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ABSTRACT 15 

In this study, we investigate the response of tropical cyclones (TCs) to climate change by 16 

using the Princeton environment-dependent probabilistic tropical cyclone (PepC) model and a 17 

statistical-deterministic method to downscale TCs using environmental conditions obtained 18 

from the Geophysical Fluid Dynamics Laboratory (GFDL) High-resolution Forecast-oriented 19 

Low Ocean Resolution (HiFLOR) model, under the Representative Concentration Pathway 20 

4.5 (RCP4.5) emissions scenario for the North Atlantic basin. The downscaled TCs for the 21 

historical climate (1986-2005) are compared with those in the mid- (2016-35) and late-22 

twenty-first century (2081-2100). The downscaled TCs are also compared with TCs explicitly 23 

simulated in HiFLOR. We show that while significantly more storms are detected in HiFLOR 24 

towards the end of the twenty-first century, the statistical-deterministic model projects a 25 

moderate increase in TC frequency, and PepC projects almost no increase in TC frequency. 26 

The changes in storm frequency in all three datasets are not significant in the mid-twenty-first 27 

century. All three project that storms will become more intense and the fraction of major 28 

hurricanes and Category 5 storms will significantly increase in the future climates. However, 29 

HiFLOR projects the largest increase in intensity while PepC projects the least. The results 30 

indicate that HiFLOR’s TC projection is more sensitive to climate change effects and 31 

statistical models are less sensitive. Nevertheless, in all three datasets, storm intensification 32 

and frequency increase lead to relatively small changes in TC threat as measured by the 33 

return level of landfall intensity. 34 

 35 

SIGNIFICANCE STATEMENT 36 

The study provides the first comparison among TC climatology projections based on 37 

statistical, statistical-deterministic, and dynamic models driven by the same environmental 38 
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conditions. Under the projected climate for the RCP4.5 emissions scenario for North Atlantic, 39 

all three models project TC intensity to significantly increase, with the dynamic model 40 

HiFLOR projecting the largest increase in intensity. While HiFLOR projects a significant 41 

increase in TC frequency towards the end of the twenty-first century, the statistical-42 

deterministic model projects a moderate increase in TC frequency, and the statistical model 43 

projects almost no increase in TC frequency. In all three datasets, storm intensification and 44 

frequency increase lead to relatively small changes in TC threat as measured by the return 45 

level of landfall intensity. 46 

 47 

1. Introduction  48 

Tropical cyclones (TCs) are among the most destructive natural hazards on the earth, and 49 

they have caused great economical and societal losses. Studies have shown that TCs may 50 

induce more damage under the impact of anthropogenic global warming (e.g., Mendelsohn et 51 

al., 2012). Though many studies have investigated how TCs will change in a changing 52 

climate, great uncertainties exist. The vast majority of published studies have suggested a 53 

decline in the global frequency of TCs with warming (e.g., Intergovernmental Panel on 54 

Climate Change (IPCC) 2013; Knutson et al. 2010; Walsh et al. 2016; Knutson et al. 2020), 55 

but a few others suggest an increase in TC frequency (Emanuel 2013; Bhatia et al. 2018; 56 

Fedorov et al. 2018, Vecchi et al. 2019). In a recent assessment (Knutson et al. 2020) most of 57 

the assessment’s authors conclude that there is a low-to-medium confidence in a future global 58 

reduction of TC frequency, although there is considerable divergence of opinion among the 59 

author team of the assessment. Also, Knutson et al. (2020) find that there is less agreement 60 

among modeling studies on the projected sign of change in Atlantic basin frequency 61 

compared to the case for the global projections, although a clear majority of studies project a 62 
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decrease for the Atlantic basin. Contrary to the divergent projections in TC frequency, a 63 

consensus has emerged about increased TC intensity as well as increased TC-induced rainfall 64 

rates (Knutson et al. 2020; Knutson et al. 2013; Scoccimarro et al. 2014; Villarini and 65 

Vecchi, 2012; Liu et al. 2019; Stansfield et al. 2020). Other storm-related hazards are also 66 

shown to become exacerbated under climate change. For example, Marsooli et al. (2019) 67 

suggest that hurricane flood hazards along the US Atlantic and Gulf coasts are likely to 68 

significantly increase, due to storm changes as well as sea level rise. However, while there is 69 

high confidence that sea level rise will add to storm inundation levels, the extent to which TC 70 

intensity, rainfall, and storm-induced surge will increase remains quite uncertain (e.g., 71 

Knutson et al. 2020, Emanuel 2017, Marsooli et al. 2019; Garner et al. 2017). Improved 72 

assessment of climate change effects on TC and TC-related hazards continues to be of great 73 

importance for both scientific understanding and climate adaptation practice.  74 

Three main modeling approaches are used to investigate the response of TC climatology 75 

to climate change: general circulation models (GCMs), dynamic downscaling, and synthetic 76 

downscaling. The previous generation of global climate models is widely used for global 77 

projections; however, these models cannot directly simulate intense TCs due to their 78 

relatively low resolution (Davis 2018). The dynamic downscaling techniques that are usually 79 

paired with these low-resolution GCMs are alternative approaches to better resolve TCs. 80 

Pioneered by Knutson et al. (1998) and Knutson and Tuleya (2004), dynamic downscaling 81 

resolves the TC structure with an embedded higher-resolution regional model, which inherits 82 

the environmental conditions from GCMs (Knutson et al. 2013; 2015). Although effective in 83 

resolving individual storms, dynamic downscaling methods are still computationally 84 

expensive and thus not ideal for TC risk assessment studies, where large numbers of storms 85 
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(~104) are often needed to evaluate the risk posed to a specific region (e.g., Lin and Emanuel 86 

2016).  87 

Recently a few GCMs have been able to explicitly simulate intense TCs. This eliminates 88 

the need for a separate dynamical downscaling step for the GCMs in climate change 89 

experiments (Wehner et al .2014). These GCMs have grid spacings of 28 km or finer and can 90 

explicitly represent Category 4 and 5 TCs [e.g., Centro Euro-Mediterraneo sui Cambiamenti 91 

Climatici Climate Model (CMCC-CM2-VHR) developed by Scoccimarro et al. (2017), 92 

Community Earth System Model (CESM) developed by Small et al. (2014)]. In particular, 93 

the Geophysical Fluid Dynamics Laboratory (GFDL) High-resolution Forecast-oriented Low 94 

Ocean Resolution (HiFLOR), which is a high-resolution atmospheric/land model 95 

(0.25°×0.25°) coupled with a low-resolution oceanic/sea ice model (1°×1°, Murakami et al. 96 

2015), can reproduce many features of TC climatology, including spatial distribution and 97 

intensity distribution, with good fidelity compared to observations (Murakami et al. 2015; 98 

Zhang et al. 2016). Previous studies using HiFLOR projections identify an increase in the TC 99 

intensification rate and a higher chance of TC rapid intensification (RI) by the end of the 100 

twenty-first century (Bhatia et al. 2018), as well as an increase in global TC frequency and in 101 

the frequency of the most intense (Cat 3-4-5 and Cat. 4-5) TCs in response to increasing 102 

greenhouse gases (Bhatia et al. 2018; Vecchi et al. 2019).  Not all models with grid spacing 103 

of 28 km or finer are able to simulate very intense (Category 4 or 5) TCs (e.g., Yamada et al. 104 

2017, Manganello et al. 2014, Knutson et al. 2008), as this capability appears to depend on 105 

both model resolution and details of model physics.  106 

Synthetic downscaling methods, which are now commonly used for climate-TC risk 107 

studies, generate large numbers of synthetic TCs at the basin scale based on comprehensive 108 

climate conditions from reanalysis data or low-resolution GCM simulations. The pioneer of 109 
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this family of methods is the statistical-deterministic method developed by Emanuel et al. 110 

(2008). This method applies a random seeding technique to initiate the storm, a beta and 111 

advection model based on synthetic local winds to propagate the storm, and a deterministic 112 

intensity model (CHIPS, Coupled Hurricane Intensity Prediction System; Emanuel et al., 113 

2004) to estimate the storm intensity based on the storm environment along the track. This 114 

method has been applied to study TC properties under various climate conditions. In 115 

particular, Emanuel et al. (2013) apply the method to downscale six CMIP5 climate 116 

projections and project an increase in TC frequency during the twenty-first century. The 117 

method has also been widely applied to assess TC wind (Yeo et al., 2014), rainfall (Emanuel, 118 

2017), and storm surge (Marsooli et al., 2019) hazards as well as TC economic losses 119 

(Mendelsohn et al., 2012), under current and future projected climate conditions.  120 

Similar to Emanuel et al. (2008), the model developed by Lee et al. (2018) can also 121 

generate synthetic TCs for given climate conditions, but it is purely statistical. This model has 122 

a genesis component based on Poisson regression (Tippett et al. 2011). Its track component is 123 

based on a revised beta and advection model with the beta drift term dependent on the storm 124 

location, and its intensity component is based on multiple linear regression on key 125 

environmental parameters plus an autoregressive stochastic error term (Lee et al., 2015, 126 

2016). Diverging TC frequency trends are projected using this method to downscale five 127 

CMIP5 climate projections, where the storm frequency will increase or decrease depending 128 

on the selection of the moisture variable (relative humidity or saturation deficit) in its genesis 129 

component (Lee et al. 2020).  130 

Recently, a new probabilistic TC model, the Princeton environment-dependent 131 

probabilistic tropical Cyclone model (PepC), has been developed by Jing and Lin (2020). 132 

Aimed to improve over Lee et al. (2018), PepC performs the Poisson regression on 133 
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environment-clustering grids (rather than regular grids) to better capture the spatial-temporal 134 

variation of the storm genesis. PepC applies an analog‐wind track model where storm tracks 135 

are determined based on similar historical track patterns in addition to local in situ wind, 136 

which allows the model to better capture intrinsic features such as recurving storm tracks at 137 

high latitudes. It models the evolution of a storm’s intensity as a Markov process to better 138 

capture the nonlinear/nonhomogeneous response of TC intensification to the environmental 139 

change along the storm track. As a result, although most statistical TC intensity models have 140 

only limited capacity to simulate extreme TCs, PepC can simulate a realistic fraction of RI 141 

storms due to its “lock-in” mechanism, which supports continuous rapid intensification once 142 

the storm enters the extreme state of intensification when the environment is favorable. The 143 

capacity to simulate extreme TCs is essential, especially for climate change studies where a 144 

number of modeling studies suggest that higher intensity TCs are more likely to increase in 145 

frequency than lower intensity TCs under global warming (Knutson et al. 2020). 146 

While widely used in climatology modeling and risk assessment, the synthetic 147 

downscaling methods described above have not been compared in terms of their TC 148 

projections under climate change scenarios. These synthetic downscaling methods are fully 149 

(Lee et al. 2018, Jing and Lin 2020) or partially (Emanuel et al. 2008) statistical. It is 150 

important to compare their TC climatology projections with those based on full dynamic 151 

modeling (Emanuel et al. 2010). Also, most existing TC projections were driven by varying 152 

environmental conditions (generated from different climate models and/or for difference 153 

emissions scenarios, Knutson et al. 2020); comparisons among TC projections that are driven 154 

by the same environmental condition are limited. By holding the environmental condition 155 

fixed across the methods, any differences in response are due to factors other than differences 156 

in the large-scale TC environment as simulated by climate models. In addition to their 157 
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practical importance, such comparisons may also contribute to our understanding of how TCs 158 

will respond to climate change.  159 

In this study, we apply both the PepC of Jing and Lin (2020) and the statistical-160 

deterministic model of Emanuel et al. (2008) to generate large samples of synthetic TCs 161 

under HiFLOR projected climates for the Atlantic Basin, where the PepC has been tested 162 

against observations (Jing and Lin 2020). The synthetic storms downscaled from the HiFLOR 163 

climate projections are compared with storms generated directly in HiFLOR. We use three 164 

HiFLOR experiments to represent the historical (“control,” 1986–2005) and future (“early,” 165 

2016–35 and “late,” 2081–2100) climates under the Representative Concentration Pathway 166 

4.5 (RCP4.5) scenario; these are the same experiments explored in van der Wiel et al. (2017) 167 

and Bhatia et al. (2018). In addition to examining the discrepancies in the modeling 168 

approaches and results, we investigate simulated TC characteristics under the historical and 169 

future climates to study the climate change effects. The climatology characteristics we focus 170 

on include storm basin-wide annual frequency, track density, and lifetime maximum 171 

intensity, as well as landfall frequency, intensity, and return periods. We further discuss the 172 

modeling results in comparison with previous TC projections.   173 

This paper is organized as follows. After this introduction, Section 2 describes the high-174 

resolution GCM applied, HiFLOR; the two downscaling techniques, Emanuel et. al (2008) 175 

and Jing and Lin (2020); and the downscaling experiments. Section 3 presents simulated 176 

results under current and future climates. Section 4 discusses TC frequency trend and 177 

possible attributions. Section 5 concludes the study. 178 

 179 

2. Data, Models, and Downscaling Approaches 180 
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In this section, we first describe the HiFLOR model and the three HiFLOR experiments 181 

used in this study. Next, we briefly describe the two downscaling approaches, Emanuel et al. 182 

(2008) and Jing and Lin (2020). The calibration methods associated with each downscaling 183 

approach are also explained. 184 

a. HiFLOR model and experiments 185 

In this study, we use three 70-year HiFLOR “time slice” climate experiments (i.e., 186 

repeating climatological forcing for each simulation year, as introduced in van der Wiel et al. 187 

2017) to represent the effects of climate change. The control experiment represents the 188 

historical climate during the period of 1986–2005, while two future climate experiments, the 189 

“early” and “late” experiments, project the climate during 2016–35 and 2081–2100, 190 

respectively. The experiments are set up with sea surface temperature (SST) relaxed to 191 

climatological SST values. The prescribed SST target in the control experiment is set as the 192 

monthly varying climatology from the Met Office Hadley Centre Sea Ice and SST dataset 193 

(HadISST1.1; Rayner et al. 2003) over 1986–2005, while the “early” and “late” experiments 194 

used the same climatological values of SSTs from the control experiment plus the projected 195 

changes in 2016-35 and 2081-2100, respectively, derived from a multi-model mean of 17 196 

CMIP5 models, based on the RCP 4.5 pathway (Van Vuuren et al. 2011). The experiments 197 

cannot capture the response of TC activity to SST changes in the interannual or decadal 198 

scales. However, it is hypothesized that those variations are smaller than the response of TC 199 

activity to climatological changes in SST – a hypothesis that is supported by fully coupled 200 

and nudged-SST experiments (Vecchi et al. 2019).  201 

TCs in HiFLOR are tracked based on warm-core temperature, sea level pressure, and 10-202 

m wind. This tracker, developed by Harris et al. (2016), is applied to 6-hourly instantaneous 203 

output from the model using the parameter values of Zhang et al. (2016), Murakami et al. 204 
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(2015), Bhatia et al. (2018), and Vecchi et al. (2019). Specifically, the tracker follows local 205 

sea level pressure minima, and TCs are identified using a wind speed threshold (17.5 m/s) 206 

and a warm core threshold of 2 K within 1° of the storm center. TCs are required to have a 207 

72-h total detection lifetime with at least 48 cumulative hours with a warm core and 36 208 

consecutive hours with peak winds exceeding 17.5 m/s, and location of TC genesis should be 209 

equatorward of 40°. HiFLOR TCs are shown to closely resemble the observational hurricane 210 

datasets, including the International Best Track Archive for Climate Stewardship (IBTrACS, 211 

Knapp et al. 2010) and the advanced Dvorak technique-Hurricane Satellite-B1 (ADT-212 

HURSAT, Kossin et al. 2013), for the North Atlantic Basin, which has the most reliable data 213 

quality given its superior observational network (Kossin et al., 2013; Bhatia et al., 2019). 214 

HiFLOR has been shown to produce skillful seasonal predictions of regional TC activity and 215 

Cat. 4-5 frequency (Murakami et al. 2016). Besides TC characteristics, HiFLOR also outputs 216 

major environmental parameters including daily temperature, moisture, pressure, wind, etc., 217 

which are used to drive the synthetic downscaling.  218 

b. The statistical-deterministic method of Emanuel et al. (2008) 219 

This subsection briefly describes the statistical-deterministic downscaling method, and we 220 

refer readers to Emanuel et al. (2008) for more details of the model. First, storms are 221 

initialized with random seeding in space and time, and each seed is randomly assigned an 222 

initial wind speed that is less than 25 kt. The random seeding rate is tapered down near the 223 

equator, in proportion to the low-level absolute vorticity, to prevent storm formation close to 224 

the equator. Next, storm movements are determined by a beta and advection model driven by 225 

large-scale background winds synthetically generated from a global model projection or 226 

reanalysis dataset and beta drift approximated as a function of latitude (in the updated version 227 

of the model used in this study). Then, the wind field of each storm is predicted using an 228 
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atmosphere-ocean coupled model, CHIPS, which has very high radial resolution of the 229 

critical inner-core region and can resolve high-intensity storms. This simplified deterministic 230 

intensity model is computationally efficient, making it possible to generate very large 231 

numbers of TCs at a low computational cost. It is noted that the random seeding technique in 232 

Emanuel et al. (2008) does not produce an absolute rate of genesis per unit time per unit area; 233 

therefore, the genesis rate is often calibrated by setting the annual global or basin-wide 234 

number of genesis events under the control climate to the observed genesis rate in the 235 

historical period. The calibration constant obtained from the control climate is then used as a 236 

multiplicative factor for the future climate experiments. This statistical-deterministic 237 

downscaling method is shown to generate synthetic storms that are in statistical agreement 238 

with observations (Emanuel et al. 2006). There are in total 1151, 1095 and 1049 storms 239 

generated from the statistical-deterministic under the control, “early” and “late” experiments 240 

for the North Atlantic basin in this study.    241 

 242 

c.  PepC of Jing and Lin (2020) 243 

The PepC model developed in Jing and Lin (2020) is also used to perform downscaling of 244 

HiFLOR under each climate condition. PepC consists of a clustering-based genesis model, an 245 

analog-wind track model, and a Markov-based intensity model. The genesis model seeds 246 

weak vortices in the basin based on Poisson regression on the environmental parameters 247 

including Potential Intensity (PI, derived following Emanuel (1995) and Bister and Emanuel 248 

(1998; 2002)), deep layer vertical wind shear (SHR), low-level relative vorticity (VO), and 249 

saturation deficit (derived following Emanuel et al. 2008), over clustering grids that are 250 

determined by the similarity of these local environmental conditions. Compared to Emanuel 251 
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et al. (2008), where the genesis seeding does not evolve with climate change1, the genesis 252 

distribution in Jing and Lin (2020) is highly dependent on climate variables. We use 253 

saturation deficit as the humidity predictor in this study on climate change impact given that 254 

theoretically saturation deficit better reflects the increase in the thermodynamic inhibition of 255 

TC formation in a warming climate (Emanuel et al. 2008), although Jing and Lin (2020) 256 

show that using relative humidity fits better statistically with the observations under the 257 

current climate. After initialization, the seeds are passed to an analog-wind track model, in 258 

which a storm’s movement is determined by both analog factors (from historical track 259 

patterns) and local in-situ winds. The wind predictors are similar to those in the beta and 260 

advection model in Emanuel et al. (2008) and are derived from large-scale global model or 261 

reanalysis wind fields.  262 

The storm’s intensity is determined by the Markov environment-dependent hurricane 263 

intensity model (MeHiM), which simulates TC intensity evolution over the ocean as a 264 

Markov process (Jing and Lin, 2019). MeHiM considers three unobserved (hidden) discrete 265 

states of intensification and associates each state with a probability distribution of intensity 266 

change. The three unobserved discrete states, the “static,” “moderate,” and “extreme” states, 267 

represent the storm’s slow, normal, and rapid intensity changes, respectively. The storm’s 268 

transit from one state to another is described as a Markov chain. Both the intensity change 269 

 

 

 

1 Aside from minor changes in seeding rate near the equator, owing to possible changes in 

the absolute vorticity of the low-level flow there.  



14 

File generated with AMS Word template 1.0 

and state transit components of the MeHiM are dependent on environmental variables, 270 

including PI, SHR, relative humidity (RH), and an ocean feedback parameter (incorporating 271 

vertical profiles of oceanic temperature and salinity; derived following Schade and Emanuel 272 

1999), in addition to the storm’s last step intensity change and current intensity. Jing and Lin 273 

(2019) show that it is important to include in MeHiM an ocean feedback parameter to 274 

represent the ocean’s cooling effect, which is often omitted in other statistical downscaling 275 

methods (Murakami et al. 2012; Korty et al. 2017). The ocean feedback parameter, included 276 

in the MeHiM used in this study, is also estimated from HiFLOR. A simple land model 277 

(similar to DeMaria and Kaplan, 1995; see more details in Jing and Lin 2019) is added to 278 

estimate intensity decay as a function of time when the storm moves over land.  279 

The original PepC model in Jing and Lin (2020) is developed based on observational 280 

reanalysis data, and the simulated results compare well with observations (Jing and Lin 281 

2020). When applied to downscale climate model projections, however, PepC may produce 282 

biased results due to possible biases in the climate model projections. To focus on the climate 283 

change effects based on the HiFLOR simulations in this study, therefore, we “calibrate” PepC 284 

by adjusting each of its model components to capture the HiFLOR climate-TC relationships 285 

in the control experiment. That is, we redevelop each of the genesis, track, and intensity 286 

components of PepC based on HiFLOR simulated storms and the environment in the control 287 

experiment. Then we apply the fitted model to generate synthetic storms for each of HiFLOR 288 

control and future climate experiments. There are in total 36232, 39997 and 41131 storms 289 

generated from PepC under the control, “early” and “late” experiments for the North Atlantic 290 

basin in this study.    291 

 292 
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3. Results 293 

In this section, we investigate the response of simulated TCs to climate change in each 294 

dataset moving from control to “early” and “late” experiments. The HiFLOR model-295 

generated TCs are detected by a strict detection algorithm, as mentioned above. To be 296 

consistent with HiFLOR, we filter the synthetic TCs generated by downscaling techniques in 297 

Emanuel et al. (2008) and PepC to include only storms that last at least 72 hours and have at 298 

least 36 consecutive hours of winds greater than 34 kt. To be clear, in the following sections, 299 

we use “HiFLOR” to specifically refer to the TCs that are explicitly simulated in HiFLOR 300 

experiments. We denote the TC dataset downscaled from HiFLOR experiments with the 301 

Emanuel et. al (2008) approach as “KE08” and the TC dataset downscaled with the Jing and 302 

Lin (2020) approach as “PepC”. The observational TC data in the period of 1986-2005, taken 303 

from the IBTrACS WMO archive (Knapp et al. 2010), are used as a reference. The data 304 

include 6-hourly latitude and longitude positions as well as 10-minute maximum sustained 305 

wind speeds at 10 m above the sea surface for each storm. The observational dataset is 306 

denoted as “IBTrACS”. We compare “KE08” and “PepC” to “HiFLOR” to discuss the TC 307 

differences between synthetic downscaling and original climate model projections under the 308 

same climate environments (HiFLOR control and climate projections under RCP4.5). In 309 

addition, we present “IBTrACS” as a reference to possibly detect the effects of biases in the 310 

HiFLOR climate estimation.  311 

a. Annual Frequency and Genesis Distribution 312 

We first examine the annual frequency of Atlantic storms from HiFLOR, KE08, and 313 

PepC. There are on average 9.1 storms/year in HiFLOR under the control experiment, which 314 

is comparable to 10.15 storms/year in IBTrACS. There are 11.8 and 7.25 storms per year in 315 

KE08 and PepC under the control experiment, respectively. The original genesis frequency in 316 
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PepC (9.3) is close to that in HiFLOR, as the genesis component in PepC is developed based 317 

on HiFLOR genesis under the control experiment. However, only 78% of the storms develop 318 

to meet the storm selection criteria described above. It is also noted that the storm frequency 319 

in KE08 is larger than the other datasets. The genesis in KE08 is generated through random 320 

seeding, which is calibrated with the observed global frequency. Here, to focus on the climate 321 

change effects, we further calibrate TC frequency in PepC and KE08 to be consistent with 322 

HiFLOR in the control experiment for the North Atlantic basin. Specifically, we apply a 323 

multiplicative factor of 0.77 to KE08 and of 1.3 to PepC, for both the control experiment and 324 

future climate projections. The resulting estimations of annual frequency of total storms and 325 

major hurricanes (discussed later) for the three models appear in Fig. 1.  326 

To determine whether the change of storm frequency from the control to climate change 327 

scenarios is statistically significant, we perform hypothesis testing of equal frequency for 328 

each dataset. The two-sample, unpaired t-test (Wilks 2011) is computed for HiFLOR and 329 

KE08, and a p-value of 0.05 is set as the threshold for statistical significance. To adjust for 330 

multiple comparisons (we have 100 realizations of PepC downscaling, and each realization is 331 

compared with HiFLOR for the hypothesis test), the Benjamini and Yekutieli (2001, 2005) 332 

procedure of controlling the false discovery rate (FDR) of a family of hypothesis tests is 333 

performed for PepC, with the same statistical significance threshold of p-value of 0.05. When 334 

the p-value is less than the threshold of 0.05, we reject the null hypothesis and consider the 335 

change in TC frequency statistically significant. Statistically significant change in TC 336 

frequency indicates that the change is very likely not induced by randomness. As shown in 337 

Table 1, HiFLOR has a significant increase of storm frequency in the “late” experiment 338 

compared to the control experiment (+22.4%), while the increase in the “early” experiment 339 

(+8.2%) is not statistically significant. Similarly but to a lesser extent, KE08 has a significant 340 



17 

File generated with AMS Word template 1.0 

increase in the storm frequency in the “late” experiment compared to the control experiment 341 

(+8.5%); however, KE08 has a nonsignificant decrease in the “early” experiment (-4.4%). 342 

PepC has a nonsignificant decrease (-0.6%) in the storm frequency in the “early” experiment 343 

and a nonsignificant increase (+2.2%) in the “late” experiment.   344 

In addition to the annual frequency, the spatial distributions of TC genesis in the datasets 345 

under the control experiment are shown in Figure 2. Compared to HiFLOR, KE08 shows a 346 

similar genesis pattern; however, the maximum in the main development region (MDR, 10N-347 

20N, 80W-20W) is slightly shifted to the east, and slightly more storms are generated in the 348 

Gulf of Mexico and Caribbean regions. PepC captures genesis pattern in HiFLOR, though the 349 

storms are much less concentrated in the MDR and spread more to the middle of the Atlantic. 350 

The genesis scheme for KE08 and PepC are quite different. In KE08, as the storms are 351 

randomly seeded everywhere (with the exception of tapering near the equator), the spatial 352 

pattern of genesis indicates that the storm survival rate in the MDR is much higher than in 353 

any other regions. However, in PepC where storms are initiated based on local climate 354 

conditions, the genesis spatial distribution is determined by both the initial distribution and 355 

survival rate.  356 

Historically, the majority of storms form in the MDR, but secondary maxima of activity 357 

are seen off the U.S. southeast coast and in the Gulf of Mexico (Fig. 2a). The control 358 

simulations capture the maximum in the MDR with the hotspot shifted to the west of the 359 

MDR. However, the simulations do not produce much concentrated activity along the U.S. 360 

coast or in the Gulf of Mexico, as shown in IBTrACS, probably due to the bias in the 361 

simulated climate environment. The statistical significance of these differences cannot be 362 

easily tested given the limited sample size in IBTrACS at the local scale. It is worth 363 

mentioning that the spatial distribution of genesis in KE08 is similar to that in Emanuel et. al 364 
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(2008) when the synthetic storms are downscaled from the reanalysis data, indicating that the 365 

random seeding technique is relatively stable and less sensitive to changes and potential 366 

biases in the climate estimation. No significant changes in TC genesis locations are identified 367 

in the future climate projections (figures not shown). 368 

b. Track Density and Landfall Frequency 369 

Figure 3 compares the track density of the datasets for the control experiment. TC track 370 

density is calculated by counting the number of times per year that TC tracks pass each 5°×5° 371 

grid cell. The track density plot of IBTrACS is also shown as a reference. Although the track 372 

density is highly affected by the genesis distribution (Fig. 2), the track density in PepC 373 

compares closely to that in HiFLOR, as PepC tracks depend on HiFLOR’s track pattern and 374 

environmental wind. Both have a single maximum in the western North Atlantic around 375 

25oN, 70oW; both show the typical recurving pattern in tracks, though storms in PepC recurve 376 

slightly earlier than those in HiFLOR. Also, the track distributions in both HiFLOR and PepC 377 

have a tongue extending towards the Gulf of Mexico, although the tongue in HiFLOR is 378 

slightly larger than that in PepC. The track density of KE08 is quite different from those of 379 

HiFLOR and PepC, although the genesis distribution in KE08 is similar to that in HiFLOR 380 

(Fig. 2). There are many more storms in KE08 that travel towards Gulf of Mexico, while 381 

much less are recurving to high latitudes, which results in a stronger maximum appearing in 382 

the Gulf of Mexico compared to HiFLOR and PepC. This difference is likely due to the fact 383 

that the track component in Emanuel et al. (2008) depends mainly on the environmental wind 384 

that is synthetically generated based on the monthly wind climatology from HiFLOR, and the 385 

effect of beta drift is approximated as a simple function of latitude. Compared to the 386 

IBTrACS, HiFLOR and PepC’s maxima in western North Atlantic are large and shifted away 387 

from the US southeast coast, while for KE08 the track density is more highly concentrated 388 
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along a path between the MDR and the Gulf of Mexico; these modeling errors are induced by 389 

a mixture of uncertainties in the TC models and HiFLOR climate estimation. It should also be 390 

noted that the synthetic downscaling simulations do not include hybrid storms, which are 391 

present in the observations and possibly also in the HiFLOR simulations. 392 

We further examine regional annual landfall frequency at coastal locations along the 393 

North Atlantic coastline. To help indicate locations, a total of 186 mileposts (MPs) is defined, 394 

following Vickery et al. (2000) and Jing and Lin (2020), to cover the coastline with 100-km 395 

spacing along the Mexican coastline and 50-km spacing along the U.S. coastline, as shown in 396 

Fig. 4. Here, landfall is defined as the passing of a storm within 100 km of each milepost. As 397 

shown in Fig. 5(a) for the control experiment, the simulated annual landfall frequencies of 398 

KE08 and PepC are compared with those of HiFLOR for the mileposts. (Given its limited 399 

sample size at the local scale, IBTrACS is not used for comparison here.) In general, KE08 400 

has a correlation coefficient of 0.55 with HiFLOR, compared with 0.80 of PepC with 401 

HiFLOR. PepC is in good agreement with HiFLOR in terms of variations for almost all 402 

mileposts. However, it shows a slight overestimation near MP 40-50 but a negative bias to 403 

the north of MP 50, likely due to the fact that storms in PepC tend to recurve earlier (Fig. 3). 404 

KE08 shows larger variations. In all regions south of MP 100 (west of Florida), KE08 has 405 

much higher landfall frequency than HiFLOR and PepC, while in regions north of MP 100, 406 

the landfall frequency of KE08 drops dramatically and becomes much lower than that of 407 

HiFLOR, close to PepC to the north of MP 120. These results are also consistent with the 408 

track density plot as shown in Fig. 3, where most storms in KE08 travel to the Gulf of 409 

Mexico. 410 

Fig. 5(b-d) compares the TC annual landfall frequency at the 186 mileposts in the control 411 

and climate change experiments. We find that the climate change effect on landfall frequency 412 
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is relatively small, compared to the variation of the predictions among the models. HiFLOR 413 

is the most sensitive to climate change, with some increases shown in the “early” experiment 414 

for the south of MP100 (south of Florida) and in the “late” experiment for the north of 415 

MP100, while PepC shows the least sensitivity with almost no change except for a slight 416 

increase in the “late” experiment for MP 80-110, which represents the Florida area. It is 417 

interesting to find that even though a significant increase exists in the frequency of total TCs 418 

in HiFLOR and KE08 (+22.4% and +8.5%; Table 1), changes in their landfall frequency 419 

appear to be smaller.   420 

c. LMI, Rapid Intensification rate and Landfall Intensity 421 

Next, we examine the intensity properties of the simulated storms. Fig. 6 (a) shows the 422 

probability density functions (PDFs) of TC lifetime maximum intensity (LMI) for storms in 423 

HiFLOR, KE08, and PepC in the control experiment. The LMI distribution of HiFLOR 424 

follows a bimodal distribution, with the first peak located at about 75 kt. In HiFLOR, about 425 

35% TCs reach major hurricane intensities, and around 1% grow to Category 5 (LMI > 136 426 

kt) storm. Around 45% of HiFLOR storms undergo RI. Compared to HiFLOR, KE08 427 

simulates much weaker storms with the peak appearing at around 70 kt. Only 31% of storms 428 

undergo RI during their lifecycle, and only 22% of storms reach major hurricane intensity. 429 

However, 1% become the most intense Category 5 storms, which is similar to HiFLOR. PepC 430 

stands in the middle between HiFLOR and KE08. It also follows a bimodal distribution, with 431 

the first peak, however, close to that of KE08. Generally speaking, there are more storms 432 

with moderate LMI in PepC than in KE08 and HiFLOR. Around 28% of PepC storms reach 433 

major hurricane intensity, 33% undergo RI, and 1% grow to Category 5.  434 

The LMI of IBTrACS is also shown in Fig. 6 (a) as a reference. Historically, 30% of 435 

storms reach major hurricane intensity, about 4% grow to Category 5, and around 45% 436 
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undergo RI. Compared to observations, there are fewer weak and very strong storms in 437 

HiFLOR (and also in PepC), and the LMIs are more concentrated in a narrower range. This 438 

inconsistency could be partially induced by the detection algorithm, as the warm-core 439 

requirements and other components of the detecting procedure in HiFLOR may have lowered 440 

the number of weak TCs, which shifts the first peak of the LMI distribution to a higher value. 441 

It is noted that these results are very similar to findings in Bhatia et al. (2018), in which a 442 

similar HiFLOR simulated storm dataset is used. All three simulations underestimate the tail 443 

of LMI as shown for IBTrACS.  444 

We then examine the PDFs of TC LMI in HiFLOR, KE08 and PepC in the “early” and 445 

“late” experiments. In all three datasets, the entire LMI distributions shift to higher intensity 446 

values in climate change experiments. However, HiFLOR has the largest change while PepC 447 

has the least change (Fig. 6b-6d). As shown in Fig. 1 and Table 1, HiFLOR has significantly 448 

more major hurricanes in the “early” (+24%) and “late” (+60.4%) than in the control 449 

experiment. HiFLOR has particularly large increases in Category 4 (+103.2%) and Category 450 

5 (+540%) in the “late” experiment. These results are consistent with the analysis in Bhatia et 451 

al. (2018) for the North Atlantic basin. To a lesser extent, KE08 shows significant increases 452 

in the major hurricanes (+37.8%) and Category 5 storms (+250%) in the “late” experiment. 453 

Similar to HiFLOR, PepC projects increases in major hurricanes (+17.1%), Category 4 454 

storms (+29.4%), and Category 5 (+53.6%) storms in the “late” experiment; the changes are 455 

much smaller but still significant. 456 

As most Category 4 and 5 storms undergo RI during their lifecycles, we further 457 

investigate the change in RI storms. HiFLOR has a significant increase of the RI storms in 458 

both the “early” (+39.6%) and “late” (+76%) experiments. KE08 and PepC have significant 459 

increases of the RI storms in only the “late” experiment (+20.5% and +10.8%, respectively). 460 
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Related to the differences in the RI rate among the three datasets, there are around 24%, 11%, 461 

and 14% Category 4 storms and 4%, 5%, and 1% Category 5 storms projected in HiFLOR, 462 

KE08, and PepC, respectively, leading to very different tails (LMI >125 kt) of the LMI 463 

distributions among the three datasets in the “late” experiment although these tails are very 464 

similar in the control experiment (Fig. 6).  465 

Next, we investigate the probability distribution of the landfall intensity for the North 466 

Atlantic coastline and its divisions of the U.S. into the Northeast, Southeast, and Gulf of 467 

Mexico regions (Fig. 7, with the definition of regions denoted in Fig. 4). In this case, TC 468 

landfall is defined as crossing the coastline for each region. In the control experiment, in 469 

contrast to the LMI case, where PepC stands in the middle of HiFLOR and KE08, PepC has a 470 

higher portion of intense landfalling hurricanes, especially when the landfall intensity is 471 

greater than 70 kt. Landfalling TCs in HiFLOR are weaker than those in PepC, followed by 472 

those in KE08, which have the lowest landfall intensities, with the peak of the distribution 473 

located around 35 kt (although IBTrACS has an even lower peak around 25 kt). The 474 

distributions of landfall intensity in the three subregions have similar patterns to those for the 475 

entire US coastline, except that in the North-East U.S., the distribution of KE08 is more 476 

significantly left-shifted than in either PepC and HiFLOR. This discrepancy can be explained 477 

by the difference in the TC tracks, as shown in Fig. 3. As most storms in KE08 travel to the 478 

Gulf of Mexico, fewer storms grow, intensify, and eventually make landfall in the 479 

northeastern region. Compared to IBTrACS, the simulations, especially HiFLOR and PepC, 480 

have higher landfall intensity except at the very end of the tail, which is consistent with the 481 

LMI properties shown above. 482 

There is not much change in the landfall intensity when the climate moves from the 483 

control experiment to the “early” and “late” experiments, as shown in Fig. 7. We identify 484 



23 

File generated with AMS Word template 1.0 

only slight shifts toward large-intensity values in the northeastern and southeastern U.S. in all 485 

three datasets. However, all changes fail the Two-sample Kolmogorov-Smirnov test on 486 

differences in distributions and are hence statistically negligible. Referring to Table 1 and 487 

Fig. 6, storms are projected to become more intense overall, especially in HiFLOR, but this 488 

intensification does not carry over to landfall at regional or basin scale in the three simulation 489 

datasets.  490 

d. Return Period of Landfall Intensity 491 

Combining the landfall frequency and landfall intensity distribution, we compute return 492 

periods for landfall intensities to describe potential TC threat along the U.S. coastline. The 493 

return period for an intensity level is the inverse of the corresponding annual exceedance 494 

probability, which describes the chance of one or more TCs making landfall with an intensity 495 

greater than the intensity level in any given year (under a specific climate condition). The 496 

annual exceedance probability is calculated as the product of landfall frequency and 497 

exceedance probability of the landfall intensity. We show TC landfall intensity as a function 498 

of return period for each of the segments of the U.S. coastline (illustrated in Fig. 4, where TC 499 

landfall is defined as crossing the coastline for each region), for each model and climate 500 

condition.  501 

The return period curves of HiFLOR, PepC and KE08 are shown in Fig. 8. The return 502 

period curves for IBTrACS are also shown in Fig. 8 as a reference. In the control experiment, 503 

for the U.S. coastline, the return period curve in PepC is the lowest, KE08 is the highest, and 504 

HiFLOR stands in the middle; IBTrACS is covered by the model spread. The return period 505 

curves for the northeastern U.S. are more spread out, with KE08 the lowest, HiFLOR the 506 

highest, and PepC in the middle and being closest to IBTrACS.  The return period curves for 507 

the Mexico are also spread out, and the KE08 distribution is much higher than HiFLOR and 508 
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PepC but happens to be the closest to IBTrACS. In the U.S. Southeast, the three datasets 509 

agree with each other and with IBTrACS, and the return period curves almost overlap. As the 510 

landfall intensity distributions for the three datasets are similar for Mexico (Fig. 7a), the 511 

much higher return period curve in KE08 is induced by its estimated much higher landfall 512 

frequency for this region (as indicated in Fig. 5a and Fig. 3). For the Northeast, the much 513 

lower return period curve in KE08 is induced by its estimated much lower landfall frequency 514 

(see Fig. 5a) and landfall intensity (Fig. 7a). The estimated lower frequency in PepC 515 

compared to HiFLOR for the Northeast (see Fig. 5a) also induces a lower return period curve 516 

for the region. The return periods for the U.S. coastline seem to be largely determined by 517 

those for the Mexico and southeastern U.S..  518 

Next, we compute return period curves for HiFLOR, KE08 and PepC in the “early” and 519 

“late” experiments to investigate their responses to climate change. Overall, there is little 520 

systematic change of the landfall intensity return period under future climates compared to 521 

the current climate, especially at the basin scale. The relatively unchanged return periods 522 

result from the nonsignificant change in landfall intensity (Fig. 7) and in landfall frequency 523 

for most cases. The change in landfall frequency is statistically significant only in HiFLOR’s 524 

“late” experiment for the northeastern U.S., based on the two-sample, unpaired t-test (Wilks 525 

2011). Thus, for HiFLOR (Fig. 8b), there is a moderate increase in the return level for the 526 

northeastern U.S., due to the statistically significant increase in landfall frequency (see also 527 

Fig. 5b) and a nonsignificant increase in landfall intensity (Fig. 7b), and a slight decrease for 528 

Mexico in the future climate. As a result, there is little net change in the return level for the 529 

entire U.S. coastline. Nevertheless, the HiFLOR projection indicates that, although the 530 

northeastern region has the smallest TC threat, with the 100-year landfall intensity about 100 531 

kt under the control climate, it is the region where the TC threat may grow the fastest as the 532 
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climate warms. The 100-year return level is projected to be as high as 110 kt in the “early” 533 

experiment and 125 kt in the “late” experiment. In contrast, in Mexico the TC threat may 534 

even slightly decrease under a warmer climate. For KE08, the return level increases only 535 

slightly for the U.S. coastline, the southeastern U.S., and Mexico, with almost no change for 536 

the northeastern U.S. (Fig. 8c). In contrast to HiFLOR and KE08, PepC has a slight increase 537 

in landfall intensity level for the “early” experiment but almost no change for the “late” 538 

experiment, compared to the control experiment (Fig. 8d). Overall, all three models predict 539 

the climate change effect on the landfall intensity return level/TC threat to be quite small and 540 

much smaller than the variation of the predictions among the models (Fig. 8a).  541 

 542 

4. Discussion 543 

One main objective of this study is to evaluate a new statistical synthetic downscaling 544 

approach to estimating how tropical cyclone activity will respond to climate change. Prior to 545 

this study, statistical models (describing storm genesis, track, and intensity) are usually not 546 

applied in TC climate change studies since most statistical models are climate-invariant. One 547 

exception is Lee et al. (2020), who investigate TC activity by downscaling CMIP5 climate 548 

models using the statistical model CHAZ (Lee et al. 2018). They show that the projected 549 

future TC activity is very sensitive to the choice of humidity variable (saturation deficit or 550 

relative humidity) used in the genesis component. This choice will lead to divergent 551 

conclusions about annual TC frequency trends and thus large uncertainty in regional and 552 

local storm hazard assessment. This finding reminds us that one must be cautious when using 553 

statistical methods to project TC activity under future climate conditions. Here, for the first 554 

time, we investigate statistical projections of future TC activity in comparison with dynamic 555 

and statistical-deterministic projections, all for the same environmental condition changes.  556 
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Comparing storms generated and downscaled from HiFLOR projected climate (RCP4.5), 557 

we find that HiFLOR, KE08, and PepC show similarities in responding to climate change in 558 

that storms will become more intense. Significant increases in the frequency of major 559 

hurricanes and Category 5 hurricanes appear in all three datasets by the end of the twenty-560 

first century, when the fractions of RI storms also increase significantly. For total storm 561 

frequency, HiFLOR suggests a large increase, KE08 suggests a moderate (but still 562 

significant) increase, and PepC suggests no significant change by the end of the twenty-first 563 

century. In general, the changes in PepC are usually smaller than those in HiFLOR and 564 

KE08, which means PepC is less sensitive to climate change effects. These results might 565 

indicate more generally that statistical methods are less sensitive than dynamic models to the 566 

changes in the climate environment that general circulation models project. 567 

To further explore the causes of the uncertainties in the projections, we compare results in 568 

this study with those in the existing literature. The changes in the overall fraction of Cat 4-5 569 

hurricanes in HiFLOR (+126%) and to a lesser extent in KE08 (+46%) and PepC (+45%) are 570 

significantly larger than the median projected global change of +13% in previous studies 571 

(Knutson et al. 2020), although the studies assessed in the Knutson et al. (2020) include a 572 

number of lower resolution models, where in some cases intense TC activity is inferred 573 

statistically rather than through direct simulation. Larger uncertainty exists in the projection 574 

of total storm frequency and of Cat 4-5 frequency. The Knutson et al. (2020) assessment 575 

suggests that the majority of dynamical modeling studies project a decline in the number of 576 

Atlantic TCs with global warming, and the model results are relatively split on whether 577 

Atlantic Cat-4-5 TC frequency will increase or decrease (with the caveat of the inclusion of 578 

statistically derived results from relatively low-resolution models). Analyzing eight CMIP5 579 

climate model projections under the RCP 8.5 scenario, Tory et al. (2013) infer a mixture of 580 
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TC frequency increases and decreases for the Atlantic basin, based on an empirical TC 581 

detection method. Their findings are more mixed than those of Knutson et al. (2013), who 582 

find a clear preference for a projected overall decrease in Atlantic basin TC frequency 583 

(significant for seven of ten individual CMIP3 models) along with a weak tendency (eight of 584 

12 models) for an increase in the frequency of intense (Cat 4-5) TCs, using a variety of 585 

CMIP3 and CMIP5 model scenarios as the boundary forcing. [Note that the range of 586 

projections found by Knutson et al. (2013) and Troy et al. (2013) in downscaling different 587 

CMIP3 models (e.g., as shown in Table 5 of Knutson et al. 2013) demonstrates that a wide 588 

range of projections can be driven not only by different downscaling techniques, as illustrated 589 

in the present study, but also by different climate models that supply information to the 590 

downscaling framework.] In Knutson et al. (2015), which is based on downscaling TC cases 591 

from the GFDL HiRAM global model under the RCP 4.5 emission scenario, only 592 

inconclusive (non-significant) decreases in total TC frequency and non-significant increases 593 

in Cat 4-5 frequency in the North Atlantic basin are projected (Table 3 of Knutson et al. 594 

2015). Other recent studies suggest no change or even an increase in TC frequency under the 595 

future climate. Applying a statistical downscaling scheme to seventeen CMIP5 models, 596 

Villarini and Vecchi (2012) project that Atlantic TC frequency will increase in the first half 597 

of the twenty-first century, while no significant change is projected over the entire century. 598 

Their method uses only SST as the statistical predictor and does not explicitly account for 599 

changes in humidity or wind shear. Downscaling six CMIP5 models under the RCP8.5 600 

emissions scenario using the statistical-deterministic downscaling method of Emanuel et al. 601 

(2008), Emanuel (2013) projects a consistent increase in Atlantic TC frequency and Cat 4-5 602 

frequency over the twenty-first century [Atlantic basin results from Emanuel (2013) are 603 

reported in supplemental material of Knutson et al. (2020)]. 604 
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A recent study explores the responses of TCs to climate change using coupled GCMs 605 

with increasingly fine resolution. While the global TC frequency decreases substantially in 606 

the 50-km model, the 25-km HiFLOR (the same model but with different experimental 607 

designs) shows no significant change, and when model biases are corrected, HiFLOR shows 608 

a significant increase in TC frequency (Vecchi et al., 2019). Nevertheless, compared to 609 

previous studies, the increase of 22% in TC frequency for the North Atlantic basin in 610 

HiFLOR is exceptionally large, especially under the RCP 4.5 emission scenario. Although 611 

the difference in the climate conditions may have contributed to the difference in the storm 612 

projection in HiFLOR, the main reason may be that storm activity in HiFLOR is more 613 

sensitive to climate change effects, as the increase in storm frequency of 8.5% in KE08 and 614 

no significant change in PepC (+2.2%), given the same HiFLOR climate, are closer to the 615 

estimations in previous studies.  616 

Multiple possible mechanisms have been discussed to explain the increment or reduction 617 

in TC frequency. Possible hypothesized mechanisms for the reduction in TC frequency 618 

include a slowing of the large-scale tropical circulation due to increasing static stability (Sugi 619 

et al. 2002; Held and Zhao 2011; Bengtsson et al. 2007) or increases in the saturation deficit 620 

between the surface and middle troposphere (Emanuel et al. 2008). On the other hand, 621 

possible mechanisms for increasing TC frequency include increases in potential intensity, 622 

and, in particular, increases in the area over which the PI is sufficiently large to sustain 623 

genesis, due to the reduction in the meridional temperature gradient and relative warming at 624 

the poleward boundaries of the historical zones of TC activity (Fedorov et al. 2018; Viale and 625 

Merlis 2017). 626 

While the large-scale thermodynamic environment is no doubt an important factor 627 

modulating the rate of TC genesis, it is well known that real TCs often, and perhaps always, 628 
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develop from pre-existing disturbances of independent physical origin. Experiments with 629 

high-resolution GCMs (Li et al. 2010; Vecchi et al. 2019; Sugi et al. 2020; Hsieh et al. 2020; 630 

Vidale et al. 2021; Yamada et al. 2021) have been used to explore such pre-existing 631 

disturbances and relate their frequency to the frequency of TCs. When these disturbances 632 

meet certain requirements, they are labeled “seeds”, and their frequency is often the dominant 633 

control on overall TC frequency compared to the probability of their transitioning to TCs. For 634 

example, in Hsieh et al. (2020), seeds are defined as disturbances detected by a tracking 635 

algorithm whose relative vorticity lies in the interval of 4x10-4 s-1 and 10-3 s-1. Weaker 636 

perturbations are identified as cloud clusters. However, it should be noted that, due to the 637 

spatial scale of TC seeds and the role of atmospheric convection in them, their simulation and 638 

sensitivity in GCMs may show model dependence arising from the effective resolution of a 639 

model's dynamical core and the model's physical parameterizations (Zhao et al. 2012). 640 

Developed based on HiFLOR TCs at the genesis stage using regression-based techniques, 641 

PepC does not explicitly model TC seeds or their transition to TCs. KE08 use a seeding rate 642 

that varies only with the absolute vorticity near the equator, but their seeds are much weaker 643 

than the seeds defined by Hsieh et al. (2020) and the transition of the KE08 seeds to an 644 

intensity commensurate with the Hsieh et al (2020) seeds displays considerable climate 645 

sensitivity. Research on the evolution of weak disturbances into TCs is an increasingly active 646 

endeavor in tropical meteorology.  647 

 648 

5. Conclusion 649 

In this study, we investigated the responses of TCs to climate change by comparing 650 

projected TCs downscaled from a high-resolution global climate model using statistical and 651 

statistical-deterministic methods with those directly resolved in the climate model under the 652 
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historical and future projected climates. The HiFLOR model is used to produce the climate 653 

projections, which drive the two downscaling frameworks. HiFLOR is able to explicitly 654 

simulate TCs that are realistic in a number of respects, and these HiFLOR-generated TCs are 655 

used as a reference in the comparisons. Three 70-year HiFLOR experiments, which represent 656 

the climate during the period of 1986–2005, 2016–35, and 2081–2100 under the RCP4.5 657 

scenario, were performed to explore the effects of climate change. The statistical-658 

deterministic downscaling method, KE08, of Emanuel et al. (2008) and the statistical 659 

downscaling method, PepC, of Jing and Lin (2020), were used to generate large samples of 660 

synthetic TCs for the North Atlantic basin, given the environmental climate change 661 

conditions as obtained from the HiFLOR projections.  662 

We find that HiFLOR and, to lesser extent, KE08 simulate significantly more Atlantic 663 

TCs by the end of the twenty-first century, although the increases are not significant in the 664 

mid-twenty-first century, while PepC shows no significant change in TC frequency over the 665 

century. All simulation methods project significant increases in the frequency of both major 666 

hurricanes and Category 5 hurricanes by the end of the twenty-first century. The fraction of 667 

RI storms is also projected to increase significantly, which is consistent with previous studies 668 

(e.g., Emanuel 2017, Bhatia et al. 2018). The projected significant increase of RI storms is 669 

also consistent with the physical understanding that the rate of intensification scales with the 670 

square of the potential intensity (Emanuel 2012). The increase in the fraction of the most 671 

intense storms leads to a shift to higher intensity values of the entire LMI distribution under 672 

the warmer climate, with HiFLOR responding the most to climate change and PepC the least. 673 

This difference in the extent of responses of HiFLOR, KE08, and PepC results in very 674 

different tails of the LMI distributions under the future climate although the tails for the three 675 

datasets are very similar under the control climate. Nevertheless, the overall increases in TC 676 



31 

File generated with AMS Word template 1.0 

frequency and especially intensity under the warmer climate do not carry over to landfalling 677 

TCs in all of the simulations. The return levels of landfall intensity for the US coastline 678 

remain nearly the same for future projected conditions as for the control condition. However, 679 

minor changes exist at regional scales. HiFLOR projects that the northeastern U.S., which has 680 

the lowest TC threat, may see a moderate growth of the TC threat as the climate gets warmer. 681 

In contrast, in Mexico, the landfalling TC threat may even slightly decrease under a warmer 682 

climate according to HiFLOR projections. These regional trends do not exist in KE08 or 683 

PepC.  684 

In this study, we examined the performance of a newly developed statistical downscaling 685 

approach, PepC, to TC climate change studies, in comparison with dynamic (HiFLOR) and 686 

statistical-deterministic downscaling methods (KE08). We compare findings in this study 687 

with previous projections and point out that the large increment of TC frequency in HiFLOR 688 

(+22%) under the RCP 4.5 emission scenario is barely seen in previous studies based on 689 

CMIP3 and CMIP5 models. The moderate increase in KE08 (+8.5%) and the insignificant 690 

change in PepC (+2.2%) are closer to previous projections, though those projections were 691 

based in many cases on lower-resolution models than HiFLOR. The increase in the overall 692 

fraction of Category 4-5 hurricanes projected by HiFLOR (+126%) is also much larger than 693 

that projected by KE08 (+46%), PepC (+45%), and previous studies. As all three simulations 694 

are based on the same climate projection, the results indicate that the storm activity in 695 

HiFLOR is more sensitive to climate change effects. On the other hand, statistical 696 

downscaling models may be less sensitive to climate change effects. More work is needed to 697 

further investigate potentials and limitations in TC statistical downscaling methods; possible 698 

future work includes a downscaling study for other state-of-the-art climate models, such as 699 

CMIP6 climate models. This study focuses on the uncertainty in TC modeling; for future TC 700 



32 

File generated with AMS Word template 1.0 

projections and applications in decision making, the uncertainty in future climate projections 701 

of large-scale environmental conditions, e.g., based on analyzing a range of CMIP6 models 702 

under various emission scenarios, should also be considered.  703 
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 911 

TABLES 912 

 Total Storms Major Hurricanes Category 4 Category 5 RI Storms 

                      Early         Late        Early              Late    Early            Late          Early               Late      Early           Late 

HiFLOR +8.2% +22.4% +24.0% +60.4% +30.4% +103.2% +60.0% +540.0% +39.6% +76.0% 

KE08 -4.4% +8.5% +2.2% +37.8% -21.1% +13.3% +108.3% +250.0% -11.2% +20.5% 

PepC -0.6% +2.2% +2.3% +17.1% +4.2% +29.4% +1.1% +53.6% +1.8% +10.8% 

 913 

Table 1. The percent difference of the number of total storms, major hurricanes, Category 4 914 

hurricanes, Category 5 hurricanes, and number of storms that undergo RI in HiFLOR, KE08, 915 

and PepC, between the HiFLOR climate change simulations and the HiFLOR control 916 

simulation. For each storm type, the first entry in the table cell is the percent difference 917 

between the 2016–35 and 1986–2005 simulations, and the second entry is the percent 918 
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difference between the 2081–2100 and 1986–2005 simulations. Positive values indicate 919 

percent increases in the climate change simulation. Statistically significant changes are 920 

bolded.  921 

 922 

 923 

FIGURES 924 

 925 

 926 

Fig. 1 Annual frequency of total storms and major hurricanes (wind speed >95kt) for 927 

HiFLOR, KE08, and PepC in the control (1986–2005) and climate change (2016–35, “early” 928 

and 2081–2100, “late”) experiments.   929 
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 933 

  934 

Fig. 2 Comparison of the spatial distribution of genesis in (a) IBTrACS, (b) HiFLOR, (c) 935 

KE08 and (d) PepC in the control experiment. Color indicates the number per year of storms 936 

in each 5°×5° grid box (after calibration) smoothed with a Gaussian lowpass filter. 937 
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 947 

 948 

Fig. 3 Comparison of track density in (a) IBTrACS, (b) HiFLOR, (c) KE08, and (d) PepC 949 

under the control experiment. Track density is calculated as the number of times per year TC 950 

tracks pass into each 5°×5° grid box smoothed with a Gaussian lowpass filter. 951 
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 958 

Fig. 4 Illustrations of locations and areas along the North Atlantic coastline considered in 959 

this study: (a) locations of considered mileposts along Mexico (every 100 km) and U.S. 960 

(every 50 km) coastline; (b) locations of four regions: North Atlantic coastline (green, blue, 961 

and red segments shown on the map, all 186 MPs), Northeastern U.S. from Maine to Virginia 962 

(green segment, MP 128-186), Southeastern U.S. from North Carolina to Florida plus Gulf 963 

Coast of the U.S. (blue segment, MP 41-128) and Gulf Coast of Mexico (red segment, MP 1-964 

40).  965 
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 975 

Fig. 5 Comparison of annual landfall frequency at each of the 186 mileposts (as shown in 976 

Fig. 4) along the North Atlantic coastline (a) under the control experiment and (b-d) for each 977 

dataset under the warming climate. 978 

 979 
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 983 

Fig. 6 Comparison of probability density function (PDF) of lifetime maximum intensity 984 

(LMI) in (a) the control experiment and (b-d) for each dataset under the warming climate. 985 

Raw data are grouped in 5-kt bins and smoothed by a moving average window with width of 986 

15 kts. 987 

 988 
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 989 

 990 

Fig. 7 Probability density function (PDF) of TC landfall intensity in the control, “early”, 991 

and “late” experiments. The four sub-figures on top left are comparisons of historical records 992 

(IBTrACS) with HiFLOR, KE08, PepC in the control experiment. Other sub-figures show 993 

climate effects on landfall intensity for HiFLOR, KE08, and PepC. Four regions defined in 994 

Fig. 4 are examined. In PepC, the shadings show 25th – 75th percentile uncertainty bounds 995 

estimated from 100 realizations. TC landfall is defined as crossing the coastline for each 996 

region. 997 
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 1001 

Fig. 8 Same as Fig. 7, but for the return period of TC landfall intensity. 1002 
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