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Abstract: 10 

Tropical cyclones (TCs) have caused extensive power outages. The impacts of TC-caused 11 

blackouts may worsen in the future as TCs and heatwaves intensify. Here we couple TC and 12 

heatwave projections and power outage and recovery process analysis to investigate how TC-13 

blackout-heatwave compound hazard risk may vary in a changing climate, with Harris County, 14 

Texas as an example. We find that, under the high-emissions scenario RCP8.5, long-duration 15 

heatwaves following strong TCs may increase sharply. The expected percentage of Harris 16 

residents experiencing at least one longer-than-5-day TC-blackout-heatwave compound hazard 17 

in a 20-year period could increase dramatically by a factor of 23 (from 0.8% to 18.2%) over the 18 

21st century. We also reveal that a moderate enhancement of the power distribution network can 19 

significantly mitigate the compound hazard risk. Thus, climate adaptation actions, such as 20 

strategically undergrounding distribution network and developing distributed energy sources, are 21 

urgently needed to improve coastal power system resilience. 22 
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Main 28 

Hurricane (generally called tropical cyclones or TCs) threaten 59.6 million people in the U.S. 29 

(2018) [1,2] and are important initiating causes of large-scale failures of power systems. In 2017, 30 

Hurricane Maria devastated Puerto Rico’s power grid, resulting in a power loss of 3.4 billion 31 

customer hours and the worst blackout in US history [3].  Hurricane Irma (2017) deprived over 7 32 

million customers of electricity, 2.1 million of whom still lacked access to electricity after four 33 

days [3]. Hurricane Harvey (2017), making landfall on the Texas coast, disrupted hundreds of 34 

overhead electricity lines and disabled over 10,000 megawatts (MW) of electricity generation 35 

capacity; local utility companies spent over a week to restore the system [4]. In 2020, Hurricanes 36 

Isaias, Laura, Sally, Delta, and Zeta caused ~3.8, 1.5, 0.9, 0.8, and 2.0 million power outages, 37 

separately [5]. Similarly, Hurricane Florence (2018) cut electric power for around 1.4 million 38 

customers; the system took two weeks to recover [6]. Hurricane Sandy (2012) affected over 8.5 39 

million customers [7,8]. These disruptions, leaving millions of customers without electricity for 40 

days, call for an investigation of power system resilience and ultimately a re-design of the energy 41 

infrastructure [9]. Moreover, the U.S. power grid may become more vulnerable to weather and 42 

climate-induced failures in the future due to climate change [10]. In particular, hurricane-induced 43 

power outages are likely to become more severe, as increasing evidence shows that hurricane 44 

intensity will increase due to climate change (e.g., 11-17). This potential change should be 45 

quantified and accounted for in planning future energy infrastructure.  46 

 47 

Projected with greater confidence, climate change may also induce more heat extremes that are 48 

beyond human tolerance [18-21]. Heatwaves are the primary cause of weather-related mortality 49 

(due to heat cramps, syncope, exhaustion, stroke, etc.) in the U.S. [22], and they may harm 50 

mental health [23,24], sleep quality [25], and social stability [26] in different ways. Ref. [27] is 51 

an early research to connect TCs with heatwave impacts. With TC-induced power outages, the 52 

impact of heatwaves would dramatically increase, as air conditioning, with around 1.6 billion 53 

units in operation over the U.S. [28], is critical in reducing the vulnerability to extreme heat (the 54 

fatality risk under heatwaves without air conditioning is estimated to triple, as revealed by a post-55 

heatwave analysis in Chicago [29]).  Ref. [27] found that TC-heatwave compound events have 56 

been rare and affected only about 1000 people worldwide, as the seasonal peak of extreme heat 57 
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precedes that of major TCs. Due to global warming, Ref. [27] projected that the TC-heatwave 58 

compound hazard would affect a much larger population in the future, e.g., over two million in a 59 

world 2°C warmer than pre-industrial times. However, Ref. [27]’s projection neglected potential 60 

changes in TC climatology in the future, which may result in an underestimation of the 61 

compound hazard, given that TCs will likely become stronger (e.g., 11-16) and possibly occur 62 

earlier in the season [30]. Also, ref. [27] focused on TC-heat compound hazard, but the potential 63 

impact of the compound hazard depends also on the reliability and resilience of the power 64 

system. 65 

To better quantify the evolving joint impact of TCs and heatwaves, here we model the TC-66 

blackout-heatwave compound hazard risk and resilience in a changing climate. We combine 67 

statistical-deterministically-downscaled TC climatology and directly-projected heatwave 68 

climatology from general circulation models (GCMs), and we explicitly model the power system 69 

failure and recovery process under the climate hazard scenarios. We investigate how the risk of 70 

residents experiencing prolonged TC-blackout-heatwave compound hazards may change from 71 

the current to future climates. To illustrate we apply the analysis to Harris County (including 72 

major part of Houston City) in Texas (see Methods and Supplementary Fig. S1 for a description 73 

of the area’s geographics and power network). Harris County has the highest population density 74 

along the Gulf Coast and, as located in the subtropics, may face disproportionally large increase 75 

in heatwaves [31] and TCs [32] in a warming climate. 76 

As TCs cannot be well resolved in typical GCMs due to their relatively small scales, we apply 77 

large datasets of synthetic storms generated by a deterministic-statistical TC model [33] for the 78 

study area [34], for the historical climate of 1981–2000 based on the National Centers for 79 

Environmental Prediction (NCEP) reanalysis and for the future climate of 2081-2100 under the 80 

emissions scenario RCP8.5 based on 6 GCMs in the fifth Coupled Model Inter-comparison 81 

Project (CMIP5; see Methods). Based on the performance of the GCMs in terms of their 82 

historical simulations compared to the reanalysis-based simulation, we bias-correct the GCM-83 

simulated storm frequency and landfall intensity distribution and combine the 6 simulations into 84 

a single projection for the future climate. Then we stochastically resample the synthetic storms 85 

from the combined projection to form 10,000 20-year simulations for the historical climate and 86 

10,000 20-year simulations for the future climate (Methods). Here we focus on wind effects on 87 
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the power grid (see Discussion) and apply a parametric model to estimate the spatial-temporal 88 

wind field for each synthetic storm. We apply a physics-based power outage and recovery model 89 

[35], validated by two historical cases (Hurricanes Harvey and Ike) for the study area, to 90 

simulate the wind-induced power system failure and recovery process at a census tract level for 91 

each synthetic storm (see Methods). 92 

The US National Weather Service issues warnings when a forecast heat index (HI) 93 

characterizing humid heat exceeds 40.6°C. Ref. [27] defines a compound TC-heat event as a 94 

major TC followed within 30 days by an HI greater than 40.6℃ at the site of landfall. Here we 95 

also define a heat event as an HI over 40.6°C, but we are interested in a range of time scales, 96 

especially over 5 days following the TC landfall. (Considering that TCs usually start to interrupt 97 

the life pace of local residents at least 2 days ahead of landfall [36], a greater-than-5-day power 98 

outage plus heatwave means affected residents cannot resume normal life for over a week, which 99 

is usually a benchmark for resilience design for critical infrastructure systems [37].) Based on the 100 

same reanalysis and GCM datasets, we calculate and bias-correct the HI for the study area during 101 

and after the landfall of each synthetic storm (see Methods). In addition, we modify the HI to 102 

statistically account for the interdependence between TCs and heatwaves (Methods). Combining 103 

the obtained HI dataset and TC power outage analysis enables us to estimate the risk of Harris 104 

residents experiencing prolonged (e.g., 5 day) heatwaves (HI>40.6°C) after losing power due to 105 

TC-induced damage. We first focus on the estimated risk for the high-emissions scenario 106 

RCP8.5 and the end-of-the-century (2081-2020) time frame (Results); we then investigate the 107 

sensitivity of the estimated risk to the emission scenario, the mid-of-the-century time frame, and, 108 

considering the large uncertainty regarding how TC frequency will change (e.g., 15,16,38,39), 109 

the storm frequency projection (Discussion). Also, we assume the power system and recovery 110 

operation will remain the same in the future (Results), but we investigate possible effects of 111 

heatwaves on power restoration and future power capacity upgrade (Discussion). 112 

In addition to quantifying the risk, we explore efficient strategies to enhance power system 113 

resilience for combating future TC-blackout-heatwave compound hazards. Consistent with 114 

previous results [8], our network analysis (see Methods) shows that local power failures have a 115 

disproportionally large non-local impact on the power system; the reliability of local power 116 

distribution networks (i.e., the final stage of energy infrastructure) is particularly critical. Thus, 117 
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we propose an undergrounding strategy (burying parts of the power network covered by anti-118 

water pipelines [40-42]; see Methods) to protect a small portion of wires that are close to the root 119 

nodes of local power distribution networks. We show that such a targeted undergrounding 120 

strategy is much more efficient than the widely-applied uniform undergrounding strategy in 121 

increasing the resilience of the power system and decreasing the risk of future TC-blackout-122 

heatwave compound hazards.  123 

 124 

Results 125 

Historical Cases. Hurricanes Harvey and Ike are the main events in the past 20 years that led to 126 

significant power outages (over 10% of residents lost power) in Harris County. Ike had a higher 127 

gust wind observation (~92 mph) when it hit Houston; Harvey was weaker (<50 mph) but lasted 128 

longer and brought heavy rainfall [43]. The wind during Ike broke many more poles, leading to a 129 

larger power outage. As shown in Fig. 1 for the total impact for Harris County from Hurricanes 130 

Ike and Harvey, results from the power grid outage and recovery model compare relatively well 131 

with the observation (although the model slightly overestimates the initial power outage under 132 

Harvey), indicating the model’s success in capturing both large and relatively small power 133 

outage events. The model estimates a relatively small power outage (1% [0%-1%]) after the 5-134 

day restoration period for Harvey and a large power outage (63% [60%- 66%]) for Ike for over 5 135 

days, agreeing with observations (Fig. 1). The model results at the census tract level for 136 

Hurricanes Ike and Harvey compare also relatively well with observations (Supplementary Fig. 137 

S2), with a mean error over all census tracts less than 10%.  138 

 139 

Post-TC Heatwaves.  While heatwaves did not follow Hurricanes Ike and Harvey, they may 140 

become more likely to follow future TCs. Under RCP8.5, the projected change in global mean 141 

surface air temperature for the late 21st century relative to the reference period of 1986-2005 is 142 

3.7 °C based on all GCMs in the IPCC report [44]. The 6 GCMs used in this study predict an 143 

increase of the average global temperature by 3.4°C in the future climate (2081-2100) compared 144 

to that in the historical climate (1981-2000). We analyze the synthetic TC and heatwave datasets 145 

to investigate the likelihood and duration of future post-TC heatwaves. Fig. 2a shows how the 146 
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probability for experiencing a heatwave with a certain duration following a TC changes from the 147 

historical to future climate for the study area. The probability of a heatwave, especially a long-148 

lasting one, following a TC is quite small for the historical climate, which is consistent with the 149 

observation that TC-heatwave hazards have affected only ~1000 people worldwide during 1979–150 

2017 [27]. However, the probability curve is much higher for the future climate. The probability 151 

for a post-TC heatwave lasting over 5 days is 2.7% (1.8% - 4.2%) under the historical climate 152 

but 20.2% (12.0%-31.5%) in the future climate. For a post-TC heatwave to last over 12 days is 153 

almost impossible in the historical climate, but a nonnegligible probability of 7.5% 154 

(4.8%~11.9%) exists for it to happen in the future climate. To better reveal the timescale of 155 

climate change impact, Fig. 2b shows the relative climate risk, defined as the probability of 156 

experiencing a heatwave lasting for a certain duration following a TC in the future climate 157 

divided by that in the historical climate. The relative climate risk increases sharply with the 158 

duration, reaching the peak around 13 days. The probability for a 1-day heatwave following a TC 159 

in the future climate would be ~5 (3-9) times larger than that in the historical climate, the 160 

probability for a 5-day heatwave would be 7 (4 ~ 12) times larger, and the probability for a 13-161 

day heatwave would be 22 (14~33) times larger. This time-scale pattern of climate change 162 

impact should be considered when developing maintenance and emergency response strategies 163 

for urban infrastructure systems. For example, resilience criteria of these systems should be 164 

enhanced to avoid “resonance” effects of climate change. A typical recovery cycle for the power 165 

system is currently 5 days or longer [37]; the dramatic change in the climate risk may render 166 

such a time scale of recovery not resilient. 167 

 168 

Blackout and Compound Hazard Risk. Incorporating the power outage and recovery 169 

modeling, we analyze the TC-induced blackout and TC-blackout-heatwave compound hazard 170 

risk for the study area. We apply an agent-based approach and record the largest duration of the 171 

hazards each resident could experience during each of the 20,000 20-year synthetic simulations. 172 

Figs. 3a and 3b show the estimated percentage of Harris residents who may not experience post-173 

TC power outages longer than a certain duration over a 20-year period under the historical and 174 

future climates, respectively. On average, the TC-induced power outage could affect 50% of 175 

residents during a 20-year period in the historical climate and 73% of residents in the future. 176 
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12.8% residents would not be subject to any post-TC blackout during the 20-year period under 177 

the worst case in the historical climate, while only 2.7% residents would not be affected under 178 

the worst case in the future climate. In the historical climate over a 20-year period, on average 179 

14% of Harris residents could face at least one longer-than-5-day post-TC power outage, which 180 

is less than one third of the expected level of 44% in the future. For 90% of cases under the 181 

historical climate, the utility company (CenterPoint Energy) could fully repair the power system 182 

within about 15 days, which matches recent-year records (e.g., 12 days for Hurricane Irma in 183 

2017, and 13 days for Hurricanes Michael and Florence in 2018 [5]). With the same response 184 

strategies and resources, the utility company might spend over 25 days in repairing the power 185 

system in the future under severe TCs. By comparison (with Fig. 1), the probability of 186 

experiencing the scale and duration of power outage induced by Hurricane Ike during a 20-year 187 

period is about 10% in the historical climate and 35% in the future. Hurricane Harvey is a below- 188 

average event in both the historical (87%) and future (96%) climates. These analyses show that 189 

climate change may dramatically increase the outage risk of the power system, especially the tail 190 

of the risk that people will face. 191 

 192 

Figs. 3c and 3d show the estimated percentage of Harris residents who may not experience any 193 

TC-blackout-heatwave compound hazard longer than a certain duration over a 20-year period 194 

under the historical and future climates, respectively. The chance for a resident to experience at 195 

least one longer-than-5-day compound hazard is almost zero (0.8%) under the historical climate. 196 

However, the chance for a resident to be affected by at least one such compound hazard in the 197 

future climate (18.2%) would be 23 times larger. Recall that, due to climate change, the 5-day 198 

post-TC power outage risk is estimated to increase by 3 times (Figs. 3a & 3b), and 5-day post-199 

TC heatwave compound hazard is estimated to increase by 7 times (Fig. 2b). The 23-time 200 

increase of TC-blackout-heatwave compound hazard risk, which is larger than the product of the 201 

two factors as if TCs and heatwaves are climatologically uncorrelated (21 times), indicates that 202 

strong TCs and long-lasting heatwaves may become more likely to co-occur under climate 203 

change. In other words, strong TCs leading to larger power outages may be more likely followed 204 

by longer-lasting heatwaves, affecting over 18% of Harris residents towards the end of the 205 

century.   206 
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 207 

To investigate the spatial distribution of the risk, we estimate the percentage of residents to 208 

experience at least one longer-than-5-day TC-induced power outage (Figs. 4a and 4b) and TC-209 

blackout-heatwave compound hazard (Figs. 4c and 4d) over a 20-year period for each census 210 

tract in Harris County in the historical and future climates. Changing from the historical to the 211 

future climate, the power outage risk of all the census tracts would at least double. The 212 

compound hazard risk would increase even more dramatically. Over 95% people in all census 213 

tracts would experience no longer-than-5-day compound hazard in the historical climate; in the 214 

future, over 95% of census tracts would have over 5% of the residence experiencing at least one 215 

such compound hazard during a 20-year time period. The distribution of risk is heterogeneous, 216 

which implies a heterogeneous distribution of the resilience level of the power system, as the 217 

heatwave is constant (given the GCM resolution) and TC winds vary only slightly over this 218 

relatively small region. The spatial pattern shows that residents near the center of Houston (the 219 

middle and lower part of the County) may experience lower power outage and compound hazard 220 

risk than residents in rural (e.g., the upper part) areas of the County. The varying densities of 221 

power substations and spatial patterns of distribution networks induce most of this difference. 222 

 223 

Scaling Law of Power System Failure. To better understand the power system, we apply 224 

network analysis to investigate links between local disruptions (the failure of a specific pole or 225 

distribution/transmission line) and global failures, using our large datasets of synthetic storm 226 

events. For each storm event, we calculate W(x), the percentage of service interruptions induced 227 

by all local disruptions that affect more than x customers, and P(x), the percentage of local 228 

disruptions that affect more than x customers. W(x) also represents the probability for a customer 229 

to be subject to a disruption that affects more than x customers, and P(x) is the probability for a 230 

disruption to affect more than x customers. Fig. 5a shows the obtained generalized scaling law 231 

[8] between W(x) and P(x), for each simulated event and averaged over all the events for the 232 

historical climate. Rather than a linear relationship indicating a uniform distribution of damages, 233 

the concave scaling curve shows that on average the largest 20% of local disruptions are 234 

responsible for 72% (71%~75%) of the global power outage (measured by the number of 235 

affected customers). This result obtained from the synthetic analysis for Harris County is 236 
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comparable with a previous empirical result for Upstate New York that during Hurricane Sandy 237 

the top 20% of local disruptions induced 79%-89% of the service interruptions [7]. In fact, the 238 

difference in the scaling curves among the full range of synthetic TCs is quite small, which 239 

confirms the robustness and generalizability of the scaling law in describing a TC-damaged 240 

power system. Further, ref. [8] found that the scaling curve developed using data on failures in 241 

daily operation is also similar, suggesting that the power network vulnerability (i.e., local 242 

disruptions inducing large-scale interruptions) exists independently of exogenous effects. Thus, 243 

reliability-based redesign against various TCs may not need to differ fundamentally from the 244 

daily-operation-based enhancement, as confirmed later (Figure 6). 245 

 246 

Large power outages are usually induced by local damages (as shown in our analysis and 247 

previous studies [8]), and large portions of local damages are due to distribution network 248 

failures, so we analyze the connection between power outages and local distribution network 249 

topology. Fig 5b. shows the correlation between the percentage of residents experiencing a 250 

longer-than-5-day power outage (averaged over all simulated synthetic storms for the historical 251 

climate) and the harmonic mean length of the power distribution network sectors at the census 252 

tract level. The results show that the longer the length of the local power distribution networks, 253 

the higher the risk. The mean length of the power distribution networks is highly related to the 254 

pattern of urban development. A region with a lower population density may have a larger mean 255 

length of power distribution networks, as it may have fewer substations to support residents who 256 

live relatively far away. Thus, our results indicate that, for TC-prone regions, the scaling of 257 

urban development may have contributed significantly to the spatial distribution of power outage 258 

risks. The observed high correlation between the power outage rate and the mean length of 259 

distribution networks and the generalized scaling relationship between the probability of local 260 

failure and the failure impact, shown in Fig. 5, can be explained theoretically and generally for 261 

acyclic (the most common) power distribution networks (see theoretical analysis and Fig. S3 in 262 

Supplementary Materials).  263 

 264 

Efficient Undergrounding Strategy. Based on an improved understanding of the power 265 

network vulnerability, we test three network enhancement strategies to mitigate the TC-blackout-266 
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heatwave compound hazard risk in the future. Fig. 6 compares the reduction of the TC-blackout-267 

heatwave compound hazard risk, measured by the percentage of residents affected by longer-268 

than-5-day compound hazard, as a function of the enhancement rate for the three strategies; the 269 

enhancement rate is the total length of enhanced networks divided by the total length of the 270 

network sections that could be enhanced. Random enhancement of the high-voltage transmission 271 

network (burying transmission branches randomly) provides limited improvement of the global 272 

system performance. This finding confirms that the local distribution networks dominate global 273 

pattern of the power outage and subsequent recovery process. Randomly undergrounding low-274 

voltage power distribution networks improves the system performance linearly, which means 275 

that the power distribution networks without protection face the same risk as before the 276 

enhancement. Given the acyclic topology of the power distribution networks, a greedy 277 

undergrounding strategy is used to protect a small portion of wires close to the root nodes of the 278 

distribution networks. In the simulation, the algorithm simply protects the root sector of the 279 

longest overhead branches of the distribution network iteratively until the enhancement rate is 280 

reached (i.e., “greedy” undergrounding). The greedy undergrounding strategy improves the 281 

system performance much more than the other two strategies. For example, with the first 5% 282 

power distribution networks undergrounded, the expected percentage of residents who might 283 

face the compound hazard for over 5 days drops to 11.3% from 18.2% (Fig. 3d). This 284 

performance improvement (6.9%) is ~15 times more than that of randomly undergrounding 285 

distribution networks (0.5%) or randomly undergrounding transmission network (0.1%), 286 

demonstrating a superior cost-efficiency of the greedy strategy. The topological law for power 287 

outages that we found here may help utility companies to plan resilient power networks to 288 

combat change climate. 289 

 290 

Discussion 291 

The results of this analysis demonstrate how dramatically the impact of TCs may increase over 292 

time, due to compound effects of storm and heatwave climatology change. For Harris County, 293 

the expected (average) percentage of residents experiencing at least one longer-than-5-day 294 

heatwave without power post-TCs in a 20-year period would increase from 0.8% in the historical 295 

climate (1980-1999) to 18.2% towards the end of the 21st century (2080-2099), under the high-296 
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emissions scenario RCP8.5. For the current (2000-2019), near-future (2020-2039), and mid-of-297 

the century (2040-2059) time frames, which are also highly relevant to decision making, this 298 

impact percentage would increase to 2.2%, 5.1%, and 6.7%, respectively (see Supplementary 299 

Fig. S4). Even if we account for the uncertainty in the prediction of storm frequency [16] and 300 

remove the predicted increase in the storm frequency for the study area (by applying the 301 

frequency in the historical climate), the impact percentage would still increase significantly, to 302 

11.2% towards the end of the 21st century (Supplementary Fig. S5). Only if we assume that the 303 

warming is well controlled under the low-emissions scenario RCP 2.6 and the TC activity 304 

(including both frequency and intensity) remains the same as the historical level, the compound 305 

hazard would change slightly, with the impact percentage changing from 0.8% in the historical 306 

climate to 1.0% towards the end of the century (Supplementary Fig. S6). If the RCP8.5 scenario 307 

is considered an upper bound [45] and the ideal RCP2.6 scenario a possible lower bound, this 308 

additional analysis indicates that the compound hazard risk may be largely avoided under 309 

rigorous climate mitigation policies in line with the Paris Agreement. However, large 310 

uncertainties exist in the economic and political systems [45] as well as in the climate system 311 

(including possibly complex physical interactions between TCs and heatwaves); climate 312 

adaptation and risk mitigation are still necessary and urgent.  313 

Other uncertainties exist in the modeling of the future compound hazard and risk. As the first 314 

attempt in quantifying the compound hazard risk, here we focus on the dominate power damage 315 

effects -- winds and induced falling trees [46]. Located relatively high above the sea level (see 316 

elevation map in Supplementary Fig. S1), our study area, Harris County, is affected mainly by 317 

extreme winds, as evident in historical events including Hurricanes Ike and Harvey (though 318 

lower Houston beyond the Harris County was heavily flooded by Harvey’s extreme rainfalls and 319 

compound flooding). Accounting for significantly less impact (< 10% TC-induced power 320 

outages; [46]), however, flooding and associated debris during TCs can also cause damage to the 321 

power system, and they usually impede the early recovery of a power network. Flood-prone 322 

regions may experience higher risks than estimated here, and future development of the 323 

modeling method must take flood impact into account. A precise prediction of flood-induced 324 

power outage and recovery requires accurate prediction of the magnitude and timing of the 325 

flooding (from storm surge and/or heavy rainfall) [47], power system vulnerability under 326 

flooding [48], and operational logistics of local utilities when repairing wetted power system 327 
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components. The heatwave may also trigger power outages due to excessive power demand; 328 

however, these outages usually restore at a time scale of hours [49], rather than at a daily or 329 

weekly restore time scale for the TC damage induced outages that we consider in this study. 330 

The power system operation may also be affected by extreme heat. According to the 331 

Occupational Safety and Health Administration (OSHA) criteria, outdoor workers can work for 332 

only limited hours (<75% of normal hours) under extreme heat and humidity (HI>39.4°C). 333 

Assuming there is no advanced technology to improve outdoor working condition and the 334 

recovery operation follow the OSHA criteria, the expected percentage of Harris County residents 335 

experiencing at least one longer-than-5-day TC-blackout-heatwave compound hazard in a 20-336 

year period under the future climate could increase from 18.2% (workers working normally) to 337 

23.3% (see Supplementary Fig. S7).  Aging of the power system, which is not accounted for, can 338 

also reduce the resilience and increase the compound hazard risk, although proactive system 339 

maintenance may reduce this effect. Moreover, the scaling relationship between the power 340 

network and the population in a growing city may enlarge the affected population in the future, 341 

as power facilities usually develop much slower than the growth of local population (a 0.87-342 

power scaling [50]). Given this scaling effect, unbalances between local population and network 343 

density may increase, and thus future risks may be higher than those estimated herein.  344 

On the other hand, we do not account for the benefits of backup generators or solar panels here. 345 

These local devices could temporarily support residents who lose power from the main grid -- 346 

another possible way to mitigate impacts of TC-blackout-heatwave compound hazards. The 347 

power demand and dependence may reduce during TCs thanks to evacuation, but high power 348 

demand may still exist if electrical vehicles are increasingly adopted and used for evacuation 349 

[51]. Also, as the temperature increases in the future climate, it is possible that utilities will have 350 

the incentive to upgrade the power system capacity to match with the higher temperature-related 351 

power demand. However, improving the power capacity would not significantly improve the 352 

power system reliability and resilience under TCs, even when the capacity is increased by 50% 353 

(see Supplementary Fig. S8).  354 

Strategically undergrounding local distribution networks can efficiently enhance the resilience of 355 

the power system to adapt to climate change. Our analysis shows that undergrounding only 5% 356 
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of the distribution networks close to the root nodes can reduce the expected percentage of Harris 357 

County residents experiencing at least one longer-than-5-day TC-blackout-heatwave compound 358 

hazard from 18.2% to 11.3%. As the power outages under TCs and daily operation are both 359 

dominated by the generalized scaling law (e.g., top 20% of local damages would trigger over 360 

80% of total outage), the reliability-based enhancement of power grids against TCs can be 361 

considered jointly with daily-operation-based enhancement. This finding points further to the 362 

potential to develop a unified design framework for enhancing the power system resilience 363 

against various damage sources. The potential co-benefit and improved cost efficiency induced 364 

by the unified strategy may better motivate utility companies to mitigate the compound hazard 365 

risk. Furthermore, the power outage and compound hazard we consider herein can significantly 366 

disrupt local business and supply chains, leading to secondary losses [52], and the enhanced 367 

connectivity of local and global economics potentially would further foster the impact [53]. The 368 

coupled modeling of the compound hazard and induced economic disruption may be applied in 369 

future studies to quantify the cost-benefit [54] of proposed risk mitigation strategies. 370 

To develop efficient and economic risk mitigation strategies, quantifying the reliability and 371 

resilience of infrastructure systems under the impact of future compound hazards is essential but 372 

is still associated with various uncertainties, as discussed above. Risk analysis requires 373 

continuous updates wherein improved modeling and new data become available. As extreme 374 

climate events become more frequent, coastal megacities also develop rapidly [1, 55]. To ensure 375 

sustainable development, effective strategies to mitigate the TC-blackout-heatwave compound 376 

hazard risk, a pronounced example of physical-social connected extremes [56], should be 377 

carefully developed. The analysis results for Harris County obtained in this study may be 378 

qualitatively representative for coastal megacities in the subtropical regions of the U.S., but the 379 

developed methodological framework can be applied to quantify power system resilience and 380 

develop risk mitigation strategies for any TC-prone areas. More generally, this study 381 

demonstrates an interdisciplinary approach that integrates the-state-of-art climate science and 382 

infrastructure engineering to project climate change impact and develop risk mitigation 383 

strategies, with the goal of achieving resilient and sustainable communities. 384 

 385 

Methods 386 
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TC Projection.  387 

TCs cannot be well resolved in typical climate models due to their relatively small scales, except 388 

perhaps in a few recently developed high-resolution climate models (e.g., 38). Dynamic 389 

downscaling methods can be used to better resolve TCs in climate-model projections (e.g., 57), 390 

but most of these methods are still computationally too expensive to be directly applied to risk 391 

analysis. An effective approach is to generate large numbers of synthetic TCs under reanalysis or 392 

GCM–projected climate conditions to drive hazard modeling. In this study, we apply large 393 

datasets of synthetic storms generated by a deterministic-statistical TC model [33]. This model 394 

uses thermodynamic and kinematic statistics of the atmosphere and ocean derived from 395 

reanalysis or a climate model to produce synthetic TCs. The model, when driven by reanalysis 396 

environment, is shown to generate synthetic storms that are in statistical agreement with 397 

observations [58], and it has been widely used to study TC wind, storm surge, and rainfall 398 

hazards under climate change effects (e.g., 59,32,33). 399 

Specifically, we apply the synthetic TC datasets generated with this model by ref. [34] for the 400 

Houston area. Each synthetic storm passes within 300 km of Houston, with a maximum wind 401 

speed of at least 22 m/s (sensitivity analysis shows that the hazard modeling results are not 402 

sensitive to the storm selection radius when it is greater than 200 km). The datasets include 2000 403 

synthetic TCs under the historical climate over the period of 1981–2000 based on the National 404 

Centers for Environmental Prediction (NCEP) reanalysis as well as 2000 synthetic TCs for the 405 

historical climate (1981-2000) and 2000 synthetic TCs for the future climate (2081-2100 under 406 

the high-emissions scenario RCP8.5) based on each of 6 CMIP5 GCMs (chosen based on data 407 

availability and following previous studies): the National Center for Atmospheric Research 408 

CCSM4, the United Kingdom Meteorological Office Hadley Center HadGEM2-ES, the Institute 409 

Pierre Simon Laplace CM5A-LR, the Japan Agency for Marine-Earth Science and Technology 410 

MIROC-5, GFDL-CM3.0 (NOAA Geophysical Fluid Dynamics Laboratory), and the Japan 411 

Meteorological Institute MRI-CGCM3.  412 

To account for possible biases in the climate projection, we bias-correct storm frequency and 413 

landfall intensity and apply stochastic modeling to resample the storms. Specifically, for each 414 

GCM-driven projection, we bias-correct the projected storm frequency for the future climate by 415 

multiplying it by the ratio of the NCEP estimated frequency (where the NCEP frequency was 416 



 15 

calibrated to be 1.5 times/year for Houston using historical data [60]) and GCM estimated 417 

frequency for the historical climate, assuming no change in the model bias over the projection 418 

period, following ref. [32]. We apply the same assumption to bias-correct the projected landfall 419 

intensity (maximum wind speed) for the future climate, through cumulative density function 420 

(CDF) quantile mapping based on comparison of the NCEP and GCM estimated CDF of the 421 

annual maximum landfall intensity for the historical climate, similar to ref. [61], and reweighting 422 

each TC simulation based on the bias-corrected intensity distribution. To obtain a single 423 

projection for the future climate, we combine the bias-corrected projections from the 6 GCMs, 424 

weighted (as in ref. 62) according to their performance in estimating the CDF of the annual 425 

maximum landfall intensity for the historical climate compared to NCEP estimates. Finally, we 426 

stochastically resample the storms from the combined projection based on the adjusted weight 427 

for each storm simulation for the specific climate condition; 10,000 20-year simulations are 428 

generated for the historical climate and 10,000 20-year simulations are generated for the future 429 

climate. The storm occurrence times (generated in the physical model according to storm 430 

climatology) are matched with the heatwave analysis for the study area. For each sampled storm, 431 

we generate the spatial-temporal wind field, employing the classical Holland wind profile [63], 432 

accounting for the effects of surface friction and large-scale background wind based on ref. [64], 433 

and converting 1-min. mean winds to 3-second wind gusts using gust factors [65], to drive the 434 

power grid outage analysis.  435 

Heatwave Projection. Similar to ref. [27], the HI is calculated at the daily level as a function of 436 

near-surface (at 2 m) air temperature (daily maximum), specific humidity (daily mean), and 437 

surface pressure (daily mean). To be consistent with the TC simulation, we obtain these data for 438 

Houston from the NCEP reanalysis and 6 GCMs mentioned above, matched in date with the 439 

landfall (defined as when the storm is at its closest point to Houston) of each generated synthetic 440 

storm. The GCM-projected future HI is bias-corrected [31,66] by adding to it the difference 441 

between the NCEP reanalysis and GCM-estimated historical HI (monthly average cubic-spline 442 

interpolated to daily). When combining the datasets of storm and heatwave events (HI > 40.6℃), 443 

we account for their possible correlation. Based on observations, ref. [27] found that TCs arrive 444 

after an anomalously high HI from amplified air temperatures and specific humidity; after TC 445 

passage, HI anomalies decrease to negative and return to zero within approximately 10 days. 446 
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Ref. [27] neglected the interdependence between storms and heatwaves when estimating 447 

compound TC-heat events on a 30-day time scale. Here, concerning compound events on shorter 448 

time scales, we account for the interdependence statistically: we add the composite impact of TC 449 

passage to the meteorological variables used to calculate the HI, where the composite impact is 450 

estimated based on historical data (Fig. 3a in ref. [27]). Accounting for this correction reduces 451 

the HI values within 5 days of TC passage and thus the probability of 5-day compound TC-452 

blackout-heatwave events defined in this study. Also, we consider hazard compounding as when 453 

the heatwave starts before or on the day of TC landfall (i.e., neglecting heatwaves that occur 454 

after landfalls), which results in a conservative estimation of the compound risk.  455 

Power System Modeling. While various statistical models [67,68] have been developed to 456 

estimate TC-induced blackout, we employ a physics-based model to better account for future 457 

evolving factors, e.g., climate change, infrastructure upgrade, and utility maintenance. 458 

Specifically, we apply the power grid outage and recovery model developed by ref. [35] to 459 

simulate TC impact on the electric power system in Harris County, TX. This system serves 460 

approximately 1.7 million residents in a service area around 4,600 km2, and over 90% 461 

metropolitan households in Southwestern America use air-conditioning [69]. The power grid 462 

includes high-voltage transmission networks, where 551 transmission lines connect 23 power 463 

plants and 394 substations and low-voltage, generated star-like distribution networks (discussed 464 

below), which contain ~40,000 branches [35] (Supplementary Fig. S1). 465 

Given the TC wind hazard (i.e., local maximum wind gust during the storm), the power grid 466 

failure model first applies probabilistic fragility functions to estimate the damage states of five 467 

main vulnerable component types of the power network: transmission substations, transmission 468 

lines, distribution nodes, distribution lines, and local distribution circuits. Component failures 469 

alter the power grid topology and may separate the power grid into unconnected sub-grids. A 470 

direct current (DC)-based power flow simulation is then performed to capture the power flow 471 

pattern in each sub-grid, and the local demand is cut when overflow happens until the system 472 

achieves a steady state (refs. 70,71 used a similar approach). The power system is open and 473 

connects with systems outside the study area via transmission lines; the performance of the 474 

power grid outside the study area is assumed normal. The recovery model, developed based on 475 

emergency response plans and operational data, applies estimated recovery resources based on a 476 
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priority-oriented strategy to repair damaged transmission substations, transmission lines, and 477 

critical facilities vital to public safety, health, and welfare before local distribution networks [35]. 478 

The power grid outage and recovery model was calibrated for the study area by ref [35] using 479 

observed data for Hurricane Ike (2008). We further evaluate the model adding data from 480 

Hurricane Harvey (2017). The same wind field modeling method applied to the synthetic storms 481 

is used for these two historical storms with storm characteristics (i.e., track, intensity, and size) 482 

taken from the extended best track data [72].  483 

The power system model we use here, though physics-based, cannot resolve all details during 484 

power outage and recovery processes. Given that distribution networks and protective device data 485 

are generally not available, star-like network [35] and minimal spanning tree (MST) [73] models 486 

(and models combining these two [73,74]) are usually used to generate synthetic distribution 487 

networks and features that may have minor effects on predicting the daily scale power outage and 488 

recovery under hurricanes including protective devices are usually neglected [73-75]. Based on 489 

these assumptions, the adopted simulation framework is arguably the best model that we can use 490 

to capture the power outage and recovery process at a meso-scale level, e.g., for each zip code or 491 

census tract, rather than at the individual household level, for risk and resilience analysis. The 492 

model using star-like distribution networks and neglecting protective devices is also validated for 493 

Hurricane Ike and Harvey at both the county level (Fig. 2) and census tract level (Fig. S2). The 494 

well consistency between the daily scale simulated results using this model and the real 495 

observations, together with the fact that this research mainly takes its produced census-tract level 496 

outage scenarios to support the compound hazard resilience analysis, proves the power system 497 

model useful enough to support this research as well as the main findings. 498 

Nevertheless, we perform further analysis for Hurricane Ike to test the assumptions on the 499 

distribution networks and protective deceives (Supplementary Fig. S9). To test the assumption on 500 

the distribution networks, we use the road network in Harris County to generate the MST structure 501 

of the power distribution networks and find that the specifics of the acyclic distribution network 502 

structure does not affect the accuracy of the global power system simulation (Figs. S9a and S9c). 503 

Although the distribution network topology is generally not available in a large domain, e.g., whole 504 

east coast of the United States, the data is available for Harris County. The power system 505 

simulation results based on the true distribution networks are similarly accurate (Fig. S9d). 506 
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Protective devices protect the distribution/transmission lines from overflow induced physical 507 

damages; however, the power outage caused by protective devices usually would be restored in 508 

hours, which is not at the same scale of the post-hurricane power outage (weekly level). To further 509 

investigate how the protective devices could potentially impact the power system resilience, we 510 

assume all power lines are equipped with protective devices and incorporated the overload-induced 511 

component failures into the power outage modeling (the same as in Ref. [75]). We find that the 512 

recovery process is similar between the case considering cascading failure and the case not 513 

considering cascading failure (prevented by protective devices) (Figs. S9a and S9c). Also, 514 

although under the normal demand there would be ~10% overloaded lines post the hurricane, when 515 

the demand is less than 95% of the normal demand (due to, e.g., hurricane evacuation) the 516 

overloading hardly happens (Fig. S9b). These findings illustrate that the impact of protective 517 

devices is relatively small on the daily-scale power outage and recovery under hurricanes, where 518 

a large number of physically damaged power system components often need days to weeks to fully 519 

repair. However, it is still worthy of note that the post-hurricane behavior of the electric power 520 

system, though simplified in this work to capture the census-level statistics of power outage, is 521 

extremely complex, involving numerous physical processes on the transmission and distribution 522 

networks and a variety of devices and operations. Future research may develop more detailed 523 

models to better capture physical mechanisms of post-hurricane power system failure. 524 

Network Analysis and Enhancement Investigation. After investigating the TC-blackout-525 

heatwave compound hazard risk, we apply network analysis to investigate how the spatial pattern 526 

of power outage is related to the network pattern of local power distribution sectors, using our 527 

large synthetic TC dataset. Specifically, we investigate the generalized scaling relationship 528 

between the probability of local failures and their impact on the global outage, proposed by ref. 529 

[8], to understand the reliability of the power system. We analyze the connection between power 530 

outage and local distribution network topology by linking the power outage rate to the mean 531 

length of local distribution sectors. These analyses support the aim of designing efficient hazard 532 

mitigation strategies.  533 

Various strategies have been proposed to enhance the post-hurricane resilience of power 534 

networks [42], e.g., adding recovery resources, applying stricter structural criteria, and 535 

undergrounding network branches. Adding significant recovery recourses or applying stricter 536 
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design criteria would raise daily costs, while benefiting emergency recovery more than daily 537 

operation [40]. Thus, based on our findings, we design an undergrounding plan to enhance the 538 

resilience of the power system. Specifically, we propose greedily reducing the mean length of 539 

local distribution networks by protecting a small portion of wires close to root nodes of the 540 

distribution networks. We compare this strategy with undergrounding strategies that randomly 541 

bury transmission lines and distribution sectors (similar to the generally used uniform 542 

undergrounding strategies) to evaluate its efficiency in reducing future risk of TC-blackout-543 

heatwave compound hazard. The results, based on the star-like distribution networks, is shown in 544 

Fig. 6. We test the effect of the assumption on the distribution networks by applying the analysis 545 

to the MST-based distribution networks and the true distribution networks and find similar 546 

results (Supplementary Fig. S10; e.g., for an enhancement rate of 5%, the expected percentage of 547 

residents experiencing at least one longer-than-5-day TC-blackout-compound hazard is different 548 

only by 2% between MST and star-like based models and by 3% between the true distribution 549 

networks and star-like based networks).  550 

 551 

Data availability statement: 552 

The power network data (including topology data for transmission and distribution networks) 553 
and the historical power outage data were obtained from CenterPoint Energy, Inc. 554 
(www.centerpointenergy.com). The hurricane data were provided by Kerry Emanuel (MIT). The 555 
generated power system failure statistics are deposited to the NSF DesignSafe-CI under ODC 556 
license (https://doi.org/10.17603/ds2-bqc0-sn69). 557 
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Code availability statement:  559 

The code for simulating power system failures are deposited in the NSF DesignSafe-CI under 560 
ODC license (https://doi.org/10.17603/ds2-bqc0-sn69). 561 
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Figure 1. Comparison of simulated and observed power outage and recovery process for 

Hurricanes Harvey and Ike in Harris County, TX. Red curve shows median values of the 

simulation results, with 32% to 68% quantile range shown by shade. Blue curves show the 

observations of power outage. 
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Figure 2. Analysis of likelihood and duration of post-TC heatwaves for Harris County. a) 

Probability for a post-TC heatwave lasting over a certain duration in the historical climate 

(blue curve showing median, with 32% to 68% quantile range shown by shade) and future 

climate (red curve showing median, with 32% to 68% quantile range shown by shade). b) 

Relative climate risk, defined as the ratio of future probability and historical probability of 

post-TC heatwave, as function of heatwave duration (shade shows 32% to 68% quantile 

range).  
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Figure 3. Analysis of TC-heatwave compound hazard risk for Harris County. Estimated 

percentage of residents who may not experience outage days after TC landfall in a 20-year 

period are shown for a) the historical climate and b) the future climate. Orange dot shows 

simulated worst case of power outage over all simulations. Dashed black line shows 10% 

worst case of power recovery. Estimated percentage of residents who may not experience TC-

blackout-heatwave compound hazard days after TC landfall in a 20-year period are shown for  

c) the historical climate and d) the future climate. In all panels, the dashed and dashed-dotted 

curves show expectation and ±1σ range based on all simulations. Shade shows CDF, 

indicating probability of less than certain (y) percentage of residents not affected, with darker 

color corresponding to higher probability and thus higher risk. Green stars highlight expected 

percentage of residents not affected 5 days post TC landfall. 
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Figure 4. Estimated percentage of residents facing at least one longer-than-5-day post-TC 

power outage (a & b) and blackout-heatwave compound hazard (c & d) in the historical (a & 

c) and future climate (b & d) for each census tract in Harris County. 
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Figure 5. Network analysis of the synthetic-TC-induced power outage in Harris County. a) 

Generalized scaling law for the Harris power system: empirical probability W(x) of a 

customer being affected by a disruption that affects more than x customers vs. empirical 

probability P(x) for a disruption to affect more than x customers during a storm event. Blue 

curve shows the average over all synthetic events in the historical simulation; gray curves 

show randomly selected 100 events. b) Percentage of residents experiencing a longer-than-5-

day power outage averaged over all synthetic storms simulated for the historical climate vs. 

harmonic mean length (reciprocal of the arithmetic mean of reciprocals) of power distribution 

network sectors for each census tract in Harris County. Red line shows the linear fit; dashed 

curves show the ±1σ uncertainty range. 
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Figure 6. Reduced impact of longer-than-5-day TC-blackout-heatwave compound hazard 

under various risk mitigation strategies. Solid curves show percentage of affected residents in 

a 20-year period in the future as a function of network enhancement rate with three strategies: 

randomly undergrounding power transmission networks (green), randomly undergrounding 

power distribution networks (red), and greedily undergrounding power distribution networks 

(blue). Curves show the expectation; error bars show ±1σ uncertainty range. 
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