
1 
 

𝑄 − 𝑃𝑂𝑃 − 𝑇ℎ𝑒𝑟𝑚𝑜: A General-Purpose Thermodynamics Solver for Ferroelectric Materials 

Jacob A. Zorn, Bo Wang, Long-Qing Chen 

Department of Materials Science and Engineering, Materials Research Institute, The 

Pennsylvania State University, University Park, PA 16802 

Keywords: Thermodynamics; Ferroelectrics; Differential Evolution; Landau-Ginzburg-

Devonshire Model 

Abstract: 

𝑄 − 𝑃𝑂𝑃 − 𝑇ℎ𝑒𝑟𝑚𝑜 is a program designed to compute thermodynamic monodomain equilibrium 

states and their properties for ferroelectric single crystals and thin films based on the Landau-

Ginzburg-Devonshire (LGD) Theory. Utilizing symbolic manipulation with the SymPy Library, the 

governing equations along with appropriate boundary conditions are solved for speedy 

minimization of the free energy of a crystal.  Utilizing the popular Differential Evolution algorithm, 

with appropriate hybridization, multiple phase diagrams, such as the pressure-temperature phase 

diagram for bulk single crystals and the common strain-temperature phase diagram for 

monodomain thin-film systems can be readily generated. Furthermore, a variety of material 

properties of stable ferroelectric phases, including dielectric, piezoelectric, and electrocaloric 

properties, can simultaneously be calculated. Validation studies are presented for both thin-film 

and single crystal systems to test the effectiveness and capability of the open-source program. 
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Program Summary: 

Program Title: 𝑄 − 𝑃𝑂𝑃 − 𝑇ℎ𝑒𝑟𝑚𝑜 

Licensing Provisions: MIT 

Programming Language: Python 

No. of Lines in Distributed Program: 1,122 lines 

No. of Bytes in Distributed Program: 50,990 Bytes 

Computer: Variable, supports both single-core and parallel processing 

Operating System: Variable, as long as Python 3.6+ is installed properly 

RAM: Normal operation uses ~70 MB of RAM, which is well within the operating capabilities of 

contemporary workstations and laptop computers. 

External Routines/Libraries: numpy (Version 1.20.3), sympy (Version 1.8), 

numericaloptimization (available with 𝑄 − 𝑃𝑂𝑃 − 𝑇ℎ𝑒𝑟𝑚𝑜), pandas (Version 1.1.3), scipy (Version 

1.6.3) 

Nature of Program: Python-based program to perform energy minimization to determine the 

stable states and thermodynamic properties of ferroelectric systems. 

Solution Method: Algebraic manipulation of boundary conditions and governing equations 

followed by a hybridized and improved a priori Differential Evolution solver to calculate equilibrium 

polar states and material properties. 

Additional Comments including Restrictions and Unusual Features: None 
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Running Time: Problem dependent, a single domain or material calculation ranges from a few 

seconds for a given thermodynamic condition to a few hours for large parameter space sweeps 

on contemporary workstations and laptops. 

Introduction: 

Understanding the thermodynamics and phase transitions of materials has always been of the 

utmost importance to exploring material physics and to providing guidance for developing 

advanced functional and structural materials. Ferroic materials in general and ferroelectric 

materials in particular are one such functional material and have been used extensively for energy 

conversion and information storage, among others [1–3]. For example, the epitaxial growth of 

ferroelectric thin films, such as perovskite oxides, requires a careful choice of an appropriate 

substrate to control the lattice mismatch, as both the ferroelectric properties and emergent 

properties at the interfaces are sensitively dependent on this misfit strain[4–7]. In these material 

design processes, a fundamental understanding of the phase stability and a theoretical estimation 

of the thermodynamic properties as a function of external conditions can be invaluable to avoid 

the trial-and-error in experiments. 

The Landau-Ginzburg-Devonshire (LGD) theory serves as a simple but useful thermodynamic 

description of ferroelectric materials[8]. A ferroelectric is defined by the presence of a non-zero 

electrical polarization in the absence of an external electric field. This polarization, known as the 

spontaneous polarization, can be reoriented by a sufficiently high electric field, a process known 

as polarization switching. The thermodynamics of such a ferroelectric phase transition and the 

intrinsic behavior of polarization switching can be described quite well by the LGD theory. In the 

framework of the LGD theory, the total free energy of a ferroelectric is described by a polynomial 

expansion with respect to the spontaneous polarization. The equilibrium state of a ferroelectric is 

therefore fully described by the minimization of such an LGD potential energy with respect to 

thermodynamic states subjected to appropriate boundary conditions and balance constraints. The 
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LGD theory has been extensively utilized to model classical, lead-free, and organic ferroelectric 

materials and thin films, providing a first estimation of the thermodynamic properties of a 

monodomain system and setting the foundation of much more expensive mesoscale modeling 

such as phase-field simulations[4,9–17]. 

However, due to the nonlinearity of the thermodynamic equilibrium equations, it is rarely possible 

to calculate analytically the minimum energy states and their thermodynamic properties. Existing 

implementation of the LGD theory to determine equilibrium states are mostly based on non-public 

homegrown scripts utilizing commercial numerical software such as Matlab, Mathematica, or 

Maple. Often the minimization techniques available in such software are used as a black-box, 

providing users with little flexibility in solving their questions. To this end, we have developed and 

designed an expandable Python-based program, termed 𝑄 − 𝑃𝑂𝑃 − 𝑇ℎ𝑒𝑟𝑚𝑜, for determining the 

equilibrium phases of a monodomain ferroelectric system and calculating a variety of 

thermodynamic properties, such as dielectric permittivity, piezoelectric tensors, and electrocaloric 

coefficients, subject to arbitrary external elastic, electric, or thermal conditions. The use of open-

source Python code and the accompanying symbolic notation library (SymPy)[18] offers 

researchers a user-friendly and efficient computational vehicle for understanding and exploring 

both well-studied and new ferroelectric material systems. Moreover, we implement the symbolic 

notation and manipulation to solve the thermodynamic system under certain boundary conditions 

in a very general sense, which could be extended into other ferroic and multiferroic materials with 

multidomain states as well. Additionally, other functional and structural materials could be studied 

as well where appropriate thermodynamic descriptions are available.  

The paper is organized as follows. In Section 2, the Landau phenomenological description of 

ferroelectric thermodynamics is described along with the necessary boundary conditions for 

various material architectures. In Section 3, the numerical optimization method and 

implementation are described. Several case studies are presented in Section 4 to demonstrate 
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the capability of 𝑄 − 𝑃𝑂𝑃 − 𝑇ℎ𝑒𝑟𝑚𝑜. The paper concludes in Section 5 with avenues of further 

research and a final discussion of the implementation of the program. 

Thermodynamics of Ferroelectrics 

Governing Equations 

We begin with a ferroelectric system where the polarization is assumed to be spatially uniform. 

The total energy of the system is composed of multiple energy contributions, namely the bulk 

chemical potential energy density (𝑓𝐿𝑎𝑛𝑑𝑎𝑢), elastic energy density (𝑓𝐸𝑙𝑎𝑠𝑡𝑖𝑐), and electrostatic 

energy density (𝑓𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐). Therefore, the bulk energy density can be expressed as, 

𝑓𝐵𝑢𝑙𝑘 = 𝑓𝐿𝑎𝑛𝑑𝑎𝑢 + 𝑓𝐸𝑙𝑎𝑠𝑡𝑖𝑐 + 𝑓𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 .    (1) 

Regarding thin film systems, it is important to consider the epitaxial and thermal strains that exist 

in a film/substate system. Normally, this is considered using the so-called misfit strains 𝜀11
𝑚 , 𝜀22

𝑚 , 𝜀12
𝑚  

which represent the difference in stress-free lattice parameters of the substrate and the 

ferroelectric film.  

The Legendre transformation is employed to handle the mixed constant strain and constant stress 

boundary conditions for different tensor components. For example, if 𝑓𝐵𝑢𝑙𝑘 is defined in terms of 

polarization and stress with coefficients determined under constant stress boundary conditions 

(commonly referred to as the Elastic Gibbs-free energy), the following Legendre Transformation 

can be employed to obtain the strain condition for all the components. 

𝑓𝐹𝑖𝑙𝑚 = 𝑓𝐵𝑢𝑙𝑘(𝑃𝑖, 𝜎𝑖𝑗) + 𝜎1𝜀1 + 𝜎2𝜀2 + 𝜎6𝜀6    (2) 

where the 𝜎𝑛 and 𝜀𝑛 are the stress and strain components in Voigt notation. A similar Legendre 

transformation can be applied when 𝑓𝐵𝑢𝑙𝑘  is defined in terms of polarization and strain with 

coefficients determined under constant strain boundary conditions (referred to as Helmholtz-free 

energy). 
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For perovskite ferroelectric oxides, while the most common crystallographic orientation of epitaxial 

films is (001), other higher-index orientations may be desirable for achieving a specific set of 

properties. To allow arbitrary film orientations, we transform the experimental reference frame 

(denoted here with ′ on applicable tensors) to the crystallographic reference frame for both first 

and second rank tensors, i.e. 

𝑃𝑖
′ = 𝑡𝑖𝑗𝑃𝑗 → 𝑃𝑗 = 𝑡𝑗𝑖𝑃𝑖

′,      (3) 

𝜎𝑖𝑗
′ = 𝑡𝑖𝑚𝑡𝑗𝑛𝜎𝑚𝑛  → 𝜎𝑚𝑛 = 𝑡𝑚𝑖𝑡𝑛𝑗𝜎𝑖𝑗

′ .     (4) 

Here 𝑡𝑖𝑗 is the Euler rotation matrix for transforming the crystal system, the rotation matrix used 

in 𝑄 − 𝑃𝑂𝑃 − 𝑇ℎ𝑒𝑟𝑚𝑜 is presented in the Appendix for interested readers. 

The bulk energy density is represented as a polynomial of the spontaneous polarization (𝑃𝑖) up to 

the 8th order, 

𝑓𝐿𝑎𝑛𝑑𝑎𝑢 = 𝛼𝑖𝑗𝑃𝑖𝑃𝑗 + 𝛼𝑖𝑗𝑘𝑙𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙 + 𝛼𝑖𝑗𝑘𝑙𝑚𝑛𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙𝑃𝑚𝑃𝑛 + 𝛼𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙𝑃𝑚𝑃𝑛𝑃𝑜𝑃𝑝.  (5) 

To use this software to the compute the temperature-strain phase diagrams of a system requires 

a user to supply the thermodynamic model parameters including the ranges of applicable 

temperatures and strains. A general practice to obtain the coefficients associated with the Landau 

energy density function is to fit all the coefficients, (𝛼𝑖𝑗 …) to a combination of polarization 

properties, dielectric properties, and Curie Temperature from experimental measurements or 

atomic-scale calculations. An example of such fitting procedure is described in existing 

literature[10,12,19]. 

Depending upon the definition of 𝑓𝐵𝑢𝑙𝑘 (i.e., either Helmholtz- or Gibbs-free energy) the elastic 

energy can be described in differing ways. For example, if 𝑓𝐵𝑢𝑙𝑘 is described via the Helmholtz-

free energy framework the elastic energy reads as, 

𝑓𝐸𝑙𝑎𝑠𝑡𝑖𝑐 =
1

2
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 − 𝑞𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝑃𝑘𝑃𝑙 ,     (6) 

whereas if 𝑓𝐵𝑢𝑙𝑘 is described via the Gibbs-free energy the elastic energy becomes, 
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𝑓𝐸𝑙𝑎𝑠𝑡𝑖𝑐 = −
1

2
𝑠𝑖𝑗𝑘𝑙𝜎𝑖𝑗𝜎𝑘𝑙 − 𝑄𝑖𝑗𝑘𝑙𝜎𝑖𝑗𝑃𝑘𝑃𝑙 .    (7) 

Here 𝑐𝑖𝑗𝑘𝑙 , 𝑠𝑖𝑗𝑘𝑙 , 𝜀𝑖𝑗 , and 𝜎𝑖𝑗 are the elastic stiffness, elastic compliance, strain, and stress tensors 

and Einstein summation is assumed. It should be noted here that the elastic compliance and 

elastic stiffness are measured under constant electric field. The electrostrictive tensors, 𝑞𝑖𝑗𝑘𝑙 and 

𝑄𝑖𝑗𝑘𝑙, are related via, 

𝑞𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑚𝑛𝑄𝑚𝑛𝑘𝑙.      (8) 

Lastly, the electric energy density is expressed as a function of the polarization and electric field 

and background dielectric constant (𝜖𝑖𝑗
𝑏 ),  

𝐹𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = −𝐸𝑖𝑃𝑖 −
𝜖0𝜖𝑖𝑗

𝑏

2
 𝐸𝑖𝐸𝑗.     (9) 

where 𝜖0 is the permittivity of free space. 

It should be noted here that limitations of the LGD Phenomenological Theory exist. For example, 

one such limitation that exists in the presently described theory is the assumption of a single 

domain existing on the film; while such an approximation works well for some systems and strain 

states (e.g. compressive strain states) the present approximation does not predict the existence 

of polydomain phase states. Additionally, some potential may only provide accurate results under 

small compressive or tensile misfit strains, see e.g. Li et al [11].  

Boundary Conditions: 

In the bulk single crystal case, there exist four different types of mechanical boundary conditions 

that can be applied: stress-free, constrained, applied stress, and applied strain. Application of 

these boundary conditions depend upon the free energy framework one decides to work in. For 

example, with Gibbs-free energy the four boundary conditions become, 

𝜎𝑖𝑗 = 0;       (10) 

𝜕𝑓𝐵𝑢𝑙𝑘

𝜕𝜎𝑖𝑗
= 0;       (11) 
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𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝐴𝑝𝑝𝑙𝑖𝑒𝑑

;       (12) 

𝜕𝑓𝐵𝑢𝑙𝑘

𝜕𝜎𝑖𝑗
= −𝜀𝑖𝑗

𝐴𝑝𝑝𝑙𝑖𝑒𝑑
.      (13) 

Alternatively, the boundary conditions in the context of the Helmholtz-free energy become, 

𝜕𝑓𝐵𝑢𝑙𝑘

𝜕𝜀𝑖𝑗
= 0;       (14) 

𝜀𝑖𝑗 =  0;       (15) 

𝜕𝑓𝐵𝑢𝑙𝑘

𝜕𝜀𝑖𝑗
= 𝜎𝑖𝑗

𝐴𝑝𝑝𝑙𝑖𝑒𝑑
;      (16) 

𝜀𝑖𝑗 = 𝜀𝑖𝑗
𝐴𝑝𝑝𝑙𝑖𝑒𝑑

.       (17) 

Considering the case of thin films, the boundary conditions become mixed as a ferroelectric 

epitaxial film has a fixed in-plane strain (both planar and shear) defined by the substrate and the 

top of the film is described by stress-free conditions. This combination of physical conditions, 

leads to the following boundary conditions, 

𝜀11 = 𝜀11
𝑚 ; 𝜀22 = 𝜀22

𝑚 ; 𝜀12 = 𝜀21 = 𝜀12
𝑚 ,     (18) 

𝜎13 = 𝜎31 = 𝜎23 = 𝜎32 = 𝜎33 = 0.     (19) 

where 𝜀11
𝑚 , 𝜀22

𝑚 , and 𝜀12
𝑚  are the so-called misfit epitaxial strains introduced previously. Short circuit 

boundary conditions are assumed for the electrostatic boundary conditions of the problem.  

Utilizing the above boundary conditions that align with the situation one wishes to model, it 

becomes possible to describe the total free energy density purely in terms of spontaneous 

polarization. The exact renormalizations of the free energy functions for the cases of (001)-

oriented thin films is given in the supplementary information. For other cases, the interested 

reader is directed to Chen et al[6]. The exact renormalization of the free energy function for thin 

films under arbitrary misfit strains is given in the supplementary information and it matches that 

asserted by Pertsev et al.[20]. 

Implementation: 
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To minimize the energy of the system and determine the equilibrium polar state of the ferroelectric 

system, we implemented a common evolutionary algorithm known as Differential Evolution (DE 

henceforth). A variety of authors have provided high-quality reviews into the capabilities of both 

evolutionary algorithms and in particular, DE. Thus, here we briefly summarize the algorithmic 

strategy and direct the interested reader to other resources[21–23]. 

Differential evolution is a member of a class of algorithms known as evolutionary 

algorithms[21,22]. Other members of this class include the popular Particle Swarm Optimization 

(PSO), Ant Colony Optimization (ACO), along with the Genetic Algorithm, all of which are 

discussed in more detail in Refs. [24–27]. DE succeeds by iteratively improving on candidate 

solutions of a given fitness function, which, in the case of material thermodynamics, is the free 

energy density of a homogeneous system. It should be noted that DE does not guarantee that an 

optimal solution is found, however it does sample the multi-dimensional parameter space 

adequately to allow a solution to be found. 

In contrast to other optimization methods, such as the common Newton’s method, DE does not 

require the optimization problem to be differentiable due to its stochastic nature. This 

characteristic of differential evolution allows for greater applicability than other algorithms such as 

the Gradient Descent method. However, it should be noted that DE can be sensitive to local 

minima, thus improvements have been made to the canonical DE algorithm to avoid such 

clustering and maintain adequate searching of the parameter space and find the global 

minima[28–31]. 

The standard DE algorithm consists of four key steps: initialization, mutation, crossover, and 

selection. Only the final three steps are carried over for the following generation or iteration. The 

algorithm continues until either the termination criteria is reached, normally this is either a 

maximum number of iterations or the error is below a specified tolerance. Since the algorithm is 

searching a d-dimensional space, a population of N d-dimensional vectors are constructed, and 
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each d-dimensional vector is a candidate solution. We can describe a specific vector 𝒙𝒊
𝒕 at iteration 

t as,  

𝒙𝒊
𝒕 = (𝑥𝑖,1

𝑡 , … , 𝑥𝑖,𝑑
𝑡 ).     (20) 

We must apply bounds to our vector components, and we can initialize our population simply as, 

𝑥𝑖,𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑[0,1](𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗),   (21) 

here 𝑥𝑚𝑖𝑛,𝑗  and 𝑥𝑚𝑎𝑥,𝑗  are the minimum and maximum bounds, respectively, of the 𝑗𝑡ℎ 

component of the d-dimensional vector 𝒙𝒊
𝒕, 𝑟𝑎𝑛𝑑[0,1] is a uniformly distributed random number 

lying between 0 and 1, inclusive. 

During the subsequent iterations (also referred to as generations) a mutant vector is generated 

from a selected vector in the population, termed the target vector. There are host of mutation 

strategies, but the two most common are shown below, 

rand/1/bin: 𝒗𝒊
𝒕 = 𝒙𝒓𝟏

𝒕 + 𝐹(𝒙𝒓𝟐
𝒕 + 𝒙𝒓𝟑

𝒕 ),    (22a) 

best/1/bin: 𝒗𝒊
𝒕 = 𝒙𝒃𝒆𝒔𝒕

𝒕 + 𝐹(𝒙𝒓𝟏
𝒕 + 𝒙𝒓𝟐

𝒕 ).   (22b) 

Here 𝒙𝒓𝒊
𝒕  are mutually exclusive random vectors chosen from the population, exclusive of the 

target vector, and 𝒙𝒃𝒆𝒔𝒕
𝒕  is the best candidate solution vector in the population at time t, the F term 

is problem dependent but is usually taken in the range [0.4, 0.8] and scales the vector difference 

of the two randomly chosen vectors. The next step is crossover and is closely related to genetic 

algorithms where the child vectors have components of the parent vectors. There are two 

common crossover methods, binomial and exponential. Descriptions of these types are outside 

the scope of the present report, and thus the interested reader is directed to the references[22]. 

The new so-called trial vector is expressed as, 
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𝒖𝒊,𝒋
𝒕 = {

𝒗𝒊,𝒋
𝒕  𝑖𝑓 𝑗 = 𝐾 𝑜𝑟 𝑟𝑎𝑛𝑑[0,1] ≤ 𝐶𝑟,

𝒙𝒊,𝒋
𝒕  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

    (23) 

Here 𝐾 is a randomly chosen integer in the range [1, d], Cr is the crossover parameter and 

normally takes a value in the range [0.5,0.8]. This approach ensures at least one component of 

the new trial vector is from the mutant vector created in Eq. (22a) or Eq. (22b). The fitness of the 

trial vector is then compared to the target vector using a simple elitist selection criterion, 

𝒙𝒊
𝒕+𝟏 =  {

𝒖𝒕  𝑖𝑓 𝑓(𝒖𝒕) ≤ 𝑓(𝒙𝒊
𝒕),

𝒙𝒊
𝒕 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

     (24) 

where 𝑓(. ) is merely the objective function to be minimized or maximized. While the standard DE 

algorithm works well for most problems, we have implemented a few changes to the code to assist 

in converging to a solution more quickly. We have implemented a so-called Information-

Preservation scheme which replaces the simple elitist selection criteria in Eq. (24)[28,30]. All the 

objective function evaluations in each generation along with all of the trial vectors are stored, 

creating a population of size 2N. Only the N best vectors are kept from this larger population. It 

has been demonstrated that such an information scheme can improve the convergence of DE on 

unimodal landscapes, which can be achieved in symmetry restricted systems such as 

ferroelectrics[30]. 

The other adjustment we have included is a scaled gradient descent perturbation vector (𝒑) to the 

trial vector in the form of [32], 

𝐻𝑓(𝒖𝒊
𝒕)𝒑 = −∇𝑓(𝒖𝒊

𝒕).     (25) 

Here 𝐻𝑓 is the hessian of the objective function and ∇𝑓 is the gradient of the objective function 

and 𝒖𝒊
𝒕 is a given trial vector. Other studies have demonstrated that this is an effective method for 

increasing the convergence speed of DE[32,33]. A more complete study of this DE variant with 

both benchmark functions and materials specific calculations will be described elsewhere. 



12 
 

Case Studies 

A variety of validation studies have been performed to test the accuracy and capabilities of the 

𝑄 − 𝑃𝑂𝑃 − 𝑇ℎ𝑒𝑟𝑚𝑜 software. To accomplish this, we consider the following case studies: effect 

of applied stress on phase transitions of bulk BaTiO3, electromechanical properties of BaTiO3 thin 

films, polarization of (111)-textured BaTiO3, the electrocaloric strength of lead-free ferroelectrics 

and the common temperature-misfit strain domain phase diagram. 

Effect of Applied Stress on Phase Transitions of Bulk BaTiO3 

It is widely known that the phase transition of ferroelectric materials can be modified by the 

influence of external fields whether that is elastic, electric, or thermal fields. For example, Wang 

et al. have examined the influence of hydrostatic stress on the ferroelectric properties of BaTiO3 

single crystals using LGD theory based on earlier experimental measurements[10]. It was shown 

that increasing the hydrostatic stress on the crystal not only decreases the Curie temperature, the 

temperature for ferroelectric-paraelectric transition, but also influences the temperature of the 

inter-ferroelectric phase transitions. This effect is not limited to BaTiO3 as other materials such as 

PbTiO3 and PZT show similar effects[34–37]. Thus, the effect of hydrostatic pressure on the 

domain structure of single crystal materials is an excellent test case for our program. 

Utilizing the BaTiO3 thermodynamic potential presented by Wang et al., we have calculated the 

magnitude of the spontaneous polarization of bulk single crystals, Figure 1[10]. It is obvious that 

as the hydrostatic pressure is increased, both the magnitude of the polarization and the phase 

transition temperatures continuously decrease as well. This is consistent with the work of Wang 

demonstrating the capabilities of Q-POP-Thermo when applying a pressure to the ferroelectric 

single crystals.  
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Figure 1 – a) Spontaneous polarization of BaTiO3 under applied hydrostatic stress. The open circles are data points 
from [10]; b) Phase diagram of BaTiO3 as a function of hydrostatic pressure and temperature. Experimental data 

points are taken from [38]. 

Additionally, we have also compared both the piezoelectric and dielectric susceptibility tensors 

for further validation of the bulk thermodynamic model. It was seen that these results match 

closely with previous works [11,39]. As seen in Figure 1, it is apparent that as the hydrostatic 

pressure increases, the number of phase transitions reduces as well. For example, when the 

applied hydrostatic pressure is above ~5 GPa but below ~6 GPa a rhombohedral state cannot 

form and only the orthorhombic and tetragonal ferroelectric states are accessible. Similarly, at 

higher pressure, above ~6 GPa, the BaTiO3 system will only form a tetragonal ferroelectric state. 

Using the proposed software we determine the phase transitions with respect to both pressure 

and temperature and compare those as well. It was seen in both Q-POP-Thermo and Wang et al. 

that the critical pressure where the rhombohedral phase disappears is located at ~5.1 GPa, 

whereas the orthorhombic phase lasts until nearly 5.8 GPa, and the tetragonal phase transitions 

to the cubic phase at ~6.4 GPa. Turning next toward the phase transition temperatures, we see 

that at zero hydrostatic pressure, the rhombohedral to orthorhombic phase transition takes place 

at 207K for both the proposed software and the preexisting experimental work. The phase 

transition temperature for the orthorhombic to tetragonal and tetragonal to paraelectric phases 

are 280K and 396K, respectively, and are realized using the proposed software. Indicating that 

the software accurately predicts both the phase transition temperatures and pressures. 
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Piezoelectric Coefficients of BaTiO3 Thin Films 

The piezoelectric coefficients of perovskite ferroelectric are generally much larger than non-ferroic 

piezoelectrics and are also highly anisotropic, allowing for high-performance sensing, actuating, 

and energy harvesting applications [40,41]. The piezoelectric coefficient depends on the polar 

state of a ferroelectric crystal; the rotation and elongation of the spontaneous polarization can 

considerably influence the piezoelectric properties. A great deal of work has been devoted to 

study the piezoelectric tensor of BaTiO3 system, therefore providing a great case study for the 

proposed software[2,42,43]. It should be noted here that the application of an applied stress or 

strain changes the symmetry of the system, for example applying a biaxial stress to a 

rhombohedral system would yield a monoclinic type symmetry. We note here that the properties 

calculated by Q-POP-Thermo are calculated in the cubic reference frame. Thus, the interested 

reader could quickly transform the piezoelectric (or dielectric) tensor into the reference frame of 

another symmetry (i.e. orthorhombic or rhombohedral) to compare with previous works, such as 

Budimir et al[44]. 

Following the work of previous authors, such as Emelyanov et al. and Wu et al., one can 

determine the piezoelectric coefficients from the thermodynamic free energy of the system, i.e 

[42,45]. 

𝑑𝑖𝑛 =
𝜕𝜀𝑛

𝜕𝐸𝑖
=  ∑

𝜕𝜀𝑛

𝜕𝑃𝑗
 𝜂𝑖𝑗

3
𝑗=1 ,     (26) 

here the strains are defined in Voigt notation and can be defined using the Gibbs free energy, 

either Eq. (1) for bulk or Eq. (2) for thin films, relation between stress and strain (i.e., 
𝜕𝐺

𝜕𝜎𝑖
=  −𝜀𝑖) 

and 𝜂𝑖𝑗 is the dielectric susceptibility tensors defined by, 

𝜂𝑖𝑗 = [
𝜕2𝐺

𝜕𝑃𝑖𝜕𝑃𝑗
]

−1

.      (27) 
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Using the above relations along with the free energy defined previously, the piezoelectric 

coefficients of any material can be determined rather quickly. It should be noted here that if one 

chooses to define the free energy in the Helmholtz framework, similar equations can be derived 

for the other piezoelectric tensor coefficients. Q-POP-Thermo uses the Gibbs energy framework 

for all the necessary calculations. 

The piezoelectric coefficients for BaTiO3 were calculated as a function of misfit strain at 298 K. 

We note here that the piezoelectric coefficients calculated herein, do not account for the symmetry 

of the applied epitaxial strain and instead are calculated using the Maxwell relations above with 

respect to the polarization and other material properties. It is obvious that there exist multiple 

stable phases, as depicted in Figure 2. A tetragonal phase ( 𝑇𝑐 = (0,0, 𝑃3) ) is stable at 

compressive misfit strain, whereas at misfit strains near zero a monoclinic phase ( 𝑀(𝑟) =

(𝑃1, 𝑃2, 𝑃3), where 𝑃1 = 𝑃2 ≠ 𝑃3) forms. In the tensile regions of the phase diagram the elastic 

constraints cause an in-plane orthorhombic structure to form (𝑂𝐴𝐵 = (𝑃1, 𝑃2, 0), where 𝑃1 = 𝑃2). It 

can be seen that a large increase in the piezoelectric coefficients occur at phase transitions, which 

is intrinsic to ferroelectric systems. Additionally, similar trends were seen between our calculations 

here and the current literature, where near 0.0% misfit strain there is a drastic increase in the d33 

piezoelectric coefficient before becoming 0.0 at tensile strains.[42,43]. The actual transition 

strains and temperatures are different due to slightly different thermodynamic potentials, elastic 

constants, and film growth conditions which can all play a role in the calculation of the piezoelectric 

properties of a material[42,43]. 
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Figure 2 – (Color Online) Piezoelectric coefficients of (001)-oriented single-domain BaTiO3 thin films. 

Understanding the location of these phase boundaries in thin film systems can allow researchers 

the ability to control where such phase transitions occur. Therefore, allowing unprecedented 

control in manipulating the properties of a given material, ultimately leading to next generation 

nano-devices and applications. 

Polarization of (111)-Oriented BaTiO3 Thin Films 

To test the crystal rotation functionality of Q-POP-Thermo, we have calculated the polarization 

components of (111)-textured BaTiO3 thin films. Quite a few studies have been devoted to 

unlocking the potential of rotated crystal systems particularly with respect to electrocaloric 

properties[42,46–48]. Xu et al. demonstrated that there a larger region of dielectric response 

occurs in (111)-oriented PZT thin films[49]. 

As a case study, we calculated the temperature dependence of polarization of (111)-oriented 

BaTiO3 thin films. The results agree well with the work of Wu et al. who studied the effect of crystal 

orientation of the same system, providing validity to the proposed software[42]. It is seen in Figure 

3 that upon reorienting the crystal, only two phases become present: a rhombohedral phase (R, 

𝑃1 = 𝑃2 = 𝑃3 ≠ 0; 𝑃1
′ = 𝑃2

′ = 0, 𝑃3
′ ≠ 0) and a monoclinic phase (M(r), 𝑃1 = 𝑃2 > 𝑃3 ≠ 0; 𝑃2

′ ≠ 𝑃3
′ >

𝑃1
′ = 0) compared to the (001)-textured film that demonstrates three phases (see previous case 
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study). It is also seen that the phase transition strain is independent of temperature. Such 

temperature independent phase boundaries hint toward improved thermal stability of functional 

properties such as dielectric, piezoelectric, and ferroelectric properties. Additionally, these results 

agree with that of Angsten and coworkers as well who performed first-principles calculations of 

oriented ferroelectric films[50].  

 

Figure 3 – (Color Online) Polarization of (111)-Oriented single-domain BTO Epitaxial Thin Films. 

Electrocaloric Performance of Doped-BaTiO3 Systems 

Recently, the possibility of solid-state refrigeration technologies has been of great interest. One 

such method of solid-state refrigeration is through the electrocaloric effect (ECE). The 

electrocaloric effect refers to the adiabatic temperature change of a material when subjected to 

an electric field. An example is the discovery of colossal ECE in PZT films by Mischenko et al.[51]. 

Since then, many different ferroelectric perovskites, such as BaTiO3, Na0.5Bi0.5TiO3 (NBT), and 

KNaNbO3 (KNN), have been studied for potential ECE uses[52–56]. 
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As an additional case study for Q-POP-Thermo, the electrocaloric performance of BaTiO3-based 

solid solutions is evaluated. Huang et al. demonstrated the use of strontium doping on the A site 

((Ba1-x,Srx)TiO3, BSTO) as a potential ECE enhancement mechanism, while Luo and coworkers 

presented similar data for the Barium Titanate Stannate system (Ba(Ti1-x, Snx)O3, BTSO)[15,57]. 

Here, we present results for three different BaTiO3-based solid solutions: (Cax, Ba1-x)TiO3 (BCTO), 

BSTO and Ba(Ti1-x, Zrx)O3 (BZTO) for the case of bulk single crystal systems.  

Using Maxwell Relations, it is straightforward to calculate the entropy change from a potential 

energy function, i.e. 

Δ𝑆 = −
1

𝜌

𝜕𝐹(𝑷,𝑇,𝜎𝑖𝑗,𝐸𝑖)

𝜕𝑇
,     (28) 

here 𝜌  is the mass density and is listed in Table 1 for each of the solutions above. The 

electrocaloric effect can then be defined by, 

Δ𝑇𝐸𝑙𝑒𝑐 =
𝑇

𝑐𝑝
 (Δ𝑆(𝑷, 𝑇, 𝜎𝑖𝑗, 𝐸𝑖 = 𝐸𝑎𝑝𝑝) − Δ𝑆(𝑷, 𝑇, 𝜎𝑖𝑗, 𝐸𝑖 = 0)),  (29) 

where 𝑐𝑝 is the heat capacity at constant pressure of the material, and 𝐸𝑎𝑝𝑝 is the applied electric 

field. Using these relations, it is then possible to determine the temperature change a system will 

undergo due to the electrocaloric effect. Similarly, one could also study the elasto-, flexo-, and 

combined caloric effects to find methods to enhance the cooling properties of ferroelectrics. 

Table 1 - Material properties utilized for electrocaloric studies. 

Property/Material (Ba1-x, Cax)TiO3 (Ba1-x, Srx)TiO3 Ba(Ti1-x, Zrx)O3 

𝜌 (
𝑔

𝑐𝑚3
) 5.89(1 − 𝑥) + 3.83𝑥 5.89(1 − 𝑥) + 4.96𝑥 5.89(1 − 𝑥) + 5.95𝑥 

𝑐𝑝  (
𝐽

𝑘𝑔 ∙ 𝐾
) 500 

Thermodynamic 
Potential 

[14] [15] [13] 
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Four different electric field magnitudes were applied to the single crystal models: 

2.5
𝑀𝑉

𝑚
, 5.0

𝑀𝑉

𝑚
, 7.5

𝑀𝑉

𝑚
, and 10

𝑀𝑉

𝑚
. Zero-stress boundary conditions were utilized as well for all 

calculations.  

The 𝑄 − 𝑃𝑂𝑃 − 𝑇ℎ𝑒𝑟𝑚𝑜 software can output the entropy based on Eq. (25). From there one can 

apply Eq. (26) to calculate the adiabatic temperature change. Similarly, since Q-POP-Thermo can 

output the total polarization, it is also possible to calculate the ECE via 

Δ𝑇 =  −
𝑇

𝜌
 ∫

1

𝑐𝐸
 (

𝜕𝑃

𝜕𝑇
)

𝐸
𝑑𝐸

𝐸𝑎𝑝𝑝

0
.     (30) 

Here (
𝜕𝑃

𝜕𝑇
)

𝐸
 can be fitted to either 4th or 6th order polynomials to allow for accurate determination 

of the temperature change, and 𝑐𝐸 is the heat capacity at constant applied electric field. 

 

Figure 4 - Electrocaloric response of  Ba(Ti, Zr)O3(A-B), (Ba, Sr)TiO3 (C-D), (Ba, Ca)TiO3 (E-F) single crystals. 

The results of the electrocaloric calculations can be seen in Figure 4. It is noticeable with the 

addition of both Zr and Sr that the electrocaloric effect is suppressed, which agrees with previous 

studies. However, the opposite is true for doping BaTiO3 with Ca atoms on the A site cation, which 

leads to a slight improvement in the electrocaloric performance.  
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It is noticeable that the peak broadens with increasing Sr mol factions along with an increase in 

the electric field magnitude, a similar trend was demonstrated in [15], Figure 4C-D. This 

broadening of the ECE peak could prove useful in a variety of room temperature cooling 

techniques, dues to this wide shape and the high reversible temperature change of ~2 K. It should 

be noted that the results here agree qualitatively with those seen in studies such as Dai et al.; 

however, it has been demonstrated that domain walls can decrease the ECE, which explains the 

difference in Δ𝑇𝐸𝐶 presented here and elsewhere in the literature[15,58,59]. 

For the case of BZT, Figure 4A-B, it is noticeable that single crystal undergoes several different 

phase transitions depicted by multiple sharp peaks in the ECE plots. Such phase transitions allow 

for a wide range of potential uses in ECE technologies. For example, Ba(Ti0.95, Zr0.05)O3 

demonstrates a large peak of ~2 K (at 5.0 MV/m) at ~ 390 K (the Curie Temperature of this 

particular solution), but also possesses a smaller peak of ~1 K at 300 K (again at 5.0 MV/m). In 

addition, the location of these secondary peaks changes with respect to the applied electric field, 

allowing for unprecedented access to manipulating the material system to attain adequate 

performance, e.g. the phase transition (of Ba(Ti0.95, Zr0.05)O3) with an applied field of 2.5 MV/m 

happens ~315 K, but at the highest field tested (10.0 MV/m) the phase transition happens near 

room temperature (~298 K), while also broadening the peak of ECE. Between careful preparation 

of the BTO – BZO solution and proper application of an electric field, the ECE properties of BZT 

ferroelectrics can be tuned for optimal performance. 

Lastly, the ECE for the BCTO system is presented in Figure 4E-F. As predicted by previous 

authors there is little to no shift in the Curie Temperature of the low concentrations of Ca studied 

here. However, it is evident that the higher concentrations of Ca can lead to higher ECE 

performance. This performance can be exploited to tailor the material to achieve the necessary 

performance at or near the Curie temperature. While not studied here, it has been demonstrated 

that hydrostatic pressure decreases the Curie temperatures of materials. Seeing the large 
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temperature changes demonstrated here (> 3 K), it could prove advantageous to study the effect 

of hydrostatic pressure on the BCTO system regarding caloric performance. As stabilizing a high 

ECE BCT system could be boon for many different solid state cooling technologies. 

Temperature – Misfit Strain Phase Diagrams of Ba(Zr, Ti)O3 Thin Films. 

Due to the potential applications in next generation devices, thin ferroelectric films are continually 

studied from computational and experimental angles[40,60]. Understanding the effect of epitaxial 

strain on the phase transitions and phase stability of ferroelectric materials is paramount to 

controlling the behavior of such materials. Thus, a method for accurately calculating such phase 

diagrams is necessary. Therefore, as a final case study for the use of Q-POP-Thermo, we have 

calculated the phase diagrams of the BZT system with regard to both temperature and biaxial 

epitaxial strain for two compositions. 

 

Figure 5 – (Color Online) Monodomain Temperature - Misfit Strain Phase Diagram of A) Ba(Ti0.95, Zr0.05)O3 and B) 
Ba(Ti0.90, Zr0.10)O3 thin films using the potential recently reported by Huang et al. [13]. 

Using a recently reported potential, the temperature misfit strain phase diagrams are 

demonstrated in Figure 5[13]. It is evident that increasing the concentration of Zr in the system 

decreases the ferroelectric-paraelectric transition temperature, as well as changes the aspect 
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ratio of the rhombohedral phase region. Such changes in the phase diagram could prove useful 

toward growing such films for specific applications or optimally adjusting phase transition 

temperatures. A more-through polydomain study of these systems is underway and be reported 

elsewhere 

Conclusions and Future Work 

We have introduced and described Q-POP-Thermo, an open-source Python program for solving 

the thermodynamics of ferroelectric single crystals and thin films, as well as calculate the 

accompanying properties. Differential evolution as a solving method for these types of problems 

is introduced and shown to be effective. A variety of case studies are demonstrated as well to test 

the validity of the program and the results are comparable to previous materials studies.  

Phase diagram calculations incorporating multiple domains is under development to better 

compare with the phase field method and provide a faster a priori method for approximating 

domain phase diagrams and other ferroelectric properties, e.g., by incorporating the strain phase 

separation described by Xue et al. and incorporating the boundary conditions proposed by 

Roytburd and coworkers[61–64]. 
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Supplementary Information 

1. Renormalized Thin Film Constants 

The renormalized Landau constants after the application applicable boundary conditions for a thin 

film structure are outlined below: 

𝐺̃ = 𝛼1
∗𝑃1

2 + 𝛼2
∗𝑃2

2 + 𝛼3
∗𝑃3

2 + 𝛼6
∗𝑃1𝑃2 + 𝛼11

∗ (𝑃1
4 + 𝑃2

4) + 𝛼33
∗ 𝑃3

4 + 𝛼13
∗ (𝑃1

2𝑃3
2 + 𝑃2

2𝑃3
2) + 𝛼12

∗ 𝑃1
2𝑃2

2 +

𝛼111(𝑃1
6 + 𝑃2

6 + 𝑃3
6) + 𝛼112 (𝑃1

4(𝑃2
2 + 𝑃3

2) +  𝑃2
4(𝑃1

2 + 𝑃3
2) +  𝑃3

4(𝑃1
2 + 𝑃2

2)) + 𝛼123𝑃1
2𝑃2

2𝑃3
2 +

𝐺8(𝑃1, 𝑃2, 𝑃3) +
(𝑠11(𝑢11

2 +𝑢22
2 )−2𝑠12𝑢11𝑢22)

2(𝑠11
2 −𝑠12

2 )
+

𝑢12
2

2𝑠44
;   (SI. 1) 

Where, 

𝛼1
∗ = 𝛼1 +

(𝑢11(𝑄12𝑠12−𝑄11𝑠11)+𝑢22(𝑄11𝑠12−𝑄12𝑠11))

𝑠11
2 −𝑠12

2  ,   (SI. 2) 

𝛼2
∗ = 𝛼1 +

(𝑢22(𝑄12𝑠12−𝑄11𝑠11)+𝑢11(𝑄11𝑠12−𝑄12𝑠11))

𝑠11
2 −𝑠12

2  ,    (SI. 3) 
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𝛼3
∗ = 𝛼1 −

(𝑄12(𝑢11+𝑢22))

𝑠11+𝑠12
,       (SI. 4) 

𝛼6
∗ = −

𝑄44

𝑠44
𝑢12,        (SI. 5) 

𝛼11
∗ = 𝛼11 +

1

2

1

𝑠11
2 −𝑠12

2  ((𝑄11
2 + 𝑄12

2 )𝑠11 − 2𝑄11𝑄12𝑠12),    (SI. 6) 

𝛼12
∗ =  𝛼12 +

1

𝑠11
2 −𝑠12

2  ((𝑄11
2 + 𝑄12

2 )𝑠12 − 2𝑄11𝑄12𝑠11) +
𝑄44

2

2𝑠44
,   (SI. 7) 

𝛼13
∗ = 𝛼12 +

𝑄12(𝑄11+𝑄12)

𝑠11+𝑠12
,       (SI. 8) 

𝛼33
∗ = 𝛼11 +

𝑄12
2

𝑠11+𝑠12
.        (SI. 9) 

It is apparent that upon application of isotropic misfit strain with zero misfit shear strain that the 

results match that of Pertsev et al.[20]. 

2. Derivation of Electrostrictive Coefficients for both Helmholtz and Gibbs Free Energy 

Frameworks 

We begin with the free energy for the unpolarized and unstrained crystal as a reference, we can 

write this free energy as a function of strain and polarization, i.e. 

𝐹(𝑃, 𝜀) =
1

2
𝛼𝑖𝑗𝑃𝑖𝑃𝑗 +

1

3
𝛽𝑖𝑗𝑘𝑃𝑖𝑃𝑗𝑃𝑘 +

1

4
𝛾𝑖𝑗𝑘𝑙𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙 +

1

5
𝛿𝑖𝑗𝑘𝑙𝑚𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙𝑃𝑚 + ⋯

1

2
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙

−
1

2
𝑞𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝑃𝑘𝑃𝑙 . 

Here 𝛼𝑖𝑗 , 𝛽𝑖𝑗𝑘 , 𝛾𝑖𝑗𝑘𝑙 , and 𝛿𝑖𝑗𝑘𝑙𝑚 are the phenomenological Landau expansion coefficients, and 𝑐𝑖𝑗𝑘𝑙 , 

and 𝑞𝑖𝑗𝑘𝑙  are the elastic and electrostrictive constant tensors respectively. All coefficients are 

assumed to be constant with the exception of 𝛼𝑖𝑗 which is linearly proportional to temperature. If 

the parent phase is centrosymmetric, as the case with perovskite ferroelectrics, all of the odd 

terms fall out resulting in, 
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𝐹(𝑃, 𝜀) =
1

2
𝛼𝑖𝑗𝑃𝑖𝑃𝑗 +

1

4
𝛾𝑖𝑗𝑘𝑙𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙 + ⋯ +

1

2
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 −

1

2
𝑞𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝑃𝑘𝑃𝑙. 

The spontaneous polarization can be solved by setting the strain to zero and solving, 

𝜕𝐹(𝑃, 𝜀 = 0)

𝜕𝑃
= 0. 

The stress can be defined by, 

(
𝜕𝐹

𝜕𝜀𝑖𝑗
)

𝑇,𝑃𝑘

= 𝜎𝑖𝑗, 

Or 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙 −
1

2
𝑞𝑖𝑗𝑘𝑙𝑃𝑘𝑃𝑙 . 

Setting the stress to zero, one can solve for the spontaneous strain, 

𝜀𝑖𝑗
0 (𝑃𝑘) =

1

2

𝑞𝑖𝑗𝑘𝑙𝑃𝑘𝑃𝑙

𝑐𝑖𝑗𝑘𝑙
. 

Experimentally, this spontaneous strain is given by, 

𝜀𝑖𝑗
0 (𝑃𝑘) = 𝑄𝑖𝑗𝑘𝑙𝑃𝑘𝑃𝑙 . 

Thus it is obvious that 

𝑞𝑖𝑗𝑘𝑙 = 2𝑐𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝑘𝑙 . 

3. Transformation Matrix 

The ZYZ Transformation Matrix can be defined by, 

[

cos(𝜙) cos(𝜓) cos(𝜃) − sin(𝜙) sin(𝜓) − sin(𝜙) cos(𝜓) cos(𝜃) − sin(𝜓) cos(𝜙) sin(𝜃) cos(𝜓)

sin(𝜙) cos(𝜓) + sin(𝜓) cos(𝜙) cos(𝜃) cos(𝜙) cos(𝜓) − sin(𝜓) sin(𝜙) cos(𝜃) sin(𝜓) sin(𝜃)

− sin(𝜃) cos(𝜙) sin(𝜙) sin(𝜃) cos(𝜃)
]. 


