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ABSTRACT

In this study, we investigate the response of tropical cyclones (TCs) to climate change by
using the Princeton environment-dependent probabilistic tropical cyclone (PepC) model and a
statistical-deterministic method to downscale TCs using environmental conditions obtained
from the Geophysical Fluid Dynamics Laboratory (GFDL) High-resolution Forecast-oriented
Low Ocean Resolution (HiIFLOR) model, under the Representative Concentration Pathway
4.5 (RCP4.5) emissions scenario for the North Atlantic basin. The downscaled TCs for the
historical climate (1986-2005) are compared with those in the mid- (2016-35) and late-
twenty-first century (2081-2100). The downscaled TCs are also compared with TCs explicitly
simulated in HIFLOR. We show that while significantly more storms are detected in HIFLOR
towards the end of the twenty-first century, the statistical-deterministic model projects a
moderate increase in TC frequency, and PepC projects almost no increase in TC frequency.
The changes in storm frequency in all three datasets are not significant in the mid-twenty-first
century. All three project that storms will become more intense and the fraction of major
hurricanes and Category 5 storms will significantly increase in the future climates. However,
HiFLOR projects the largest increase in intensity while PepC projects the least. The results
indicate that HIFLOR’s TC projection is more sensitive to climate change effects and
statistical models are less sensitive. Nevertheless, in all three datasets, storm intensification
and frequency increase lead to relatively small changes in TC threat as measured by the

return level of landfall intensity.

SIGNIFICANCE STATEMENT

The study provides the first comparison among TC climatology projections based on

statistical, statistical-deterministic, and dynamic models driven by the same environmental
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conditions. Under the projected climate for the RCP4.5 emissions scenario for North Atlantic,
all three models project TC intensity to significantly increase, with the dynamic model
HiFLOR projecting the largest increase in intensity. While HIFLOR projects a significant
increase in TC frequency towards the end of the twenty-first century, the statistical-
deterministic model projects a moderate increase in TC frequency, and the statistical model
projects almost no increase in TC frequency. In all three datasets, storm intensification and
frequency increase lead to relatively small changes in TC threat as measured by the return

level of landfall intensity.

1. Introduction

Tropical cyclones (TCs) are among the most destructive natural hazards on the earth, and
they have caused great economical and societal losses. Studies have shown that TCs may
induce more damage under the impact of anthropogenic global warming (e.g., Mendelsohn et
al., 2012). Though many studies have investigated how TCs will change in a changing
climate, great uncertainties exist. The vast majority of published studies have suggested a
decline in the global frequency of TCs with warming (e.g., Intergovernmental Panel on
Climate Change (IPCC) 2013; Knutson et al. 2010; Walsh et al. 2016; Knutson et al. 2020),
but a few others suggest an increase in TC frequency (Emanuel 2013; Bhatia et al. 2018;
Fedorov et al. 2018, Vecchi et al. 2019). In a recent assessment (Knutson et al. 2020) most of
the assessment’s authors conclude that there is a low-to-medium confidence in a future global
reduction of TC frequency, although there is considerable divergence of opinion among the
author team of the assessment. Also, Knutson et al. (2020) find that there is less agreement
among modeling studies on the projected sign of change in Atlantic basin frequency

compared to the case for the global projections, although a clear majority of studies project a
4
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decrease for the Atlantic basin. Contrary to the divergent projections in TC frequency, a
consensus has emerged about increased TC intensity as well as increased TC-induced rainfall
rates (Knutson et al. 2020; Knutson et al. 2013; Scoccimarro et al. 2014; Villarini and
Vecchi, 2012; Liu et al. 2019; Stansfield et al. 2020). Other storm-related hazards are also
shown to become exacerbated under climate change. For example, Marsooli et al. (2019)
suggest that hurricane flood hazards along the US Atlantic and Gulf coasts are likely to
significantly increase, due to storm changes as well as sea level rise. However, while there is
high confidence that sea level rise will add to storm inundation levels, the extent to which TC
intensity, rainfall, and storm-induced surge will increase remains quite uncertain (e.g.,
Knutson et al. 2020, Emanuel 2017, Marsooli et al. 2019; Garner et al. 2017). Improved
assessment of climate change effects on TC and TC-related hazards continues to be of great

importance for both scientific understanding and climate adaptation practice.

Three main modeling approaches are used to investigate the response of TC climatology
to climate change: general circulation models (GCMs), dynamic downscaling, and synthetic
downscaling. The previous generation of global climate models is widely used for global
projections; however, these models cannot directly simulate intense TCs due to their
relatively low resolution (Davis 2018). The dynamic downscaling techniques that are usually
paired with these low-resolution GCMs are alternative approaches to better resolve TCs.
Pioneered by Knutson et al. (1998) and Knutson and Tuleya (2004), dynamic downscaling
resolves the TC structure with an embedded higher-resolution regional model, which inherits
the environmental conditions from GCMs (Knutson et al. 2013; 2015). Although effective in
resolving individual storms, dynamic downscaling methods are still computationally

expensive and thus not ideal for TC risk assessment studies, where large numbers of storms
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(~10%) are often needed to evaluate the risk posed to a specific region (e.g., Lin and Emanuel

2016).

Recently a few GCMs have been able to explicitly simulate intense TCs. This eliminates
the need for a separate dynamical downscaling step for the GCMs in climate change
experiments (Wehner et al .2014). These GCMs have grid spacings of 28 km or finer and can
explicitly represent Category 4 and 5 TCs [e.g., Centro Euro-Mediterraneo sui Cambiamenti
Climatici Climate Model (CMCC-CM2-VHR) developed by Scoccimarro et al. (2017),
Community Earth System Model (CESM) developed by Small et al. (2014)]. In particular,
the Geophysical Fluid Dynamics Laboratory (GFDL) High-resolution Forecast-oriented Low
Ocean Resolution (HIFLOR), which is a high-resolution atmospheric/land model
(0.25°%0.25°) coupled with a low-resolution oceanic/sea ice model (1°x1°, Murakami et al.
2015), can reproduce many features of TC climatology, including spatial distribution and
intensity distribution, with good fidelity compared to observations (Murakami et al. 2015;
Zhang et al. 2016). Previous studies using HIFLOR projections identify an increase in the TC
intensification rate and a higher chance of TC rapid intensification (RI) by the end of the
twenty-first century (Bhatia et al. 2018), as well as an increase in global TC frequency and in
the frequency of the most intense (Cat 3-4-5 and Cat. 4-5) TCs in response to increasing
greenhouse gases (Bhatia et al. 2018; Vecchi et al. 2019). Not all models with grid spacing
of 28 km or finer are able to simulate very intense (Category 4 or 5) TCs (e.g., Yamada et al.
2017, Manganello et al. 2014, Knutson et al. 2008), as this capability appears to depend on

both model resolution and details of model physics.

Synthetic downscaling methods, which are now commonly used for climate-TC risk
studies, generate large numbers of synthetic TCs at the basin scale based on comprehensive

climate conditions from reanalysis data or low-resolution GCM simulations. The pioneer of
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this family of methods is the statistical-deterministic method developed by Emanuel et al.
(2008). This method applies a random seeding technique to initiate the storm, a beta and
advection model based on synthetic local winds to propagate the storm, and a deterministic
intensity model (CHIPS, Coupled Hurricane Intensity Prediction System; Emanuel et al.,
2004) to estimate the storm intensity based on the storm environment along the track. This
method has been applied to study TC properties under various climate conditions. In
particular, Emanuel et al. (2013) apply the method to downscale six CMIPS5 climate
projections and project an increase in TC frequency during the twenty-first century. The
method has also been widely applied to assess TC wind (Yeo et al., 2014), rainfall (Emanuel,
2017), and storm surge (Marsooli et al., 2019) hazards as well as TC economic losses

(Mendelsohn et al., 2012), under current and future projected climate conditions.

Similar to Emanuel et al. (2008), the model developed by Lee et al. (2018) can also
generate synthetic TCs for given climate conditions, but it is purely statistical. This model has
a genesis component based on Poisson regression (Tippett et al. 2011). Its track component is
based on a revised beta and advection model with the beta drift term dependent on the storm
location, and its intensity component is based on multiple linear regression on key
environmental parameters plus an autoregressive stochastic error term (Lee et al., 2015,
2016). Diverging TC frequency trends are projected using this method to downscale five
CMIPS5 climate projections, where the storm frequency will increase or decrease depending
on the selection of the moisture variable (relative humidity or saturation deficit) in its genesis

component (Lee et al. 2020).

Recently, a new probabilistic TC model, the Princeton environment-dependent
probabilistic tropical Cyclone model (PepC), has been developed by Jing and Lin (2020).

Aimed to improve over Lee et al. (2018), PepC performs the Poisson regression on
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environment-clustering grids (rather than regular grids) to better capture the spatial-temporal
variation of the storm genesis. PepC applies an analog-wind track model where storm tracks
are determined based on similar historical track patterns in addition to local in situ wind,
which allows the model to better capture intrinsic features such as recurving storm tracks at
high latitudes. It models the evolution of a storm’s intensity as a Markov process to better
capture the nonlinear/nonhomogeneous response of TC intensification to the environmental
change along the storm track. As a result, although most statistical TC intensity models have
only limited capacity to simulate extreme TCs, PepC can simulate a realistic fraction of RI
storms due to its “lock-in” mechanism, which supports continuous rapid intensification once
the storm enters the extreme state of intensification when the environment is favorable. The
capacity to simulate extreme TCs is essential, especially for climate change studies where a
number of modeling studies suggest that higher intensity TCs are more likely to increase in

frequency than lower intensity TCs under global warming (Knutson et al. 2020).

While widely used in climatology modeling and risk assessment, the synthetic
downscaling methods described above have not been compared in terms of their TC
projections under climate change scenarios. These synthetic downscaling methods are fully
(Lee et al. 2018, Jing and Lin 2020) or partially (Emanuel et al. 2008) statistical. It is
important to compare their TC climatology projections with those based on full dynamic
modeling (Emanuel et al. 2010). Also, most existing TC projections were driven by varying
environmental conditions (generated from different climate models and/or for difference
emissions scenarios, Knutson et al. 2020); comparisons among TC projections that are driven
by the same environmental condition are limited. By holding the environmental condition
fixed across the methods, any differences in response are due to factors other than differences

in the large-scale TC environment as simulated by climate models. In addition to their
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practical importance, such comparisons may also contribute to our understanding of how TCs

will respond to climate change.

In this study, we apply both the PepC of Jing and Lin (2020) and the statistical-
deterministic model of Emanuel et al. (2008) to generate large samples of synthetic TCs
under HiIFLOR projected climates for the Atlantic Basin, where the PepC has been tested
against observations (Jing and Lin 2020). The synthetic storms downscaled from the HIFLOR
climate projections are compared with storms generated directly in HIFLOR. We use three
HiFLOR experiments to represent the historical (“control,” 1986-2005) and future (“early,”
2016-35 and “late,” 2081-2100) climates under the Representative Concentration Pathway
4.5 (RCP4.5) scenario; these are the same experiments explored in van der Wiel et al. (2017)
and Bhatia et al. (2018). In addition to examining the discrepancies in the modeling
approaches and results, we investigate simulated TC characteristics under the historical and
future climates to study the climate change effects. The climatology characteristics we focus
on include storm basin-wide annual frequency, track density, and lifetime maximum
intensity, as well as landfall frequency, intensity, and return periods. We further discuss the

modeling results in comparison with previous TC projections.

This paper is organized as follows. After this introduction, Section 2 describes the high-
resolution GCM applied, HIFLOR; the two downscaling techniques, Emanuel et. al (2008)
and Jing and Lin (2020); and the downscaling experiments. Section 3 presents simulated
results under current and future climates. Section 4 discusses TC frequency trend and

possible attributions. Section 5 concludes the study.

2. Data, Models, and Downscaling Approaches
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In this section, we first describe the HIFLOR model and the three HIFLOR experiments
used in this study. Next, we briefly describe the two downscaling approaches, Emanuel et al.
(2008) and Jing and Lin (2020). The calibration methods associated with each downscaling

approach are also explained.

a. HiFLOR model and experiments

In this study, we use three 70-year HIFLOR “time slice” climate experiments (i.e.,
repeating climatological forcing for each simulation year, as introduced in van der Wiel et al.
2017) to represent the effects of climate change. The control experiment represents the
historical climate during the period of 19862005, while two future climate experiments, the
“early” and “late” experiments, project the climate during 201635 and 2081-2100,
respectively. The experiments are set up with sea surface temperature (SST) relaxed to
climatological SST values. The prescribed SST target in the control experiment is set as the
monthly varying climatology from the Met Office Hadley Centre Sea Ice and SST dataset
(HadISST1.1; Rayner et al. 2003) over 1986-2005, while the “early” and “late” experiments
used the same climatological values of SSTs from the control experiment plus the projected
changes in 2016-35 and 2081-2100, respectively, derived from a multi-model mean of 17
CMIP5 models, based on the RCP 4.5 pathway (Van Vuuren et al. 2011). The experiments
cannot capture the response of TC activity to SST changes in the interannual or decadal
scales. However, it is hypothesized that those variations are smaller than the response of TC
activity to climatological changes in SST — a hypothesis that is supported by fully coupled

and nudged-SST experiments (Vecchi et al. 2019).

TCs in HIFLOR are tracked based on warm-core temperature, sea level pressure, and 10-
m wind. This tracker, developed by Harris et al. (2016), is applied to 6-hourly instantaneous
output from the model using the parameter values of Zhang et al. (2016), Murakami et al.

10
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(2015), Bhatia et al. (2018), and Vecchi et al. (2019). Specifically, the tracker follows local
sea level pressure minima, and TCs are identified using a wind speed threshold (17.5 m/s)
and a warm core threshold of 2 K within 1° of the storm center. TCs are required to have a
72-h total detection lifetime with at least 48 cumulative hours with a warm core and 36
consecutive hours with peak winds exceeding 17.5 m/s, and location of TC genesis should be
equatorward of 40°. HIFLOR TCs are shown to closely resemble the observational hurricane
datasets, including the International Best Track Archive for Climate Stewardship (IBTrACS,
Knapp et al. 2010) and the advanced Dvorak technique-Hurricane Satellite-B1 (ADT-
HURSAT, Kossin et al. 2013), for the North Atlantic Basin, which has the most reliable data
quality given its superior observational network (Kossin et al., 2013; Bhatia et al., 2019).
HiFLOR has been shown to produce skillful seasonal predictions of regional TC activity and
Cat. 4-5 frequency (Murakami et al. 2016). Besides TC characteristics, HIFLOR also outputs
major environmental parameters including daily temperature, moisture, pressure, wind, etc.,

which are used to drive the synthetic downscaling.

b. The statistical-deterministic method of Emanuel et al. (2008)

This subsection briefly describes the statistical-deterministic downscaling method, and we
refer readers to Emanuel et al. (2008) for more details of the model. First, storms are
initialized with random seeding in space and time, and each seed is randomly assigned an
initial wind speed that is less than 25 kt. The random seeding rate is tapered down near the
equator, in proportion to the low-level absolute vorticity, to prevent storm formation close to
the equator. Next, storm movements are determined by a beta and advection model driven by
large-scale background winds synthetically generated from a global model projection or
reanalysis dataset and beta drift approximated as a function of latitude (in the updated version

of the model used in this study). Then, the wind field of each storm is predicted using an

11
File generated with AMS Word template 1.0



229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

atmosphere-ocean coupled model, CHIPS, which has very high radial resolution of the
critical inner-core region and can resolve high-intensity storms. This simplified deterministic
intensity model is computationally efficient, making it possible to generate very large
numbers of TCs at a low computational cost. It is noted that the random seeding technique in
Emanuel et al. (2008) does not produce an absolute rate of genesis per unit time per unit area;
therefore, the genesis rate is often calibrated by setting the annual global or basin-wide
number of genesis events under the control climate to the observed genesis rate in the
historical period. The calibration constant obtained from the control climate is then used as a
multiplicative factor for the future climate experiments. This statistical-deterministic
downscaling method is shown to generate synthetic storms that are in statistical agreement
with observations (Emanuel et al. 2006). There are in total 1151, 1095 and 1049 storms
generated from the statistical-deterministic under the control, “early” and “late” experiments

for the North Atlantic basin in this study.

c. PepC of Jing and Lin (2020)

The PepC model developed in Jing and Lin (2020) is also used to perform downscaling of
HiFLOR under each climate condition. PepC consists of a clustering-based genesis model, an
analog-wind track model, and a Markov-based intensity model. The genesis model seeds
weak vortices in the basin based on Poisson regression on the environmental parameters
including Potential Intensity (PI, derived following Emanuel (1995) and Bister and Emanuel
(1998; 2002)), deep layer vertical wind shear (SHR), low-level relative vorticity (VO), and
saturation deficit (derived following Emanuel et al. 2008), over clustering grids that are

determined by the similarity of these local environmental conditions. Compared to Emanuel
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et al. (2008), where the genesis seeding does not evolve with climate change!, the genesis
distribution in Jing and Lin (2020) is highly dependent on climate variables. We use
saturation deficit as the humidity predictor in this study on climate change impact given that
theoretically saturation deficit better reflects the increase in the thermodynamic inhibition of
TC formation in a warming climate (Emanuel et al. 2008), although Jing and Lin (2020)
show that using relative humidity fits better statistically with the observations under the
current climate. After initialization, the seeds are passed to an analog-wind track model, in
which a storm’s movement is determined by both analog factors (from historical track
patterns) and local in-situ winds. The wind predictors are similar to those in the beta and
advection model in Emanuel et al. (2008) and are derived from large-scale global model or

reanalysis wind fields.

The storm’s intensity is determined by the Markov environment-dependent hurricane
intensity model (MeHiM), which simulates TC intensity evolution over the ocean as a
Markov process (Jing and Lin, 2019). MeHiM considers three unobserved (hidden) discrete
states of intensification and associates each state with a probability distribution of intensity

99 ¢

change. The three unobserved discrete states, the “static,” “moderate,” and “extreme” states,
represent the storm’s slow, normal, and rapid intensity changes, respectively. The storm’s

transit from one state to another is described as a Markov chain. Both the intensity change

! Aside from minor changes in seeding rate near the equator, owing to possible changes in

the absolute vorticity of the low-level flow there.
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and state transit components of the MeHiM are dependent on environmental variables,
including PI, SHR, relative humidity (RH), and an ocean feedback parameter (incorporating
vertical profiles of oceanic temperature and salinity; derived following Schade and Emanuel
1999), in addition to the storm’s last step intensity change and current intensity. Jing and Lin
(2019) show that it is important to include in MeHiM an ocean feedback parameter to
represent the ocean’s cooling effect, which is often omitted in other statistical downscaling
methods (Murakami et al. 2012; Korty et al. 2017). The ocean feedback parameter, included
in the MeHiM used in this study, is also estimated from HiFLOR. A simple land model
(similar to DeMaria and Kaplan, 1995; see more details in Jing and Lin 2019) is added to

estimate intensity decay as a function of time when the storm moves over land.

The original PepC model in Jing and Lin (2020) is developed based on observational
reanalysis data, and the simulated results compare well with observations (Jing and Lin
2020). When applied to downscale climate model projections, however, PepC may produce
biased results due to possible biases in the climate model projections. To focus on the climate
change effects based on the HIFLOR simulations in this study, therefore, we “calibrate” PepC
by adjusting each of its model components to capture the HIFLOR climate-TC relationships
in the control experiment. That is, we redevelop each of the genesis, track, and intensity
components of PepC based on HiIFLOR simulated storms and the environment in the control
experiment. Then we apply the fitted model to generate synthetic storms for each of HIFLOR
control and future climate experiments. There are in total 36232, 39997 and 41131 storms
generated from PepC under the control, “early” and “late” experiments for the North Atlantic

basin in this study.
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3. Results

In this section, we investigate the response of simulated TCs to climate change in each
dataset moving from control to “early” and “late” experiments. The HIFLOR model-
generated TCs are detected by a strict detection algorithm, as mentioned above. To be
consistent with HIFLOR, we filter the synthetic TCs generated by downscaling techniques in
Emanuel et al. (2008) and PepC to include only storms that last at least 72 hours and have at
least 36 consecutive hours of winds greater than 34 kt. To be clear, in the following sections,
we use “HiFLOR” to specifically refer to the TCs that are explicitly simulated in HIFLOR
experiments. We denote the TC dataset downscaled from HiFLOR experiments with the
Emanuel et. al (2008) approach as “KE08” and the TC dataset downscaled with the Jing and
Lin (2020) approach as “PepC”. The observational TC data in the period of 1986-2005, taken
from the IBTrACS WMO archive (Knapp et al. 2010), are used as a reference. The data
include 6-hourly latitude and longitude positions as well as 10-minute maximum sustained
wind speeds at 10 m above the sea surface for each storm. The observational dataset is
denoted as “IBTrACS”. We compare “KE08” and “PepC” to “HiFLOR” to discuss the TC
differences between synthetic downscaling and original climate model projections under the
same climate environments (HiIFLOR control and climate projections under RCP4.5). In
addition, we present “IBTrACS” as a reference to possibly detect the effects of biases in the

HiFLOR climate estimation.

a. Annual Frequency and Genesis Distribution

We first examine the annual frequency of Atlantic storms from HiFLOR, KE08, and
PepC. There are on average 9.1 storms/year in HIFLOR under the control experiment, which
is comparable to 10.15 storms/year in IBTrACS. There are 11.8 and 7.25 storms per year in

KEO08 and PepC under the control experiment, respectively. The original genesis frequency in
15
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PepC (9.3) is close to that in HIFLOR, as the genesis component in PepC is developed based
on HiIFLOR genesis under the control experiment. However, only 78% of the storms develop
to meet the storm selection criteria described above. It is also noted that the storm frequency
in KEOS is larger than the other datasets. The genesis in KEOS is generated through random
seeding, which is calibrated with the observed global frequency. Here, to focus on the climate
change effects, we further calibrate TC frequency in PepC and KEOS to be consistent with
HiFLOR in the control experiment for the North Atlantic basin. Specifically, we apply a
multiplicative factor of 0.77 to KEOS and of 1.3 to PepC, for both the control experiment and
future climate projections. The resulting estimations of annual frequency of total storms and

major hurricanes (discussed later) for the three models appear in Fig. 1.

To determine whether the change of storm frequency from the control to climate change
scenarios is statistically significant, we perform hypothesis testing of equal frequency for
each dataset. The two-sample, unpaired t-test (Wilks 2011) is computed for HIFLOR and
KEO8, and a p-value of 0.05 is set as the threshold for statistical significance. To adjust for
multiple comparisons (we have 100 realizations of PepC downscaling, and each realization is
compared with HIFLOR for the hypothesis test), the Benjamini and Yekutieli (2001, 2005)
procedure of controlling the false discovery rate (FDR) of a family of hypothesis tests is
performed for PepC, with the same statistical significance threshold of p-value of 0.05. When
the p-value is less than the threshold of 0.05, we reject the null hypothesis and consider the
change in TC frequency statistically significant. Statistically significant change in TC
frequency indicates that the change is very likely not induced by randomness. As shown in
Table 1, HIFLOR has a significant increase of storm frequency in the “late” experiment
compared to the control experiment (+22.4%), while the increase in the “early” experiment

(+8.2%) is not statistically significant. Similarly but to a lesser extent, KEOS8 has a significant

16
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341 increase in the storm frequency in the “late” experiment compared to the control experiment
342 (+8.5%); however, KEOS has a nonsignificant decrease in the “early” experiment (-4.4%).
343  PepC has a nonsignificant decrease (-0.6%) in the storm frequency in the “early” experiment

344  and a nonsignificant increase (+2.2%) in the “late” experiment.

345 In addition to the annual frequency, the spatial distributions of TC genesis in the datasets
346  under the control experiment are shown in Figure 2. Compared to HIFLOR, KEO8 shows a
347  similar genesis pattern; however, the maximum in the main development region (MDR, 10N-
348 20N, 80W-20W) is slightly shifted to the east, and slightly more storms are generated in the
349  Gulf of Mexico and Caribbean regions. PepC captures genesis pattern in HIFLOR, though the
350  storms are much less concentrated in the MDR and spread more to the middle of the Atlantic.
351  The genesis scheme for KEO8 and PepC are quite different. In KEOS, as the storms are

352 randomly seeded everywhere (with the exception of tapering near the equator), the spatial
353  pattern of genesis indicates that the storm survival rate in the MDR is much higher than in
354  any other regions. However, in PepC where storms are initiated based on local climate

355  conditions, the genesis spatial distribution is determined by both the initial distribution and

356  survival rate.

357 Historically, the majority of storms form in the MDR, but secondary maxima of activity
358  are seen off the U.S. southeast coast and in the Gulf of Mexico (Fig. 2a). The control

359  simulations capture the maximum in the MDR with the hotspot shifted to the west of the

360 MDR. However, the simulations do not produce much concentrated activity along the U.S.
361  coast or in the Gulf of Mexico, as shown in IBTrACS, probably due to the bias in the

362  simulated climate environment. The statistical significance of these differences cannot be
363  easily tested given the limited sample size in IBTrACS at the local scale. It is worth

364  mentioning that the spatial distribution of genesis in KEOS is similar to that in Emanuel et. al
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(2008) when the synthetic storms are downscaled from the reanalysis data, indicating that the
random seeding technique is relatively stable and less sensitive to changes and potential
biases in the climate estimation. No significant changes in TC genesis locations are identified

in the future climate projections (figures not shown).

b. Track Density and Landfall Frequency
Figure 3 compares the track density of the datasets for the control experiment. TC track
density is calculated by counting the number of times per year that TC tracks pass each 5°x5°
grid cell. The track density plot of IBTrACS is also shown as a reference. Although the track
density is highly affected by the genesis distribution (Fig. 2), the track density in PepC
compares closely to that in HIFLOR, as PepC tracks depend on HiFLOR’s track pattern and
environmental wind. Both have a single maximum in the western North Atlantic around
25°N, 70°W; both show the typical recurving pattern in tracks, though storms in PepC recurve
slightly earlier than those in HIFLOR. Also, the track distributions in both HIFLOR and PepC
have a tongue extending towards the Gulf of Mexico, although the tongue in HiIFLOR is
slightly larger than that in PepC. The track density of KEO8 is quite different from those of
HiFLOR and PepC, although the genesis distribution in KEOS is similar to that in HIFLOR
(Fig. 2). There are many more storms in KEOS that travel towards Gulf of Mexico, while
much less are recurving to high latitudes, which results in a stronger maximum appearing in
the Gulf of Mexico compared to HIFLOR and PepC. This difference is likely due to the fact
that the track component in Emanuel et al. (2008) depends mainly on the environmental wind
that is synthetically generated based on the monthly wind climatology from HiFLOR, and the
effect of beta drift is approximated as a simple function of latitude. Compared to the
IBTrACS, HiIFLOR and PepC’s maxima in western North Atlantic are large and shifted away

from the US southeast coast, while for KEOS the track density is more highly concentrated
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along a path between the MDR and the Gulf of Mexico; these modeling errors are induced by
a mixture of uncertainties in the TC models and HIFLOR climate estimation. It should also be
noted that the synthetic downscaling simulations do not include hybrid storms, which are

present in the observations and possibly also in the HIFLOR simulations.

We further examine regional annual landfall frequency at coastal locations along the
North Atlantic coastline. To help indicate locations, a total of 186 mileposts (MPs) is defined,
following Vickery et al. (2000) and Jing and Lin (2020), to cover the coastline with 100-km
spacing along the Mexican coastline and 50-km spacing along the U.S. coastline, as shown in
Fig. 4. Here, landfall is defined as the passing of a storm within 100 km of each milepost. As
shown in Fig. 5(a) for the control experiment, the simulated annual landfall frequencies of
KEO08 and PepC are compared with those of HIFLOR for the mileposts. (Given its limited
sample size at the local scale, IBTrACS is not used for comparison here.) In general, KEOS
has a correlation coefficient of 0.55 with HIFLOR, compared with 0.80 of PepC with
HiFLOR. PepC is in good agreement with HiIFLOR in terms of variations for almost all
mileposts. However, it shows a slight overestimation near MP 40-50 but a negative bias to
the north of MP 50, likely due to the fact that storms in PepC tend to recurve earlier (Fig. 3).
KEOS8 shows larger variations. In all regions south of MP 100 (west of Florida), KEO8 has
much higher landfall frequency than HiIFLOR and PepC, while in regions north of MP 100,
the landfall frequency of KEOS drops dramatically and becomes much lower than that of
HiFLOR, close to PepC to the north of MP 120. These results are also consistent with the
track density plot as shown in Fig. 3, where most storms in KEOS travel to the Gulf of

Mexico.

Fig. 5(b-d) compares the TC annual landfall frequency at the 186 mileposts in the control

and climate change experiments. We find that the climate change effect on landfall frequency
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is relatively small, compared to the variation of the predictions among the models. HIFLOR
is the most sensitive to climate change, with some increases shown in the “early” experiment
for the south of MP100 (south of Florida) and in the “late” experiment for the north of
MP100, while PepC shows the least sensitivity with almost no change except for a slight
increase in the “late” experiment for MP 80-110, which represents the Florida area. It is
interesting to find that even though a significant increase exists in the frequency of total TCs
in HIFLOR and KEO8 (+22.4% and +8.5%; Table 1), changes in their landfall frequency

appear to be smaller.

c. LMI, Rapid Intensification rate and Landfall Intensity

Next, we examine the intensity properties of the simulated storms. Fig. 6 (a) shows the
probability density functions (PDFs) of TC lifetime maximum intensity (LMI) for storms in
HiFLOR, KEO08, and PepC in the control experiment. The LMI distribution of HIFLOR
follows a bimodal distribution, with the first peak located at about 75 kt. In HIFLOR, about
35% TCs reach major hurricane intensities, and around 1% grow to Category 5 (LMI > 136
kt) storm. Around 45% of HiIFLOR storms undergo RI. Compared to HIFLOR, KE08
simulates much weaker storms with the peak appearing at around 70 kt. Only 31% of storms
undergo RI during their lifecycle, and only 22% of storms reach major hurricane intensity.
However, 1% become the most intense Category 5 storms, which is similar to HIFLOR. PepC
stands in the middle between HIFLOR and KEOS. It also follows a bimodal distribution, with
the first peak, however, close to that of KEOS. Generally speaking, there are more storms
with moderate LMI in PepC than in KEO8 and HiFLOR. Around 28% of PepC storms reach

major hurricane intensity, 33% undergo RI, and 1% grow to Category 5.
The LMI of IBTrACS is also shown in Fig. 6 (a) as a reference. Historically, 30% of

storms reach major hurricane intensity, about 4% grow to Category 5, and around 45%
] y g gory
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undergo RI. Compared to observations, there are fewer weak and very strong storms in
HiFLOR (and also in PepC), and the LMIs are more concentrated in a narrower range. This
inconsistency could be partially induced by the detection algorithm, as the warm-core
requirements and other components of the detecting procedure in HIFLOR may have lowered
the number of weak TCs, which shifts the first peak of the LMI distribution to a higher value.
It is noted that these results are very similar to findings in Bhatia et al. (2018), in which a
similar HIFLOR simulated storm dataset is used. All three simulations underestimate the tail

of LMI as shown for IBTrACS.

We then examine the PDFs of TC LMI in HIFLOR, KEO8 and PepC in the “early” and
“late” experiments. In all three datasets, the entire LMI distributions shift to higher intensity
values in climate change experiments. However, HIFLOR has the largest change while PepC
has the least change (Fig. 6b-6d). As shown in Fig. 1 and Table 1, HiFLOR has significantly
more major hurricanes in the “early” (+24%) and “late” (+60.4%) than in the control
experiment. HIFLOR has particularly large increases in Category 4 (+103.2%) and Category
5 (+540%) in the “late” experiment. These results are consistent with the analysis in Bhatia et
al. (2018) for the North Atlantic basin. To a lesser extent, KEOS shows significant increases
in the major hurricanes (+37.8%) and Category 5 storms (+250%) in the “late” experiment.
Similar to HIFLOR, PepC projects increases in major hurricanes (+17.1%), Category 4
storms (+29.4%), and Category 5 (+53.6%) storms in the “late” experiment; the changes are

much smaller but still significant.

As most Category 4 and 5 storms undergo RI during their lifecycles, we further
investigate the change in RI storms. HIFLOR has a significant increase of the RI storms in
both the “early” (+39.6%) and “late” (+76%) experiments. KEO8 and PepC have significant
increases of the RI storms in only the “late” experiment (+20.5% and +10.8%, respectively).
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Related to the differences in the RI rate among the three datasets, there are around 24%, 11%,
and 14% Category 4 storms and 4%, 5%, and 1% Category 5 storms projected in HIFLOR,
KEO08, and PepC, respectively, leading to very different tails (LMI >125 kt) of the LMI
distributions among the three datasets in the “late” experiment although these tails are very

similar in the control experiment (Fig. 6).

Next, we investigate the probability distribution of the landfall intensity for the North
Atlantic coastline and its divisions of the U.S. into the Northeast, Southeast, and Gulf of
Mexico regions (Fig. 7, with the definition of regions denoted in Fig. 4). In this case, TC
landfall is defined as crossing the coastline for each region. In the control experiment, in
contrast to the LMI case, where PepC stands in the middle of HIFLOR and KEOS, PepC has a
higher portion of intense landfalling hurricanes, especially when the landfall intensity is
greater than 70 kt. Landfalling TCs in HIFLOR are weaker than those in PepC, followed by
those in KEOS, which have the lowest landfall intensities, with the peak of the distribution
located around 35 kt (although IBTrACS has an even lower peak around 25 kt). The
distributions of landfall intensity in the three subregions have similar patterns to those for the
entire US coastline, except that in the North-East U.S., the distribution of KE0OS is more
significantly left-shifted than in either PepC and HiFLOR. This discrepancy can be explained
by the difference in the TC tracks, as shown in Fig. 3. As most storms in KEOS travel to the
Gulf of Mexico, fewer storms grow, intensify, and eventually make landfall in the
northeastern region. Compared to IBTrACS, the simulations, especially HIFLOR and PepC,
have higher landfall intensity except at the very end of the tail, which is consistent with the

LMI properties shown above.

There is not much change in the landfall intensity when the climate moves from the

control experiment to the “early” and “late” experiments, as shown in Fig. 7. We identify
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only slight shifts toward large-intensity values in the northeastern and southeastern U.S. in all
three datasets. However, all changes fail the Two-sample Kolmogorov-Smirnov test on
differences in distributions and are hence statistically negligible. Referring to Table 1 and
Fig. 6, storms are projected to become more intense overall, especially in HIFLOR, but this
intensification does not carry over to landfall at regional or basin scale in the three simulation

datasets.

d. Return Period of Landfall Intensity

Combining the landfall frequency and landfall intensity distribution, we compute return
periods for landfall intensities to describe potential TC threat along the U.S. coastline. The
return period for an intensity level is the inverse of the corresponding annual exceedance
probability, which describes the chance of one or more TCs making landfall with an intensity
greater than the intensity level in any given year (under a specific climate condition). The
annual exceedance probability is calculated as the product of landfall frequency and
exceedance probability of the landfall intensity. We show TC landfall intensity as a function
of return period for each of the segments of the U.S. coastline (illustrated in Fig. 4, where TC
landfall is defined as crossing the coastline for each region), for each model and climate

condition.

The return period curves of HIFLOR, PepC and KE08 are shown in Fig. 8. The return
period curves for IBTrACS are also shown in Fig. 8 as a reference. In the control experiment,
for the U.S. coastline, the return period curve in PepC is the lowest, KEO8 is the highest, and
HiFLOR stands in the middle; IBTrACS is covered by the model spread. The return period
curves for the northeastern U.S. are more spread out, with KEOS the lowest, HIFLOR the
highest, and PepC in the middle and being closest to IBTrACS. The return period curves for
the Mexico are also spread out, and the KEO8 distribution is much higher than HIFLOR and
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PepC but happens to be the closest to IBTrACS. In the U.S. Southeast, the three datasets
agree with each other and with IBTrACS, and the return period curves almost overlap. As the
landfall intensity distributions for the three datasets are similar for Mexico (Fig. 7a), the
much higher return period curve in KEOS is induced by its estimated much higher landfall
frequency for this region (as indicated in Fig. 5a and Fig. 3). For the Northeast, the much
lower return period curve in KEOS is induced by its estimated much lower landfall frequency
(see Fig. 5a) and landfall intensity (Fig. 7a). The estimated lower frequency in PepC
compared to HIFLOR for the Northeast (see Fig. 5a) also induces a lower return period curve
for the region. The return periods for the U.S. coastline seem to be largely determined by

those for the Mexico and southeastern U.S..

Next, we compute return period curves for HIFLOR, KEO8 and PepC in the “early” and
“late” experiments to investigate their responses to climate change. Overall, there is little
systematic change of the landfall intensity return period under future climates compared to
the current climate, especially at the basin scale. The relatively unchanged return periods
result from the nonsignificant change in landfall intensity (Fig. 7) and in landfall frequency
for most cases. The change in landfall frequency is statistically significant only in HIFLOR’s
“late” experiment for the northeastern U.S., based on the two-sample, unpaired t-test (Wilks
2011). Thus, for HIFLOR (Fig. 8b), there is a moderate increase in the return level for the
northeastern U.S., due to the statistically significant increase in landfall frequency (see also
Fig. 5b) and a nonsignificant increase in landfall intensity (Fig. 7b), and a slight decrease for
Mexico in the future climate. As a result, there is little net change in the return level for the
entire U.S. coastline. Nevertheless, the HIFLOR projection indicates that, although the
northeastern region has the smallest TC threat, with the 100-year landfall intensity about 100

kt under the control climate, it is the region where the TC threat may grow the fastest as the
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climate warms. The 100-year return level is projected to be as high as 110 kt in the “early”
experiment and 125 kt in the “late” experiment. In contrast, in Mexico the TC threat may
even slightly decrease under a warmer climate. For KEO8, the return level increases only
slightly for the U.S. coastline, the southeastern U.S., and Mexico, with almost no change for
the northeastern U.S. (Fig. 8c). In contrast to HIFLOR and KEOS8, PepC has a slight increase
in landfall intensity level for the “early” experiment but almost no change for the “late”
experiment, compared to the control experiment (Fig. 8d). Overall, all three models predict
the climate change effect on the landfall intensity return level/TC threat to be quite small and

much smaller than the variation of the predictions among the models (Fig. 8a).

4. Discussion

One main objective of this study is to evaluate a new statistical synthetic downscaling
approach to estimating how tropical cyclone activity will respond to climate change. Prior to
this study, statistical models (describing storm genesis, track, and intensity) are usually not
applied in TC climate change studies since most statistical models are climate-invariant. One
exception is Lee et al. (2020), who investigate TC activity by downscaling CMIP5 climate
models using the statistical model CHAZ (Lee et al. 2018). They show that the projected
future TC activity is very sensitive to the choice of humidity variable (saturation deficit or
relative humidity) used in the genesis component. This choice will lead to divergent
conclusions about annual TC frequency trends and thus large uncertainty in regional and
local storm hazard assessment. This finding reminds us that one must be cautious when using
statistical methods to project TC activity under future climate conditions. Here, for the first
time, we investigate statistical projections of future TC activity in comparison with dynamic

and statistical-deterministic projections, all for the same environmental condition changes.
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Comparing storms generated and downscaled from HiFLOR projected climate (RCP4.5),
we find that HIFLOR, KEOS8, and PepC show similarities in responding to climate change in
that storms will become more intense. Significant increases in the frequency of major
hurricanes and Category 5 hurricanes appear in all three datasets by the end of the twenty-
first century, when the fractions of RI storms also increase significantly. For total storm
frequency, HIFLOR suggests a large increase, KEO8 suggests a moderate (but still
significant) increase, and PepC suggests no significant change by the end of the twenty-first
century. In general, the changes in PepC are usually smaller than those in HIFLOR and
KEO08, which means PepC is less sensitive to climate change effects. These results might
indicate more generally that statistical methods are less sensitive than dynamic models to the

changes in the climate environment that general circulation models project.

To further explore the causes of the uncertainties in the projections, we compare results in
this study with those in the existing literature. The changes in the overall fraction of Cat 4-5
hurricanes in HIFLOR (+126%) and to a lesser extent in KEOS (+46%) and PepC (+45%) are
significantly larger than the median projected global change of +13% in previous studies
(Knutson et al. 2020), although the studies assessed in the Knutson et al. (2020) include a
number of lower resolution models, where in some cases intense TC activity is inferred
statistically rather than through direct simulation. Larger uncertainty exists in the projection
of total storm frequency and of Cat 4-5 frequency. The Knutson et al. (2020) assessment
suggests that the majority of dynamical modeling studies project a decline in the number of
Atlantic TCs with global warming, and the model results are relatively split on whether
Atlantic Cat-4-5 TC frequency will increase or decrease (with the caveat of the inclusion of
statistically derived results from relatively low-resolution models). Analyzing eight CMIP5

climate model projections under the RCP 8.5 scenario, Tory et al. (2013) infer a mixture of
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TC frequency increases and decreases for the Atlantic basin, based on an empirical TC
detection method. Their findings are more mixed than those of Knutson et al. (2013), who
find a clear preference for a projected overall decrease in Atlantic basin TC frequency
(significant for seven of ten individual CMIP3 models) along with a weak tendency (eight of
12 models) for an increase in the frequency of intense (Cat 4-5) TCs, using a variety of
CMIP3 and CMIP5 model scenarios as the boundary forcing. [Note that the range of
projections found by Knutson et al. (2013) and Troy et al. (2013) in downscaling different
CMIP3 models (e.g., as shown in Table 5 of Knutson et al. 2013) demonstrates that a wide
range of projections can be driven not only by different downscaling techniques, as illustrated
in the present study, but also by different climate models that supply information to the
downscaling framework.] In Knutson et al. (2015), which is based on downscaling TC cases
from the GFDL HiRAM global model under the RCP 4.5 emission scenario, only
inconclusive (non-significant) decreases in total TC frequency and non-significant increases
in Cat 4-5 frequency in the North Atlantic basin are projected (Table 3 of Knutson et al.
2015). Other recent studies suggest no change or even an increase in TC frequency under the
future climate. Applying a statistical downscaling scheme to seventeen CMIP5 models,
Villarini and Vecchi (2012) project that Atlantic TC frequency will increase in the first half
of the twenty-first century, while no significant change is projected over the entire century.
Their method uses only SST as the statistical predictor and does not explicitly account for
changes in humidity or wind shear. Downscaling six CMIP5 models under the RCP8.5
emissions scenario using the statistical-deterministic downscaling method of Emanuel et al.
(2008), Emanuel (2013) projects a consistent increase in Atlantic TC frequency and Cat 4-5
frequency over the twenty-first century [Atlantic basin results from Emanuel (2013) are

reported in supplemental material of Knutson et al. (2020)].
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A recent study explores the responses of TCs to climate change using coupled GCMs
with increasingly fine resolution. While the global TC frequency decreases substantially in
the 50-km model, the 25-km HiFLOR (the same model but with different experimental
designs) shows no significant change, and when model biases are corrected, HIFLOR shows
a significant increase in TC frequency (Vecchi et al., 2019). Nevertheless, compared to
previous studies, the increase of 22% in TC frequency for the North Atlantic basin in
HiFLOR is exceptionally large, especially under the RCP 4.5 emission scenario. Although
the difference in the climate conditions may have contributed to the difference in the storm
projection in HIFLOR, the main reason may be that storm activity in HIFLOR is more
sensitive to climate change effects, as the increase in storm frequency of 8.5% in KEO8 and
no significant change in PepC (+2.2%), given the same HiFLOR climate, are closer to the

estimations in previous studies.

Multiple possible mechanisms have been discussed to explain the increment or reduction
in TC frequency. Possible hypothesized mechanisms for the reduction in TC frequency
include a slowing of the large-scale tropical circulation due to increasing static stability (Sugi
et al. 2002; Held and Zhao 2011; Bengtsson et al. 2007) or increases in the saturation deficit
between the surface and middle troposphere (Emanuel et al. 2008). On the other hand,
possible mechanisms for increasing TC frequency include increases in potential intensity,
and, in particular, increases in the area over which the PI is sufficiently large to sustain
genesis, due to the reduction in the meridional temperature gradient and relative warming at
the poleward boundaries of the historical zones of TC activity (Fedorov et al. 2018; Viale and

Merlis 2017).

While the large-scale thermodynamic environment is no doubt an important factor

modulating the rate of TC genesis, it is well known that real TCs often, and perhaps always,
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develop from pre-existing disturbances of independent physical origin. Experiments with
high-resolution GCMs (Li et al. 2010; Vecchi et al. 2019; Sugi et al. 2020; Hsieh et al. 2020;
Vidale et al. 2021; Yamada et al. 2021) have been used to explore such pre-existing
disturbances and relate their frequency to the frequency of TCs. When these disturbances
meet certain requirements, they are labeled “seeds”, and their frequency is often the dominant
control on overall TC frequency compared to the probability of their transitioning to TCs. For
example, in Hsieh et al. (2020), seeds are defined as disturbances detected by a tracking
algorithm whose relative vorticity lies in the interval of 4x10* s and 1073 s!. Weaker
perturbations are identified as cloud clusters. However, it should be noted that, due to the
spatial scale of TC seeds and the role of atmospheric convection in them, their simulation and
sensitivity in GCMs may show model dependence arising from the effective resolution of a
model's dynamical core and the model's physical parameterizations (Zhao et al. 2012).
Developed based on HIFLOR TCs at the genesis stage using regression-based techniques,
PepC does not explicitly model TC seeds or their transition to TCs. KEOS use a seeding rate
that varies only with the absolute vorticity near the equator, but their seeds are much weaker
than the seeds defined by Hsieh et al. (2020) and the transition of the KEOS seeds to an
intensity commensurate with the Hsieh et al (2020) seeds displays considerable climate
sensitivity. Research on the evolution of weak disturbances into TCs is an increasingly active

endeavor in tropical meteorology.

5. Conclusion

In this study, we investigated the responses of TCs to climate change by comparing
projected TCs downscaled from a high-resolution global climate model using statistical and

statistical-deterministic methods with those directly resolved in the climate model under the
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historical and future projected climates. The HIFLOR model is used to produce the climate
projections, which drive the two downscaling frameworks. HIFLOR is able to explicitly
simulate TCs that are realistic in a number of respects, and these HIFLOR-generated TCs are
used as a reference in the comparisons. Three 70-year HIFLOR experiments, which represent
the climate during the period of 1986-2005, 201635, and 2081-2100 under the RCP4.5
scenario, were performed to explore the effects of climate change. The statistical-
deterministic downscaling method, KEOS8, of Emanuel et al. (2008) and the statistical
downscaling method, PepC, of Jing and Lin (2020), were used to generate large samples of
synthetic TCs for the North Atlantic basin, given the environmental climate change

conditions as obtained from the HIFLOR projections.

We find that HiIFLOR and, to lesser extent, KEO8 simulate significantly more Atlantic
TCs by the end of the twenty-first century, although the increases are not significant in the
mid-twenty-first century, while PepC shows no significant change in TC frequency over the
century. All simulation methods project significant increases in the frequency of both major
hurricanes and Category 5 hurricanes by the end of the twenty-first century. The fraction of
RI storms is also projected to increase significantly, which is consistent with previous studies
(e.g., Emanuel 2017, Bhatia et al. 2018). The projected significant increase of RI storms is
also consistent with the physical understanding that the rate of intensification scales with the
square of the potential intensity (Emanuel 2012). The increase in the fraction of the most
intense storms leads to a shift to higher intensity values of the entire LMI distribution under
the warmer climate, with HIFLOR responding the most to climate change and PepC the least.
This difference in the extent of responses of HIFLOR, KE08, and PepC results in very
different tails of the LMI distributions under the future climate although the tails for the three

datasets are very similar under the control climate. Nevertheless, the overall increases in TC
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frequency and especially intensity under the warmer climate do not carry over to landfalling
TCs in all of the simulations. The return levels of landfall intensity for the US coastline
remain nearly the same for future projected conditions as for the control condition. However,
minor changes exist at regional scales. HIFLOR projects that the northeastern U.S., which has
the lowest TC threat, may see a moderate growth of the TC threat as the climate gets warmer.
In contrast, in Mexico, the landfalling TC threat may even slightly decrease under a warmer
climate according to HIFLOR projections. These regional trends do not exist in KEO8 or

PepC.

In this study, we examined the performance of a newly developed statistical downscaling
approach, PepC, to TC climate change studies, in comparison with dynamic (HiFLOR) and
statistical-deterministic downscaling methods (KE08). We compare findings in this study
with previous projections and point out that the large increment of TC frequency in HIFLOR
(+22%) under the RCP 4.5 emission scenario is barely seen in previous studies based on
CMIP3 and CMIPS5 models. The moderate increase in KEO8 (+8.5%) and the insignificant
change in PepC (+2.2%) are closer to previous projections, though those projections were
based in many cases on lower-resolution models than HIFLOR. The increase in the overall
fraction of Category 4-5 hurricanes projected by HiIFLOR (+126%) is also much larger than
that projected by KEOS8 (+46%), PepC (+45%), and previous studies. As all three simulations
are based on the same climate projection, the results indicate that the storm activity in
HiFLOR is more sensitive to climate change effects. On the other hand, statistical
downscaling models may be less sensitive to climate change effects. More work is needed to
further investigate potentials and limitations in TC statistical downscaling methods; possible
future work includes a downscaling study for other state-of-the-art climate models, such as

CMIP6 climate models. This study focuses on the uncertainty in TC modeling; for future TC
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projections and applications in decision making, the uncertainty in future climate projections
of large-scale environmental conditions, e.g., based on analyzing a range of CMIP6 models

under various emission scenarios, should also be considered.
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Fig. 2 Comparison of the spatial distribution of genesis in (a) IBTrACS, (b) HIFLOR, (c)

KEO08 and (d) PepC in the control experiment. Color indicates the number per year of storms

in each 5°x5° grid box (after calibration) smoothed with a Gaussian lowpass filter.
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under the control experiment. Track density is calculated as the number of times per year TC

tracks pass into each 5°x5° grid box smoothed with a Gaussian lowpass filter.
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Fig. 6 Comparison of probability density function (PDF) of lifetime maximum intensity

(LMI) in (a) the control experiment and (b-d) for each dataset under the warming climate.

Raw data are grouped in 5-kt bins and smoothed by a moving average window with width of

15 kts.
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989

990

991 Fig. 7 Probability density function (PDF) of TC landfall intensity in the control, “early”,
992  and “late” experiments. The four sub-figures on top left are comparisons of historical records
993  (IBTrACS) with HIFLOR, KEO08, PepC in the control experiment. Other sub-figures show
994  climate effects on landfall intensity for HIFLOR, KEOS8, and PepC. Four regions defined in
995  Fig. 4 are examined. In PepC, the shadings show 25" — 75 percentile uncertainty bounds
996  estimated from 100 realizations. TC landfall is defined as crossing the coastline for each

997  region.
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1001
1002 Fig. 8 Same as Fig. 7, but for the return period of TC landfall intensity.
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