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Abstract 

Hurricane evacuation modeling is challenging due to a scarcity of evacuation data and the 

complexity of human decision-making and travel behavior. We build a system for rapidly 

predicting the hurricane evacuation traffic flow based on hurricane forecasting, evacuation 

orders, road network, and population information. The system integrates an evacuation demand 

model, an origin-destination model, and a route choice model into a link flow-based mean-field 

traffic model. We evaluate and calibrate the model with traffic observations from Hurricane Irma 

(2017), which induced a massive evacuation and traffic congestions throughout Florida State. 

The model skillfully captures the spatial and temporal evacuation features, including peak traffic 

flows and daily traffic fluctuations. The model can be applied to support evacuation 

management. Our analysis shows that a minor adjustment to the evacuation order could 

considerably alleviate the traffic congestion during Hurricane Irma. 

 

1 Introduction 

Communities along the Atlantic and Gulf coasts are vulnerable to hurricanes. As a hurricane 

approaches, many coastal dwellers may be forced to evacuate to avoid jeopardizing their lives 

(Xian et al. 2018). When a large number of people attempt to evacuate at the same time, 

however, the traffic flow may surpass the capacity of road networks. Hurricane Irma (2017) 

triggered possibly Florida's greatest evacuation in history, with 7 million people under 
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mandatory evacuation orders and 4 million evacuation vehicles; traffic congestions began in 

mid-Florida and quickly spread throughout the state (Feng and Lin 2021). Fortunately, the 

evacuation process finished before Irma made landfall. However, Irma demonstrated once again 

the difficulty for local governments in issuing evacuation orders to strike a balance between 

waiting long enough to avoid the cost of an unnecessary evacuation and evacuating early enough 

to prevent a loss of life, as discussed for previous events (Czajkowski & Kennedy 2010). For 

example, during Hurricane Sandy (2012), New York City issued evacuation orders only about 8 

hours before the subway system was shut down (Wall Street Journal October 28, 2012), and the 

NYU Medical Center was evacuated after the power failed. More than 2.5 million people 

evacuated from Florida when Hurricane Floyd (1999) approached, but the storm missed Florida 

and made landfall in North Carolina (Dow and Cutter, 2002). In the future, more residents along 

the United States' coastline may be forced to evacuate more frequently due to the effects of 

climate change (Marsooli et al. 2019). A better understanding of storm evacuation mechanisms 

and continuously improved evacuation prediction models are needed. 

  

The evacuation process is referred as a feedback system with two stakeholders: households and 

the local government taking actions under exogenous information--probabilistic or ensemble 

hurricane prediction (Fig. 1; Sadri et al. 2014, Yi et al. 2017). As a hurricane approaches, the 

householders receive hurricane predictions and evacuation orders issued by the local 

government. They combine the information with their household situations (location, current 

traffic conditions, age, family composition, previous hurricane experience, property state, time of 

the day, personal interpretation of the hurricane prediction and governmental order, etc.; Huang 

et al. 2016) to determine whether to begin an evacuation and if so, when to leave, where to go, 
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and by which route. Their actions can affect traffic conditions, which can be monitored in part by 

the local government. Next, based on the updated hurricane forecasts and observed human 

behavior, the local government re-evaluates the evacuation necessity among the areas under its 

jurisdiction and issues new orders. The householders receiving the updated hurricane predictions 

and governmental order may change their evacuation decisions. The loop goes on until the 

hurricane makes landfall or the evacuation is finished. 

 

 

Fig. 1. Flowchart of hurricane evacuation process. 

 

Modeling hurricane evacuation is challenging due to two constraints (Pel et al. 2012, Urbina & 

Wolshon 2003, Robinson et al. 2017, Wolshon et al. 2005): 1) complex human decision-making 
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processes under evolving hurricane predictions and governmental evacuation orders and 2) data 

deficiency for time-varying traffic observations and household level decisions.  Constraint 1) 

complicates predicting traffic conditions during evacuation and often require considerable 

computer resources for agent-based modeling of individual behaviors (Yin et al. 2014) or game-

theory-based large-scale optimization (Brown et al. 2010). The increased demand for 

computational resources may constrain the size of the model parameter space and result in the 

model being under-fit. The traditional dynamic traffic simulators (Li et al. 2012; Chiu et al. 

2008; Nava et al. 2012) estimate the daily traffic flow using synthetic origin-destination demands 

and thus cannot be directly used for predicting evacuation processes. Furthermore, data 

limitations (Constraint 2) complicate the process of testing and calibrating prediction models 

(Mesa-Arango et al. 2013). These two constraints lead to the shortage of prediction models 

verified with real-world traffic data at the global scale (Yin et al. 2014). Lindell et al. (2019) and 

Baker et al. (1991) summarized the modeling procedures and components of large-scale 

evacuation processes; however, only a few models have been validated, and they are validated 

mainly at regional scales (e.g., for Florida Keys area during Hurricane Georges of 1998, Yang et 

al. 2019; for New Orleans during Hurricane Katrina of 2005, Dixit et al. 2011; and for 

Southeastern Louisiana region during Hurricanes Katrina and Gustav, Montz and Zhang 2015).  

 

Following the procedures of hurricane evacuation, we develop an algorithm for rapidly 

predicting the hurricane evacuation traffic flow through integrating a time-dependent sequential 

logit model (TDSLM) for individual evacuation demand (Gudishala and Wilmot 2012), a 

dynamic origin-destination (OD) model (Simini et al. 2012), and an en-route model for 

individual evacuation route choice (Dia 2002) into a link flow-based mean-field traffic model. 
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This model is capable of forecasting hourly traffic volume on each link section, capturing 

congestions, and tracking individuals’ evacuation decision, route choices, and destination. The 

decision models are as flexible in this framework as it is in standard agent-based models, but the 

dynamic traffic simulation based on the mean-field theory resolves the computational challenge 

generated by the agent-based model's enormous agent population1. By solving the mean-field 

model with an efficient differential equation solver, we can search a large parameter space for 

the model's tunable parameters and calibrate the model to reproduce observed dynamic 

evacuation characteristics. Also, this model can achieve prediction accuracy in global congestion 

patterns by calibrating all model components collectively rather than individually in order to 

minimize accumulation of inaccuracies. To illustrate its application, in this study we evaluate 

and calibrate the model with traffic observations from Hurricane Irma for the Florida State. 

 

We also apply the analysis results to investigate evacuation behavior during Hurricane Irma. 

Several recent studies have investigated evacuation behavior in the aftermath of Hurricane Irma. 

For example, Wong et al. (2020) analyzed the observed decision-making behavior of a sample of 

individuals impacted by Irma; the study identified two latent segments, distinguished by 

demographics and risk perception that tend to be either evacuation-keen or evacuation-reluctant, 

that responded differently to mandatory evacuation orders. Goodie et al. (2019) found that 

younger adults and those who lived with children were more likely to evacuate; they also found 

that perceived risk and previous trauma were associated with evacuation decisions while 

hurricane experience was not. Other studies employed social network data to reveal the origins 

 
1 This framework allows one to flexibly make assumptions on agent-level evacuation behaviors while solving the 
traffic model on a mean-field manner, although one could also directly apply the mean-field simulator to predict the 
global evacuation traffic with predefined OD information. 
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and destinations of the evacuees in Hurricane Irma. Long et al. 2020 showed that evacuators’ 

decisions might be significantly affected by their political standpoint.  Marasco et al. (2020) 

found a preference for evacuation during the daytime in Hurricane Irma, which confirmed the 

results from previous studies dating to Baker (1991). Hong and Frias-Martinez (2020) showed 

that distance is a dominant predictive factor, with counties geographically closer to the predicted 

hurricane track generally having more significant evacuation flows. These studies analyzed 

behavioral data directly in order to investigate specific characteristics of behavior. In this study, 

we compare the behavior characteristics derived inversely from traffic observations through our 

model with the evacuation behaviors reported in existing literatures. 

 

To our knowledge, this is the first hurricane evacuation prediction model that can account for all 

stages of the evacuation process (i.e., evacuation demand estimation, OD estimation, and route 

choice) and be validated as a single system at the global level. Additionally, our model predicts 

the congestion patterns for the entire evacuation more accurately and efficiently compared to 

typical local evacuation models (Gudishala and Wilmot 2012, Long et al. 2020, Goodie et al. 

2019). We also illustrate a direct application of this model in evacuation management by 

examining the effect of the issuance of evacuation orders on simulated traffic flow. Our analysis 

indicates that a small adjustment to the evacuation orders could considerably alleviate the traffic 

congestion during Hurricane Irma. 

 

2 Model Formulation 
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As a hurricane approaches, potential evacuees will decide if and when they will evacuate and 

then choose their destinations and routes to the destinations. Therefore, their decision process 

can be described in three parts: 1) decide whether and when to leave, 2) find a destination where 

enough capacity remains for evacuators, and 3) take a route to the destination2. To reflect this 

decision process, the traffic prediction modeling in this paper consists of a traffic demand model 

(Section 2.1), dynamic OD model (2.2), and route choice model (2.3). These models are 

integrated into a mean-field differential equation set that solves the global dynamic traffic 

conditions and evacuation decisions over time (2.4). In Section 2.5, we incorporate real data 

from Hurricane Irma, including hurricane prediction, governmental order, and local population 

and road network, into the modeling process, and we fit/calibrate the model using sparse high-

way observations, reconstructed local traffic data, and a genetic algorithm to minimize the 

difference between simulated and observed traffic conditions. 

 

2.1 Traffic demand model 

Evacuation decision-making is a sequential choice process. If time is discretized into time 

intervals, at time t a household has the binary choice to evacuate or not, provided that the 

decision to not evacuate was made in all earlier choices. If the choice at time t is not to evacuate, 

the household faces the same binary choice at time t+1, and so on, until either a decision to 

evacuate is made or the end of the analysis period is reached. At each time step, the evacuation 

 
2 These decisions are not necessarily made in sequence. For example, some evacuees who have repeated experience 
with hurricane evacuation have established a consistent destination and route that they have already chosen before 
they decide to evacuate. Some evacuees pick a route and travel inland until they arrive at a destination where 
accommodation is available. 
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decision of each householder can be estimated using the random utility theory (Fu and Wilmot 

2004). 

The probability that a household i will evacuate at time t, Pet,i, or stay, Pst,i, given that it did not 

evacuate earlier, can be expressed in the form of a regular binary logit model: 

𝑃!,#$ =
exp	(𝑉!$)

exp(𝑉!$) + exp	(𝑉!%)
, 𝑃!,#% = 1 − 𝑃!,#$ ; 	𝑡 = 1,2, … , 𝑇	 (1) 

where 𝑉!$/𝑉!% represents the utility of a household choosing to evacuate/stay at time t, and T is 

the total number of time steps. Then the evacuation probability	𝑃!,# at time t is 

																																																							𝑃!,# = 𝑃!,#$ 4 𝑃&,#%
!'(

&)(
																																																																													(2) 

which is the probability that the household makes a time-independent evacuation decision to stay 

for time point t-1 and leave at time point t (Fu et al. 2006). The probability that the household 

makes a time-independent evacuation decision to stay until time point t is 𝑆!,# = ∏ 𝑃&,#%!
&)( . 

In this paper, following Gudishala & Wilmot (2013), 5 factors are considered for the utility 

function (linear): evacuation order (Boolean factor for voluntary or mandatory evacuation), 

hurricane category (forecasted category when the hurricane makes landfall, 0~5), time of the 

day, current distance from the storm center, and storm surge risk (forecasted probability of 

experiencing 10-ft surge above the mean sea level). The time of day is reflected by 3 Boolean 

dummy variables: TOD1 (12:00 a.m.~5:59 a.m.), TOD2 (6:00 a.m. ~ 11:59 a.m.), and TOD3 

(12:00 p.m.~5:59 p.m.), with nighttime (6:00 p.m. ~11:59 p.m.) used as the base. In the analysis, 

the coefficients for these factors in the utility function are considered model parameters to be 
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fitted with real traffic data. Note that in this model, if there is no evacuation order being issued, 

evacuees may still evacuate following the binary logit model with the dummy variable of 

evacuation order set as zero. It should also be noted that in reality, many other factors are also 

involved; for example, consideration of economic cost for transportation, lodging, food, and lost 

wages (Lindell et al. 2019) and other demographic and political factors revealed by previous 

studies on Irma (as reviewed earlier). However, these detailed demographic data may not be 

available in general. Thus, following the evacuation decision making model of Gudishala & 

Wilmot (2013), we consider only the basic factors in evacuation demand, with the broader aim to 

illustrate the evacuation simulation framework developed in this paper. 

2.2 Dynamic OD model 

The classical gravity model is used to generate a destination for each origin depend on the distance 

between the OD pair and the traffic attraction of the destination (Simini et al. 2012). An adjusted 

gravity model is chosen to assign a destination for each evacuation-willing household dynamically, 

and the gravity weight 𝐺!,#(𝑗) for a household at node i and time t while choosing node j as the 

destination is: 

G*,+(𝑗) =
𝑚!,,
- 𝑆!,,

.

𝑇𝑇!,#,
/ (3) 

 

where α, β, and 𝛾  are adjustable exponents. m!,,  is the unoccupied shelter/hotels/householding 

volume at time t. The travel time of the estimated shortest route (starting at node i) 𝑇𝑇!,#, is chosen 

to capture the time-based distance between nodes i and j. The probability that a household will 

stay at node j until time t, which is	𝑆!,, discussed above, is used to reflect the safety level of the 
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location j. The population at node i would decide (probabilistically) the destination based on the 

gravity weight for each node j at every time step. 

 

2.3 Route choice model 

The traditional game-theory based model used in previous evacuation simulation research (Chen 

2006, Yi et al. 2017) is limited in that they rely on pre-specified rules of behavior that are 

difficult to validate and capture in real evacuations. Lindell and Prater (2007) and Pel et al. 

(2012) criticized the use of user equilibrium for evacuation prediction, considering the inability 

of evacuees to learn traffic conditions by experience since evacuations are rare events. Thus, 

when applying equilibrium-driven models to evacuation problems, the application domain 

should be limited, and additional assumptions may be applied. For example, Feng and Lin (2021) 

used user equilibrium to reconstruct traffic flow for Florida during Hurricane Irma by separating 

the state into 15 time-analysis zones and assuming directional traffic flow. This treatment 

reduces the deviation of the real evacuation traffic from the equilibrium state.  

 

Here, we employ an en-route model to capture the household driving behavior. The assumption 

of the game-theory based model that travelers cannot deviate from their (pre-trip) chosen route is 

relaxed in the case of en-route route choice. Here, travelers observe prevailing traffic conditions 

during their travel and make route choices accordingly. En-route choice models thus assume that 

travelers at each intersection determine the next downstream direction based on evacuation route 

guidance or available information on the prevailing (instantaneous or predicted) traffic 

conditions (Pel et al. 2012). A few evacuation studies use en-route choice models, including 

NETVAC (Network Emergency Evacuation Model), which allows myopic route improvisation 
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(where evacuees focus on the traffic conditions directly ahead; Lindell and Prater, 2007). Dia 

(2002) allows evacuees to compare their usual route with the best alternative route, and Chiu et 

al. (2008) allows vehicles to take other routes if the current route is congested. Other studies use 

hybrid route choice models such as DYNASMART (Sbayti and Mahmassani 2006), DynusT (Pel 

et al., 2008), and EVAQ (Pel et al., 2010). 

 

When we simulate en-route route choice, link flow fractions (also called split proportions or turn 

fractions) are computed at all intersection nodes, and travelers are propagated from one 

intersection node to the next along the downstream links. We assume the time cost of the 

following link section is generally available for evacuees as they have access to global 

congestion information at each time point through the GPS or mobile tools such as Google Map. 

Thus, as illustrated in Fig. 2, the probability for a person at node i with the destination at node j 

to choose a downstream link k (𝑓!,#,,,0) is computed based on the traffic time on this link 

(𝑇𝑇!,0,12$) and the belief of the time cost in the shortest forthcoming route travel time (𝑇𝑇!,0,13%!)  

at time t, using the random utility theory (Feng et al. 2020a and 2022): 

f*,+,4,5 =
expD−𝜃 ⋅ 	(𝑇𝑇!,0,12$ +	𝑇𝑇!,0,13%!)G

∑ expD−𝜃 ⋅ 	(𝑇𝑇!,0,12$ +	𝑇𝑇!,0,13%!)	G0∈7!
(4) 

 

where 𝜃 is the diversion intensity parameter (to be determined), which describes the capacity of 

drivers to predict the travel time of different routes in the model. If 𝜃 = +∞, the driver will select 

the route with the shortest time with probability 1; if 𝜃 = 0, the driver will select the route 

randomly (Patriksson, 2015). 𝜉# is the set of downstream links for node i. The traffic time on 

each link at a given time point , 𝑇𝑇!,0 , is calculated using the Bureau of Public Roads (BPR) 
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function : 𝑇𝑇!,0D𝑥!,0G = tt8 M1 + 𝛼 ⋅
9",$
:%⋅<=

O
.
, which reflects the monotonic relationship between 

traffic flow (𝑥!,0) and time cost on a given link, with tt8 as the  free-flow (unimpeded) travel 

time of the link, 𝐶8 the traffic carrying capacity of one lane, 𝐿𝑁 the number of lanes of that given 

link, and 𝛼 and β two parameters related to the link type (estimated by Feng & Lin (2021) based 

on camera observations along eight highways for Hurricane Irma). 𝑇𝑇!,0,13%! is calculated based 

on the current traffic conditions on forthcoming travel links, using the shortest road algorithm on 

a sparse matrix (SPSM) (Johnson 1977).  

 

 

Fig 2. Illustration of link choice probability estimation for a household at origin (i) to travel to 

destination (j) based on the travel time on the next link (𝑇𝑇!,0,12$)  and the estimated least travel 

time for the forthcoming route (𝑇𝑇!,0,13%!). 

 

Further, the fractions of evacuees at node i travel through the downstream link k is: 

f*,+,5 =	S f*,+,4,5 ⋅ G*,+(𝑗)
,∈>

/SG*,+(𝑗)
,∈>

(5) 

where G*,+(𝑗) is the gravity weight function in Eq. 3 and 𝜙 is the set of all the nodes (possible 

destinations) in the transportation system.  
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This route choice model assumes that evacuees are myopic, focusing on the traffic condition 

directly ahead, and optimistic about the forthcoming traffic (Lindell and Prater, 2007), avoiding 

the large computational cost caused by enumerating over all the possible routes between each 

OD pair. From a microscopic perspective, this model might be over-simplified given that many 

evacuees may make route choice based on route familiarity or concern about loss of GPS or cell 

phone access (Lindell et al. 2019).  However, it needs to be noticed that, the route choice model 

applied here is statistical and aiming at predicting the macroscopic traffic flow of evacuation. 

The microscopic mechanism might be biased from the reality as many factors related to the 

decision making process are not involved, which should be addressed in future research. For 

research focusing on agent-level routing mechanisms, other en-route model could be used to 

substitute the model employed here with pre-defined parameters or unknown parameters that 

could be fitted with this framework. In addition, by assuming a BPR function for each link, we 

cannot explicitly model micro-traffic behaviors on onramps/interchanges/weaving areas, while 

Dixit et al. (2011) found that onramps and interchanges may significantly impede the traffic and 

propagate congestions upstream and downstream. Future work may further improve the 

predictive capability of this model by adopting micro-traffic behavior modular from existing 

models(Lindell et al. 2019).   

 

 

2.4 Markov decision-based mean-field dynamic evacuation model 
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If we compose the link fractions of all the nodes together, we obtain a Markovian transition 

matrix (M*) for all the n nodes in 𝜙 and m links in 𝜉 at time t: 

M*
?×A = W

𝑓!,(,( ⋯ 𝑓!,A,(
⋮ ⋱ ⋮

𝑓!,A,( ⋯ 𝑓!,A,?
[ (6) 

 

The evacuating population on all the nodes follows this matrix to flow into each link: 

δx⃗̂!,#A?×( = M*
?×A ⋅ (𝑃!A×(⨂N*B×(	) (7) 

where δx̂⃗!,#A?×( is the inflow into road network at time t, estimated by coupling the population 

remained at each node (N*B×(), the probability for them to go out for evacuation (𝑃!A×(), and the 

probability for them to choose one specific link (M*
?×A). Operator ⨂ is the Hadamard product 

(referring to component-wise multiplication of the same dimension). 

 

 

 

Fig. 3: The Link Transformation Schematic Diagram. The central node 1 has 4 links out and 4 

links in, while each link is defined by a directed number set of two node numbers. At a given 
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time point, each node has two quantities: evacuation probability for each household P and node 

population N, while each link has an instantaneous traffic flow 𝑥, an out traffic 𝑥3C! (flow into 

nodes), an inward traffic 𝑥#A, and a time cost 𝑇𝑇 based on traffic flow 𝑥. 

 

The traffic flows on the road network, as illustrated in Fig 3, can be described by the dynamic 

traffic flow equation set: 

  

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑑x̂⃗!,#A?×( = M*

?×A ⋅ D𝑃⃗̂!A×(⨂𝑁⃗̂̂*,BDEFB×( 	G𝑑𝑡

𝑑𝑥⃗!,3C!?×( = i1 −
𝑑
𝑑𝑡 𝑇𝑇
^̂^̂^⃗ ?×((𝑡)j⨂𝑥!'GGHHHHH⃗ ,#A

?×( 𝑑𝑡	

𝑇𝑇^̂^̂^⃗ ?×((𝑡) = 𝐵𝑃𝑅D𝑥!'GGHHHHH⃗
?×(G

𝑑x̂⃗!?×( = −𝑑x̂⃗!,3C!?×( + 𝑑x̂⃗!,#A?×(

𝑑𝑁⃗̂̂*,+B×( = 𝐻3C!A×? ⋅ 𝑑x̂⃗!,3C!?×( − 𝐻#AA×? ⋅ 𝑑x̂⃗!,#A?×(

(8)
(9)
(10)
(11)
(12)

 

 

where t is the time point under discussion, 𝑥⃗ is the vector of the traffic flow on each link, and 

𝑥⃗#A/𝑥3C! is the traffic inflow/outflow vector. 𝑇𝑇^̂^̂^⃗  is the traffic time cost vector calculated by the 

BPR function. Eq. 8 describes the outgoing population from one node into the road network as 

discussed in Eq. 7. Eq. 9 describes the outgoing population from a link section into a node 

considering the changing vehicle density. Eq. 10 calculates the travel time of each link based on 

the traffic information. The travel time of the link is determined by the traffic flow at the 

beginning of the travel period on the link. Eq. 11 is the continuity law for a link section: the 

current number of vehicles on this link section is decided by the vehicles flowing in/out at this 

time moment. Eq. 12 describes the relationship between nodes and links: the vehicles flowing 

out of a link should be absorbed into a node and then assigned to another link or stay in that 

node. However, if the population of each node exceeds its capacity during the calculation 
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process, the over-capacity population will be directly assigned to the following links by the 

Markovian transition matrix (Eq. 6). This model can trace the proportion of vehicles at a given 

intermediate node that began their evacuation from a specific origin node by multiplying the 

Markovian transition matrix of link choice with the distribution of local population at each time 

step. The ability to trace the distribution of the origin of vehicles is critical for calibrating traffic 

assignment models (Ma & Qian 2018) or optimizing transportation policies (Yi et al. 2017). 

 

Eqs. 8-12 is a Lipchitz full-rank ordinary differential equation set and can be solved with the 

Euler method efficiently. At each time step, M*
J×B is calculated using the SPSM method, and TT^̂^̂^⃗  

is calculated using a one-dimension search. Each step of this simulation model is computational 

efficient because of the matrix structure of the datasets and operators. The simulation time for 

each time step is in O(n ∨ m) because both sparse matrix multiplication and SPSM are O(n ∨ m) 

algorithms. The link number (n) is larger, and almost certainly much larger, than the node 

number (m) in any evacuation route system. Hence, the algorithm usually takes computational 

time in O(n). For a temporal resolution 𝛿𝑡, the entire simulation would take computational time 

in OMn ⋅ wK
L*
xO. This time cost is much smaller than that for the traditional dynamic traffic 

analysis methods, which use piece-wise linearization methods and take the computational time in 

OynM.O ⋅ wK
L*
x
P
z on average (Ma & Qian 2018). Taking advantage of the high-efficiency packages 

built for matrix calculation, the full 5-day simulation for Florida can be finished in 10 seconds on 

one core of a single PC. This computational efficiency brings the convenience to search over a 

very wide parameter space for fitting/calibrating the model. All the simulations in this paper are 

conducted on a desktop with an Intel Core i9-9900 K CPU 4.30 GHz ×8,4400 MHz 4 ×16 GB 

RAM, 4 TB SSD. 
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2.5 Datasets and model calibration 

To accomplish the hurricane evacuation simulation, we first need to obtain data about the 

transportation network. Overviews of Florida and the major highways on the transportation 

network are shown in Figure 4a. Florida has an area of around 170,000 km2 and a population of 

~ 20 million in 2017 (Fig. 4b). (As a reference, ~6 million people were involved in Irma’s 

evacuation process, with a mean travel distance of ~200 miles; Feng and Lin 2021.) The 

transportation network abstracted from the GIS data provided by the Federal Highway 

Administration (FHWA) is modeled as consisting of 1520 nodes and 5767 links (Federal Lands 

Highway 2018). The speed limit of each highway can be found in the FHWA data set (Florida 

Traffic Information 2018). Typically, a major interstate highway or turnpike has design speeds of 

70 miles/h.  A state road has a design speed of 45 or 55 miles/h. The parameters for calculating 

travel time in the BPR function come from the highway criterion and the over-normal-capacity 

(i.e., ratio of traffic flow to link capacity larger than 2.5) speed is assumed to be 10 miles/h 

(BPR; Li et al. 2010; Feng & Lin 2021). Under hurricane evacuation, roadway shoulders were 

open for evacuation traffic on four corridors: I-75 Alligator Alley; I-75 from Wildwood to the 

Georgia state line; I-10 from Jacksonville to I-75; and I-4 from Tampa to Orlando. This 

operation requires fewer resources than contraflow plans, which reverse lanes to make highways 

one-way only. This operation is also considered in the evacuation simulation.  

 

The hurricane prediction comes from the National Oceanographic and Atmospheric 

Administration (NOAA; Irma Prediction and Record 2017), providing the hurricane observation 

at each time point and also the changing hurricane prediction over time (the projected trajectory 
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and hurricane intensity). The storm surge prediction is also included (the probability of surge to 

be 10 ft above mean sea level; USGS 2017). The time series of spatial governmental evacuation 

orders come from the Florida Traffic Administration (Florida Traffic Information 2018). Here 

we estimate the capacity of each city with governmental reported shelter numbers (TCpalm 

2017) and hotel room numbers (STR 2017). Notice that the city capacity contains not only the 

shelters and hotels opening but also the friends’ or relatives’ houses, which are difficult to 

estimate and not modeled in this paper. The impact is small for high-risk areas, where the 

evacuation rate is high and those evacuated can not accommodate others. However, the under-

estimation of housing resources may lead to an over-estimation of evacuation flow at low-risk 

regions, where many evacuees may be accommodated in their friends’ or relatives’ houses 

(Lindell et al. 2019). 

 

 

  

  

Fig. 4. Road network and population distribution of the State of Florida. (a) Road map (FBT 

2017). (b) Population distribution census data (Census Bureau 2010). 
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WELCOME CENTERS

OFFICIAL COUNTY
WELCOME CENTERS

 1 I-10 Welcome Center  850-944-0442
 2 U.S. 231 Welcome Center  850-263-3510
 3 Capitol Welcome Center  850-488-6167
 4 Joseph O. Striska 
  Welcome Center at I-75 386-938-2981
 5 I-95 Welcome Center  904-225-9182

25

26

27

28

29

30

31

32

33

4

5

6

8

7

9

10

11

12

Alachua 352-374-5260

Bay 888-723-2546

Bay 800-PC BEACH

Brevard 321-454-2022

Brevard 321-449-4444

Broward 800-22-SUNNY

Charlotte 941-639-2222

Charlotte 941-627-2222

Charlotte 888-478-7352

Charlotte 800-603-7198

Citrus 800-587-6667

Clay 904-264-2651

Collier 239-695-3311

Collier 239-394-7549

Collier 239-262-6141

Duval 904-791-4305

Duval 904-741-3044

Duval 904-242-0024

Escambia 800-635-4803

Escambia 800-874-1234

Escambia 800-328-0107

Hernando 800-601-4580

Hillsborough 800-44-TAMPA

Hillsborough 813-754-7045

Indian River 772-567-3491

Jackson 850-482-8061

Lake 352-429-3673

Lee 239-590-4855

Leon 800-628-2866

Manatee 941-729-9177

Miami-Dade 305-444-7270

Miami-Dade 305-247-2332*

Miami-Dade 305-674-1231*

Miami-Dade 305-672-1270*

Miami-Dade 305-245-9180

Monroe 800-842-9580

Monroe 800-322-5397

Monroe 800-822-1088

Monroe 800-527-8539

Monroe 800-872-3722

Nassau 904-277-0717

42

43

44

45

46

47

48

49

50

51

52

Nassau 904-261-3248

Okaloosa 800-322-3319

Okeechobee 800-871-4403

Orange 407-363-5872

Osceola 800-333-KISS

Pinellas 727-464-7200

Polk 800-828-7655

Putnam 386-698-1657

Putnam 386-328-1503

Santa Rosa 800-480-7263

Sarasota 800-522-9799

55

56

57

58

59

53

54

Seminole 800-800-7832

St. Johns 904-825-1000

St. Johns 904-471-1596

St. Lucie 800-344-TGIF

Volusia 386-253-8669

Volusia 386-677-3454

Walton 800-822-6877
 
* Spanish Speaking

Florida City Index
Alachua, L-4
Alligator Point, H-3
Altamonte Springs, L-13, O-7
Alva, N-12
Amelia Island, O-2
Anna Maria Island, L-10
Apalachicola, G-4
Apollo Beach, M-9
Apopka, N-7
Arcadia, N-10
Atlantic Beach, O-2
Auburndale, N-8
Aventura, Q-14
Avon Park, N-9
Baker, C-1
Bal Harbour, C-15
Bartow, N-9
Bell, K-4
Belleair Beach, L-9
Big Pine Key, O-17
Blountstown, G-2
Blue Mountain Beach, D-2
Boca Grande, M-12
Boca Raton, C-11, Q-13
Bokeelia, M-12
Bonifay, E-1
Bonita Springs, N-13
Bowling Green, N-9
Boynton Beach, C-9, R-12
Bradenton, L-10
Bradenton Beach, L-10
Brandon, M-9
Branford, L-3
Bristol, G-2
Bronson, L-5
Brooksville, M-7 
Bryceville, M-2
Bunnell, O-4
Bushnell, M-7
Cape Canaveral,
Port Canaveral, P-7
Cape Coral, N-12
Cape Haze, M-11
Cape San Blas, F-4
Captiva Island, M-12
Carrabelle, H-4
Cassadaga, O-6
Cedar Key, K-5
Celebration, N-8, K-17
Century, B-1
Champions Gate, N-8
Chiefland, L-5
Chipley, F-1
Chokoloskee, O-14
Christmas, P-7
Chuluota, O-7
Clearwater, L-9
Clearwater Beach, L-8
Clermont, N-7
Clewiston, P-11
Cocoa, P-7
Cocoa Beach, P-8
Coconut Creek, B-12
Coconut Grove, C-17
Copeland, O-14
Coral Gables, B-17, Q-14
Coral Springs, B-12
Cortez, L-10
Crawfordville, H-3
Crescent City, N-5
Crestview, D-1
Cross City, K-4
Cross Creek, M-5
Crystal River, L-6
Cutler Ridge, Q-15
Dade City, M-7
Dania Beach, C-14
Davenport, N-8
Davie, B-13
Daytona Beach, P-5
Daytona Beach Shores, P-5
DeBary, O-6 
Deerfield Beach, C-11, Q-13
De Funiak Springs, E-1
De Leon Springs, O-5
DeLand, O-6
Delray Beach, C-10, R-12
Destin, D-2
Dover, M-8
Duck Key, P-17
Dundee, N-9
Dunedin, L-8
Dunnellon, L-6
Eastpoint, G-4
East Palatka, N-4
Ebro, E-2
Edgewater, B-14, Q-13
Ellenton, L-10
Englewood, M-11
Estero, N-13
Eustis, N-6
Everglades City, O-14
Fanning Springs, K-4
Felda, O-12
Fernandina Beach, O-1
Ferndale, N-7
Flagler Beach, O-5
Florahome, N-4
Floral City, M-6
Florida City, Q-15
Fort Lauderdale, C-13, Q-13
Fort Myers, N-12
Fort Myers Beach, M-12
Fort Pierce, Q-10
Fort Walton Beach, C-2
Fort White, L-3
Fountain, F-2
Frostproof, N-9
Fruitland Park, N-6
Gainesville, M-4
Geneva, O-7
Grassy Key, O-17

Grayton Beach, D-2
Green Cove Springs, N-3
Greensboro, G-2
Groveland, N-7
Gulf Breeze, B-2
Gulf Cove, M-11
Gulf Stream, R-12, C-10
Gulfport, L-9
Haines City, N-8
Hallandale, C-14
Harmony, O-8
Havana, H-2
Hialeah, B-16
Highland Beach, R-13
High Springs, L-3
Hilliard, N-1
Hillsboro Beach, C-12
Hobe Sound, Q-11
Hollywood, B-14, Q-14
Holmes Beach, L-10
Holt, C-1
Homestead, Q-15
Homosassa, L-6
Howey-In-The-Hills, N-6
Hutchinson Island, Q-10
Immokalee, O-13
Indian Rocks Beach, L-9
Indian Shores, L-9
Indiantown, Q-11
Indialantic, P-8
Inlet Beach, E-3 
Inverness, M-6
Islamorada, Q-16
Jacksonville, N-2
Jacksonville Beach, O-2
Jasper, K-2
Jennings, K-2
Jensen Beach,Q-10
Juno Beach, R-11
Jupiter, R-11
Kenansville, P-9
Key Biscayne, C-17
Key Colony Beach, P-17
Key Largo, Q-16
Key West, N-17
Keystone Heights, M-4
Kissimmee, L-17, O-8
La Belle, O-12
Lake Buena Vista, K-16, N-7
Lake City, L-3
Lake Helen, O-6
Lake Mary, O-6
Lake Park, C-7, R-11
Lake Placid, O-10
Lake Wales, N-9
Lake Worth, C-8, R-12
Lakeland, N-8
Lakeport, O-11
Lamont, J-2
Lantana, R-12
Largo, L-9
Lauderdale-by-the-Sea, C-12
Lee, K-2
Leesburg, N-6
Lehigh Acres, N-12
Lithia, M-9
Little Torch Key, O-17
Live Oak, K-2
Longboat Key, L-10
Long Key, P-17
Longwood, O-7
Lorida, O-10
Lower Matecumbe Key, P-16
Loxahatchee, A-8
Lutz, L-8
Madeira Beach, L-9
Madison, J-2
Maitland, O-7
Manalapan, C-9, R-12
Marathon, O-17
Marco Island, N-14
Marianna, F-1
Matlacha, M-12
Melbourne, P-8
Melbourne Beach, P-8
Merritt Island, P-7
Mexico Beach, F-3
Miami, C-16, Q-14
Miami Beach, B-16, Q-14
Miami Lakes, B-15
Micanopy, M-4
Middleburg, N-3
Milton, C-2
Mims, P-7
Monticello, I-2
Mount Dora, N-6
Naples, N-13
Navarre, C-2
Navarre Beach, C-2
Neptune Beach, O-2
New Port Richey, L-8
New Smyrna Beach, P-6
Newberry, L-4
Niceville, D-2
Nobleton, M-7
Nokomis, L-11
North Fort Myers, N-12
North Miami, B-15
North Miami Beach C-15, R-14
North Palm Beach, C-7, R-11
North Redington Beach, L-9
Ocala, M-5
Okeechobee, P-10
Old Town, K-4
Olustee, M-3
Orange City, O-6 
Orange Park, N-3
Orange Springs N-4
Orlando, L-15, O-7
Ormond Beach, O-5
Osprey, L-11
Oviedo, O-7

Pahokee, P-11
Palatka, N-4
Palm Bay, P-8
Palm Beach, C-8, R-12
Palm Beach Gardens, C-7
Palm Coast, O-4
Palm Harbor, L-8
Palmdale, O-11
Palmetto, L-10
Panacea, H-3
Panama City, F-3
Panama City Beach, E-3 
Pembroke Pines, B-14
Pensacola, B-2
Pensacola Beach, B-2 
Perdido Key, B-2
Perry, J-3
Pinecrest, Q-15
Pineland, M-12
Pinellas Park, L-9
Placida, M-11
Plant City, M-8
Plantation, B-13
Point Washington, E-2
Polk City, N-8
Pompano Beach, C-12, Q-13
Ponce de Leon, E-1
Ponce Inlet, P-6
Ponte Vedra Beach, O-3
Port Charlotte, M-11
Port Orange, P-5
Port Richey, L-8
Port Salerno, Q-11
Port St. Joe, F-4
Port St. Lucie, Q-10
Punta Gorda, N-11
Quincy, H-2
Redington Shores, L-9
River Ranch, O-9
Rockledge, P-8
Rosemary Beach, E-3
Royal Palm Beach, Q-12, B-8
Ruskin, F-9, L-9
Safety Harbor, E-7, L-8
Sandestin, D-2
Sanford, O-6
Sanibel, M-12
Sanibel Island, M-12
Santa Rosa Beach, D-2
Sarasota, L-10
Seacrest, E-3
Seacrest Beach, E-2
Seagrove Beach, E-2
Seaside, E-2
Sebastian, Q-9
Sebring, O-10
Siesta Key, L-10
Silver Springs, M-5
Singer Island, C-8
Sneads, G-1
Sopchoppy, H-3
Sorrento, N-6
South Bay, P-12
South Miami, B-17, Q-15
Spring Hill, L-7
St. Augustine, O-3
St. Augustine Beach, O-3
St. Cloud, O-8
St. George Island, H-4
St. James City, M-12
St. Marks, I-3
St. Pete Beach, L-9
St. Petersburg, L-9
Starke, M-3
Steinhatchee, J-4
Stuart, Q-11
Sugarloaf Key, N-17
Sumterville, M-6
Sunny Isles Beach, C-15, Q-14
Sunrise, B-13
Surfside, C-15, Q-14
Suwannee, K-5
Tallahassee, H-2
Tampa, F-7, L-8
Tarpon Springs, L-8
Tavares, N-6
Tavernier, Q-16
Tequesta, Q-11
Thonotosassa, M-8
Tierra Verde, L-9
Titusville, P-7
Treasure Island, L-9
Trenton, L-4
Umatilla, N-6
Useppa Island, M-12
Venice, L-11
Vernon, E-2
Vero Beach, Q-9
Viera, P-8
Vilano Beach, O-3
Wakulla Springs, I-3
Waldo, M-4
Water Sound Beach, E-3
Wauchula, N-10
Weirsdale, N-6
Welaka, N-5
West Palm Beach, B-7, R-12
Wesley Chapel, M-8
Weston, Q-13
White Springs, L-2
Wildwood, M-6
Williston, L-5
Wimauma, M-9
Winter Haven, N-8
Winter Garden, N-7
Winter Park, M-14, O-7
Winter Springs, O-7
Yankeetown, L-6
Youngstown, F-2
Yulee, N-2
Zephyrhills, M-8
Zolfo Springs, N-10
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To carry out the evacuation simulation, the parameters of the human behavior models, including 

the traffic demand model (Eq.1-2), the dynamic OD model (Eq.3), and the route choice model 

(Eq.4), must be known. The discrete choice model in the traffic demand model has six 

parameters in total, the dynamic OD model has three parameters, and the route choice model has 

one parameter. These parameters can be derived from earlier research, for example, Gudishala 

and Wilmot (2013) for the traffic demand model, Erlander and Stewart (1990) for the OD model, 

Bekhor et al. (2012) (with Highway Capacity Manual (1985) for the BPR function) for the route 

choice model. By including these parameters, our model could forecast evacuation traffic. 

However, in this study, we obtain these parameters through fit/calibrate the model using 

available observations. The data on traffic flow and traffic speed on the major highways 

(including portions of Routes 1 and 27 and I-75, I-95, I-4, and I-10) come from the Florida 

Department of Transportation (FDOT, 2017). The traffic data indicates the number of vehicles 

that passed the camera every three hours. Feng and Lin (2021) used these FDOT traffic camera 

data from major highways to reconstruct the traffic flow (every three hours) for all links in 

Florida with a speed restriction greater than 35 mph during Hurricane Irma using game theory. 

Here we make use of this reconstructed dataset to fit the model, as it contains estimated 

evacuation rate out of each node at each time point for both main highways and local links. We 

use the original camera data from FDOT for highways to evaluate the fitted model.  

Among the calibration parameters, those in the traffic demand model have the most impact 

on simulation outcomes. Thus, a two-stage calibration framework is used. First, Feng & Lin's 

(2021) reconstructed dataset gives the evacuation rate for each area every three hours. We fitted 

the binary logit model for evacuation (Eq. 1-2) using the reconstructed traffic demand and 
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predictors (i.e., hurricane and storm surge projections, evacuation order, hurricane category, time 

of day, and evacuation rate at each time point for each location; Table 1). We additionally extract 

data on the destination distributions from the reconstructed dataset using the agent-based model 

presented in Feng et al. (2020b), and we use the reconstructed OD matrix to fit the gravity model 

parameters using log-linear regression [Eq.3;	α = 1.35(1.21 − 1.49), 𝛽 = 0.73(0.67 −

0.79)	and	𝛾 = 1.74(1.69 − 1.79)]. Then, only one parameter (diversion intensity) in the Route 

Choice Model (Eq. 4) remains to be calibrated, and hence we employ one-dimension search to 

minimize the mean square error between the observed highway traffic and the simulated data (θ 

= 0.021 (0.019~0.023) per minute). The confidence interval for this parameter is determined 

using bootstrapping (sampling a 90% subset from the observation to fit the model).  

 

3 Simulation Results and Implications  

3.1 Simulation Results 

The simulation provides a relatively close match to the real global traffic conditions, including at 

two peak evacuation periods: the evening of 9/06/17 & 9/07/17 (Fig. 5). The model captures the 

spatial-varying traffic peaks. In lower Florida, where the hurricane risk was high, including Key 

West, Miami, and Tampa, the model matches well with real data. Our model shows a larger 

amount of traffic on the upper east coast of Florida compared to the real data, possibly because 

the model overestimated the number of people leaving Florida while many stayed on the upper 

east coast (in homes of relatives or friends; not modeled). In remote downstream areas without 

much hurricane risk (Pensacola, Tallahassee), the model shows some distortion. This is partly 

because of the cumulative error diffused from the upstream evacuation simulation. Also, as these 
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areas had low hurricane risk, the daily traffic might be still functioning, which our hurricane 

evacuation model does not consider. 

 

The observed traffic volume time series of main highways are also compared with simulated 

traffic conditions in Fig. 6. Generally, the simulation matches the temporal patterns in camera 

records. The model underestimates the night traffic volume for some cameras and dates (e.g., 

cameras 322 and 428). This underestimation may be induced by an overestimation of the 

capacity for the upstream cities, as we assume all the hotels are available when the hurricane 

comes, and Orlando, which is upstream of cameras 322 and 428, has a large hotel volume. The 

simulation also overestimates the traffic at camera 322 for 9/5; this uncertainty may be induced 

by the fact that Orlando residents had lower evacuation willingness than predicted, given its 

relatively greater distance from the coast, a parameter not directly included in the model.  
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Fig. 5. Simulation results of global traffic conditions compared with observations on 9/6 and 

9/7 evenings (color indicates traffic volume relative to normal traffic; shadows show the 

evacuation order status). 
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Fig. 6. Simulation results of local traffic conditions compared with observations from 7 cameras 

(blue lines show the observed traffic volume; red lines show simulations of the traffic volume; 

the unit for the traffic volume is veh/h). 

 

3.2 Implications of the analysis results  

Many empirical studies have evaluated the OD model and link choice model. However, whether 

the traffic demand model derived from experiments conducted in lab contexts accurately predicts 

global traffic flow warrants more examination. Thus, it is intriguing to analyze the parameters in 

the fitted traffic demand model (Table 1). Comparing the fitted parameters and those estimated 

by a social questionnaire survey for Louisiana residents in Gudishala & Wilmot (2013) enables 

an examination of various factors involved in Florida residents’ evacuation decision-making 

process during Hurricane Irma. We follow the variable definitions in Gudishala & Wilmot 

(2013), except that they considered the storm surge risk as whether the storm surge was greater 
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than 10 ft (0 or 1) while we use the forecasted probability (0-1) of experiencing 10-ft surge 

above the mean sea level, as in real cases the hurricane information is forecasted and uncertain. 

 

Table 1. Fitted parameters in the traffic demand model compared with the survey-based 

estimates in Gudishala & Wilmot (2013). The corresponding variables are evacuation order 

(Boolean factor for voluntary or mandatory evacuation), hurricane category (forecasted category 

when hurricane makes landfall, 0~5), time of the day (reflected by 3 Boolean dummy variables: 

TOD1 (12:00 a.m.~6:00 a.m.); TOD2 (6:00 a.m. ~ 12:00 p.m.); TOD3 (12:00 p.m.~18:00 p.m.)), 

Time-dependent distance (log-normed distance from the storm), and storm surge risk (forecasted 

probability of experiencing 10-ft surge above the mean sea level). 

 

 

 

The comparison of the model parameters (coefficients) shows that people were concerned about 

the hurricane category more in the case of Irma, possibly because the notifications given by the 

government made people trust that hurricane Irma was the "worst hurricane in 50 years" and 

would "harm their life" (CNN 2017). Also, the impact of hurricane category on human reaction 

is nonlinear. The questionnaire survey covered category-2~4 hurricanes, but Irma was a much 

stronger (category-5) hurricane. The TOD1 (nighttime) effect is dramatically different between 

the Irma analysis and the survey result. Residents seemed unwilling to evacuate at nighttime 

during Irma, which is quite natural, as in real life, people tend to be less likely to evacuate at 
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nighttime than in the evening. The positive coefficient for TOD1 in the questionnaire survey 

result may reflect the bias of the questionnaire result based on a single experiment (Gudishala & 

Wilmot 2013). On the questionnaire survey, people may choose evacuation at night, considering 

benefits of traveling in light traffic. However, in real decision-making scenarios, the difficulty of 

driving at night (darkness, fatigue, cold, etc.) may outweigh the benefit of light traffic conditions 

(Huang et al. 2012 and Huang et al. 2017). This difficulty-ignoring-advantage-enlarging (or 

opposite) effect of participants often appears in survey investigations and is difficult to correct 

(Shrout et al. 2018). We also find that the evacuation rate did not change tremendously during 

the day as shown in the Gudishala and Wilmot (2013) survey. The storm surge risk was found to 

have a much smaller influence on evacuation probability than that in the survey. This limited 

influence might have occurred because before Irma, the storm surge projection was not 

highlighted, and people might have focused more on the hurricane track and category projection, 

relative to the survey estimates. Storm surge threat has been found to be an important motivator 

for people to evacuate in many events (Huang et al., 2016), but not in some other events (Wei et 

al., 2014). It may be important for the government to emphasize more on possible surge risk for 

surge-prone areas. We also observe that people weighed distance to the storm slightly more 

when making evacuation decisions compared to the results from the survey (Gudishala and 

Wilmot, 2013). 

 

It is natural to compare the model’s performance under Irma’s specific parameters with the 

general parameters given in Gudishala & Wilmot (2013). Here we perform a numerical 

experiment by varying the input behavioral parameters. We set the routing and destination choice 

parameters to be the same as in Section 3.1, but we set the evacuation parameters of the demand 
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model as in Gudishala & Wilmot (2013). We show the corresponding results in Fig. 7 for 

highways 217, 351, and 428. The root mean square error (averaged over the time window of the 

simulation) of the modeled results with the parameters in this paper are 146 veh/hr, 43 veh/hr 

and 85 veh/hr, for highways 217, 351, and 428, respectively. The root mean square error of the 

modeled results with the Gudishala & Wilmot (2013) parameters are 194 veh/hr, 61 veh/hr and 

173 veh/hr. The error of the simulation results with the parameters obtained in this paper is 

correspondingly 25%, 30%, 51% smaller than the error of the simulation results with the 

Gudishala & Wilmot (2013) parameters. The Gudishala and Wilmot (2013) parameters generally 

underestimate the peak traffic volume and largely underestimate the total evacuation volume 

(Fig. 7). The results indicate that, under different hurricanes, evacuation behavior may change 

significantly. Thus, it is important to adjust evacuation parameters for difference locations and 

situations when possible. 

 

 

 

Fig. 7 The evacuation model performance under different demand parameters. Red lines show 

the fitted parameters results in Section 3.1, dark blue lines show the observations, and light blue 

lines show the traffic modelling with previous demand model parameters from Gudishala & 

Wilmot (2013). 
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4. Applications in Evacuation Management 

The analysis of the evacuation process of Hurricane Irma reveals some potential to improve 

evacuation management. One possible solution for reducing traffic is to reserve lanes 

(contraflow plans) for evacuation traffic flow (Urbina and Wolshon 2003); however, this strategy 

was not applied in Florida during Hurricane Irma because of logistical concerns. In this section, 

we discuss the potential improvement on the traffic that coordinated evacuation orders may lead 

to. The implementation of coordinated evacuation orders is difficult in reality, as it should be 

noticed that every city in Florida has the authority to issue evacuation orders. However, these 

orders sometimes created interference. For example, Miami ordered its residents to evacuate the 

morning of 9/6, and it took the evacuees about a day (estimated with a large standard deviation 

using reconstructed traffic time in Feng and Lin 2021) to reach Orlando. Those Miami residents 

kept going northward on 9/7 in the morning and merged with those evacuating from Tampa, who 

evacuated the morning of 9/7. Therefore, the two traffic peaks from Miami and Tampa merged 

and blocked I-75 (No. 428 camera).  

 

Here we employ a simple illustrative analysis using the developed model to show its application 

for improving evacuation management. Considering that the Miami evacuees happened to 

converge with Tampa evacuees during the evacuation, we slightly adjust the evacuation order to 

separate their evacuation peaks. The evacuation order in Miami is set to be earlier for 1 day in 

our model, and the traffic flow time series output of I-75 (No. 428 camera; the most crowded 

link section during the evacuation process, with traffic flow ~2 times its normal volume) is 

monitored. In this case, the traffic simulation result (Fig 8, purple curve) shows that the 
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evacuation peak for I-75 decreases significantly, by 10% (from 3064 to 2770 veh/h). The total 

evacuation process (i.e., 95% vehicles have reached their destinations or left Florida) is half a 

day longer, but it still finishes half a day before the predicted hurricane landfall (predicted as 

9/10 morning on 9/6 afternoon). To further test the sensitivity of the traffic to the evacuation 

order, we also perform experiments that set Tampa’s evacuation earlier by 1 day (orange curve) 

and Tampa’s evacuation later by 1 day (green curve). Setting Tampa’s evacuation earlier by 1 

day will enlarge the traffic peak by 10%, while setting it later by 1 day will not affect the traffic 

peak. These results show that a slight change in evacuation orders may greatly change the 

evacuation traffic, and thus the local government holds the power to better manage the hurricane 

evacuation. We argue that it is beneficial for the government to establish coordinated evacuation 

management to make evacuation decisions more temporally and spatially consistent, based on 

simulations using an efficient global traffic prediction model such as the one developed here.  

 

 

Fig. 8. Comparison of traffic simulation results for the original and hypothetical evacuation 

orders on Route 428. Blue curve shows the observed traffic flow. Red curve shows the 

simulation result with the original evacuation order. Orange/green curve shows the simulation 

result with the evacuation order in Tampa set one day earlier/later. Magenta curve shows the 
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simulation results with the evacuation order in Miami set one day earlier. The light blue line 

marks the time of peak evacuation traffic.  

 

Another observed challenge of the evacuation management is associated with the uncertainty of 

hurricane projection. For 9/5~9/7, the predicted track of Hurricane Irma swayed across Florida 

from east coast to west coast. When it was predicted to head towards Miami, residents on the 

Atlantic Coast feared the worst, and many on the west side of the state felt safer. By 9/9, 

however, the storm track shifted to the west, putting Gulf Coast cities like Naples, Fort Myers, 

and Tampa at risk of the most punishing winds and storm surge. Floridians who had traveled 

from east coast cities to the west in search of safety felt confused, as did those living in the west. 

Collier County (between Tampa and Miami) did not order its evacuation until 9/8; Collier 

County experienced a wind gust of 142 mph, 65 homes were demolished (1,008 homes had 

major damage), and two deaths occurred. Thus, hurricane forecasting modeling with high 

precision is critical for hurricane evacuation management, especially for Florida, which may be 

affected by hurricanes from different directions and in need of long-distance evacuation routes 

due to its long and narrow geophysical shape. The efficient evacuation simulation model we 

developed here can be used for ensemble forecasting of the traffic flow to account for the 

uncertainties in hurricane projection. In addition, the efficient model can be applied in real time 

and updated as hurricane prediction progresses.  

 

Finally, the evacuation prediction model can be used to study evacuation decision-making. For 

example, the findings in the behavioral analysis in this paper suggest that it is better for local 

governments and media to highlight the surge risk. Better risk communication may help people 
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make better evacuation decisions based on their real risks. In turn, with better risk 

communication, people might have more confidence in local evacuation orders and behave more 

as predicted, which could also help in the design of more rational evacuation policy.  

 

4 Conclusion 

Hurricane evacuation management is extremely difficult due to a paucity of data on extreme 

events, the complexity of human decision-making and travel behavior, and the high degree of 

uncertainty associated with storm predictions. To address some of these challenges, we built a 

framework for fast hurricane evacuation prediction that is based on storm forecasts, evacuation 

orders, and road network and population data.  The system integrates a traffic demand model, an 

origin-destination model, and a route choice model into a link flow-based mean-field traffic 

model, simplifying the agent-based simulation to a road-level simulation while still keeping the 

agent-level information. In comparison to existing evacuation models, ours does not require an 

artificial or case-specific OD input to match the peak traffic observations; our model uses only 

hurricane predictions and evacuation orders as input for each time point. With its outstanding 

computational efficiency and simple modeling structure, the model may be used to investigate 

the effect of many factors on the evacuation process, such as hurricane projection and evacuation 

orders. 

 

We employ the case of Hurricane Irma (2017), the largest evacuation that has happened in 

Florida, to test the efficiency, predictive capability, and interpretability of the proposed 

framework. Given the high computational efficiency of the framework, we can simulate a large-

scale evacuation such as in Hurricane Irma, which involved ~6000 links and ~4 million vehicles, 
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in 10 seconds on a personal computer. This computational efficiency enables the model to be 

calibrated by searching through a large parameter space. The model is found to accurately 

capture the temporal and spatial evacuation characteristics of Irma, including traffic peaks. The 

model fits well with observations in lower Florida, including Key West, Miami, and Tampa, 

where the anticipated hurricane risk was high. The incorrect prediction occurs solely in upper 

Florida, where the storm risk was lower and daily traffic might have continued to operate 

normally, which our hurricane prediction model did not consider. In future work, we will 

compare this model with other evacuation models which may potentially be used for state-scale 

evacuation modeling as listed in Hardy and Wunderlich (2007) on their prediction accuracy and 

computational efficiency. 

 

As an application, the model can be used to investigate evacuation behavior through fitting 

behavioral parameters in the model with the traffic observations. Compared to parameters 

derived from a previous survey-based study by Gudishala and Wilmot (2013), the behavioral 

characteristics revealed by this model are within reasonable ranges.  However, our fitted 

parameters indicate that coastal residents were more concerned with the hurricane category 

scenario and were significantly less willing to evacuate at nighttime during Hurricane Irma. As a 

result, the evacuation traffic predicted using fitted behavioral parameters and using the Gudishala 

and Wilmot (2013) parameters differ significantly in terms of peak evacuation flow and night 

evacuation rate, and the Gudishala and Wilmot (2013) prediction significantly underestimates the 

evacuation traffic in terms of traffic congestion and total evacuation amount. The multi-stage 

parameter fitting strategy utilized in this paper could be viewed as a data/model-driven approach 

complimentary to survey-based models.  
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Moreover, the model can be used to assist government decision making during the evacuation 

process. Our analysis indicates that releasing the evacuation order one day earlier in the Miami 

region might result in a 10% reduction in peak traffic flow on the most congested route without 

delaying the evacuation. Beyond optimizing evacuation orders, a variety of different evacuation 

tactics can assist in mitigating link congestion and ensuring a safe evacuation. Due to the model's 

computational efficiency, these diverse strategies, including opening road shoulders and 

reserving lanes (counter side), may also be easily examined in our model by modifying the input 

road network data.  

 

Individual behaviors are likely to have a significant impact on the global evacuation (as also 

shown in this paper). The behavioral parameters in this paper were estimated from one single 

event (Irma) for a specific region (Florida). Future studies should assess the degree to which 

these parameters can predict the evacuation flows in other regions affected by hurricanes with 

various features. Our simulation is based on an estimation of the volume of unoccupied shelters 

and hotels for destination selection, assuming that the majority of households in high-risk areas 

will evacuate (Feng and Lin 2021) and so will be unable to accommodate evacuees/peers/friends 

from other regions. Because the majority of people in upper Florida would stay home and could 

accommodate their friends, and previous research indicates that 62 percent of evacuating 

households may stay in peers' homes (Lindell et al., 2019), our modeling may be biased for low-

risk areas. As a result, our simulation results are consistent with observations for lower Florida, 

while our model overestimates the traffic flow for upper Florida (also due to the fact that local 

commuting traffic is not included in the current model for those less impacted areas). To more 
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accurately predict the evacuation process for low-risk areas, the model needs to account for the 

proportion of households in the evacuating city that have peers in other cities ready to 

accommodate them during an evacuation (Lindell et al. 2019); this model extension is left for 

future study. Additionally, thanks to our model's computational efficiency, it can be updated in 

real time in response to changing traffic conditions. In a subsequent study, we will construct a 

temporally evolving framework for updating the traffic model with real-time observations as the 

event evolves, enabling the model to adapt flexibly to a variety of events and human behaviors. 
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