions. This has significant implications for378

flux tower data interpretation in a heterogeneous landscape.379

Figure 4. Conceptual illustration of the flux footprint responses of (a) a random land cover

mosaic where maize and soybean equally contributes to the total observed flux (�m=�s=0.5), and

(b) an organized heterogeneous land cover mosaic as observed at the study site.

4 Results and Discussion380

4.1 Ecosystem fluxes dictated by agricultural management381

To understand the general behavior of the study site, we analyze all 15 min data from382

23 April 2016 to 15 April 2019 in terms of average diurnal ecosystem fluxes within the flux383

footprint. H and LE both peak at midday as expected (Figures 5a and b), and negative384
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values of CO2 flux, Fc, during the daytime reflect ecosystem uptake due to photosynthesis385

(Figure 5c). This absorbed CO2 can be fixed by plants to form tissue, remain in the soil386

as litter and roots, or leave the system through lateral soil movement or harvested grain.387

Positive values of Fc during nighttime reflect a combination of autotrophic and heterotrophic388

respiration. We found that annually, the agricultural system acts as a sink for CO2, with389

negative CO2 annual budgets during a “crop year” (Table 2). Our analysis also shows that390

crops evapotranspire on average 72% of the total annual ET during the growing season.391

The di↵erence in the net Fc (CO2 released minus CO2 uptaked by the ecosystem)392

between the three crop years (Table 2) is assumed to be primarily influenced by two sets393

of factors: (1) hydroclimatological drivers acting on the ecosystem, such as precipitation394

(PPT ) and radiation; and (2) the di↵erence in the fraction of maize and soybean in the flux395

footprint due to the organized heterogeneity of the ecosystem. Here we evaluate the former396

factor, while the latter, which is the main focus of this study, is discussed in the following397

subsections. Specifically, in Subsection 4.5, we discuss the interpretation of the behavior of398

the observed net Fc and its relationship with the contribution of each land cover type. For399

the first factor, we examined the cumulative rainfall during the crop growth period (Figure400

5g), which shows di↵erences across the three years. The lowest accumulated precipitation is401

observed for the 2017 growing season, followed by 2018 and 2016. This reveals an opposing402

relationship between cumulative growing season rainfall and annual CO2 uptake, since the403

2017 growing season corresponds to the highest CO2 uptake (Table 2). Initially, these results404

seem to contradict the notion that increased precipitation helps carbon uptake (Nemani et405

al., 2002). Therefore, we investigate the relationship between PPT , LE, and CO2 flux406

(Fc) at the intra-annual basis (Figure 6c). During non-growing season months net Fc is407

positive, meaning more CO2 is released rather than taken up by the system. Also, right408

after harvest, CO2 is no longer taken up by crops and a release of CO2 is expected from409

crop residues due to the organic matter decomposition of stover and roots that remains in410

the field (Yan et al., 2019). On the other hand, more CO2 is taken up during the growing411

season than released to the atmosphere and therefore Fc is negative. During non-growing412

season LE corresponds to soil evaporation, and Fc corresponds to respiration, both of which413

are very low. For this system, average monthly LE is limited to an upper threshold of about414

100 W/m2, controlled by solar radiation (Figure 6c). However, we observe a di↵erence in415

the diurnal behavior of the inter-annual variability of the Bowen ratio (H/LE) (Figure 5f).416
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For the years of analysis, the Bowen ratio is less than 1, indicating that the system is not417

water limited at the annual scale.418

Since vegetation growth stages heavily influence land-atmosphere exchange dynamics,419

we explored the intra-annual evolution of the daily average behavior using 6-week windows420

for LE, H (Figure 6a, blue and orange lines, respectively) and Fc (Figure 6b). The in-421

traannual dynamics of the net CO2 flux (Figure 6c) shows the windows when CO2 uptake422

(negative value) is prevalent. We observe the coupled behavior of Fc and LE, for when423

CO2 uptake higher LE also peaks, which means that water is evapotranspired at a higher424

rate. During the period of this analysis, the highest CO2 uptake is observed from July 16425

to August 31, 2017 (Figure 6c, window 11), the time of year when crop growth peaks. Soil426

respiration might be positively related to precipitation and soil temperature (Lei & Han,427

2020; Birch, 1958). Therefore, a lower cumulative rainfall in 2017 may have contributed428

to a lower soil respiration rate in comparison with 2016 and 2018 (e.g. Figure 6c, shows429

lower CO2 release in window 12 than in windows 4 and 20). Consequently, both a high430

CO2 uptake during the growing season and low CO2 release during the non-growing season431

contributed to the high net CO2 uptake in 2017. As observed at seasonal time-scales, the432

non-stationary behavior of LE and CO2 fluxes reveal a human-induced trend in which the433

imposed land cover controls the energy and CO2 exchange between the land-surface and434

the atmosphere. Consequently, the e↵ect of vegetation on Fc is relevant, and, therefore, we435

quantify the relative contribution of each crop type to determine the origin of the higher436

CO2 uptake observed by the tower during 2017 (See Subsection 4.5).437

Table 2. Annual CO2 budget and mean CO2 concentration inside the flux footprint

Crop year 2016 2017 2018

Net CO2 budget (kg/m2) -0.15 -0.57 -0.23
Avg CO2 conc (ppm) 409.16 407.02 409.84

4.2 Flux footprints cover a wide range of landscape areas438

The size of the flux footprint strongly depends on the highly variable atmospheric439

stability at the sub-hourly time scale. At the annual scale or for observations over long440

periods, the e↵ect of the atmospheric stability on the footprint climatology, or average441

footprint, is weaker (Kljun et al., 2015; Zhang & Wen, 2015; Tuovinen et al., 2019). The442

changes on the climatological footprint for crop years 2016 (Figure 7a), 2017 (Figure 7c),443
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Figure 5. Daily averaged observations of atmospheric fluxes and radiation, and inter-annual

rainfall at the study site (a), for crop year 2016 (i.e. April 2016 to March 2017) (black lines),

crop year 2017 (magenta lines), and crop year 2018 (cyan lines), for: (a) Latent heat flux, LE;

(b) Sensible heat flux, H; (c) Net Fc (CO2 emitted minus uptaken by the system); (d) Carbon

dioxide concentration; (e) Net radiation; (f) Bowen ratio (H/LE); and (g) cumulative rainfall for

the growing seasons 2016, 2017 and 2018.
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Figure 6. Daily average ecosystem observations at the study site in windows of 6-weeks for: (a)

latent and sensible heat flux, LE and H; and (b) carbon dioxide flux, Fc. (c) Net Fc, average LE,

and total precipitation PPT , for April 2016 - April 2019.

–20–

Electronic copy available at: https://ssrn.com/abstract=4034618



manuscript submitted to Agricultural and Forest Meteorology

Figure 7. Flux footprint plots with contours over the mosaic of maize (blue) and soybean (green)

crops with the center at the flux tower. Each flux footprint plot shows the source area defined by the

contours of 20, 40, 60, 80, and 90% (outer contour) of the total flux contribution. The climatological

(or average) flux footprint for crop years (a) 2016 (i.e. April 2016 to March 2017), (b) 2017, and

(c) 2018, correspond to the aggregation of all single footprints over the year. A sample of single 15-

minutes averaged flux footprints under (d) neutral (05/18/2016 06:00), (e) unstable (08/18/2017

12:00), and (f) stable (12/19/2018 15:15) atmospheric conditions show the changes in size and

location of the source area of the surface flux defined by the dynamic flux footprint. Histograms of

the 15-min FFP analysis for the upwind distance (fetch) to the (g) mode and to the (h) 90% of flux

contribution, illustrate the average behavior under stable (blue), unstable (orange), and neutral

(green) atmospheric conditions over the 3 years of analysis. The probability density function of the

upwind (i) area and (j) distance of the 90% of flux contribution show di↵erences based on wind

direction.
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and 2018 (Figure 7e) show that the mean fetch for r90% is approximately 3km. A sample444

of flux footprints under neutral (Figure 7a), unstable (Figure 7c) and, stable (Figure 7e)445

atmospheric conditions show the di↵erent size of the flux footprint contours for each case.446

Turbulent mixing plays an important role in the magnitude of fields’ relative contributions,447

as the weighting of fields farther away from the tower increases with increasing stability. In448

general, the flux footprint size decreases with decreasing zm/L (Subsection 3.1). Therefore,449

under unstable conditions (Figure 7d) we can expect a smaller flux footprint than under450

stable conditions (Figure 7f).451

We found that the average distance to the flux footprint peak is 168m for unstable452

conditions and 268m for stable conditions (Figure 7g). Therefore, the fields of peak flux453

contribution are located in between those distances. The footprint is wider as the standard454

deviation of the lateral wind fluctuations increases and, therefore, the crosswind dispersion455

increases (Zhang &Wen, 2015; Kljun et al., 2015). On average, the upwind area described by456

the contour of the 90% of contribution corresponds to 1.51km2 for unstable conditions and457

3.17km2 under stable conditions. Similarly, the upwind distance to the contour described by458

the 90% of the flux contribution for unstable conditions is closer than for stable conditions,459

with 5.8km and 9.2km, respectively (Figure 7h). The implications of these results for the460

partitioning of flux contributions for each crop type due to the flux footprint are discussed461

in the following subsections.462

4.3 MLCan distinguishes between maize and soybean fluxes463

We used MLCan as described in Subsection 3.3 (Le et al., 2012) to obtain LE, H,464

and Fc for maize and soybean, and to explore their intra-annual behavior (Figure 8). From465

MLCan results, we observe that LE is higher for maize than for soybean (Figure 8a). This466

occurs for all months except for June to July 2018 when LE is higher for soybean. However,467

at night, we observe higher condensation rates (or dew formation), in the form of negative468

LE, for maize relative to soybean. CO2 uptake patterns by both crops are consistent with469

the observations at the flux tower (Subsection 4.1), with more uptake of CO2 by the soil-470

crop system around noon due to photosynthesis, surpassing respiration (Figure 8b; negative471

Fc means the direction of the flux is downwards). At nighttime, positive Fc is attributed to472

respiration from the system. Given the dependence between LE and Fc, we explored their473

coupled behavior during the growing season (See SI section 4 and Figure S1) and we found474
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that the four stages -planting, growing, maturing, and harvest- cluster together for maize475

and soybean.476

4.4 Flux contributions evolve due to organized heterogeneity and hydrocli-477

matological drivers478

We estimated the relative contribution of average daily fluxes of maize and soybean479

(Figure 9) using the observed flux tower data. The overall trend of LE, H and Fc exhibit480

a strong seasonality (Figures 9a, b, and c, respectively). In terms of flux footprint contri-481

bution, �, (Figure 9d), a larger contribution from maize fields were observed in 2016 and482

2018, when more fields were cultivated with maize in areas between 168m and 268m upwind483

from the tower. In 2017, soybean was mostly planted in the same fields. However, both484

crop types influence the magnitude of the observed fluxes. In terms of Fc behavior across485

seasons, we observe that a strong release of CO2 flux into the atmosphere occurs during486

planting (i.e. starting around mid April) (Figure 9c, numerals 1, 9 and 17) that can be487

explained by rising temperatures and soil moisture that support heterotrophic respiration488

of existing biomass on and in the soil. During the peak of the growing season, soybean489

fields in 2017 contributed more towards a higher CO2 uptake (Figure 9c, numeral 11), while490

maize fields in 2016 and 2018 contributed more towards a higher LE (Figure 9c, numeral 2491

and 18). Accordingly, this 6-week window analysis shows that maize fields inside the flux492

footprint contributed more towards daily LE and H than soybean fields during 2016 and493

2018 growing season, whereas soybean contributed more than maize in 2017. Therefore, all494

years have significant contributions from both crops given that the mosaic at a larger scale495

is di↵erent every year (Figure 9).496

Next, we explore the seasonal dominance of a given crop type in terms of flux magnitude497

contribution, �, rather than area contribution. We calculated the di↵erence of the percentage498

of contribution for the two cases described in Subsection 3.4. First, for the hypothetical499

randomly distributed mix of plants, in a manner that does not reflect any particular spatial500

pattern, where the relative contribution of the flux footprint for each crop type is equal,501

�m = �s = 50%. Then, for the relative contribution of each crop from April 2016 to April502

2019, where �m and �s are unequal and temporally variable (Figure 9). In other words, we503

want to find what crop is dominant in each window resulting from a combination of fluxes504

associated with each crop and the fraction they occupy in the flux footprint. . To estimate505

the contribution percentage of each crop, we first calculated the average LE, H, and Fc for506
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Figure 8. Modeled average daily fluxes of maize (blue) and soybean (green) in 6-week windows:

(a) latent heat flux, LE; and (b) carbon dioxide flux, Fc, using MLCan. Model parameter values

are shown in the supplemental material (“MLCan parameters” and Table S2). (c) Canopy leaf

area index (LAI) of maize and soybean inside the tower flux footprint for April 2016 - April 2019,

estimated as described in Subsection 3.3.
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Figure 9. Seasonal evolution of average daily fluxes due to the relative contribution of maize

(blue) and soybean (green) in 6-week windows (corresponding to the windows shown in Figure 6),

for (a) latent heat flux, LE; (b) sensible heat flux, H; (c) carbon dioxide flux, Fc; and (d) relative

flux footprint contribution, �. Each stacked bar refers to 6-weeks averaged daily flux for each crop

type. Relative contributions due to soybean and maize were calculated with the method described

in Section 3 for 15-minute data from April 2016 to April 2019.
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maize and soybean for the 6-week windows, using Equations (6)-(8) and the corresponding507

� for each case. Then, we subtracted the results assuming random (rather than organized)508

distribution of crops from the heterogeneous results i.e., organized heterogeneity, to define509

the dominant crop for each window. The 6-week averaged analysis shows the di↵erence510

between the percentage of the contributions for the organized heterogeneous mosaic and for511

the hypothetical random contribution case (Figure 10). While maize fields contributed more512

to the observed LE and H in crop years 2016 and 2018, soybean fields contributed more513

in crop year 2017 (Figures 10a and b). The largest e↵ect due to land cover heterogeneity514

is observed for CO2 flux (Fc) from June 1 to July 15, 2017, (Figure 10c, bar 10), when515

on an average soybean fields contribution towards Fc is 24.5% larger than the random case516

(Figure 10c).517

Figure 10. Seasonal evolution of the percent contribution due to organized heterogeneity in

6-week windows (corresponding to Figure 6), for (a) latent heat flux, LE; (b) sensible heat flux,

H; and (c) carbon dioxide flux, Fc. These plots show the di↵erence between the response of a

heterogeneous land cover mosaic and a hypothetical random assumption where �m = �s = 0.5.

Given that the change in flux observed at the tower could either correlate to a change518

in flux from the crops or a shift in relative land cover contributions, we analyze the ef-519

fect of the relative contribution due to maize and soybean based on atmospheric conditions520

(Figure 11). Besides the overall high contribution due to maize and soybean areas nearby521

the tower under unstable conditions, we observe that maize and soybean show a di↵erent522
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cumulative distribution function based on atmospheric stability. We could have estimated523

the contribution of individual crops to the total flux observed at the tower at each period524

using a statistical approach to deconvolve the contributions from di↵erent types of vegeta-525

tion. However, we would require a large amount of data to not lose resolution at times when526

the flux tower only observes a small area of a certain field (e.g., if the wind does not blow527

from a specific direction), otherwise, it is not possible to get an estimation for a given field.528

Particularly under unstable conditions the flux footprint is smaller, and therefore there is a529

higher probability to observe a single crop (Figure 11b). Consequently, we combine multiple530

sources of information to synergistically inform the flux tower observations at the ecosystem531

scaleand to decompose the relative contribution of each of the land cover types inside the flux532

footprint. This combined framework can be used to study aspects about the heterogeneity533

of the landscape beyond what a tower could provide.534

Figure 11. Cumulative seasonal behavior of the relative flux footprint contribution due to maize

and soybean. The cumulative distribution of the (a) area of 90% of flux footprint contribution and

the (b) flux footprint relative contribution, show the behavior of each crop type under stable (blue

and green, for maize and soybean, respectively) and unstable (red and orange, for maize and

soybean, respectively) atmospheric conditions.

4.5 Organized heterogeneity and hydroclimatological drivers explain high535

2017 CO2 uptake536

As mentioned in Section 4.1, the annual net CO2 budget is driven by the combined537

action of (1) hydroclimatological drivers acting on the ecosystem and (2) the di↵erence in538

the fraction of maize and soybean in the flux footprint due to the organized heterogeneity539

of the land cover. Here we use results from the relative contribution analysis to understand540

the relationship between the lowest crop yield and the largest net CO2 budget observed541

in 2017, in comparison to 2016 and 2018 (Table 2). The USDA provides crop yields at542
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Figure 12. Di↵erence between flux tower observations (red) and modeled (gray) daily averaged

fluxes in 6-week windows (corresponding to Figure 6), for (a) carbon dioxide flux, Fc, and (b)

latent heat flux, LE. The error bars show the standard deviation of the daily average over the

6-week period for the observed (red) and modeled data (black). The segmented line in red shows

the behavior of the daily averaged observations, while the continuous black line similarly shows the

modeled data.

the county scale for Piatt county, Illinois (NASS, 2016-2018)(Figure 13a), which we assume543

is representative of yields at the study site. This low yield can be partially attributed to544

the high solar radiation and low rainfall during the 2017 growing season (Figure 5). Next545

we consider how the di↵erent contributions of maize and soybean inside the flux footprint546

can also inform this feature. From MLCan we obtain the net CO2 budget for each crop547

type during the growing seasons (Figure 13b). Assuming that the CO2 taken up is only548

used to produce dry matter (DM), and that the weight per bushel of DM for maize is 25.4549

Kg/bushel and 27.2 Kg/bushel for soybean (Murphy, 1981), we estimate the net CO2 budget550

per unit yield for each crop type. Soybean has a larger CO2 uptake per unit yield than maize551

(Figure 13c). From the flux footprint analysis, the relative flux footprint contribution due to552

soybean is larger than from maize (Figure 13d). Using the previous results we estimate the553

net CO2 budget inside the flux footprint for each crop type and find that the highest CO2554

uptake from soybean fields occurred in 2017 (Figure 13e). Given that soybean fields take555

up more CO2, even in a drier, low-yield year we see more CO2 uptake for a year in which556

soybean is dominant inside the footprint. Also, CO2 release is muted from respiration by557

the drier conditions, further skewing the net flux towards high CO2 uptake (negative Fc).558
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Therefore, we observe that the higher annual net CO2 budget in the crop year 2017 is not559

only the e↵ect of hydroclimatological conditions but to the particular contribution of soybean560

fields, which play a significant role in the higher uptake of CO2 observed that year. The561

combination of CO2 taken up by soybean fields and the lower respiration rate due to high562

temperatures and lower rainfall, influence the overall higher uptake of CO2 observed in 2017.563

These results show how the knowledge provided by multiple sources besides the observed564

Fc (i.e., MLCan and flux footprint modeling, as well as crop yield data), provides elements565

for an informed interpretation of the influence of the organized land cover heterogeneity on566

the behavior of observed land-atmosphere fluxes.567

Figure 13. Relationship between crop yield and net CO2 during the growing season. (a) Crop

yields at Piatt county are combined with (b) the net CO2 budget for each crop type during the

growing seasons 2016-2018 estimated with MLCan, to calculate (c) the net CO2 uptake per unit

yield of dry matter (DM) for soybean and maize. (d) The climatological flux footprint area for the

90% contribution is used to calculate (e) the net CO2 uptaked by maize and soybean fields at the

study site during the growing season.
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5 Summary and Conclusions568

This study illustrates the important role of organized land cover heterogeneity on the569

observed land-atmosphere fluxes of heat, water, and CO2 that are measured at a tall tower.570

When the land cover is heterogeneous, inconsistencies in data interpretation can arise when571

only accounting for the vegetation type in the nearest field, or alternatively assuming that572

multiple crop types contribute equally to the observed flux. Area weighting based on the573

relative distribution of crop areas will not work as the fractional contribution from each574

crop changes with the dynamically changing flux footprint. Our framework combines flux575

footprint and ecohydrological modeling together with flux tower data to improve upon the576

understanding that could be obtained given any single information source.577

Our approach of analyzing the flux contributions associated with the footprint of a578

tall tower footprint has some limitations, many of which could be improved upon in future579

studies. First, we consider that crops and soil components are the primary sources of580

CO2, and that extremely low tra�c in the nearby farm roads and other local sources are581

negligible contributors (the flux tower is strategically located away from major highways).582

However, it is di�cult to establish how low automobile or mechanized farm equipment583

emissions may contribute to the observed CO2 fluxes, although we believe this will be very584

small. Second, the estimation of the flux footprint is not the only source of error, but585

tower observations and the ecohydrological model also have errors and as a result they586

contribute some uncertainty to our estimations. Third, we do not consider the variability587

in flux response across multiple fields cultivated with the same crop, but we assume a588

representative modeled flux. Specifically, we distinguish between “maize” or “soybean”589

patches and ignore other di↵erentiating factors. In reality, all maize or soybean fields may590

not behave the same due to di↵erences in cultivars, soil type, microtopographic variability,591

time of planting, etc. This assumption can be overcome through a distributed modeling592

approach if detailed data to support such modeling is available. For example, given a detailed593

map of soil texture or topography, the landscape could be divided into more than two594

components which could be modeled and attributed at higher resolution, e.g., “well-drained595

maize” or “drier soybean”. This would enable testing of the assumption that vegetation596

type is the dominant di↵erentiating factor between fluxes at di↵erent landscape patches.597

We anticipate that our study could be extended to study other natural and human-induced598

interventions on heterogeneous agricultural landscapes, such as varying wetness conditions,599
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LAI or planting dates, or for comparison with a remote sensing product. However, specifying600

spatially variable precipitation at these resolutions could remain a formidable challenge.601

This approach could also be applied to model evaluation, in that the representation of602

landscape heterogeneity should lead to an improved agreement between model results and603

observations, relative to the assumption that the tower measurements represent a single604

crop type or a homogeneous contribution from multiple crop types. In general, our method605

is relevant for the understanding of land-atmosphere fluxes in heterogeneous landscapes and606

can be extended towards the use of flux tower data as validation for models of these fluxes.607

Our analyses show that the fluxes observed at the tall flux tower are the result of the608

combined action of (1) hydroclimatological drivers acting on the ecosystem, and (2) the609

di↵erence in the fraction of maize and soybean in the flux footprint due to the organized610

heterogeneity of the land cover. In other words, the change in flux observed at every time611

of analysis at the tower (15 min) could either correlate to a change in flux from the crops612

or a shift in relative land cover contributions within the footprint, or both. For instance,613

we qualitatively demonstrated that the change in the relative contribution of fluxes due to614

two di↵erent land cover types can either increase or decrease the total flux observed at the615

tower. Therefore, we quantitatively showed that the spatial structure of the land cover,616

described here as “organized land cover heterogeneity” and characterized by the mosaic of617

crop fields, impacts the observed fluxes. Our focus on the relative contribution of maize and618

soybean fields inside the flux footprint shows the importance of an accurate description of619

the land cover and the use of an accurate flux footprint method. We recognize that it is620

equally important to accurately simulate the flux response of each vegetation species under621

the observed atmospheric drivers. All these are used to obtain the variability of the areal622

coverage and the temporal variability of the flux.623

In an intensively managed agricultural landscape, where each land cover patch is easily624

identifiable by crop type (i.e. maize or soybean), we quantified the relative flux contribution625

of LE, H, and CO2. At the study site, the cultivated fields where the flux contribution peaks626

are mainly due to one crop type, which explains the dominance in fluxes contribution given627

by maize-soybean-maize for 2016-2017-2018 crop years, respectively. This combined analysis628

makes it feasible to investigate questions regarding real and hypothetical land cover changes629

at an ecosystem scale and quantify the e↵ects of di↵erent vegetation type on ecosystem630

fluxes.631
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