1	Tropical cyclone-blackout-heatwave
2	compound hazard resilience in a changing climate
3	Kairui Feng ^a , Min Ouyang ^b , Ning Lin ^{a,1}
4	^a Civil and Environmental Engineering, Princeton University, USA
5	^b School of Artificial Intelligence and Automation,
6	Huazhong University of Science and Technology, China
7	¹ To whom correspondence should be addressed. Email: nlin@princeton.edu
8	
9	
10	Abstract:
11	Tropical cyclones (TCs) have caused extensive power outages. The impacts of TC-caused
12	blackouts may worsen in the future as TCs and heatwaves intensify. Here we couple TC and
13	heatwave projections and power outage and recovery process analysis to investigate how TC-
14	blackout-heatwave compound hazard risk may vary in a changing climate, with Harris County,
15	Texas as an example. We find that, under the high-emissions scenario RCP8.5, long-duration
16	heatwaves following strong TCs may increase sharply. The expected percentage of Harris
17	residents experiencing at least one longer-than-5-day TC-blackout-heatwave compound hazard
18	in a 20-year period could increase dramatically by a factor of 23 (from 0.8% to 18.2%) over the
19	21st century. We also reveal that a moderate enhancement of the power distribution network can
20	significantly mitigate the compound hazard risk. Thus, climate adaptation actions, such as
21	strategically undergrounding distribution network and developing distributed energy sources, are
22	urgently needed to improve coastal power system resilience.
23	
24	
25	
26	
27	

Main

28

29 Hurricane (generally called tropical cyclones or TCs) threaten 59.6 million people in the U.S. 30 (2018) [1,2] and are important initiating causes of large-scale failures of power systems. In 2017, 31 Hurricane Maria devastated Puerto Rico's power grid, resulting in a power loss of 3.4 billion 32 customer hours and the worst blackout in US history [3]. Hurricane Irma (2017) deprived over 7 33 million customers of electricity, 2.1 million of whom still lacked access to electricity after four 34 days [3]. Hurricane Harvey (2017), making landfall on the Texas coast, disrupted hundreds of 35 overhead electricity lines and disabled over 10,000 megawatts (MW) of electricity generation 36 capacity; local utility companies spent over a week to restore the system [4]. In 2020, Hurricanes 37 Isaias, Laura, Sally, Delta, and Zeta caused ~3.8, 1.5, 0.9, 0.8, and 2.0 million power outages, 38 separately [5]. Similarly, Hurricane Florence (2018) cut electric power for around 1.4 million 39 customers; the system took two weeks to recover [6]. Hurricane Sandy (2012) affected over 8.5 40 million customers [7,8]. These disruptions, leaving millions of customers without electricity for 41 days, call for an investigation of power system resilience and ultimately a re-design of the energy 42 infrastructure [9]. Moreover, the U.S. power grid may become more vulnerable to weather and 43 climate-induced failures in the future due to climate change [10]. In particular, hurricane-induced 44 power outages are likely to become more severe, as increasing evidence shows that hurricane 45 intensity will increase due to climate change (e.g., 11-17). This potential change should be 46 quantified and accounted for in planning future energy infrastructure. 47 48 Projected with greater confidence, climate change may also induce more heat extremes that are 49 beyond human tolerance [18-21]. Heatwaves are the primary cause of weather-related mortality 50 (due to heat cramps, syncope, exhaustion, stroke, etc.) in the U.S. [22], and they may harm 51 mental health [23,24], sleep quality [25], and social stability [26] in different ways. Ref. [27] is 52 an early research to connect TCs with heatwave impacts. With TC-induced power outages, the 53 impact of heatwaves would dramatically increase, as air conditioning, with around 1.6 billion 54 units in operation over the U.S. [28], is critical in reducing the vulnerability to extreme heat (the 55 fatality risk under heatwaves without air conditioning is estimated to triple, as revealed by a post-56 heatwave analysis in Chicago [29]). Ref. [27] found that TC-heatwave compound events have 57 been rare and affected only about 1000 people worldwide, as the seasonal peak of extreme heat

58 precedes that of major TCs. Due to global warming, Ref. [27] projected that the TC-heatwave 59 compound hazard would affect a much larger population in the future, e.g., over two million in a 60 world 2°C warmer than pre-industrial times. However, Ref. [27]'s projection neglected potential changes in TC climatology in the future, which may result in an underestimation of the 61 62 compound hazard, given that TCs will likely become stronger (e.g., 11-16) and possibly occur 63 earlier in the season [30]. Also, ref. [27] focused on TC-heat compound hazard, but the potential 64 impact of the compound hazard depends also on the reliability and resilience of the power 65 system. 66 To better quantify the evolving joint impact of TCs and heatwaves, here we model the TC-67 blackout-heatwave compound hazard risk and resilience in a changing climate. We combine 68 statistical-deterministically-downscaled TC climatology and directly-projected heatwave 69 climatology from general circulation models (GCMs), and we explicitly model the power system 70 failure and recovery process under the climate hazard scenarios. We investigate how the risk of 71 residents experiencing prolonged TC-blackout-heatwave compound hazards may change from 72 the current to future climates. To illustrate we apply the analysis to Harris County (including 73 major part of Houston City) in Texas (see Methods and Supplementary Fig. S1 for a description 74 of the area's geographics and power network). Harris County has the highest population density 75 along the Gulf Coast and, as located in the subtropics, may face disproportionally large increase 76 in heatwaves [31] and TCs [32] in a warming climate. 77 As TCs cannot be well resolved in typical GCMs due to their relatively small scales, we apply 78 large datasets of synthetic storms generated by a deterministic-statistical TC model [33] for the 79 study area [34], for the historical climate of 1981–2000 based on the National Centers for 80 Environmental Prediction (NCEP) reanalysis and for the future climate of 2081-2100 under the 81 emissions scenario RCP8.5 based on 6 GCMs in the fifth Coupled Model Inter-comparison 82 Project (CMIP5; see Methods). Based on the performance of the GCMs in terms of their 83 historical simulations compared to the reanalysis-based simulation, we bias-correct the GCM-84 simulated storm frequency and landfall intensity distribution and combine the 6 simulations into 85 a single projection for the future climate. Then we stochastically resample the synthetic storms 86 from the combined projection to form 10,000 20-year simulations for the historical climate and 87 10,000 20-year simulations for the future climate (Methods). Here we focus on wind effects on

88 the power grid (see Discussion) and apply a parametric model to estimate the spatial-temporal 89 wind field for each synthetic storm. We apply a physics-based power outage and recovery model 90 [35], validated by two historical cases (Hurricanes Harvey and Ike) for the study area, to 91 simulate the wind-induced power system failure and recovery process at a census tract level for 92 each synthetic storm (see Methods). 93 The US National Weather Service issues warnings when a forecast heat index (HI) 94 characterizing humid heat exceeds 40.6°C. Ref. [27] defines a compound TC-heat event as a 95 major TC followed within 30 days by an HI greater than 40.6°C at the site of landfall. Here we 96 also define a heat event as an HI over 40.6°C, but we are interested in a range of time scales, 97 especially over 5 days following the TC landfall. (Considering that TCs usually start to interrupt 98 the life pace of local residents at least 2 days ahead of landfall [36], a greater-than-5-day power 99 outage plus heatwave means affected residents cannot resume normal life for over a week, which 100 is usually a benchmark for resilience design for critical infrastructure systems [37].) Based on the 101 same reanalysis and GCM datasets, we calculate and bias-correct the HI for the study area during 102 and after the landfall of each synthetic storm (see Methods). In addition, we modify the HI to 103 statistically account for the interdependence between TCs and heatwaves (Methods). Combining 104 the obtained HI dataset and TC power outage analysis enables us to estimate the risk of Harris 105 residents experiencing prolonged (e.g., 5 day) heatwaves (HI>40.6°C) after losing power due to 106 TC-induced damage. We first focus on the estimated risk for the high-emissions scenario 107 RCP8.5 and the end-of-the-century (2081-2020) time frame (Results); we then investigate the 108 sensitivity of the estimated risk to the emission scenario, the mid-of-the-century time frame, and, 109 considering the large uncertainty regarding how TC frequency will change (e.g., 15,16,38,39), 110 the storm frequency projection (Discussion). Also, we assume the power system and recovery 111 operation will remain the same in the future (Results), but we investigate possible effects of 112 heatwaves on power restoration and future power capacity upgrade (Discussion). 113 In addition to quantifying the risk, we explore efficient strategies to enhance power system 114 resilience for combating future TC-blackout-heatwave compound hazards. Consistent with 115 previous results [8], our network analysis (see Methods) shows that local power failures have a 116 disproportionally large non-local impact on the power system; the reliability of local power 117 distribution networks (i.e., the final stage of energy infrastructure) is particularly critical. Thus,

we propose an undergrounding strategy (burying parts of the power network covered by antiwater pipelines [40-42]; see Methods) to protect a small portion of wires that are close to the root nodes of local power distribution networks. We show that such a targeted undergrounding strategy is much more efficient than the widely-applied uniform undergrounding strategy in increasing the resilience of the power system and decreasing the risk of future TC-blackoutheatwave compound hazards.

Results

Historical Cases. Hurricanes Harvey and Ike are the main events in the past 20 years that led to significant power outages (over 10% of residents lost power) in Harris County. Ike had a higher gust wind observation (~92 mph) when it hit Houston; Harvey was weaker (<50 mph) but lasted longer and brought heavy rainfall [43]. The wind during Ike broke many more poles, leading to a larger power outage. As shown in Fig. 1 for the total impact for Harris County from Hurricanes Ike and Harvey, results from the power grid outage and recovery model compare relatively well with the observation (although the model slightly overestimates the initial power outage under Harvey), indicating the model's success in capturing both large and relatively small power outage events. The model estimates a relatively small power outage (1% [0%-1%]) after the 5-day restoration period for Harvey and a large power outage (63% [60%-66%]) for Ike for over 5 days, agreeing with observations (Fig. 1). The model results at the census tract level for Hurricanes Ike and Harvey compare also relatively well with observations (Supplementary Fig. S2), with a mean error over all census tracts less than 10%.

Post-TC Heatwaves. While heatwaves did not follow Hurricanes Ike and Harvey, they may become more likely to follow future TCs. Under RCP8.5, the projected change in global mean surface air temperature for the late 21st century relative to the reference period of 1986-2005 is 3.7 °C based on all GCMs in the IPCC report [44]. The 6 GCMs used in this study predict an increase of the average global temperature by 3.4°C in the future climate (2081-2100) compared to that in the historical climate (1981-2000). We analyze the synthetic TC and heatwave datasets to investigate the likelihood and duration of future post-TC heatwaves. Fig. 2a shows how the

147 probability for experiencing a heatwave with a certain duration following a TC changes from the 148 historical to future climate for the study area. The probability of a heatwave, especially a long-149 lasting one, following a TC is quite small for the historical climate, which is consistent with the 150 observation that TC-heatwave hazards have affected only ~1000 people worldwide during 1979– 151 2017 [27]. However, the probability curve is much higher for the future climate. The probability 152 for a post-TC heatwave lasting over 5 days is 2.7% (1.8% - 4.2%) under the historical climate 153 but 20.2% (12.0%-31.5%) in the future climate. For a post-TC heatwave to last over 12 days is 154 almost impossible in the historical climate, but a nonnegligible probability of 7.5% (4.8%~11.9%) exists for it to happen in the future climate. To better reveal the timescale of 155 156 climate change impact, Fig. 2b shows the relative climate risk, defined as the probability of 157 experiencing a heatwave lasting for a certain duration following a TC in the future climate 158 divided by that in the historical climate. The relative climate risk increases sharply with the 159 duration, reaching the peak around 13 days. The probability for a 1-day heatwave following a TC 160 in the future climate would be ~ 5 (3-9) times larger than that in the historical climate, the 161 probability for a 5-day heatwave would be 7 (4 \sim 12) times larger, and the probability for a 13-162 day heatwave would be 22 (14~33) times larger. This time-scale pattern of climate change 163 impact should be considered when developing maintenance and emergency response strategies 164 for urban infrastructure systems. For example, resilience criteria of these systems should be 165 enhanced to avoid "resonance" effects of climate change. A typical recovery cycle for the power 166 system is currently 5 days or longer [37]; the dramatic change in the climate risk may render 167 such a time scale of recovery not resilient.

168

169

170

171

172

173

174

175

176

Blackout and Compound Hazard Risk. Incorporating the power outage and recovery modeling, we analyze the TC-induced blackout and TC-blackout-heatwave compound hazard risk for the study area. We apply an agent-based approach and record the largest duration of the hazards each resident could experience during each of the 20,000 20-year synthetic simulations. Figs. 3a and 3b show the estimated percentage of Harris residents who may not experience post-TC power outages longer than a certain duration over a 20-year period under the historical and future climates, respectively. On average, the TC-induced power outage could affect 50% of residents during a 20-year period in the historical climate and 73% of residents in the future.

12.8% residents would not be subject to any post-TC blackout during the 20-year period under the worst case in the historical climate, while only 2.7% residents would not be affected under the worst case in the future climate. In the historical climate over a 20-year period, on average 14% of Harris residents could face at least one longer-than-5-day post-TC power outage, which is less than one third of the expected level of 44% in the future. For 90% of cases under the historical climate, the utility company (CenterPoint Energy) could fully repair the power system within about 15 days, which matches recent-year records (e.g., 12 days for Hurricane Irma in 2017, and 13 days for Hurricanes Michael and Florence in 2018 [5]). With the same response strategies and resources, the utility company might spend over 25 days in repairing the power system in the future under severe TCs. By comparison (with Fig. 1), the probability of experiencing the scale and duration of power outage induced by Hurricane Ike during a 20-year period is about 10% in the historical climate and 35% in the future. Hurricane Harvey is a below-average event in both the historical (87%) and future (96%) climates. These analyses show that climate change may dramatically increase the outage risk of the power system, especially the tail of the risk that people will face.

Figs. 3c and 3d show the estimated percentage of Harris residents who may not experience any TC-blackout-heatwave compound hazard longer than a certain duration over a 20-year period under the historical and future climates, respectively. The chance for a resident to experience at least one longer-than-5-day compound hazard is almost zero (0.8%) under the historical climate. However, the chance for a resident to be affected by at least one such compound hazard in the future climate (18.2%) would be 23 times larger. Recall that, due to climate change, the 5-day post-TC power outage risk is estimated to increase by 3 times (Figs. 3a & 3b), and 5-day post-TC heatwave compound hazard is estimated to increase by 7 times (Fig. 2b). The 23-time increase of TC-blackout-heatwave compound hazard risk, which is larger than the product of the two factors as if TCs and heatwaves are climatologically uncorrelated (21 times), indicates that strong TCs and long-lasting heatwaves may become more likely to co-occur under climate change. In other words, strong TCs leading to larger power outages may be more likely followed by longer-lasting heatwaves, affecting over 18% of Harris residents towards the end of the century.

To investigate the spatial distribution of the risk, we estimate the percentage of residents to experience at least one longer-than-5-day TC-induced power outage (Figs. 4a and 4b) and TC-blackout-heatwave compound hazard (Figs. 4c and 4d) over a 20-year period for each census tract in Harris County in the historical and future climates. Changing from the historical to the future climate, the power outage risk of all the census tracts would at least double. The compound hazard risk would increase even more dramatically. Over 95% people in all census tracts would experience no longer-than-5-day compound hazard in the historical climate; in the future, over 95% of census tracts would have over 5% of the residence experiencing at least one such compound hazard during a 20-year time period. The distribution of risk is heterogeneous, which implies a heterogeneous distribution of the resilience level of the power system, as the heatwave is constant (given the GCM resolution) and TC winds vary only slightly over this relatively small region. The spatial pattern shows that residents near the center of Houston (the middle and lower part of the County) may experience lower power outage and compound hazard risk than residents in rural (e.g., the upper part) areas of the County. The varying densities of power substations and spatial patterns of distribution networks induce most of this difference.

Scaling Law of Power System Failure. To better understand the power system, we apply network analysis to investigate links between local disruptions (the failure of a specific pole or distribution/transmission line) and global failures, using our large datasets of synthetic storm events. For each storm event, we calculate W(x), the percentage of service interruptions induced by all local disruptions that affect more than x customers, and P(x), the percentage of local disruptions that affect more than x customers. W(x) also represents the probability for a customer to be subject to a disruption that affects more than x customers, and P(x) is the probability for a disruption to affect more than x customers. Fig. 5a shows the obtained generalized scaling law [8] between W(x) and P(x), for each simulated event and averaged over all the events for the historical climate. Rather than a linear relationship indicating a uniform distribution of damages, the concave scaling curve shows that on average the largest 20% of local disruptions are responsible for 72% (71%~75%) of the global power outage (measured by the number of affected customers). This result obtained from the synthetic analysis for Harris County is

comparable with a previous empirical result for Upstate New York that during Hurricane Sandy the top 20% of local disruptions induced 79%-89% of the service interruptions [7]. In fact, the difference in the scaling curves among the full range of synthetic TCs is quite small, which confirms the robustness and generalizability of the scaling law in describing a TC-damaged power system. Further, ref. [8] found that the scaling curve developed using data on failures in daily operation is also similar, suggesting that the power network vulnerability (i.e., local disruptions inducing large-scale interruptions) exists independently of exogenous effects. Thus, reliability-based redesign against various TCs may not need to differ fundamentally from the daily-operation-based enhancement, as confirmed later (Figure 6).

Large power outages are usually induced by local damages (as shown in our analysis and previous studies [8]), and large portions of local damages are due to distribution network failures, so we analyze the connection between power outages and local distribution network topology. Fig 5b. shows the correlation between the percentage of residents experiencing a longer-than-5-day power outage (averaged over all simulated synthetic storms for the historical climate) and the harmonic mean length of the power distribution network sectors at the census tract level. The results show that the longer the length of the local power distribution networks, the higher the risk. The mean length of the power distribution networks is highly related to the pattern of urban development. A region with a lower population density may have a larger mean length of power distribution networks, as it may have fewer substations to support residents who live relatively far away. Thus, our results indicate that, for TC-prone regions, the scaling of urban development may have contributed significantly to the spatial distribution of power outage risks. The observed high correlation between the power outage rate and the mean length of distribution networks and the generalized scaling relationship between the probability of local failure and the failure impact, shown in Fig. 5, can be explained theoretically and generally for acyclic (the most common) power distribution networks (see theoretical analysis and Fig. S3 in Supplementary Materials).

Efficient Undergrounding Strategy. Based on an improved understanding of the power network vulnerability, we test three network enhancement strategies to mitigate the TC-blackout-

heatwave compound hazard risk in the future. Fig. 6 compares the reduction of the TC-blackoutheatwave compound hazard risk, measured by the percentage of residents affected by longerthan-5-day compound hazard, as a function of the enhancement rate for the three strategies; the enhancement rate is the total length of enhanced networks divided by the total length of the network sections that could be enhanced. Random enhancement of the high-voltage transmission network (burying transmission branches randomly) provides limited improvement of the global system performance. This finding confirms that the local distribution networks dominate global pattern of the power outage and subsequent recovery process. Randomly undergrounding lowvoltage power distribution networks improves the system performance linearly, which means that the power distribution networks without protection face the same risk as before the enhancement. Given the acyclic topology of the power distribution networks, a greedy undergrounding strategy is used to protect a small portion of wires close to the root nodes of the distribution networks. In the simulation, the algorithm simply protects the root sector of the longest overhead branches of the distribution network iteratively until the enhancement rate is reached (i.e., "greedy" undergrounding). The greedy undergrounding strategy improves the system performance much more than the other two strategies. For example, with the first 5% power distribution networks undergrounded, the expected percentage of residents who might face the compound hazard for over 5 days drops to 11.3% from 18.2% (Fig. 3d). This performance improvement (6.9%) is ~15 times more than that of randomly undergrounding distribution networks (0.5%) or randomly undergrounding transmission network (0.1%), demonstrating a superior cost-efficiency of the greedy strategy. The topological law for power outages that we found here may help utility companies to plan resilient power networks to combat change climate.

290

291

292

293

294

295

296

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

Discussion

The results of this analysis demonstrate how dramatically the impact of TCs may increase over time, due to compound effects of storm and heatwave climatology change. For Harris County, the expected (average) percentage of residents experiencing at least one longer-than-5-day heatwave without power post-TCs in a 20-year period would increase from 0.8% in the historical climate (1980-1999) to 18.2% towards the end of the 21st century (2080-2099), under the high-

297 emissions scenario RCP8.5. For the current (2000-2019), near-future (2020-2039), and mid-of-298 the century (2040-2059) time frames, which are also highly relevant to decision making, this 299 impact percentage would increase to 2.2%, 5.1%, and 6.7%, respectively (see Supplementary 300 Fig. S4). Even if we account for the uncertainty in the prediction of storm frequency [16] and 301 remove the predicted increase in the storm frequency for the study area (by applying the 302 frequency in the historical climate), the impact percentage would still increase significantly, to 303 11.2% towards the end of the 21st century (Supplementary Fig. S5). Only if we assume that the 304 warming is well controlled under the low-emissions scenario RCP 2.6 and the TC activity 305 (including both frequency and intensity) remains the same as the historical level, the compound 306 hazard would change slightly, with the impact percentage changing from 0.8% in the historical 307 climate to 1.0% towards the end of the century (Supplementary Fig. S6). If the RCP8.5 scenario 308 is considered an upper bound [45] and the ideal RCP2.6 scenario a possible lower bound, this 309 additional analysis indicates that the compound hazard risk may be largely avoided under 310 rigorous climate mitigation policies in line with the Paris Agreement. However, large 311 uncertainties exist in the economic and political systems [45] as well as in the climate system 312 (including possibly complex physical interactions between TCs and heatwaves); climate 313 adaptation and risk mitigation are still necessary and urgent. 314 Other uncertainties exist in the modeling of the future compound hazard and risk. As the first 315 attempt in quantifying the compound hazard risk, here we focus on the dominate power damage 316 effects -- winds and induced falling trees [46]. Located relatively high above the sea level (see 317 elevation map in Supplementary Fig. S1), our study area, Harris County, is affected mainly by 318 extreme winds, as evident in historical events including Hurricanes Ike and Harvey (though 319 lower Houston beyond the Harris County was heavily flooded by Harvey's extreme rainfalls and 320 compound flooding). Accounting for significantly less impact (< 10% TC-induced power 321 outages; [46]), however, flooding and associated debris during TCs can also cause damage to the 322 power system, and they usually impede the early recovery of a power network. Flood-prone 323 regions may experience higher risks than estimated here, and future development of the 324 modeling method must take flood impact into account. A precise prediction of flood-induced 325 power outage and recovery requires accurate prediction of the magnitude and timing of the 326 flooding (from storm surge and/or heavy rainfall) [47], power system vulnerability under 327 flooding [48], and operational logistics of local utilities when repairing wetted power system

328 components. The heatwave may also trigger power outages due to excessive power demand; 329 however, these outages usually restore at a time scale of hours [49], rather than at a daily or 330 weekly restore time scale for the TC damage induced outages that we consider in this study. 331 The power system operation may also be affected by extreme heat. According to the 332 Occupational Safety and Health Administration (OSHA) criteria, outdoor workers can work for 333 only limited hours (<75% of normal hours) under extreme heat and humidity (HI>39.4°C). 334 Assuming there is no advanced technology to improve outdoor working condition and the 335 recovery operation follow the OSHA criteria, the expected percentage of Harris County residents 336 experiencing at least one longer-than-5-day TC-blackout-heatwave compound hazard in a 20-337 year period under the future climate could increase from 18.2% (workers working normally) to 338 23.3% (see Supplementary Fig. S7). Aging of the power system, which is not accounted for, can 339 also reduce the resilience and increase the compound hazard risk, although proactive system 340 maintenance may reduce this effect. Moreover, the scaling relationship between the power 341 network and the population in a growing city may enlarge the affected population in the future, 342 as power facilities usually develop much slower than the growth of local population (a 0.87-343 power scaling [50]). Given this scaling effect, unbalances between local population and network 344 density may increase, and thus future risks may be higher than those estimated herein. On the other hand, we do not account for the benefits of backup generators or solar panels here. 345 346 These local devices could temporarily support residents who lose power from the main grid --347 another possible way to mitigate impacts of TC-blackout-heatwave compound hazards. The 348 power demand and dependence may reduce during TCs thanks to evacuation, but high power 349 demand may still exist if electrical vehicles are increasingly adopted and used for evacuation 350 [51]. Also, as the temperature increases in the future climate, it is possible that utilities will have 351 the incentive to upgrade the power system capacity to match with the higher temperature-related 352 power demand. However, improving the power capacity would not significantly improve the 353 power system reliability and resilience under TCs, even when the capacity is increased by 50% 354 (see Supplementary Fig. S8). 355 Strategically undergrounding local distribution networks can efficiently enhance the resilience of 356 the power system to adapt to climate change. Our analysis shows that undergrounding only 5%

of the distribution networks close to the root nodes can reduce the expected percentage of Harris County residents experiencing at least one longer-than-5-day TC-blackout-heatwave compound hazard from 18.2% to 11.3%. As the power outages under TCs and daily operation are both dominated by the generalized scaling law (e.g., top 20% of local damages would trigger over 80% of total outage), the reliability-based enhancement of power grids against TCs can be considered jointly with daily-operation-based enhancement. This finding points further to the potential to develop a unified design framework for enhancing the power system resilience against various damage sources. The potential co-benefit and improved cost efficiency induced by the unified strategy may better motivate utility companies to mitigate the compound hazard risk. Furthermore, the power outage and compound hazard we consider herein can significantly disrupt local business and supply chains, leading to secondary losses [52], and the enhanced connectivity of local and global economics potentially would further foster the impact [53]. The coupled modeling of the compound hazard and induced economic disruption may be applied in future studies to quantify the cost-benefit [54] of proposed risk mitigation strategies.

resilience of infrastructure systems under the impact of future compound hazards is essential but is still associated with various uncertainties, as discussed above. Risk analysis requires continuous updates wherein improved modeling and new data become available. As extreme climate events become more frequent, coastal megacities also develop rapidly [1, 55]. To ensure sustainable development, effective strategies to mitigate the TC-blackout-heatwave compound hazard risk, a pronounced example of physical-social connected extremes [56], should be carefully developed. The analysis results for Harris County obtained in this study may be qualitatively representative for coastal megacities in the subtropical regions of the U.S., but the developed methodological framework can be applied to quantify power system resilience and develop risk mitigation strategies for any TC-prone areas. More generally, this study demonstrates an interdisciplinary approach that integrates the-state-of-art climate science and infrastructure engineering to project climate change impact and develop risk mitigation strategies, with the goal of achieving resilient and sustainable communities.

387 TC Projection. 388 TCs cannot be well resolved in typical climate models due to their relatively small scales, except 389 perhaps in a few recently developed high-resolution climate models (e.g., 38). Dynamic 390 downscaling methods can be used to better resolve TCs in climate-model projections (e.g., 57), 391 but most of these methods are still computationally too expensive to be directly applied to risk 392 analysis. An effective approach is to generate large numbers of synthetic TCs under reanalysis or 393 GCM-projected climate conditions to drive hazard modeling. In this study, we apply large 394 datasets of synthetic storms generated by a deterministic-statistical TC model [33]. This model 395 uses thermodynamic and kinematic statistics of the atmosphere and ocean derived from 396 reanalysis or a climate model to produce synthetic TCs. The model, when driven by reanalysis 397 environment, is shown to generate synthetic storms that are in statistical agreement with 398 observations [58], and it has been widely used to study TC wind, storm surge, and rainfall 399 hazards under climate change effects (e.g., 59,32,33). 400 Specifically, we apply the synthetic TC datasets generated with this model by ref. [34] for the 401 Houston area. Each synthetic storm passes within 300 km of Houston, with a maximum wind 402 speed of at least 22 m/s (sensitivity analysis shows that the hazard modeling results are not 403 sensitive to the storm selection radius when it is greater than 200 km). The datasets include 2000 404 synthetic TCs under the historical climate over the period of 1981–2000 based on the National 405 Centers for Environmental Prediction (NCEP) reanalysis as well as 2000 synthetic TCs for the 406 historical climate (1981-2000) and 2000 synthetic TCs for the future climate (2081-2100 under 407 the high-emissions scenario RCP8.5) based on each of 6 CMIP5 GCMs (chosen based on data 408 availability and following previous studies): the National Center for Atmospheric Research 409 CCSM4, the United Kingdom Meteorological Office Hadley Center HadGEM2-ES, the Institute 410 Pierre Simon Laplace CM5A-LR, the Japan Agency for Marine-Earth Science and Technology 411 MIROC-5, GFDL-CM3.0 (NOAA Geophysical Fluid Dynamics Laboratory), and the Japan 412 Meteorological Institute MRI-CGCM3. 413 To account for possible biases in the climate projection, we bias-correct storm frequency and 414 landfall intensity and apply stochastic modeling to resample the storms. Specifically, for each 415 GCM-driven projection, we bias-correct the projected storm frequency for the future climate by 416 multiplying it by the ratio of the NCEP estimated frequency (where the NCEP frequency was

calibrated to be 1.5 times/year for Houston using historical data [60]) and GCM estimated frequency for the historical climate, assuming no change in the model bias over the projection period, following ref. [32]. We apply the same assumption to bias-correct the projected landfall intensity (maximum wind speed) for the future climate, through cumulative density function (CDF) quantile mapping based on comparison of the NCEP and GCM estimated CDF of the annual maximum landfall intensity for the historical climate, similar to ref. [61], and reweighting each TC simulation based on the bias-corrected intensity distribution. To obtain a single projection for the future climate, we combine the bias-corrected projections from the 6 GCMs, weighted (as in ref. 62) according to their performance in estimating the CDF of the annual maximum landfall intensity for the historical climate compared to NCEP estimates. Finally, we stochastically resample the storms from the combined projection based on the adjusted weight for each storm simulation for the specific climate condition; 10,000 20-year simulations are generated for the historical climate and 10,000 20-year simulations are generated for the future climate. The storm occurrence times (generated in the physical model according to storm climatology) are matched with the heatwave analysis for the study area. For each sampled storm, we generate the spatial-temporal wind field, employing the classical Holland wind profile [63], accounting for the effects of surface friction and large-scale background wind based on ref. [64], and converting 1-min, mean winds to 3-second wind gusts using gust factors [65], to drive the power grid outage analysis. **Heatwave Projection.** Similar to ref. [27], the HI is calculated at the daily level as a function of near-surface (at 2 m) air temperature (daily maximum), specific humidity (daily mean), and surface pressure (daily mean). To be consistent with the TC simulation, we obtain these data for Houston from the NCEP reanalysis and 6 GCMs mentioned above, matched in date with the landfall (defined as when the storm is at its closest point to Houston) of each generated synthetic storm. The GCM-projected future HI is bias-corrected [31,66] by adding to it the difference between the NCEP reanalysis and GCM-estimated historical HI (monthly average cubic-spline interpolated to daily). When combining the datasets of storm and heatwave events (HI > 40.6° C). we account for their possible correlation. Based on observations, ref. [27] found that TCs arrive after an anomalously high HI from amplified air temperatures and specific humidity; after TC passage, HI anomalies decrease to negative and return to zero within approximately 10 days.

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

447 Ref. [27] neglected the interdependence between storms and heatwaves when estimating 448 compound TC-heat events on a 30-day time scale. Here, concerning compound events on shorter 449 time scales, we account for the interdependence statistically: we add the composite impact of TC 450 passage to the meteorological variables used to calculate the HI, where the composite impact is 451 estimated based on historical data (Fig. 3a in ref. [27]). Accounting for this correction reduces 452 the HI values within 5 days of TC passage and thus the probability of 5-day compound TC-453 blackout-heatwave events defined in this study. Also, we consider hazard compounding as when 454 the heatwave starts before or on the day of TC landfall (i.e., neglecting heatwaves that occur 455 after landfalls), which results in a conservative estimation of the compound risk. 456 **Power System Modeling.** While various statistical models [67,68] have been developed to 457 estimate TC-induced blackout, we employ a physics-based model to better account for future 458 evolving factors, e.g., climate change, infrastructure upgrade, and utility maintenance. 459 Specifically, we apply the power grid outage and recovery model developed by ref. [35] to 460 simulate TC impact on the electric power system in Harris County, TX. This system serves 461 approximately 1.7 million residents in a service area around 4,600 km², and over 90% 462 metropolitan households in Southwestern America use air-conditioning [69]. The power grid 463 includes high-voltage transmission networks, where 551 transmission lines connect 23 power 464 plants and 394 substations and low-voltage, generated star-like distribution networks (discussed 465 below), which contain ~40,000 branches [35] (Supplementary Fig. S1). 466 Given the TC wind hazard (i.e., local maximum wind gust during the storm), the power grid 467 failure model first applies probabilistic fragility functions to estimate the damage states of five 468 main vulnerable component types of the power network: transmission substations, transmission 469 lines, distribution nodes, distribution lines, and local distribution circuits. Component failures 470 alter the power grid topology and may separate the power grid into unconnected sub-grids. A 471 direct current (DC)-based power flow simulation is then performed to capture the power flow 472 pattern in each sub-grid, and the local demand is cut when overflow happens until the system 473 achieves a steady state (refs. 70,71 used a similar approach). The power system is open and 474 connects with systems outside the study area via transmission lines; the performance of the 475 power grid outside the study area is assumed normal. The recovery model, developed based on 476 emergency response plans and operational data, applies estimated recovery resources based on a

priority-oriented strategy to repair damaged transmission substations, transmission lines, and critical facilities vital to public safety, health, and welfare before local distribution networks [35]. The power grid outage and recovery model was calibrated for the study area by ref [35] using observed data for Hurricane Ike (2008). We further evaluate the model adding data from

Hurricane Harvey (2017). The same wind field modeling method applied to the synthetic storms

is used for these two historical storms with storm characteristics (i.e., track, intensity, and size)

taken from the extended best track data [72].

The power system model we use here, though physics-based, cannot resolve all details during power outage and recovery processes. Given that distribution networks and protective device data are generally not available, star-like network [35] and minimal spanning tree (MST) [73] models (and models combining these two [73,74]) are usually used to generate synthetic distribution networks and features that may have minor effects on predicting the daily scale power outage and recovery under hurricanes including protective devices are usually neglected [73-75]. Based on these assumptions, the adopted simulation framework is arguably the best model that we can use to capture the power outage and recovery process at a meso-scale level, e.g., for each zip code or census tract, rather than at the individual household level, for risk and resilience analysis. The model using star-like distribution networks and neglecting protective devices is also validated for Hurricane Ike and Harvey at both the county level (Fig. 2) and census tract level (Fig. S2). The well consistency between the daily scale simulated results using this model and the real observations, together with the fact that this research mainly takes its produced census-tract level outage scenarios to support the compound hazard resilience analysis, proves the power system model useful enough to support this research as well as the main findings.

Nevertheless, we perform further analysis for Hurricane Ike to test the assumptions on the distribution networks and protective deceives (Supplementary Fig. S9). To test the assumption on the distribution networks, we use the road network in Harris County to generate the MST structure of the power distribution networks and find that the specifics of the acyclic distribution network structure does not affect the accuracy of the global power system simulation (Figs. S9a and S9c). Although the distribution network topology is generally not available in a large domain, e.g., whole east coast of the United States, the data is available for Harris County. The power system simulation results based on the true distribution networks are similarly accurate (Fig. S9d).

Protective devices protect the distribution/transmission lines from overflow induced physical damages; however, the power outage caused by protective devices usually would be restored in hours, which is not at the same scale of the post-hurricane power outage (weekly level). To further investigate how the protective devices could potentially impact the power system resilience, we assume all power lines are equipped with protective devices and incorporated the overload-induced component failures into the power outage modeling (the same as in Ref. [75]). We find that the recovery process is similar between the case considering cascading failure and the case not considering cascading failure (prevented by protective devices) (Figs. S9a and S9c). Also, although under the normal demand there would be ~10% overloaded lines post the hurricane, when the demand is less than 95% of the normal demand (due to, e.g., hurricane evacuation) the overloading hardly happens (Fig. S9b). These findings illustrate that the impact of protective devices is relatively small on the daily-scale power outage and recovery under hurricanes, where a large number of physically damaged power system components often need days to weeks to fully repair. However, it is still worthy of note that the post-hurricane behavior of the electric power system, though simplified in this work to capture the census-level statistics of power outage, is extremely complex, involving numerous physical processes on the transmission and distribution networks and a variety of devices and operations. Future research may develop more detailed models to better capture physical mechanisms of post-hurricane power system failure.

Network Analysis and Enhancement Investigation. After investigating the TC-blackout-heatwave compound hazard risk, we apply network analysis to investigate how the spatial pattern of power outage is related to the network pattern of local power distribution sectors, using our large synthetic TC dataset. Specifically, we investigate the generalized scaling relationship between the probability of local failures and their impact on the global outage, proposed by ref. [8], to understand the reliability of the power system. We analyze the connection between power outage and local distribution network topology by linking the power outage rate to the mean length of local distribution sectors. These analyses support the aim of designing efficient hazard mitigation strategies.

Various strategies have been proposed to enhance the post-hurricane resilience of power networks [42], e.g., adding recovery resources, applying stricter structural criteria, and undergrounding network branches. Adding significant recovery recourses or applying stricter

537	design criteria would raise daily costs, while benefiting emergency recovery more than daily
538	operation [40]. Thus, based on our findings, we design an undergrounding plan to enhance the
539	resilience of the power system. Specifically, we propose greedily reducing the mean length of
540	local distribution networks by protecting a small portion of wires close to root nodes of the
541	distribution networks. We compare this strategy with undergrounding strategies that randomly
542	bury transmission lines and distribution sectors (similar to the generally used uniform
543	undergrounding strategies) to evaluate its efficiency in reducing future risk of TC-blackout-
544	heatwave compound hazard. The results, based on the star-like distribution networks, is shown in
545	Fig. 6. We test the effect of the assumption on the distribution networks by applying the analysis
546	to the MST-based distribution networks and the true distribution networks and find similar
547	results (Supplementary Fig. S10; e.g., for an enhancement rate of 5%, the expected percentage of
548	residents experiencing at least one longer-than-5-day TC-blackout-compound hazard is different
549	only by 2% between MST and star-like based models and by 3% between the true distribution
550	networks and star-like based networks).
551	
552	Data availability statement:
553 554 555 556 557 558	The power network data (including topology data for transmission and distribution networks) and the historical power outage data were obtained from CenterPoint Energy, Inc. (www.centerpointenergy.com). The hurricane data were provided by Kerry Emanuel (MIT). The generated power system failure statistics are deposited to the NSF DesignSafe-CI under ODC license (https://doi.org/10.17603/ds2-bqc0-sn69).
559	Code availability statement:
560 561	The code for simulating power system failures are deposited in the NSF DesignSafe-CI under ODC license (https://doi.org/10.17603/ds2-bqc0-sn69).
562	
563	References:
563564	References: 1.DT Cohen, 60 million live in the path of hurricanes. U.S. census bureau. (2018)

- 3.J Griffin, C Johnston, In Florida, 2.1 million customers still powerless four days after hurricane
- irma (2017) https://www.tampabay.com/news/business/energy/26-million-florida-customers-
- wake-without-power-four-days-after-hurricane/2337453/
- 4. Hurricane Harvey caused electric system outages and affected wind generation in Texas (eia)
- 571 (2017) https://www.eia.gov/todayinenergy/detail.php?id=32892
- 5.Poweroutage, The power outage monitoring product, https://poweroutage.us/ (2013).
- 573 6.Hurricane Florence disruptions analysis (eia) (2018)
- 574 https://www.eia.gov/todayinenergy/detail.php?id=37054
- 575 7.W Bryan, Emergency situation reports: Hurricane sandy. Off. Electr. Deliv. Energy Reliab. US
- 576 Dep. Energy, Hurric. Sandy Situat. Rep. 20 (2012)
- 577 https://www.oe.netl.doe.gov/emergency sit rpt.aspx
- 8.C Ji, et al., Large-scale data analysis of power grid resilience across multiple us service
- 579 regions. Nat. Energy 1, 16052 (2016)
- 580 9.EO of the President, Economic benefits of increasing electric grid resilience to weather out-
- 581 ages (2013)
- 582 https://www.energy.gov/sites/prod/files/2013/08/f2/Grid%20Resiliency%20Report FINAL.pdf
- 583 10.U.S. Department of Energy, Climate change and the electricity sector: Guide for climate
- 584 change resilience planning. (2013)
- 585 https://toolkit.climate.gov/sites/default/files/Climate%20Change%20and%20the%20Electricity%
- 586 20Sector%20Guide%20for%20Climate%20Change%20Resilience%20Planning%20September
- 587 %202016 0.pdf
- 588 11.K Emanuel, Increasing destructiveness of tropical cyclones over the past 30 years. Nature
- 589 436, 686 (2005)
- 590 12. Bender, M.A., Knutson, T.R., Tuleya, R.E., Sirutis, J.J., Vecchi, G.A., Garner, S.T. and Held,
- 591 I.M., 2010. Modeled impact of anthropogenic warming on the frequency of intense Atlantic
- 592 hurricanes. Science, 327(5964), pp.454-458.

- 593 13.Knutson, T.R., McBride, J.L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I.,
- Kossin, J.P., Srivastava, A.K. and Sugi, M., 2010. Tropical cyclones and climate change. Nature
- 595 Geoscience, 3(3), pp.157-163.
- 596 14.Emanuel K A(1987). "The dependence of hurricane intensity on climate." Nature, 362:483-
- 597 485
- 598 15.Emanuel KA (2013) Downscaling CMIP5 climate models shows increased tropical cyclone
- activity over the 21st century. Proc Natl Acad Sci 110(30):12219–12224.
- 600 doi:10.1073/pnas.1301293110
- 16.Knutson, T., Camargo, S.J., Chan, J.C., Emanuel, K., Ho, C.H., Kossin, J., Mohapatra, M.,
- 602 Satoh, M., Sugi, M., Walsh, K. and Wu, L., (2019). Tropical cyclones and climate change
- assessment: Part II. Projected response to anthropogenic warming. Bulletin of the American
- 604 Meteorological Society, (2019)
- 17. Webster, P.J., Holland, G.J., Curry, J.A. and Chang, H.R., 2005. Changes in tropical cyclone
- number, duration, and intensity in a warming environment. Science, 309(5742), pp.1844-1846.
- 607 18. Mora, C., Dousset, B., Caldwell, I.R., Powell, F.E., Geronimo, R.C., Bielecki, C.R.,
- 608 Counsell, C.W., Dietrich, B.S., Johnston, E.T., Louis, L.V. and Lucas, M.P., 2017. Global risk of
- deadly heat. Nature climate change, 7(7), pp.501-506.
- 19. Raymond, C., Matthews, T. and Horton, R.M., 2020. The emergence of heat and humidity
- 611 too severe for human tolerance. Science Advances, 6(19), p.eaaw1838.
- 20.GA Meehl, C Tebaldi, More intense, more frequent, and longer lasting heat waves in the 21st
- 613 century. Science 305, 994–997 (2004)
- 21.P Pfleiderer, CF Schleussner, K Kornhuber, D Coumou, Summer weather becomes more
- 615 persistent in a 2°c world. Nat. Clim. Chang. 9, 666–671 (2019)
- 22.G Luber, M McGeehin, Climate change and extreme heat events. Am. journal preventive
- 617 medicine 35, 429–435 (2008)
- 23. Burke, M., González, F., Baylis, P., Heft-Neal, S., Baysan, C., Basu, S. and Hsiang, S., 2018.
- Higher temperatures increase suicide rates in the United States and Mexico. Nature climate
- 620 change, 8(8), pp.723-729.

- 621 24. Hsiang, S., Kopp, R., Jina, A., Rising, J., Delgado, M., Mohan, S., Rasmussen, D.J., Muir-
- Wood, R., Wilson, P., Oppenheimer, M. and Larsen, K., 2017. Estimating economic damage
- from climate change in the United States. Science, 356(6345), pp.1362-1369.
- 624 25.N Obradovich, R Migliorini, SC Mednick, JH Fowler, Nighttime temperature and human
- sleep loss in a changing climate. Sci. advances 3, e1601555 (2017)
- 626 26.SM Hsiang, M Burke, E Miguel, Quantifying the influence of climate on human conflict.
- 627 Science 341, 1235367 (2013)
- 628 27.T Matthews, RL Wilby, C Murphy, An emerging tropical cyclone–deadly heat compound
- 629 hazard. Nat. Clim. Chang. 9, 602–606 (2019)
- 28.A Barreca, K Clay, O Deschenes, M Greenstone, JS Shapiro, Adapting to climate change:
- The remarkable decline in the US temperature-mortality relationship over the twentieth century.
- 632 J. Polit. Econ. 124, 105–159 (2016)
- 633 29. Semenza, J.C., Rubin, C.H., Falter, K.H., Selanikio, J.D., Flanders, W.D., Howe, H.L. and
- Wilhelm, J.L., 1996. Heat-related deaths during the July 1995 heat wave in Chicago. New
- England journal of medicine, 335(2), pp.84-90.
- 636 30. Xi, D. and Lin, N., 2021. Sequential landfall of tropical cyclones in the United States: From
- historical records to climate projections. Geophysical Research Letters, 48(21),
- 638 p.e2021GL094826.
- 639 31. Matthews, T. Wilby, R.L. and Murphy, C., 2017. Communicating the deadly consequences
- of global warming for human heat stress. Proceedings of the National Academy of Sciences,
- 641 114(15), pp.3861-3866.
- 32.R Marsooli, N Lin, K Emanuel, K Feng, Climate change exacerbates hurricane flood hazards
- along us Atlantic and gulf coasts in spatially varying patterns. Nat. communications 10, 1–9 581
- 644 (2019).
- 33.K Emanuel, R Sundararajan, J Williams, Hurricanes and global warming: Results from
- downscaling IPCC AR4 simulations. Bull. Am. Meteorol. Soc. 89, 347–368 (2008).
- 34.K Emanuel, Assessing the present and future probability of hurricane Harvey's rainfall.
- 648 Proc.Natl. Acad. Sci. 114, 12681–12684 (2017).

- 35.M Ouyang, L Duenas-Osorio, Multi-dimensional hurricane resilience assessment of electric
- 650 power systems. Struct. Saf. 48, 15–24 (2014).
- 36.YC Chiu, H Zheng, JA Villalobos, W Peacock, R Henk, Evaluating regional contra-flow and
- phased evacuation strategies for Texas using a large-scale dynamic traffic simulation and
- assignment approach. J. Homel. Secur. Emerg. Manag. 5 (2008).
- 654 37.SE Chang, M Shinozuka, Measuring improvements in the disaster resilience of communities.
- 655 Earthq. spectra 20, 739–755 (2004).
- 38. Murakami, H., Wang, Y., Yoshimura, H., Mizuta, R., Sugi, M., Shindo, E., Adachi, Y.,
- Yukimoto, S., Hosaka, M., Kusunoki, S. and Ose, T., 2012. Future changes in tropical cyclone
- activity projected by the new high-resolution MRI-AGCM. Journal of Climate, 25(9), pp.3237-
- 659 3260
- 39. Bell, R., Strachan, J., Vidale, P.L., Hodges, K. and Roberts, M., 2013. Response of tropical
- cyclones to idealized climate change experiments in a global high-resolution coupled general
- circulation model. Journal of climate, 26(20), pp.7966-7980.
- 40.PH Larsen, A method to estimate the costs and benefits of undergrounding electricity
- transmission and distribution lines. Energy Econ. 60, 47–61 (2016).
- 41.Cost benefit analysis of the deployment utility infrastructure upgrades and storm hardening
- programs, technical report no. 36375 for the public utility commission of Texas (2009).
- 667 https://www.puc.texas.gov/industry/electric/reports/infra/utlity infrastructure upgrades rpt.pdf
- 42.DOE, Energy resilience solutions for the Puerto Rico grid (2018).
- https://www.energy.gov/sites/prod/files/2018/06/f53/DOE%20Report Energy%20Resilience%2
- 670 0Solutions%20for%20the%20PR%20Grid%20Final%20June%202018.pdf
- 43.NOAA, National weather service historical record. (2017).
- https://www.weather.gov/ffc/archives
- 673 44.IPCC-AR5, Table spm-2, summary for policymakers (2013).
- https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5 SPM FINAL.pdf
- 45. Hausfather, Z. and Peters, G.P., 2020. Emissions-the'business as usual'story is misleading.
- 676 Nature, 577(7792), pp.618-620.

- 46. Davidson, R.A., Liu, H., Sarpong, I.K., Sparks, P. and Rosowsky, D.V., 2003. Electric power
- distribution system performance in Carolina hurricanes. Natural Hazards Review, 4(1), pp.36-45.
- 47. Gori, A., Lin, N. and Smith, J., 2020. Assessing Compound Flooding from Landfalling
- Tropical Cyclones on the North Carolina Coast. Water Resources Research, 56(4),
- 681 p.e2019WR026788
- 48. Sánchez-Muñoz, D.; Domínguez-García, J.L.; Martínez-Gomariz, E.; Russo, B.; Stevens, J.;
- Pardo, M. Electrical Grid Risk Assessment Against Flooding in Barcelona and Bristol Cities.
- 684 Sustainability 2020, 12, 1527
- 685 49. Wang, Zhe, Tianzhen Hong, and Han Li. "Informing the planning of rotating power outages
- in heat waves through data analytics of connected smart thermostats for residential buildings."
- Environmental Research Letters 16, no. 7 (2021): 074003.
- 50.LM Bettencourt, J Lobo, D Helbing, C Kühnert, GB West, Growth, innovation, scaling, and
- the pace of life in cities. Proc. national academy sciences 104, 7301–7306 (2007).
- 51. Feng, K., Lin, N., Xian, S. and Chester, M.V., 2020. Can we evacuate from hurricanes with
- 691 electric vehicles?. Transportation research part D: transport and environment, 86, p.102458.
- 692 52.Otto, C., Willner, S.N., Wenz, L., Frieler, K. and Levermann, A., 2017. Modeling loss-
- 693 propagation in the global supply network: The dynamic agent-based model acclimate. Journal of
- 694 Economic Dynamics and Control, 83, pp.232-269
- 695 53. Wenz, L. and Levermann, A., 2016. Enhanced economic connectivity to foster heat stress—
- related losses. Science advances, 2(6), p.e1501026
- 697 54. Willner, S.N., Otto, C. and Levermann, A., 2018. Global economic response to river floods.
- 698 Nature Climate Change, 8(7), pp.594-598
- 699 55.ME Hauer, Migration induced by sea-level rise could reshape the us population landscape.
- 700 Nat. Clim. Chang. 7, 321 (2017)
- 56.Raymond, C., Horton, R. M., Zscheischler, J., Martius, O., AghaKouchak, A., Balch, J., ... &
- 702 Oppenheimer, M. (2020). Understanding and managing connected extreme events. Nature
- 703 climate change, 1-11.

- 57.Knutson, Thomas R., et al. "Global projections of intense tropical cyclone activity for the late
- twenty-first century from dynamical downscaling of CMIP5/RCP4. 5 scenarios." Journal of
- 706 Climate 28.18 (2015): 7203-7224
- 58. Ravela, Sai & Emanuel, Kerry. (2006). A Statistical Deterministic Approach to Hurricane
- Risk Assessment. Bulletin of the American Meteorological Society. 87. 299-314.
- 59. Xu, H., N. Lin, M. Huang, and W. Lou (2020). Design tropical cyclone wind speed when
- 710 considering climate change. ASCE J. of Structural Engineering. doi: 10.1061/(ASCE)ST.1943-
- 711 541X.0002585
- 712 60.DH Levinson, HJ Diamond, KR Knapp, MC Kruk, EJ Gibney, Toward a homogenous global
- tropical cyclone best-track dataset. Bull. Am. Meteorol. Soc. 91, 377–380 (2010).
- 714 61.N Lin, RE Kopp, BP Horton, JP Donnelly, Hurricane Sandy's flood frequency increasing
- 715 from year 1800 to 2100. Proc. Natl. Acad. Sci. 113, 12071–12075 (2016).
- 716 62. Orton, P., Lin, N., Gornitz, V., Colle, B., Booth, J., Feng, K., Buchanan, M., Oppenheimer,
- M. and Patrick, L., 2019. New York City panel on climate change 2019 report chapter 4: coastal
- flooding. Annals of the New York Academy of Sciences, 1439(1), pp.95-114.
- 719 63.GJ Holland, An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather
- 720 Review 108, 1212–1218 (1980).
- 721 64.N Lin, D Chavas, On hurricane parametric wind and applications in storm surge modeling.
- 722 J.Geophys. Res. Atmospheres 117 (2012).
- 65. Harper BA, Kepert J, Ginger J, (2008) Wind speed time averaging conversions for tropical
- cyclone con- ditions. In: Proceedings of 28th conference hurricanes and tropical meteorology.
- 725 AMS, Orlando, 4B.1, April
- 66. Fischer, E.M. and Knutti, R., 2013. Robust projections of combined humidity and temperature
- extremes. Nature Climate Change, 3(2), pp.126-130.
- 728 67. Nateghi, R., Guikema, S. D., & Quiring, S. M. (2011). Comparison and validation of
- statistical methods for predicting power outage durations in the event of hurricanes. Risk
- Analysis: An International Journal, 31(12), 1897-1906.
- 731 68.RJ Campbell, S Lowry, Weather-related power outages and electric system resiliency (2012).

- 732 69.2015 Residential Energy Consumption Survey (RECS)
- 733 https://www.eia.gov/consumption/residential/
- 734 70. Yang, Y., Nishikawa, T., Motter, A.E., 2017a. Vulnerability and cosusceptibility determine
- the size of network cascades. Phys. Rev. Lett. 118 (4) 048301.
- 736 71. Yang, Y., Nishikawa, T., Motter, A.E., 2017b. Small vulnerable sets determine large network
- 737 cascades in power grids. Science 358 (6365).
- 738 72.JL Demuth, M DeMaria, JA Knaff, Improvement of advanced microwave sounding unit
- tropical cyclone intensity and size estimation algorithms. J. Appl. Meteorol. Climatol. 45, 1573–
- 740 1581 (2006).
- 741 73. H. Li et al., "Building Highly Detailed Synthetic Electric Grid Data Sets for Combined
- 742 Transmission and Distribution Systems," in IEEE Open Access Journal of Power and Energy,
- 743 vol. 7, pp. 478-488, 2020
- 74. Zhai, C., Chen, T. Y. J., White, A. G., & Guikema, S. D. (2021). Power outage prediction for
- natural hazards using synthetic power distribution systems. Reliability Engineering & System
- 746 Safety, 208, 107348.
- 747 75. Hines, Paul, Eduardo Cotilla-Sanchez, and Seth Blumsack. "Do topological models provide
- 748 good information about electricity infrastructure vulnerability?." Chaos: An Interdisciplinary
- 749 Journal of Nonlinear Science 20.39 (2010): 033122.

751 Acknowledgements:

750

- 752 K.F. and N.L. are supported by U.S. National Science Foundation (1652448 and 2103754 as part
- of the Megalopolitan Coastal Transformation Hub) and C3.ai Digital Transformation Institute
- 754 (C3.ai DTI Research Award). M.O. is supported by National Natural Science Foundation of
- 755 China (72074089, 51938004 and 71821001). We thank Tom Matthews (Loughborough
- 756 University) for advising us on the heatwave analysis. We thank Kerry Emanuel (MIT) for
- providing the synthetic hurricane datasets. We also thank the reviewers for providing
- 758 constructive suggestions.
- Author contributions:
- 761 K.F. and N.L. designed the project. K.F. and N.L. analyzed hurricane and climate data; K.F. and
- M.O. performed power outage and recovery analysis; K.F., N.L., and M.O. wrote the paper.

Competing interests

The authors declare no competing interests.

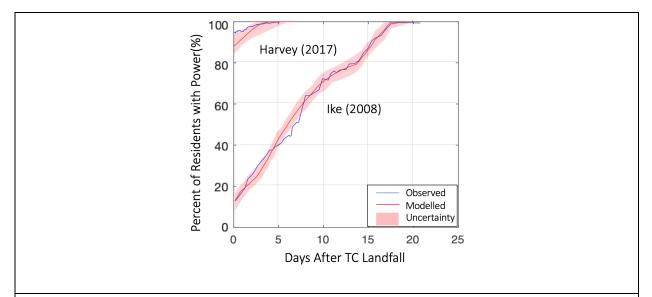


Figure 1. Comparison of simulated and observed power outage and recovery process for Hurricanes Harvey and Ike in Harris County, TX. Red curve shows median values of the simulation results, with 32% to 68% quantile range shown by shade. Blue curves show the observations of power outage.

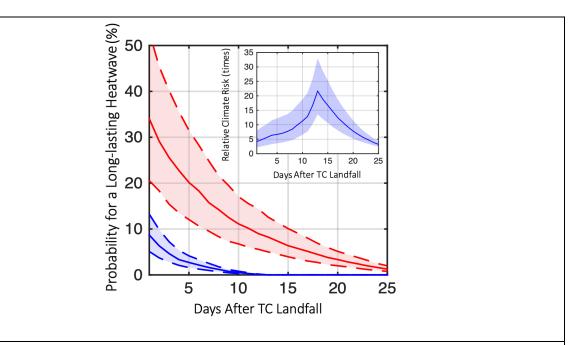


Figure 2. Analysis of likelihood and duration of post-TC heatwaves for Harris County. a) Probability for a post-TC heatwave lasting over a certain duration in the historical climate (blue curve showing median, with 32% to 68% quantile range shown by shade) and future climate (red curve showing median, with 32% to 68% quantile range shown by shade). b) Relative climate risk, defined as the ratio of future probability and historical probability of post-TC heatwave, as function of heatwave duration (shade shows 32% to 68% quantile range).

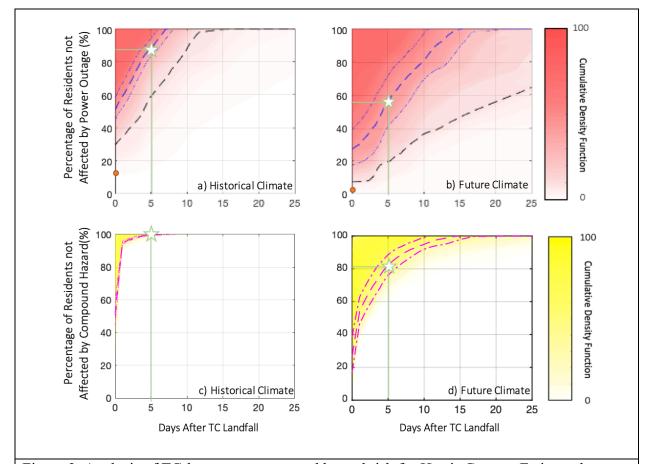


Figure 3. Analysis of TC-heatwave compound hazard risk for Harris County. Estimated percentage of residents who may not experience outage days after TC landfall in a 20-year period are shown for a) the historical climate and b) the future climate. Orange dot shows simulated worst case of power outage over all simulations. Dashed black line shows 10% worst case of power recovery. Estimated percentage of residents who may not experience TC-blackout-heatwave compound hazard days after TC landfall in a 20-year period are shown for c) the historical climate and d) the future climate. In all panels, the dashed and dashed-dotted curves show expectation and $\pm 1\sigma$ range based on all simulations. Shade shows CDF, indicating probability of less than certain (y) percentage of residents not affected, with darker color corresponding to higher probability and thus higher risk. Green stars highlight expected percentage of residents not affected 5 days post TC landfall.

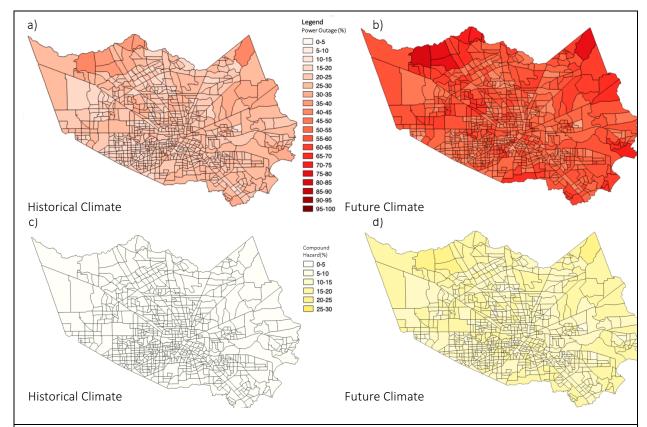


Figure 4. Estimated percentage of residents facing at least one longer-than-5-day post-TC power outage (a & b) and blackout-heatwave compound hazard (c & d) in the historical (a & c) and future climate (b & d) for each census tract in Harris County.

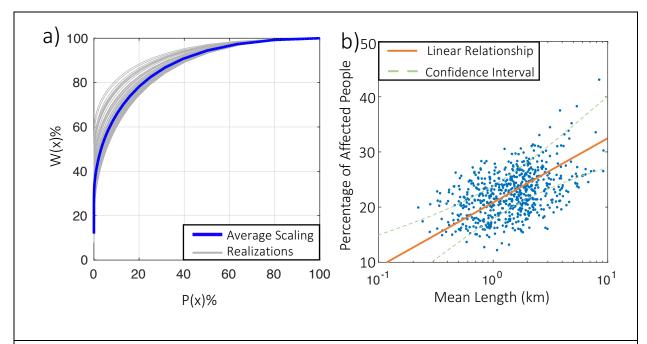


Figure 5. Network analysis of the synthetic-TC-induced power outage in Harris County. a) Generalized scaling law for the Harris power system: empirical probability W(x) of a customer being affected by a disruption that affects more than x customers vs. empirical probability P(x) for a disruption to affect more than x customers during a storm event. Blue curve shows the average over all synthetic events in the historical simulation; gray curves show randomly selected 100 events. b) Percentage of residents experiencing a longer-than-5-day power outage averaged over all synthetic storms simulated for the historical climate vs. harmonic mean length (reciprocal of the arithmetic mean of reciprocals) of power distribution network sectors for each census tract in Harris County. Red line shows the linear fit; dashed curves show the $\pm 1\sigma$ uncertainty range.

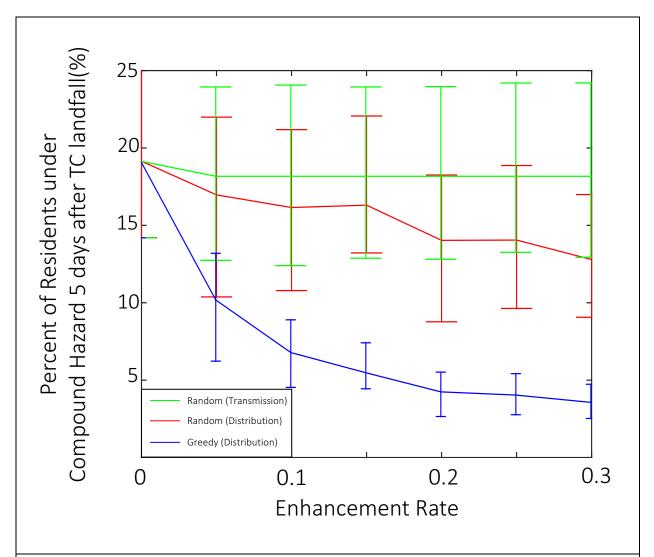


Figure 6. Reduced impact of longer-than-5-day TC-blackout-heatwave compound hazard under various risk mitigation strategies. Solid curves show percentage of affected residents in a 20-year period in the future as a function of network enhancement rate with three strategies: randomly undergrounding power transmission networks (green), randomly undergrounding power distribution networks (red), and greedily undergrounding power distribution networks (blue). Curves show the expectation; error bars show $\pm 1\sigma$ uncertainty range.