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BACKGROUND: The past two decades have seen
intense efforts aimed at building quantum
computing hardware with the potential to
solve problems that are intractable on classi-
cal computers. Several hardware platforms for
quantum information processing (QIP) are un-
der active development. To realize large-scale
systems based on these technologies, we must
achieve error ratesmuch lower than have been
demonstrated thus far in a scalable platform, or
devise a new platform entirely. These activities
will require major advances in materials sci-
ence and engineering, new fabrication and
synthesis techniques, and new measurement
andmaterials analysis techniques.We identify
key materials challenges that currently limit
progress in five quantumcomputing hardware
platforms, propose how to tackle these prob-
lems, and discuss some new areas for explora-
tion. Addressing these materials challenges will
necessitate interdisciplinary approaches from
scientists and engineers beyond the current
boundaries of the quantum computing field.

ADVANCES: This Review constitutes a roadmap
of the current challenges and opportunities for

materials science in quantum information pro-
cessing. We provide a comprehensive review of
materials issues in each physical platform by
describing the evidence that has led to the
current understanding of each problem. For
each platform, we present reasons for partic-
ularmaterial choices, survey the current under-
standing of sources of noise and dissipation,
describe materials limitations to scaling, and
discuss potential newmaterial platforms. De-
spite major differences among physical im-
plementations in each hardware technology,
there are several common themes: Material
selection is driven by heterogeneity, impurities,
and defects in available materials. Poorly con-
trolled and characterized surfaces lead to noise
and dissipation beyond limits imposed by bulk
properties. Scaling to larger systems gives rise
to newmaterials problems that are not evident
in single-qubit measurements.

OUTLOOK: We identify three principal materials
research frontiers of interest in this context.
First, understanding the microscopic mecha-
nisms that lead to noise, loss, and decoher-
ence is crucial. This would be accelerated by

developing high-throughputmethods for cor-
relatingqubitmeasurementwithdirectmaterials
spectroscopy and characterization. Second, rela-
tively few material platforms for solid-state QIP
have been explored thus far, and the discovery
of a new platform is often serendipitous. It is
thus important to develop materials discovery
pipelines that exploit directed, rationalmaterial
searches in concert with high-throughput char-
acterization approaches aimed at rapid screen-
ing for properties relevant to QIP. Third, there
are several materials issues that do not affect
single-qubit operations but appear as limita-
tions in scaling to larger systems. Many prob-
lems faced by these platforms are reminiscent
of some that have been addressed over the
past five decades for complementary metal-
oxide semiconductor electronics and other
areas of the semiconductor industry, and
approaches and solutions adopted by that
industry may be applicable to QIP platforms.
Materials issues will be critical to address in
the coming years as we transition from noisy
intermediate-scale systems to large-scale, fault-
tolerant systems. Quantum computing began
as a fundamentally interdisciplinary effort in-
volving computer science, information science,
and quantum physics; the time is now ripe
for expanding the field by including new col-
laborations and partnerships with materials
science.▪
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Five quantum computing hardware
platforms. From top left: Optical image
of an IBM superconducting qubit
processor (inset: cartoon of a Josephson
junction); SEM image of gate-defined
semiconductor quantum dots (inset:
cartoon depicting the confining
potential); ultraviolet photoluminescence
image showing emission from color
centers in diamond (inset: atomistic
model of defects); picture of a surface-
electrode ion trap (inset: cartoon of ions
confined above the surface); false-
colored SEM image of a hybrid
semiconductor/superconductor
[inset: cartoon of an epitaxial
superconducting Al shell (blue)
on a faceted semiconducting InAs
nanowire (orange)].
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B. S. Palmer7,8, N. Samarth9, Sorawis Sangtawesin10, D. W. Steuerman11

Quantum computing hardware technologies have advanced during the past two decades, with the goal of
building systems that can solve problems that are intractable on classical computers. The ability to
realize large-scale systems depends on major advances in materials science, materials engineering, and
new fabrication techniques. We identify key materials challenges that currently limit progress in five
quantum computing hardware platforms, propose how to tackle these problems, and discuss some new
areas for exploration. Addressing these materials challenges will require scientists and engineers to work
together to create new, interdisciplinary approaches beyond the current boundaries of the quantum
computing field.

T
he promise of quantum information pro-
cessing (QIP) that outperforms classical
supercomputers for tasks such as simula-
tion of quantum systems and particular
algorithms including factorization, search,

and optimization (1–4) has spurred the recent
development of different physical platforms for
quantum processors. The advantage of quan-
tum systems arises from the fundamentally dif-
ferentway inwhich information is encoded and
processed in quantum computers as compared
to classical computers (4). An N-bit classical
register can encode information in N coeffi-
cients (0 or 1), but a register of N quantum
two-level systems (quantum bits, or qubits)
can exist in a superposition of any of the 2N

possible combinations of each qubit state. A
full description therefore requires 2N coeffi-
cients, each of which is a complex, continuous
quantity (Fig. 1A).
Loosely speaking, this exponentially larger

information-storing capacity arising fromquan-
tum coherence and entanglement underpins
the ability to execute certain tasks that are
intractable on classical computers. Appropriate-

ly designed quantum algorithms can result in
constructive interference that encodes the so-
lution, whereas other possible outputs ideally
undergo destructive interference. The compu-
tational power of such operations comes at the
cost of fragility, however. Quantum states can
decay and decohere during computation, re-
sulting in errors that accrue more rapidly in
larger systems. Becausemeasurements on quan-
tum systems change their states, classical error
correction is not directly applicable. Quantum
error correction provides a means to account
for and make use of these changes to enable
low-error computations (5), but it requires sig-
nificantly increased system scale and highly
precise operations. These problemsmake quan-
tum computing difficult to physically imple-
ment (Fig. 1B).
Many proof-of-principle demonstrations of

quantum algorithms (6) have been executed
on small, noisy quantum computers (7) with
dozens of qubits and error rates that preclude
quantum error correction. Recently, a quan-
tum computer based on 53 superconducting
qubits was shown to outperform the world’s
largest classical computers in calculating a
random circuit (8). Other demonstrations in-
clude implementing quantum approximate
optimization algorithms on trapped-ion pro-
cessors (9) and using bosonic modes to per-
form calculations that are computationally
hard, such as calculating the vibronic spectra
of small molecules by using the bosonicmodes
of microwave cavities controlled by qubits
(10, 11). Variational quantum algorithms such
as variational quantum eigensolvers (12) and
quantum circuit learning (13) have been used
to calculate energies of simple molecules
(14–16), simulate lattice models (17), and im-
prove efficiency of machine learning (18).
The next frontier in QIP is to achieve quan-

tum advantage (19, 20) for useful problems,

which will require reducing system errors and
advancing physical platforms to larger scale.
Materials science has informed the develop-
ment of current solid-state qubits, primarily
through down-selection of material platforms
for favorable material properties. For example,
current implementations of superconducting
qubits rely on the high-quality, kinetically lim-
ited oxide of aluminum as a tunnel barrier
in the Josephson junction. Recent progress
in quantum dot spin qubits has been enabled
by the selection of nuclear spin–free materials
and their isotopic purification, as well as the
development of new growth processes to op-
timize silicon/germanium interfaces. Color
centers were developed as qubits after decades
of advances in the synthesis of high-purity
diamond.
Beyond material selection, however, there

has been comparatively little work toward
using the tools of materials science to improve
and scale quantum hardware. Most activity so
far has instead focused on developing quan-
tum control schemes and device architectures
that circumvent sources of noise, loss, and
decoherence, rather than directly measuring
and tackling the underlying material systems
limitations. Ultimately, building large quantum
systems capable of quantum error correction
will require scaling physical qubits through
miniaturization and high-density integration
while eliminating noise to ensure high-fidelity
control. Both efforts necessitate significant
advances in improving and understanding
materials, devising new fabrication processes,
and discovering new material systems.
Below, we outline the current materials

challenges in five technological platforms for
QIP (Table 1): superconducting qubits, semi-
conductor gate-definedquantumdots, color cen-
ters, ions, and topologically protected Majorana
modes. First we introduce some key figures of
merit to parameterize performance in different
platforms. Then, for each platform,we introduce
the basic qubit scheme and current fabrication
methods, followed by challenges arising from
various sources of noise and dissipation in the
material systems, the materials limitations to
scaling that technology, and efforts to find
alternative material systems. Finally, we dis-
cuss how new approaches to materials science
for QIP, such as high-throughput characteri-
zation of devices andmaterials, can lead to the
next generation of quantum hardware.

Metrics

The basic performance of qubits is captured
with a few key parameters. The first metric
characterizes the time interval within which
information stored in a single qubit is lost,
generally referred to as the coherence time,
T2. One limit on coherence is dissipation: The
qubit loses energy to its environment with
a characteristic relaxation time T1 (21)—for
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example, by spontaneous emission. This relaxa-
tion places an upper bound on the coherence
time T2 < 2T1 for all qubits. In addition to
relaxation, qubits can experience dephasing
that arises from uncontrolled changes to the
energy splitting between qubit levels.
The relevant qubit dephasing time depends

on the QIP task at hand, and some noise can

be mitigated with additional control. The in-
homogeneous dephasing time, T2*, arises from
quasi-static inhomogeneity in the transition
frequency—for example, from magnetic field
variations that change the Zeeman energy in
spin-based qubits. This dephasing can be cor-
rected by driving the qubit with a Hahn echo
sequence, in which a pulse reverses the evo-

lution of the qubit, thus canceling the effects
of inhomogeneity (22). The resulting, extended
coherence time is referred to as T2,echo. More
complex sequences of multiple pulses, known
as dynamical decoupling, may extend the co-
herence to longer times, denoted as T2,DD. Con-
versely, such pulse sequences can also serve as
a valuable tool for probing the environmental
noise spectrum, and these techniques have
been deployed in superconducting (23), ion
trap (24), color center (25), and gate-defined
quantum dot (26–28) systems.
In addition to the storage time in a qubit,

the time required to implement logic gates
and the fidelity of logic gates are important
metrics to consider. Logic gates are imple-
mented in most platforms by the application
of electromagnetic radiation, such asmicrowave
or optical pulses. The gate fidelity F, expressed
as a percentage, is a metric that assesses how
accurately the physical realization of a gate
implements the desired transformation (4),
and hence the approximate number of gates
that can be implemented before introducing
some total error. Logic gates are executed over
a finite time, during which decoherence from
the underlying noise affecting qubits imposes
one limit on F. The ratio of the gate duration
to coherence time bounds approximately what
gate fidelities can be expected given the un-
derlying noise in physical qubits.
Beyond decoherence, limits to achievable

fidelities can arise from imperfections in the
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Fig. 1. Errors in quantum bits. (A) Bloch-sphere representation of a single-qubit state; a superposition of
0 and 1 is described by a complex amplitude with magnitude and phase, which can be viewed as residing on
the surface of the unit sphere. Errors from imperfect gates or decoherence result in deviations (shaded
region) from the ideal vector, thereby decreasing fidelity. As a result, quantum error correction (QEC) is
likely essential for most applications of quantum computation. (B) Theoretical overheads associated with
QEC in a specific case of the surface code (32). The number of error correction cycles achievable
(proportional to the number of operations possible on logical qubits) is plotted against the number of
physical qubits required for each single logical qubit and the limiting two-qubit gate infidelity, 1 – F. For
systems with errors below a threshold infidelity, larger computations are possible at the cost of increased
physical qubit counts. Threshold, error scaling, and overhead requirements depend strongly on choice of
code (31) and on the physical nature of the error. [Image courtesy of Ying Li and Simon Benjamin]

Table 1. Five quantum computing hardware platforms and associated sources of noise.

Platform
Where the quantum
information is stored

Known sources of noise

Bulk materials Surfaces and interfaces

Superconducting qubits Energy eigenstates of
Josephson junction–based
electronic resonant circuits

• Substrate dielectric loss
• Excess quasiparticles in

superconducting metal cause
dissipation and dephasing

• Uncontrolled oxides and
contaminants host two-level
systems, causing dissipation and
dephasing

• Surface spins and charges
cause flux noise and charge
noise, respectively

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Gate-defined quantum dots Spin states of electrons or
holes confined in electrostatic
potential

• High mobility required for
individual dot formation

• Nuclear spins limit T2

• Charge traps and magnetic
impurities at the dielectric
interfaces

• Interface inhomogeneity:
Variation in valley splitting and
spin-orbit coupling

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Color centers Electronic orbital and spin
states

• Paramagnetic impurities and
nuclear spins limit T2

• Extended defects lead to
strain and limit T2*

Dangling bonds and electron
traps at the surface affect T2
and optical coherence for
shallow NV centers

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Ion traps Electronic transitions within
individual atomic ions

(Not a significant noise source) Electric-field noise heats ion
motion

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Majorana zero modes Non-Abelian topological phase
of Majorana zero modes

Defect density in nanowires Semiconductor-superconductor
nanowire interface that creates a
proximity hard gap

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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control signals that implement logic gates, or
from excitation to undesired energy levels.
Gates that operate on single qubits, together
with those that implement interactions and
generate entanglement between two qubits, are
sufficient for universal quantum computation
(29); the latter require physical mechanisms for
interactions between distinct qubits, and they
can be sensitive to sources of noise that may
not affect operations on individual qubits. In
any platform, two-qubit gates typically operate
with lower fidelity than single-qubit gates.
Lower error rates generally allow for more

sophisticated algorithms on current hardware
(8, 30), and future error-correcting quantum
computers will likely require fidelities far be-
yond 99.9% across a large-scale device (31–33);
higher-fidelity operations translate to reduced
overheads associated with quantum error cor-
rection (Fig. 1B). Reliably achieving such low
error rates in a scalable platform will un-
doubtedly require exquisite control over the
constituent materials in any platform.
Coherence times and gate fidelities are use-

ful in assessing basic physical hardware but do
not capture the requirements for operation of
large-scale systems. As QIP systems mature,
various groups are working to identify new
metrics to capture complex systems; for ex-
ample, themetric of quantum volume param-
eterizes computational capacity in a scalar
value that incorporates qubit number, fidel-
ities, connectivity, and cross-talk (34).

For most solid-state qubits, improvements
in single-qubit coherence—potentially driven
bymaterials science—will have a direct impact
on quantum computing capabilities. For other
platforms, such as trapped ions, single-qubit
coherence times are unaffected by materials
considerations and are already long enough
that they do not limit current systems; how-
ever, materials issues can pose problems for
multiqubit operations and for scaling. Such
problems are likely to play an increasing role
in all platforms as systems mature.
Here, we introduce five quantum comput-

ing hardware platforms and describe the
current understanding of noise and dissipa-
tion in each system. For each platform we
discuss future directions, including prospects
for scaling and seeking new materials. In
each case, bulk properties can limit material
choice and can place stringent constraints on
material synthesis and purity. Additionally,
surfaces and interfaces introduce sources of
noise and loss, an understanding of which is
important for guiding fabrication schemes
and qubit design.

Superconducting qubits

Superconducting qubits encode information in
the energy eigenstates of Josephson junction–
based electronic circuits (35–37). There are
several types of superconducting qubits with
differing circuit construction and therefore
different sensitivities to material-related noise:

The transmon (38) and x-mon (39) consist of
a capacitively shunted Josephson junction
where the junction acts as a nonlinear in-
ductor (Fig. 2A). The fluxonium qubit (40)
consists of an inductively shunted Josephson
junction. By changing the applied magnetic
flux through a superconducting loop, its po-
tential well structure can be substantially
changed, resulting in changes in its matrix
elements and its sensitivity to different sources
of decoherence. The capacitively shunted flux
qubit (41, 42) consists of three Josephson junc-
tions forming a superconducting quantum in-
terference device (SQUID) loop (43), shunted
by a large capacitor where the qubit state is an
energy eigenstate of the persistent current in
the SQUID loop (themagnetic flux through the
loop). A relatively new superconducting qubit,
the gatemon, uses a voltage-tunable semicon-
ductor weak-link barrier for the Josephson
junction (44). In all these devices, Josephson
tunnel junctions play a crucial role as the
nonlinear element, providing anharmonicity
to the energy levels of the circuit, and there-
fore allowing the isolation of just two levels
within a larger Hilbert space (45).
Superconducting qubits are one of the most

mature QIP platforms, and state-of-the-art
processors based on superconducting trans-
mon qubits have been scaled up to 65 fully
programmable qubits on one chip (46). Record
fidelities include a single-qubit gate fidelity of
99.97% (47), readout fidelity of 99.8% (47),
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nm

Amorphous oxide:
two-level systems

-

Fig. 2. Superconducting qubit. (A) Schematic illustration of a super-
conducting transmon qubit. A transmon is an anharmonic microwave
resonator created by capacitively shunting a Josephson tunnel junction (or
junctions). The qubit state is controlled by applying a resonant microwave
signal. (B) Typical cross section scanning electron micrograph of a Josephson
junction (120). Insets: Two-level systems may arise from the amorphous

AlOx. (C) QP tunneling through the junction leads to dissipation and
dephasing, and QP transport across the surface of the superconductor
leads to dissipation. (D) Electromagnetic energy in the capacitor can be
absorbed by lossy dielectrics in the substrate, the metal-substrate interface,
the metal-air interface, or the substrate-air interface. (E) Surface spins
contribute to flux noise.
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and two-qubit gate fidelity of 99.5% (47). T1

times are typically ~100 ms (45). For fixed-
frequency transmon qubits, T2,echo ≈ T1 ≈
100 ms, and typical gate times are around a
few hundred nanoseconds (48, 49). Tunable
transmons or capacitively shunted flux qubits
can allow for much faster gate times, around
tens of nanoseconds (45), but their tunability
also renders them more susceptible to flux
noise, typically resulting in faster decoher-
ence T2,echo ≈ 20 ms (8, 45). This trade-off
leads to similar two-qubit gate fidelities for
these two architectures.

Material choices

Josephson junctions in superconducting qubits
are typically fabricated from aluminum and
aluminum oxide (Al/AlOx/Al) because a thin
insulating thermal barrier is desired, and the
thickness of AlOx is kinetically limited during
growth to a few nanometers (Fig. 2B). To
avoid dissipation by defects in the junction
(50–52), the typical junction has lateral di-
mensions on the order of 100 nm and is
formed by first creating a shadow stencil in a
polymer resist by electron-beam (e-beam) li-
thography. After the resist is developed, two
layers of Al are evaporated at two different
angles with an oxidation step between the
two depositions, and the small overlap from
the two evaporation steps forms the junction
(53, 54) (Fig. 2C).
This material system has several advantages:

(i) Thin AlOx layers have few pinholes and
therefore produce low current leakage in
the junction (55); (ii) aluminum has a low-
temperature melting point that makes metal
deposition compatible with lithography resists
and lift-off (56); and (iii) AlOx can be formed
on Al in a self-limiting manner that allows
deposition of all three layers (Al/AlOx/Al) in
situ during a single pump-down. Aside from
the junction itself, capacitors and inductors
are patterned with lateral extents up to a few
hundred micrometers (Fig. 2A) and have been
made with aluminum as well as other super-
conducting metals and alloys via photo- or
e-beam lithography. Other commonmetals for
these components include elemental super-
conductors (Nb) and nitride-based alloys (TiN
and NbTiN) (57).
Superconducting qubits can store a sub-

stantial fraction of their electric field energy
in the substrate, so it is important to select a
substrate material that has low dielectric loss.
Approximating the qubit as a harmonic oscil-
lator, its lifetime T1 can be expressed in terms
of the quality factor Q = 2pfT1 = 1/tan(d),
where f is the resonant frequency of the qubit
and tan(d) is the loss tangent of the material
(50, 58). In the gigahertz frequency range, this
loss is typically the result of absorption by
charged ions or dipoles followed by reemission
as phonons. Common low-loss substrates in-

clude sapphire [tan(d) < 10–8] (59) or high-
resistivity silicon [tan(d) < 10–6] (60).

Sources of noise and dissipation

Researchersworkingon superconductingqubits
have primarily focused on two models for loss
and dissipation, namely two-level systems (TLSs)
in dielectrics and non-equilibrium quasipar-
ticles (QPs) in the superconductor. Here, we
outline some of the key experimental obser-
vations that suggest the relevance of these
models. Interestingly, the observedmicrowave
loss in superconducting quantum circuits in-
creases with decreasing microwave power at
cryogenic temperature (50). This observation
points to a loss mechanism different from
known bulk dielectric loss mechanisms, such
as nonlinear optical processes or coupling to
phonons (61, 62).
One microscopic model for these observa-

tions is the discrete TLSmodel (Fig. 2B, inset),
which was originally formulated to explain a
number of properties of amorphous solids at
low temperature and has been applied to ex-
plain some results associated with super-
conducting qubit devices (63, 64). In this model,
the qubit’s electric field couples to a discrete
TLS, resulting in a shorter T1 for the qubit. At
larger electric fields and higher temperatures,
the TLS can be saturated, resulting in less loss;
the predicted power dependence from the TLS
loss model has been observed in a variety of
systems and device geometries (50, 65–70). A
comprehensive list of measured loss tangents
at low power and low temperature for various
materials is compiled in (71). Discrete TLSs
can be observed in the qubit spectrum when
they strongly couple to the modes of the cir-
cuit. Several studies have focused on character-
izing the dipole moment, density, and lifetime
of strongly coupled TLSs (50, 51, 72–75). How-
ever, it has not yet been well established
whether these observed strongly coupled TLSs
are the primary loss mechanism, and their
origins in the fabrication process are still
unknown.
Another microscopic model for the observed

loss is the presence of broken Cooper pairs,
termed nonequilibrium QPs (Fig. 2C). QPs can
exchange energy with the qubit when they
tunnel through the Josephson junction, or they
can give rise to resistive losses in the super-
conducting metal. If the superconducting de-
vice were in thermal equilibrium with the
refrigerator at temperatures T < 100mK<< Tc,
where Tc is the superconducting transition
temperature, the QP density should be neg-
ligibly small (76). However, a number of ex-
periments studying single–Cooper pair devices,
microwave kinetic inductance detectors, and
superconducting qubit devices estimate a
QP density on the order of 1 QP per cubic
micrometer arising from unknown excitation
above the superconducting gap (77–84). Non-

equilibrium QPs in both resonators and qubits
absorb the stored microwave energy; for the
densities estimated above, models suggest that
the qubit T1 would be limited to a few hundred
microseconds (Q= 106 to 107), comparable to the
quality factors of current state-of-the-art devices
(81, 83, 85).
For superconducting resonators, the loss as-

sociated with QPs decreases with an increase
in applied microwave power, making it diffi-
cult to experimentally distinguish QP-related
loss from loss associated with TLS behavior
(80, 86). Although the cause of non-equilibrium
QPs is not known, potential mechanisms in-
clude stray infrared or optical photons, high-
energy phonons, or cosmic rays (80, 87–90).
Without the exact cause identified, one mate-
rial solution to reduce the effect from QPs is
to engineer the superconducting gap in the
junction structure (77, 91) or manufacture sur-
face traps (92) to reduce dissipation from QPs.
Despite extensive study of the dependence

of dissipation on device parameters and geom-
etry, the exact microscopic origins of dissi-
pation in superconducting qubits remain
unknown. State-of-the-art qubits exhibit T1
much shorter than the limits imposed by
bulk dielectric loss (93–95), which suggests
that surfaces and interfaces are likely major
limiting factors. Although surfaces and inter-
faces (Fig. 2D) comprise small volumes and
have low overlap with the electromagnetic
mode in a superconducting qubit, they can
become a dominant source of loss if they house
materials with high loss tangent. The energy
participation ratio of an interface can be used
to estimate a limit for T1 (60). For example, if
an interface contains a material with loss
tangent tan(d) ~ 10–2 to 10–3 (values that are
typical for oxides and polymers), an energy
participation of 100 parts per million at that
interface (a typical value for qubits with long
coherence times) (96) will limit the qubit T1
to a few hundred microseconds (Q = 106 to
107), which is comparable to experimental
observation in state-of-the-art qubits.
Much work in improving coherence over

the past decade has focused on systematically
varying the qubit geometry to change the
degree of overlap between the electromagnetic
mode and the interfaces or surfaces of the
device (60, 94, 97–101) and preparing surfaces
to reduce lossy oxides before growth or dep-
osition of the superconducting metal (97, 102).
Surface-related loss could arise from uncon-
trolled surface states, oxides, or contamination.
Several investigations of surface loss have used
superconducting resonators (without junctions)
to enable rapid exploration and awider range of
microwave power and temperature. Interface
cleaning such as O2 plasma etching or weak-ion
milling before metal deposition improves the
quality factors of Al superconducting resonators
on sapphire (97).
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More recently, superconducting qubits with
tantalum shunting capacitors deposited on
sapphire have shown T1 and T2,DD exceeding
0.3msand represent a factor of ~3 improvement
over the prior state of the art (95). Tantalum
forms thin, kinetically limited, chemically robust
oxides, in contrast to niobium. These recent
advances suggest that optimizing constituent
materials and systematically improving and
passivating surfaces will be a critical frontier
in the improvement of superconducting qubits.
In addition to dissipation, dephasing can

be caused by low-frequency material-related
magnetic and charge noise, particularly for
frequency-tunable qubits. Magnetic noise (or
flux noise) primarily couples to the qubit
through SQUID loops used in tunable qubits.
As a result, T2,echo times in tunable qubits are
typically ≤50 ms and are limited by a back-
ground flux noise of a few mF0=

ffiffiffiffiffiffi
Hz

p
at 1 Hz,

where the magnetic flux quantum F0 = h/(2e),
h is Planck’s constant, and e is the electron
charge (84, 103–107). This flux noise, which
exhibits a 1/f spectrum, is universal in SQUIDs
regardless of their inductance, geometry, or
choice of metal (108). Most models and ex-
periments point to randomly oriented electron
spins (Fig. 2E) as the source of flux noise,
clustered locally within and around the SQUID
loop (108–113). Because flux noise is nearly
independent of the type of metals used and
is of greater magnitude than the noise pre-
dicted from the abundance of nuclear spins
in the metal and Si substrate, it is unlikely to
be caused by nuclear spins (114). The esti-
mated spin density for the observed flux noise
is roughly 5 × 1017/m2 (114, 115). Recent studies
showed that the flux noise can be reduced by
preventing adsorption of gas species on the
metal surfaces and formation of the native
oxide (105, 116). The materials science un-
derlying flux noise is a long-unresolved ques-
tion that has been studied for decades in
SQUID detectors and now merits systematic
investigation in the context of advanced su-
perconducting qubit technology.
Low-frequency 1/f charge and offset drift

noise observed with superconducting qubits
also shows a power spectral density on the
order of (10–3e)2/f (117–119). The microscopic
origin of this noise has not been identified
(117–119). Instead, the issue has so far been
addressed through qubit design by adding a
large shunting capacitor (38) or an inductor
(40) to suppress the sensitivity to charge noise.
As a result, the investigation of charge noise in
superconducting qubits has not made much
progress in recent decades.

Materials limitations to scaling

Superconducting qubits are typically fabricated
with large lateral dimensions (≥100 mm) to
reduce the surface participation ratio and
thereby achieve long coherence times (93).

This general trade-off between size and co-
herence poses a problem for scaling systems
to large numbers of qubits. Future-generation
processors with thousands or more qubits will
require solving the surface noise issue to enable
scaling up to high-density quantum processors.
One of themajor roadblocks to scaling qubits

will be qubit-to-qubit variation. Specifically, the
temporal or spatial (on-chip) variation in qubit
frequencies can reduce the yield of the device
or complicate the calibration of quantumgates.
The junction critical current that governs the
inductance of the qubit is exponentially sensi-
tive to the thickness of the tunnel barrier (76),
which is typically an amorphous AlOx layer
(Fig. 2B). As a result, angstrom-scale variation of
the barrier thickness (120) can yield a few per-
cent variation in the critical current (120–122),
which in turn causes a few percent variation in
the qubit frequency. In addition, the junction
barrier can “age” either by diffusion of oxygen or
change of chemical composition after thermal
cycling or after storage in ambient conditions
for many days (123–125). Variation in the ob-
served coherence times T1 and T2 can also affect
the gate fidelity. The coherence times can drift
or change suddenly over hours and days, even
while the device is held at cryogenic temper-
atures (89, 95, 126, 127). The origin of this
instability is unknown, but recent work sug-
gests either interaction with a TLS (126, 127)
or incident cosmic rays as potential contrib-
utors (89).
Scaling to a large number of qubits can in-

troduce new challenges evenwith high-quality
individual qubits and two-qubit gates. For ex-
ample, routing control and readout signals to
and from each qubit can introduce additional
errors and cross-talk. Microwave fields extend
away from the qubit plane by ~100 mm, and
the additional dielectrics and defects impli-
cated in typical three-dimensional (3D) wiring
structures can form amajor dissipation source.
The various electromagnetic modes supported
by a complex qubit array and/or wiring struc-
ture can form additional loss channels (128).
One approach to mitigate these problems re-
lies on 3D wiring structures separated from
the qubit layer by interposers; such interpos-
ers must be composed of low-loss crystalline
materials, thereby presenting new fabrication
challenges (129, 130).

New material platforms

New material development for superconduct-
ing qubits has focused on improving interface
quality or findingmore reproducible and stable
junction barriers. In the past decade, epitaxially
grown materials have been explored in order
to improve the junction interface (131–134) or
to improve the quality of the interface be-
tween the substrate and superconducting
film (102, 135–138). Such efforts have not yet
shown improvement of the device coherence

beyond the state of the art established almost
10 years ago, presumably because the domi-
nant lossmechanism in those previous efforts
was not related to the interface under study.
However, given that advances in design, pack-
aging, and characterization techniques have
yielded improvements in and greater under-
standing of the qubit environment, it is an
opportune time to revisit material platforms
for superconducting qubits. Recent results
showing improved coherence with tantalum-
based planar transmons (95) suggest that a
systematic exploration of other materials may
also yield improvements in qubit coherence
time. As another example, the demonstration
of the “gatemon” with a semiconducting tun-
nel barrier is an excellent example of new
material platforms leading to a new capability
of voltage-based frequency tuning (44, 139).
Separately, improving substrates for low di-
electric loss or low flux noise is another pos-
sible area of study. So far, sapphire and silicon
substrates have been essentially the only sub-
strates deployed in superconducting qubits
with long coherence times (56). There has
not yet been a systematic study of the impact
of different synthetic methods and different
surfaces and interface preparations on dielectric
loss at low powers and low temperatures, or a
wide-ranging exploration of alternative sub-
strate materials. It will be beneficial to collab-
orate with researchers from bulk crystal and
thin-film growth, as well as from other QIP
systems such as semiconducting qubits or color
centers,whohave uncovered analogous sources
of noise in potential substrate materials.

Quantum dots

Gate-defined quantum dots in semiconductors
(Fig. 3A) store qubits primarily in spin states
of quantum confined electrons or holes. The
needed confinement is created by potential
landscapes that are shaped by voltages applied
to electrodes. Position-dependent electric di-
poles, or charge states, could be used to form
qubit states (140, 141), but strong coupling to
charge noise creates rapid decoherence, and
we do not consider this type of qubit here. In
1998, Loss and DiVincenzo first proposed a
universal set of single- and two-qubit gates
based on the individual electron spins in
tunnel-coupled semiconductor quantum dots
(142). Here, the single qubit is controlled by
resonant microwave pulses, whereas the two-
qubit quantum gate relies on the Heisenberg
exchange interactions enabled by interdot
coupling. Because of this seminal proposal, a
variety of more sophisticated qubit schemes
have been proposed that exploit mixing among
spin, charge, and orbital degrees of freedom
of quantum confined electron states in semi-
conductor quantum dots and include two
electron spin states in a double quantum dot
(singlet-triplet) (143), as well as three electron

de Leon et al., Science 372, eabb2823 (2021) 16 April 2021 5 of 19

RESEARCH | REVIEW
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversity of W
isconsin M

adison on A
ugust 31, 2022



spin states in both triple quantum dots (144)
and double quantum dots (145). Currently,
the implementation of the single spin and
singlet-triplet schemes in silicon-based quan-
tum dots has led to state-of-the-art single-
and two-qubit gate times on the order of 100
and 200 ns (146) with F exceeding 99.6% and
98%, respectively (147, 148).
Typical semiconductor qubit chips use a

high-mobility 2D charge carrier gas formed
either by chemical doping or electrostatic
accumulation. A stack of electrodes with
nanometer-scale dimensions is used to con-
trol on-site and interdot coupling energies. A
single-electron transistor proximal to a qubit
array acting as a highly sensitive electrome-
ter (Fig. 3A) is used to perform qubit readout
primarily by spin-to-charge conversion methods
such as Pauli spin blockade (143) or energy-
selective tunneling (149). As summarized re-
cently (150, 151), fabrication relies on physical
mesa formation with reactive ion etching,
ohmic contact formation by ion implanta-
tion and rapid thermal annealing, metalliza-
tion and dielectric isolation primarily using
e-beam evaporation and low-temperature oxi-
dation, and metallization and gate region pat-
terning with ~10-nm dimensions by means of
e-beam lithography.

Overlapping gate stack structures with in-
terface dielectric layers have become widely
used in fabricating processors with larger
numbers of qubits (150–154). These structures
are especially important for silicon quantum
dots, in which the relatively large effective
mass requires a substantial reduction in li-
thography feature size (pitch < 100 nm, width
< 50 nm) relative to larger-scale quantum dot
designs in III-V semiconductors (143, 155).
Although we focus on gate-defined quantum
dots, other technologies based on semicon-
ductors, such as shallow donor quantum dot
devices (26, 156), generally follow similar
fabrication procedures. Hybrid quantum sys-
tems with superconducting cavities integrated
with semiconductor quantum dots (157, 158)
also show promising results for realizing long-
range qubit interactions (159–161), but we focus
on materials issues in spin qubit arrays using
nearest-neighbor interactions.

Material choices

Initial demonstrations of quantum control of
spins in semiconductor quantum dots were
implemented inGaAs/AlGaAs heterostructures
(143, 155). Among various noise sources that
limit the coherence time of spin qubits, the
dephasing in GaAs was mainly limited by

magnetic-field fluctuations arising fromnuclear
spins in isotopes such as 69Ga, 71Ga, and 75As
(162, 163). Indeed, advanced dynamical decou-
pling and fast Hamiltonian estimation tech-
niques improved qubit performance, with
T2,DD > 300 ms (164),T2* > 2 ms (165), and single-
qubitF ≥ 99%. However, all stable isotopes of
Ga and As have nonzero nuclear spin, so it is
impossible to eliminate the source of fluctu-
ating hyperfine fields in this material. This
limitation has motivated the recent intense
effort to implement quantum dots in Si, which
has amuch lower natural abundance of spin-½
isotopes (29Si, 4.7%) that can be further sup-
pressed by semiconductor isotope engineer-
ing (166).
The current state of the art is implemented

in Si/SiGe heterostructures, Si metal-oxide semi-
conductor (Si-MOS) structures, and comple-
mentary MOS (CMOS) structures. In addition,
early work exploiting spin-orbit interaction
to enable fast electric control of spin states
(167, 168) has led to the active exploration of
hole spin-orbit qubits in Ge and Si-CMOS
quantum dot devices (169, 170).

Sources of noise and dissipation

Various decoherence sources exist in semi-
conductor quantum dot devices, including
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Fig. 3. Semiconductor quantum dot spin qubit. (A) Schematic illustration of a
gate-defined quantum dot spin qubit device. Semiconductor quantum dot spin
qubits use electrostatically confined single-electron or single-hole spin states and
exchange coupling between spins for single- and two-qubit operations. Control
pulses are superposed with DC voltages to implement quantum gates. The main
layers of the gate structure include screening (orange), onsite energy control
(blue), and interdot tunnel coupling control (brown) gates electrically isolated from

each other by thin dielectric layers (gray). (B) Nuclear spin fluctuations in the
substrate can be a dominant noise source for spin qubits, particularly in materials
with no nuclear spin–zero isotopes. (C) Charge traps and two-level fluctuations can
reside at the dielectric interface. (D) Electrical noise from the environment
(materials, cryogenic system, control electronics, etc.) affects dot energy detuning
and tunnel coupling. (E) Imperfect interface quality between the substrate and
upper layer leads to inhomogeneity in the potential and the valley splitting.
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pure dephasing by fluctuating nuclear spins
through the hyperfine interaction, paramagnetic
impurities in the bulk material or interfaces,
and charge fluctuation–induced decoherence
mediated by the spin-orbit interaction.
Figure 3B schematically shows nuclear spins

around a confined-electron spin qubit as a
primary noise source. This noise source can
be suppressed by isotopic purification of the
host material, which is possible for any element
with stable zero–nuclear spin isotopes (166). To
fully make use of the limited amount of sep-
arated spin-free isotopes, such isotopes are used
to grow thin single crystalline layers on top of
natural substrates by means of chemical vapor
deposition (CVD) and/or molecular beam epi-
taxy (MBE) (166). Single-electron spin qubits
using enriched 28Si CVD epilayers formed on
natural silicon substrates have demonstrated
more than an order of magnitude improve-
ment in coherence relative to natural silicon,
leading to T2* ~ 120 ms for gate-defined MOS
quantum dots (147), T2* ~ 20 ms for gate-
defined Si/SiGe quantum dots (27), and T2,DD ~
500 ms for electrons bound to phosphorus
donors (26). Dynamical decoupling measure-
ments reveal a noise spectrum consistent with
1/f noise in these studies (27), indicating that
decoherence in these systems is limited by
noise sources other than background nuclear
spins. Indeed, with isotopic enrichment, Si/
SiGe triple quantum dot devices have shown
coherence times limited by surface or interface
paramagnetic impurities, presumably intro-
duced inadvertently during the device fabri-
cation process (171). Isotopically pure 28Si
(>99.92%) epilayers grown on 300-mm wafers
are currently moving toward industry-level
production (172). It is also possible to isotopi-
cally purify Ge by removing 7.8% abundant
73Ge that has a spin of 9/2 (173).
The density of carrier scattering sites in the

bulk directly affects the ability to form a stable
quantum dot at an intended location. It is
common to use ultrahigh-purity bulk semi-
conductor substrates with a low-temperature
electronic mobility exceeding a few square
meters per volt-second (174). Even for high-
mobility samples, T1 can be limited by charge
fluctuations in a strongly coupled electronic
reservoir (see EF in energy landscape of Fig.
3A) (175). Slow charge background drift or
TLS behavior in the vicinity of a quantum dot
can also hinder sensitive charge stability mea-
surements (176) and limit coherence times.
Through charge noise spectroscopy, root-
mean-square (rms) charge noise on the order
of a few microelectron volts is typically ob-
served (177).
Charged defects—for example, in an insulat-

ing layer on the silicon—can lead to localiza-
tion of electrons in unintentional parasitic
quantum dots at low temperature and low
electron density (178). In addition, trapped

charges can be introduced to the gate oxide
and other dielectric layers (Fig. 3C) during
various high-energy processing steps, includ-
ing ion implantation and plasma-based pro-
cesses. Likewise, strain fields stemming from
elastic distortions at metal/semiconductor
interfaces can induce quantum dots at un-
intentional locations or even deplete car-
riers in nearby regions, motivating the use of
polysilicon gates in some studies to reduce
the strain field (179).
Modern gate-defined semiconductor quan-

tum dots use Heisenberg exchange or capac-
itively mediated nearest-neighbor interactions
(146, 148, 180) to achieve single- and two-qubit
gates, and uncontrolled charge fluctuation
(Fig. 3, C and D) sets the ultimate limit on
the single- and two-qubit F as these inter-
actions lead to electric coupling. Although
little is known about microscopic sources
and relative contributions stemming from
bulk, interface/surface, or cryogenic equipment
(181), recent work in Si/SiGe quantum dot
devices (182) identified the role of nonuniform
distribution of TLS near the surfaces in con-
tributing to low-frequency charge noise, under-
scoring the importance of controlling defect
densities in the gate stack.

Materials limitations to scaling

Although operating parameters such as qubit
energy and qubit-to-environment tunnel cou-
pling energies are tunable by many orders
of magnitude in gate-defined quantum dots
(183), scaling up will still require a high level
of device uniformity and fabrication yield. Cur-
rent efforts toward realizing scalable quantum
dot arrays include electron confinement in
foundry-fabricated quantum dot devices (184)
and electron mobility characterization of wafer-
scale 28Si (172).
One major source of disorder in silicon

quantum dots is in the interface between the
silicon and the capping layer (Fig. 3E). This
interface is engineered through strain, con-
finement, and electric fields to lift the valley
degeneracy, which is crucial for achieving long
coherence times (185) and ensuring spin-to-
charge conversion efficiency (186). Atomic-scale
steps and defects at this interface can lead to
disorder in this valley splitting (187). Si-MOS
quantum dots can have larger valley splitting
than Si/SiGe because of hard confinement from
the silicon oxide layer (188). However, the oxide
interface can also be a source of larger disorder
than the epitaxial interface of Si/SiGe quan-
tumwells. Strong inversion asymmetry at the
semiconductor/dielectric interface can also lead
to spin-orbit interaction, allowing for new con-
trol schemes (189, 190). Such schemes would
require a high degree of spatial uniformity,
particularly in the interface quality.
Arrays of ~10 quantum dots have been dem-

onstrated in both silicon and GaAs as a pre-

liminary step toward larger-scale integration
(191, 192). Fields associated with qubit excita-
tions in quantum dots are localized within
~100 nm, which sets a natural length scale for
integration. As such, standard CMOS-type 3D
wiring, with wiring layers a few micrometers
away from qubits, may be more compatible
with quantum dot devices than superconduct-
ing qubits.

New material platforms

Harnessing the hole spin degree of freedom in
Si and Ge is emerging as an attractive route
in semiconductor gate-defined quantum dots
(169, 193). Relative to electron spins, holes in
the valence band have two distinct advantages.
First, the vanishing p-type atomic orbital at the
nuclei leads to reduced contact hyperfine in-
teraction for a given density of nuclear spins,
thus allowing for long spin coherence times;
second, their intrinsically large spin-orbit cou-
pling allows for fast, purely electrical spin con-
trol. Prior work on spin-orbit controlled qubits
has used electrons in InAs (167) and InSb (168)
for fast electric control of spin states. However,
the large spin-orbit coupling can couple to
charge fluctuations and lead to short co-
herence time. Hole spins in Ge quantum dots
are attracting renewed attention in this con-
text owing to favorable balance between spin-
orbit strength and coherence time (169). In
terms of device fabrication, the small effective
mass created by strain and quantum confine-
ment leads to larger level spacings relative to
silicon and allows for larger quantumdot sizes
and easier fabrication. In addition, almost any
metal can be used to make ohmic contact to
confined holes in Gewithout the need for local
doping or implantation with associated high
thermal budget. Hole-spin qubits in CMOS
silicon (170), Ge nanowires (194), and Ge/SiGe
heterostructures (195) have been experimen-
tally demonstratedwith single-qubit gate times
of ≤10 ns, allowing for a ratio of coherence time
to gate time exceeding a few hundred (196).
Similar to color-center qubits, allotropes of

carbon can be a good host material for quan-
tum dot spin qubits. Early demonstrations in
carbon nanotubes have shown initial quan-
tum dot confinement and spin control (197).
Bandgap-engineered few-layer graphene is also
emerging as a promising platform for hosting
highly coherent and controllable quantum dot
spin qubits (198), with the possibility of isotopic
purification of nuclear spin–free 12C. Recent
experimental work (199) has demonstrated
single-electron confinement in a double–
quantum dot device fabricated on mechani-
cally exfoliated bilayer graphene. However,
reliable single- and two-qubit gate operations
have not yet been demonstrated, as this re-
quires control of the valley degree of freedom
(just as in silicon) and methods for efficient
spin-to-charge conversion for readout.
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These challenges call for substantial de-
velopments in materials science, such as the
growth of large-area, high–electronic mobil-
ity, few-layer graphene with strain-induced
bandgap and valley splitting. Furthermore, as
we make progress in gaining control over dis-
order in 2D atomically thin materials to en-
able electrically gated quantum dots (200),
we can envision opportunities that might
exploit both the spin and valley degrees of
freedom for storing and transmitting quantum
information, as recently demonstrated in bilayer
graphene devices (201).

Color centers

Color centers are optically addressable qubits
(Fig. 4A) that are encoded in electron orbital
and spin eigenstates associated with single- or
few-atom impurities in solid-state host crystals,
most commonlydiamond.Thenitrogen vacancy
(NV) center in diamond is the most widely
studied system because of its long coherence
time of several milliseconds at room tem-
perature (202, 203). The qubit state can be
controlled with microwave pulses, yielding
single-qubit gate times on the order of 50 ns
(204) and two-qubit gate times on the order
of 1 ms (205). At low temperature, the state can
be controlled optically with gate times on the
same order (206). However, the NV center’s

poor optical properties—low efficiency of emis-
sion in the zero-phonon line, susceptibility to
local electric fields, and incompatibility with
telecommunication fiber optics—have mo-
tivated the development of other systems,
particularly for the application of long-distance
quantum networks. In diamond, recent work
has focused on the negative (207) and neutral
(208) silicon vacancy (SiV) centers as well as
similar group IV vacancy centers (209). Color
centers in silicon carbide include the NV cen-
ter (210, 211), SiV center (212), vanadium cen-
ter (213), and divacancy (214, 215). Defects in
othermaterial systems such as the T center in
Si (216) and rare-earth ions in solid state crystals
(217–219) are also being explored. Although the
qubits themselves do not require microfabrica-
tion, their assembly into functional devices and
arrays requires patterning by ion implantation
or high-yield growth, as well as fabricating
structures in or on top of the host material to
allow for local control and addressing. The
implantation process introduces lattice dam-
age and unwanted defects that give rise to
electric and magnetic field noise, resulting in
short spin coherence times and spectral diffu-
sion of the optical transition (220, 221). Both
the rate and collection efficiency of photon
emission can be improved by the fabrication
of photonic structures (222–226). However,

etching diamond (227, 228) is highly suscep-
tible to process contamination (229), making
high-yield, scalable fabrication difficult.

Material choices

Color centers in wide-bandgap semiconduc-
tors such as diamond and silicon carbide can
exhibit long coherence times at room temper-
ature because these host materials feature
high Debye temperatures and low spin-orbit
coupling, which lead to low electron-phonon
coupling and long spin lifetimes (203). Fur-
thermore, recent advances in ultrahigh-purity
diamond synthesis by plasma-enhanced chem-
ical vapor deposition (PECVD) allow for
commercially available bulk substrates with
heteroatom impurity concentrations below the
parts per billion (ppb) level (230), ensuring an
environment with very low magnetic noise
(Fig. 4B).
For example, diamond has been synthesized

with PECVD using isotopically enriched pre-
cursors to achieve up to 99.999% 12C abundance.
In such host materials, NV center qubits with
millisecond coherence times have been demon-
strated (231–233). Similarly, recent work in
CVD synthesis of SiC has allowed improve-
ment in coherence time of the divacancy
qubit in SiC by as much as a factor of 40, with
T2* ~ 375 ms (234).
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Fig. 4. Nitrogen vacancy (NV) center in diamond. (A) Schematic illustration
of an NV center in a diamond qubit device. The NV center can be optically
initialized, addressed, and read out. Etching nanostructures in the diamond
allows for more efficient photon collection. Metal layers form coplanar wave-
guides for delivering microwave control pulses and electrodes for DC Stark
tuning. (B) Atomic structure of an NV center and its local environment. Individual
nuclear spins can be used as additional qubits. However, heteroatoms,
paramagnetic defects, charged defects, and extended defects can contribute to

spin decoherence. (C) Cartoon depiction of uncontrolled surface states that act as
spin and charge traps, resulting in a rapid decrease in NV coherence with proximity
to the surface. Optical excitation can ionize the NV center and the environment,
causing charge instability of the NV center and the population of traps far from
equilibrium. (D) Atomic force microscopy image of a diamond surface showing
micropits (average surface roughness = 0.35 nm), a surface morphology syndrome
that leads to a large density of electron traps. (E) Birefringent image of a diamond
crystal showing strain associated with extended defects at larger length scales.
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Sources of noise and dissipation
Many QIP schemes based on color centers
require the qubits to be placed near the sur-
face of the host crystal or in a nanofabricated
structure. The spin coherence time of shallow
NV centers in diamond within 30 nm of the
surface degrades drastically (229, 235). This
degradation in coherence is accompanied by
worsening charge state stability (236, 237)
and broader optical linewidths (221, 238),
indicating that the surface hosts excess elec-
tric and magnetic noise relative to the bulk.
Diamond surfaces are particularly difficult
to control because diamond is inert and hard,
which makes etching and polishing challeng-
ing. The surface can host electronic defects
that arise from uncontrolled surface chem-
istry and adsorbed contaminants (239), which
lead to both magnetic noise and spectral dif-
fusion. Recent work has established that
rough surface morphology, dangling bonds,
and disorder in surface termination can re-
sult in electronic traps that are apparent in
x-ray spectroscopy (229). By correlating such
measurements with qubit measurements, it
was established that these traps give rise to a
broadbandmagnetic noise spectrum (Fig. 4C).
Local traps at the surface can also induce elec-
tron tunneling and cause rapid ionization of
the NV center even in the absence of optical
illumination (236, 237).
Several surface terminations have been ex-

plored to mitigate these problems, including
oxygen (229), nitrogen (240), and fluorine (241).
In particular, high-quality oxygen termina-
tion after polishing and etching to remove
subsurface damage extended the coherence
time of shallow NV centers over the state of
the art by more than one order of magnitude
(229). Other ideal surface terminations have
also been theoretically proposed (242, 243),
but controlling the surface chemistry of dia-
mond without inducing surface roughness
(Fig. 4D) or subsurface damage remains an
ongoing challenge.

Materials limitations to scaling

Although some of the highest-fidelity single-
qubit and two-qubit gates have been demon-
strated in NV centers (99.9952% and 99.2%,
respectively) (205), efforts to scale in this plat-
form are relatively immature. Because of their
efficient optical interface, color centers are
particularly well suited tomodular QIP schemes
consisting of small quantum registers based on
local nuclear spins, with nodes connected by
photonic links (244–246). Color centers can
exhibit substantial inhomogeneity and spec-
tral diffusion across a substrate because of
strain arising from extended defects (Fig. 4E)
and local electric fields from charged defects
that couple to the permanent electric dipole
of the qubit. In NV centers, strain can lead to
static shifts in the spin resonance transition

frequency (247), which decreases the ensemble
T2*. Strain also gives rise to static shifts of the
optical transition that lead to an inhomogeneous
linewidth in CVD diamond of >100 GHz (248),
and local strain can also affect the energy split-
tings and selection rules in the excited-state
fine structure. Efforts to synthesize low-strain
diamond substrates are aimed at reducing this
distribution. Separately, the inhomogeneously
broadened linewidth caused by dynamic spec-
tral diffusion can be as large as 1 GHz for
charges that are fluctuating at ppb levels (221).
This sensitivity to fluctuating electric fields
is especially problematic in microfabricated
structures (238). Such effects are less pro-
nounced for color centers lacking a perma-
nent electric dipole, such as group IV vacancy
centers in diamond (207–209).
As another example, QIP schemes with ar-

rays of atomic defects are typically based on
dipolar or hyperfine interactions between de-
fects (249, 250), which requires exquisite control
over both the strength and sign of the interac-
tion. Large arrays will require control over the
positioning of such defects at the nanometer or
even subnanometer scale. For color centers, this
is very challenging; incorporation during the
growth process bymeans of delta doping allows
for localization in depth but not lateral posi-
tioning (233, 251), and ion implantation en-
tails a large final distribution (straggle) in the
positioning. Furthermore, for color centers that
incorporatemore than one atomor a particular
geometric configuration, their probabilistic for-
mation is also a limitation to scaling. Straggle
in ion implantation is small enough that pre-
cise positioning with respect to photonic de-
vices has been demonstrated with focused
ion-beam implantation (252), but this approach
does not provide a route to precise control over
interactions among color centers. One demon-
strated method for creating atomically precise
arrays of phosphorus donors in silicon involves
atom-by-atommanipulation in a scanning tun-
neling microscope to remove individual bonds
that can be functionalized with phosphorus
and subsequently overgrownwithmore silicon
(253). Recent work with this approach showed
precise atomic site control and exchange
interaction–based two-qubit operationsbetween
electrons bound to phosphoros donors in
silicon (254). Suchmethods have not yet been
deployed in other material systems. An alter-
native is to create color centers in small mol-
ecules, which would allow for precise control
over the position of qubits through synthetic
chemical methods. Recent work has demon-
strated optically detected magnetic resonance
(ODMR) and T2 of 640 ns for chromium in
an organometallic complex (255). Integrating
such qubits into nuclear spin–free environ-
ments andmultiqubit assemblies with organic
synthesis could create precisely tuned, large
arrays of color centers.

New material platforms
Many possible defect-host combinations have
not yet been explored. Themain requirements
for a host material are (i) stable spin-zero
nuclear isotopes to provide a low–magnetic
noise environment, (ii) high-purity synthesis
to ensure low paramagnetic impurity concen-
trations, and (iii) a sufficient bandgap to host
electronic transitions suitable for optical detec-
tion. Several color centers have been explored
over the past two decades, but their discovery
has been for the most part serendipitous.
Purely ab initio prediction of defect proper-

ties is difficult because of the mismatch in
length scale between atomic defects and the
extended lattice structure (256). Furthermore,
themeasured properties of color centers can be
complicated by interactions with unintentional
defects in the host material, such as through
magnetic interaction, charge transfer, or Fermi
level pinning. Ongoing experimental efforts in
the community to look for new color centers
in diamond and silicon carbide primarily use
ODMR and single-atom fluorescence imaging
techniques (257–259). This approach is cum-
bersome because it requires that fluorescence
from a single defect is bright and stable
enough to be observed by conventionalmeans,
and probing spin via fluorescence requires
a particular level structure that may not be
present or understood. An alternative approach
is to perform a systematic search for defect-host
combinations by deterministically introducing
heteroatoms into high-purity hosts composed of
atoms with stable nuclear spin–free isotopes
through ion implantation (208, 260), and then
performing high-throughput characterization
of hosts and defects. This requires a fully in-
tegratedmaterials pipeline includingmaterials
growth, implantation and annealing, spin and
optical characterization, and theoretical mod-
eling to provide feedback on spectroscopicmea-
surements. One particularly intriguing area of
exploration is to find new, nuclear spin–free
host materials for rare earths (218, 219) and
transition metals (213, 261), which have been
recently demonstrated as good optical qubits
with many of the same advantages as color
centers (213, 219, 262) but currently suffer
fast dephasing from nuclear spins in their
environments.

Trapped ions

In ion qubits (Fig. 5A), information is encoded
in electronic states within individual atomic
ions, trapped within ultrahigh vacuum in sys-
tems operating either at room temperature or
at temperatures as low as 4 K. Unlike the other
qubit platforms discussed here, ions are iso-
lated in vacuum and are not embedded in noisy
solid-state environments [quantum processors
based on individual neutral atoms (263, 264)
share this property]. As a result, materials con-
siderations generally do not affect coherence of
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single-ion qubits. Materials problems, however,
can contribute to error in logical operations
betweenmultiple ions and can have an impact
on scaling considerations.
State-of-the-art trapped-ion quantum com-

puting systems currently operate with ~20 in-
dividually controllable and fully connected
qubits (30, 265–267) and on the order of 50 to
100 ions in more specialized quantum sim-
ulation experiments (268). Depending on the
choice of ion species and qubit transition,
trapped-ion qubits can exhibit T2* ≥ 50 s
(269) and T2,DD ≥ 1 hour (270). T1 in such
qubits can be unlimited for any practical
purpose, although ions can escape traps, for
example, through collisions with background
gas particles. Although this loss occurs on
time scales of many hours or days in typical
experiments, in large ensembles of ions this
process motivates the need for loss detection
and reloading (271).
Because of their long coherence times and

relative isolation from noisy environments,
trapped ions have demonstrated the highest
fidelities for basic quantum operations in any
platform. These include single- and two-ion
quantum logic gates realized in small-scale
systems with 99.9999% (269) and 99.9%
(272, 273) fidelity, respectively, and single-

ion state preparation and readout with >99.9%
fidelity (269, 274–276). Currently achievable
two-qubit gate times are in the range of 0.5
to 100 ms (272, 277, 278), with single-qubit
gates in the range of 10 ns to 5 ms (269, 279).
State preparation and readout are implemented
with lasers, and logic gates are driven by laser
beams precisely aligned to ions (280) or by
microwaves (279).
Materials issues can affect logical operations

on ions depending on the physical implemen-
tation of the device constituting the ion trap,
as well as the control hardware providing elec-
trical and optical signals required for compu-
tations. Electric field noise and drift can affect
the ionmotion, thereby affecting the degree of
freedomused to implement logic gates between
two or more qubits. To a small degree, ion
motion can also affect high-fidelity single-
qubit logic gates implemented with lasers,
although this is negligible for microwave-
driven single-qubit gates. These problems
originating from materials become partic-
ularly important for ion trap architectures
that require closer distances between the ions
and surfaces, which are a potential route to
larger systems. We summarize these issues
below and also refer interested readers to a
more specialized review (281).

Atomswith two electrons in the valence shell,
whose singly ionized state thus has a single
valence electron, are commonly used for QIP;
these include isotopes of Be, Mg, Ca, Sr, Ba, and
Yb, among others [see (282) for a discussion of
possible qubit encodings within these ions].
Devices for ion qubits are built around the trap
structures that confine them at designed loca-
tions. In the commonly used radio-frequency
(RF) Paul traps, RF and direct-current (DC)
voltages applied to trap electrodes typically
confine ions within a few tens to hundreds of
micrometers from electrode surfaces (283).
Conventional 3D electrode geometries for
Paul traps have been in use since the 1950s,
whereas 2D “surface-electrode” or “planar”
ion traps, developed during the past two dec-
ades, constitute a promising scalable trap
architecture (284). All electrodes in such traps
are fabricated in a metal layer on the surface
of a chip, with ions trapped above (Fig. 5A),
giving a practical path to complex arrays
enabling trapping at multiple regions or trap
“zones.” Standard photolithography allows
the straightforward fabrication of the ~10 to
100 mm–scale electrodes and few-micrometer
gaps typical for such devices, thus directly lever-
aging a mature CMOS (285) and microelectro-
mechanical system (MEMS) (286) fabrication
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Fig. 5. Ion trap qubit. (A) Schematic illustration of elements of a surface-
electrode Paul trap chip for ion qubits. Ions are confined by Coulomb forces from
RF and DC electric fields resulting from potentials applied to the top electrode
layer. Electrodes and potentials are designed to confine ions typically ~30 to
100 mm in vacuum above the surface. Individual ion qubits’ coherence is generally
not affected by materials considerations. Labeled panels indicate materials issues
relating to sources of noise and drift affecting multiqubit operations, as well as
components and challenges for scaling. (B) Stray DC fields from dielectrics, such

as from photoinduced charging by the various laser fields that control ions, can
perturb trap potentials. (C) RF dissipation in dielectrics can contribute to chip
heating and exacerbate E-field noise. (D) Surface-related E-field noise can heat
the ion motion often involved in multi-ion interactions; hence, they can introduce
errors in multiqubit gates. (E) Photonics and electronics integrated within ion
trap devices (e.g., for delivering light to a large ion array) are likely to play an
important role in scaling, but they present various device- and materials-related
challenges. [Graphics concept adapted with permission from (353)]
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infrastructure to enable practical operation
of multiple parallel trapping zones in arrays
(287).However, the resulting trappingpotentials
are shallower and less symmetric than in 3D
traps, prompting the development of traps with
complex electrode arrangements in 3D (288).

Material choices

A variety of metals can be used for trap elec-
trodes, where low resistance is important in
minimizing dissipation fromoscillatingRF cur-
rents that flow upon application of RF trap
voltages. Although many designs use simple
evaporated or sputteredmetal films, thickmetal
layers (>5 mm) achieved through electroplating
are used in some traps; such layers are helpful
in minimizing drift caused by any dielectric
exposed in gaps between electrodes (stray DC
fields; Fig. 5B) (289) and in realizing low im-
pedance at the high frequencies essential for
microwave-based gates (290).
Both the dielectric layers and the substrate

supporting the electrodes can be an important
source of dissipation. RF loss in these mate-
rials heats the trap chip (284), resulting in
potentially higher electric-field noise (Fig. 5C)
and making practical operation of large de-
vices challenging. Substrates are chosen for
high thermal conductivity to manage dissipa-
tion; common choices include silicon, sapphire,
crystal quartz, diamond, alumina, and fused
silica, depending on device operating temper-
ature and fabrication requirements. Low-E
dielectricsmay help inminimizing RF resistive
losses, which scale quadratically with capaci-
tance. This issuemay be particularly important
for planar traps that incorporate RF ground
planes (285, 287), in which the bulk of the field
is confined to deposited dielectrics as opposed
to the substrate.

Sources of noise and dissipation

In ion traps, electrode surfaces generate both
electric-field noise and slow drifts (Fig. 5D);
neither affects the coherence of individual
qubits, but the impact on ion motion can be
substantial. Noise components resonant with
the typical ~1- to 50-MHz oscillation frequen-
cies of ions in traps can heat ionmotion (291).
Multiqubit gates are often mediated by shared
modes ofmotion and as a result are susceptible
to errors arising from this noise. Inmany traps,
this noise does not constitute a dominant gate-
error source, but it impedes reducing trap di-
mensions below a few tens of micrometers and
contributes to error in some realizations of
multi-ion gates (276, 292).
Measurement of incoherent excitation of ion

motion can provide a highly sensitive probe of
electric-field noise (below 0:1 mV m�1=

ffiffiffiffiffiffi
Hz

p
at

~1-MHz frequencies at the ion location); these
measurements indicate that this noise is or-
ders of magnitude higher than expected from
Johnson noise (293). Although the origins of

this noise remain unclear, studies by various
groups provide key observations. The noise
strongly increases inmagnitude near surfaces
of trap electrodes (291). It can often be sup-
pressed by cooling traps to 4 K (294), which
suggests that some processes generating noise
are thermally activated processes. The mag-
nitude appears to be rather insensitive to the
choice of metal used for trap electrodes (295);
more surprisingly, it appears to be insensitive
to whether traps are operated with super-
conducting electrodes (296), which suggests
that the noise arises from the surface rather
than the bulk. This is also consistent with
reductions in heating rates observed after var-
ious electrode surface treatments. For example,
heating rate reductions by a factor of 100 at
room temperature have been reported after
in situ argon-ion milling of both gold (297)
and aluminum-copper trap electrodes (298).
Ex situmilling as well as plasma cleaning have
also been shown to allow reductions (299, 300);
marked alterations to frequency and temper-
ature scaling have been reported after milling
(301). Modest reductions have also been ob-
served after pulsed-laser cleaning (302).
Informed by these observations, a number

of models have been put forth as to the origin
of the noise (291). Adsorbed atoms (adatoms)
that contaminate electrode surfaces may fluc-
tuate and diffuse. Inhomogeneous electric fields
on trap surfaces, known as patch potentials,
may also play a role; a specific class consists
of localized TLS. RF loss in dielectrics may also
contribute, either by heating the trapmaterials
or perhaps through the fluctuations funda-
mentally associated with this dissipation (303).
However, the various trends observed in ex-
periments, which include frequency scaling,
temperature dependence, and trap-electrode
distance (301, 304–306), do not conclusively
support a single model, and multiple mech-
anisms likely contribute (291).
In addition to ion heating from electric-field

noise at megahertz frequencies, slow drifts in
electric fields (up to 100 Hz) can shift ion
positions on nanometer scales and cause drifts
in oscillation frequencies; these quantities can
bemeasured to reconstruct and analyze changes
in the local charge environment (307). Suchdrifts
have been observed in response to visible and
ultraviolet light scattering off trap surfaces (308)
and have been attributed to photoelectrons
deposited on dielectrics (309). The need for
precise control of ion oscillation frequencies
for implementing multi-ion gates motivates the
design of trapswithminimal exposed dielectric.

Materials limitations to scaling

Trapped ions are compatible with the use of
standard multilayer wiring in trap devices as
implemented in CMOS processes, because the
top metal forming the trap shields the ion
from electric fields originating from thewiring

and interconnect layers below (Fig. 5E). It
therefore appears that with sufficient atten-
tion to shielding in design, complex wiring
can be implemented by known means with-
out sacrificing coherence. However, delivery
of the relevant optical and electronic fields to
multiple zones in arrays with low cross-talk
and high precision entails substantial chal-
lenges for the controlling hardware. Current
functional systems use 1D arrays of up to tens
of optical beams, focused through bulk optics
to micrometer-scale spots inside vacuum cham-
bers to address individual ions within an en-
emble (265, 310). Such techniques have enabled
some of the largest-scale experiments to date,
but the susceptibility of such systems to drifts
and vibrations (and resulting noise), along with
scaling to thousands of beams or more in a 2D
geometry, presentmajor challenges. Photonic
devices integrated and co-fabricatedwith planar
ion traps have recently emerged as a promising
route to address this problem (276, 311, 312).
Integrated photonicsmay also facilitate scaling
interfaces between ions and photons (313, 314)
to enable distributed computing; similar ideas
have been implemented in color centers, as
described above.
Materials enabling optical routing in wave-

guides, as well as activemodulation and switch-
ing, present a particular challenge at the blue
and ultraviolet wavelengths corresponding to
electronic transitions in many ion species, as
themajority of photonics research to date has
focused on near-infrared wavelengths relevant
to fiber optics and silicon photonics. Recent
developments include realization of single-
mode waveguides operating with propagation
losses of ~8 dB/cm at wavelengths down to
390 nm in single-crystal AlN (315) or <3 dB/cm
at wavelengths as low as 370 nm in amorphous
Al2O3 (316). It will be important to assess the
limits of active and passive nanophotonic ma-
terial candidates (SiN, Al2O3, AlN, LiNbO3,
b-BaB2O4, and GaN, among others) at these
wavelengths, along with their susceptibility to
damage by short-wavelength radiation (317)
and possible material treatments and passiva-
tion to protect against such damage.

Exploratory platform: Topological qubits

Finally, we address topological quantum com-
puting (TQC), a long-range vision that relies
on a foundational advance made by Kitaev
(318), who showed how fault-tolerant quantum
computation could be carried out using non-
Abelian anyons, QPs that are neither fermions
nor bosons and that obey non-Abelian statis-
tics. Quantumcomputation algorithms are car-
ried out by “braiding” these QPs so that they
are topologically protected from decoherence
by local perturbations such as electron-phonon
and hyperfine interactions. Theory has rigor-
ously identified several condensed matter sys-
tems in which non-Abelian anyons could be
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realized, including certain fractional quantum
Hall (FQH) states in high-mobility GaAs/
(Ga,Al)As heterostructures (319), as well as
Majorana zero modes (MZMs) in topological
superconductors and superfluids (320, 321)
and in quantum spin liquids (322).
Theoretical predictions have prompted a

surge of experimental activity in pursuit of
material platforms for TQC.However, in strong
contrast with the other QIP platforms we
have discussed, the field still awaits the un-
ambiguous experimental realization of a phys-
ical qubit. Possible experimental evidence for
non-Abelian anyons was first reported in the
n = 5/2 FQH state (323), but this has re-
mained controversial (324). Two additional
recent experiments have mademajor advances
toward realizing non-Abelian anyons in the
FQH regime, reporting fractional statistics
(325) and anyonic braiding in the n = 1/3 FQH
state (326).
The pursuit of non-Abelian MZMs in topo-

logical superconductors has involved measure-
ments of a rich variety of materials, including
vortices at topological insulator/superconductor
heterointerfaces such as Bi2Se3/NbSe2 (327, 328),
magnetic topological insulator/superconductor
devices such as Cr-doped (Bi,Sb)2Te3/Nb (329),
hybrid narrow-bandgap semiconductor/super-
conductor (S/SC) nanowires [InAs(InSb)/Al

(Nb)(NbTiN)] (330–333), Fe-chalcogenide super-
conductors (334), magnetic atom chains on
superconducting surfaces (335), and hybrid
Au/superconductor nanowires (336). Despite
many sophisticated experimental efforts and
tantalizing observations, definitive evidence
for even the existence of MZMs (let alone
their non-Abelian character) is still debated
(337, 338).

Material choices

The search forMZMs cuts across a broad swath
of materials, a complete discussion of which is
well beyond our present scope. As an illustra-
tive example of the materials challenges in-
volved in developing a TQCplatform,webriefly
summarize key issues in a system that has
received the most attention to date, hybrid S/
SCnanowires.Here, a pair of localizedMZMs is
predicted at the ends of a narrow-bandgap
semiconductor nanowire caused by the combi-
nation of Zeeman splitting, spin-orbit coupling,
and a proximity-induced hard superconduct-
ing gap (330). An in-depth discussion of the
state of the art in this platform can be found in
recent reviews (332, 333).
The most common semiconductor compo-

nents of this platform are InAs and InSb
nanowires (Fig. 6A) (339). These are com-
monly grown by metal-organic vapor-phase

epitaxy (MOVPE) (340) or MBE (341), respec-
tively, using the Au-catalyzed vapor-liquid-solid
(VLS) method, wherein a patterned array or a
random arrangement of Au nanoparticles seeds
vertical nanowire growth. Crystalline disorder
within the InAs or InSb nanowire itself (caused
by stacking faults or impurities) and disorder
within the S/SC interface can lead to trivial
subgap states that will decohere any existing
topological MZMs. The synthesis of InAs or
InSb nanowires of exceptional structural per-
fection is thus important, although simple
metrics such as defect density or electron
mobility for minimally acceptable structural
and electronic quality have not yet been iden-
tified. The current state of the art in VLS syn-
thesis yields reasonably high-quality nanowires
with transconductancemobilities ~ 4 × 104 cm2

V–1 s–1 inMOVPE-grown InSb nanowires (340).
A metallic superconductor is then deposited
either on an individual nanowire device (331)
or globally on a nanowire array (340).
Superconductors that have been used so far

include Al, Nb, NbTiN, and Sn. The transpar-
ency of the S/SC interface is crucial because a
hard SC gap is required in the proximitized
region. A promising approach to improved S/
SC interfaces is the synthesis of well-ordered
epitaxial crystalline Al shells on InAs nano-
wires (entirely grown through in situ MBE)
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Fig. 6. Potential platforms for a topological qubit. (A) Schematic illustration
of a proposed scalable topological quantum platform. Localized MZMs are
realized at the ends of topological superconductor channels comprising narrow-
bandgap semiconductor nanowires (e.g., InAs) proximitized by an epitaxially
overgrown superconductor “shell” (e.g., Al). The elementary building block
shown here is a one-sided “hexon” (339). The states of the MZMs are measured
by selectively coupling to electrostatically defined quantum dots. (B to
E) Progress has been made toward the synthesis of deterministic assemblies

of hybrid semiconductor/superconductor nanowires (342–344). The key
materials challenges in implementing such schemes include precise location of
the MZMs (B), well-controlled coupling between the MZM and the readout
quantum dot (C), well-characterized and quiet electrostatic gates (D), and
transparent epitaxial semiconductor/superconductor interfaces that result in a
hard proximity gap (E). The structural and electronic quality of the nanowires
themselves is also a challenge because disorder leads to subgap states that can
mimic signatures of MZMs.
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(341) and on InSb nanowires (grown through
two-step MOVPE/MBE with shadow masks)
(342). Tunnelingmeasurements show that both
approachesmarkedly reduce the density of sub-
gap states. Recently, selective-area epitaxial
growth of in-plane semiconductor nanowires
with solid sourceMBE (343), gas-source MBE
(344), and MOVPE (345) has been reported.
Although the quality of nanowires produced
by selective-area epitaxy is still limited by de-
fects such as misfit dislocations and stacking
faults originating at the interface between
the strained epitaxial layer and substrate
(343, 344), these defects can be controlled
in some cases, such as in plane MOVPE-grown
InSb nanowires on InP (343). The key advan-
tage of this approach is that by prepatterning
the selective area mask, an entire network of
interconnected nanowires can be grown. As a
proof-of-concept example, complex networks
of InAs and InSb nanowires (e.g., combs,
honeycombs, loops) have been grown on InP
(111)B substrates using prepatterned SiOx

masks, and phase-coherent quantum transport
(Aharanov-Bohm oscillations) has been mea-
sured in these systems (343, 345).

Outstanding challenges

The central challenge in any TQC platform is
to prove the existence of the qubit itself, the
MZM in the case of hybrid S/SC nanowires.
There are two aspects to this challenge: the
observation of a state at zero energy with the
requisite features of a MZM, and proving that
this state obeys non-Abelian statistics through
braiding operations. The former is probably
achievable in the near-term future, whereas
the latter remains a daunting challenge. In the
hybrid S/SC nanowire case, initial attempts
to observe MZMs relied on demonstrating a
zero-bias conductance peak when tunneling
into a putative MZM state located at the end of
a proximitized narrow-bandgap semiconductor
nanowire in the presence of a magnetic field
parallel to the nanowire axis (330). The MZM
state is formed only when the magnetic field
exceeds a critical value such that the Zeeman
energy EZ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ m2

p
, where D and m are the

proximitized SC gap and chemical potential,
respectively. This is predicted to produce a zero-
bias conductance peak with a quantized value
of exactly 2e2/h. Experiments carried out on
hybrid S/SC nanowires have indeed shown
signatures of zero-bias conductance peaks
(331), and, in some cases, a nearly quantized
conductance has been reported (332). How-
ever, the identification of such features with
MZMs remains controversial (333, 346). In
particular, structural disorder in the nano-
wire leads to trivial zero-energy subgap states
(Andreev bound states) that are difficult to
distinguish from genuine MZMs. Such zero-
energy trivial subgap states can even occur
without considering disorder, as a result of the

inherent band structure and the inhomogeneous
electrostatic potential in S/SC nanowires (337).

Materials limitations to scaling

Once the key problem of realizing a MZM is
definitively resolved, detailed schemes have
been proposed for scalable TQC platforms
wherein S/SC nanowires are assembled for
manipulating (braiding) and reading out
MZMs. This stage of TQC will be faced with
many of the interconnected materials science
and physics issues that currently challenge
other qubit platforms. An illustrative example
of the challenges involved in building a scal-
able platform is shown in Fig. 6A (339). This
scheme relies on the Coulomb blockade of an
entire “hexon” of topological superconductor
nanowires to create a single topological qubit.
Thehexonencodingprotects theenclosedMZMs
from “QP poisoning” caused by exchange of
electrons with the environment. The key ma-
terials challenges encompass deterministic
hybrid S/SC nanowire assembly, precise lo-
calization ofMZMs (Fig. 6B), readout ofMZMs
bycoupledquantumdots (Fig. 6C),well-controlled
electrostatic gates (Fig. 6D), and transparent
epitaxial S/SC interfaces that result in a hard
gap (Fig. 6E).

Outlook: Materials research challenges and
opportunities for QIP

All the quantum computing platforms discussed
above have shown tremendous advances in
recent years, and this rate of progress will be
sustained if new contributors, in particular
materials scientists, join the effort. For exam-
ple, generic materials issues that constrain
quantum device performance include heter-
ogeneity of bulk materials, buried interfaces,
and poorly characterized surfaces. This situ-
ation is reminiscent of the kinds of problems
that have been solved for CMOS and other
areas of the semiconductor industry, and there
are undoubtedly opportunities for translating
their solutions to the specific manifestations of
these problems in QIP. We now conclude with
an outlook on the opportunities for collabora-
tive efforts between quantum scientists and
materials scientists.
We identify three principal materials re-

search frontiers of interest in this context. First,
as we detailed earlier, understanding the mi-
croscopic mechanisms for noise, loss, and
decoherence is crucial and would be accel-
erated by developing high-throughput methods
for correlating qubit measurement with direct
materials spectroscopy and characterization.
Such a program will require teams of re-
searchers working in concert with a large suite
of characterization techniques. Second, rel-
atively few material platforms for solid-state
QIP have been explored thus far, and the dis-
covery of a new platform is often serendipi-
tous. It is thus important to developmaterials

discovery pipelines that exploit directed, ra-
tional material searches in concert with high-
throughput characterization approaches aimed
at rapid screening for properties relevant to
QIP. Third, there are several materials issues
that do not affect single-qubit operations but
appear as limitations in trying to scale to larger
systems.

High-throughput methods for
characterizing qubits

Correlating qubit performance with materials
and processing characteristics and eventually
transitioning to unambiguously identifying
the sources of decoherence is an exciting
challenge. For QIP platforms, this process is
complicated by device operation requiring
millikelvin temperatures or ultrahigh-vacuum
conditions. In addition, a complete picture of
the qubit and its environment also requires
precision at the micro–electron volt level and
at subnanometer length scales. A variety of
techniques with a range of modalities are thus
needed, including those sensitive to atomic-
level details in buried engineered lattices,
chemically specific local spectroscopy probes
of amorphous contaminants, and local char-
acterization of poorly defined surface inter-
actions. These are truly challenging regimes
for theoretical approaches and experimental
measurements alike, presenting a grand near-
term challenge of inventing new materials
analysis and quantum measurement tech-
niques to study QIP systems.
Materials spectroscopymethods can be used

to identify sources of decoherence in order
to provide feedback onmaterials processing
without iterating through the entire device
fabrication and qubit characterization process.
One recent example of success is the improve-
ment of color-center qubits. Correlating qubit
properties and photoelectron spectroscopy al-
lowed for the identification of surface defects
that lead to noise, which was used to devise
new surface processing that yields shallow NV
centers with spin coherence extended by more
than an order of magnitude (229). The estab-
lishment of proxy diamond surface properties—
surfacemorphology and bond angle orientation—
will also enable rapid screening for future
surface terminations and processing proce-
dures to further improve NV centers.
Rapid device measurements are also critical

for speeding up this feedback loop. Traditional
approaches include building probe stations for
higher-throughputmeasurements (121, 122, 347)
and cluster tools with in situ processing
(297, 298, 300, 302). Fast-turnaround cryogenic
apparatuses are crucial for this effort. However,
one drawback to building cluster tools with
in situ probes is that it has not yet been es-
tablished which measurement techniques will
yield the most relevant information for qubit
performance. For example, how would one set
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up a high-throughput feedback cycle between
a materials science group and a quantum
measurement group for improving synthesis
or processing protocols when a key parameter
can only be accessed at 10 mK? Instead, one
might imagine broad exploration of material
parameters through a multimodal materials
analysis approach that uses both rapid char-
acterization methods to establish proxies and
slower,more detailed characterizationmethods
to identify microscopic origins of material
properties. Once a particular set ofmethods and
syndromes is established, cluster tools with in-
tegrated processing and analysis can contribute
to more directed progress. Alternatively, devel-
oping device proxies to complement material
proxies can greatly speed up this feedback loop.
For example, direct measurements of dielectric
loss-limited resonators can be made more
rapidly than full superconducting qubit mea-
surements (60, 348).
A common theme we have identified is that

all the QIP platforms discussed are plagued by
electric and magnetic field noise arising from
surfaces and interfaces. Establishing rapid
materials analysis and device measurement
feedback loops will allow for the systematic
exploration of new fabrication schemes, growth
and deposition methods, cleaning procedures,
and surface processing to identify and address
the sources of this noise. For example, adventi-
tious carbon- and silicon-containing polymers
are ubiquitous contaminants without careful
surface preparation in vacuum (229), and it is
unknown what impact these contaminants
have on qubit properties and associated hard-
ware. Furthermore, the exploration of alternative
material systemsmay elucidate the role of oxides
and interface layers in noise and dissipation,
which will lead to new design principles for
future material platforms.

Developing new materials for QIP platforms

Surprisingly, despite several decades of intense
effort largely in the physics community to
develop platforms for QIP, vanishingly few
material platforms have been deployed in
quantum processors. For superconducting
qubits, only a handful of superconductors
have been fabricated into qubits, leaving open
awide frontier of systematically exploring new
bulk and thin-filmmaterials, new heterostruc-
tures, and different crystalline phases of those
materials. Another intriguing area of explora-
tion involves replacing the Josephson junction
with epitaxial heterostructures or single layers
of 2D van der Waals materials (349). Rapid
exploration of manymaterial systems over the
next few years appears to be highly feasible,
although it would require a reorientation of the
field from the current approach of focusing on
device design to mitigate noise and loss.
Similarly, for color centers, very few defect-

host combinations have been characterized thus

far. The recent successes of new defects in dia-
mond (207, 208) and silicon carbide (214–216)
show that there is room for a rational, systematic
search for new systems. However, such a search
would rely on the availability of ultrahigh-purity
host materials, which will in turn require syn-
thesis and characterization methods that can
measure impurity and defect concentrations
with high sensitivity and high dynamic range.
This presents a new regime for solid-state
chemists and material scientists, in which
many materials are purified and processed to
be as pristine as silicon, a material system
that benefited from an enormous commercial
impetus to perfect large-scale, single-crystal
synthesis. In the short term, a substantial
materials growth effort to explore the limits
of material purity in a few promising systems
would allow for the development of intermediate-
scale quantum platforms. In the long term,
suchmaterials synthesis techniqueswouldneed
to be scalable in order to support industrial
deployment, and there are some major prac-
tical roadblocks that will need to be ad-
dressed, such as the availability of isotopically
purified material.
For ion qubits, recent observations indicate

possible material dependence of electric-field
noise levels after surface treatment (301); sys-
tematic evaluation of surface treatments ap-
plied to traps of differentmaterial composition
may help to shed light on underlying mecha-
nisms and may eventually identify lower-noise
platforms. Evaluating E-field noise at very low
levels across large numbers of samples is a
challenge that is feasible to tackle with existing
methods but would require sustained, collab-
orative effort.
Finally, there are enticing opportunities for

materials scientists seeking to join the hunt for
a topological qubit, both by perfecting existing
materials and by identifying new candidates.
For example, with the use of diffusion-induced
superconductors, a hard superconducting gap
was recently achieved in high–hole mobility
Ge-Si nanowires (350). For pursuing completely
new materials in the search for MZMs, some
broad rules combined with theoretical predic-
tions provide guidance, including looking for
materials with strong spin-orbit coupling, in-
verted bands, and superconductivity. Some of
these properties may be found in surprising
places, as exemplified by the discovery of co-
existing superconductivity and topological
Dirac bands in Fe(Se,Te) (334).

Scaling to large systems

Across several of the platforms we have dis-
cussed here, the current state-of-the-art devices
and architectures are designed to avoid noise
and dissipation. However, such choices now
limit scaling up to larger systems. For exam-
ple, transmon superconducting qubits are de-
signed to avoid sensitivity to charge noise at

the cost of reducing anharmonicity, and qubits
are operated at fixed frequency to avoid flux
noise, which makes two-qubit gates much
slower. Furthermore, reducing surface partic-
ipation in superconducting qubits enables
longer coherence times at the cost of a large
device footprint that gives rise to cross-talk
among qubits.
Similarly, quantum dots are operated at the

point of the charge stability diagram where
the qubit energy is first-order insensitive to
charge fluctuation (351), requiring exhaustive
calibration of a large number of tuning pa-
rameters. In addition, the vanishing electric
dipole moment in this regime often limits
capacitance-mediated or exchange-based two-
qubit gate speeds (352).
Ion traps are typically operated with ions at

a minimum of ~30 mm from surfaces. Further
reducing this distance would allow for higher-
density arrays, but poorly understood surface-
related electric field noise remains an obstacle
to operating at smaller scales. If the under-
lying sources of noise could be addressed and
mitigated, this would open up new possibili-
ties for device designs and system architectures.
For topological qubits, once the qubit is un-

ambiguously established, scalable architectures
such as the hexon approach shown in Fig. 6A
will require exceptional consistency in the
fabrication of assembled nanostructures with
well-controlled semiconductor/superconductor
heterointerfaces.
Beyond these issues at the level of materials

and devices, there will be major challenges
at the systems integration and architecture
levels to address. Using co-design concepts to
tackle these challenges at all layers of the stack
will be particularly important going forward.
A key component of the co-design approach is
the ability to define abstractions of material
properties and their impacts on device per-
formance, so that systems architects and al-
gorithms developers can use them to design
new quantum processors.

Concluding remarks

We hope to have communicated the emerging
opportunities for materials scientists to par-
ticipate in the grand challenge of developing
QIP platforms. Apart from the technical issues
that we have detailed, a meaningful transition
from quantum information science to quan-
tum information technologies will also require
substantial investments to support broad com-
munity participation in tackling quantum
questions, ranging frommaterials performance
to quantum algorithms. Quantum computing
began as a fundamentally interdisciplinary ef-
fort linking computer science, information sci-
ence, and quantum physics; the time is now
ripe for expanding the field by including new
collaborations and partnerships with materials
science.
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Combatting noise on the platform
The potential of quantum computers to solve problems that are intractable for classical computers has driven advances
in hardware fabrication. In practice, the main challenge in realizing quantum computers is that general, many-particle
quantum states are highly sensitive to noise, which inevitably causes errors in quantum algorithms. Some noise
sources are inherent to the current materials platforms. de Leon et al. review some of the materials challenges for five
platforms for quantum computers and propose directions for their solution.
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