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Abstract:

Tropical cyclones (TCs) have caused extensive power outages. The impacts of TC-caused
blackouts may worsen in the future as TCs and heatwaves intensify. Here we couple TC and
heatwave projections and power outage and recovery process analysis to investigate how TC-
blackout-heatwave compound hazard risk may vary in a changing climate, with Harris County,
Texas as an example. We find that, under the high-emissions scenario RCP8.5, long-duration
heatwaves following strong TCs may increase sharply. The expected percentage of Harris
residents experiencing at least one longer-than-5-day TC-blackout-heatwave compound hazard
in a 20-year period could increase dramatically by a factor of 23 (from 0.8% to 18.2%) over the
21% century. We also reveal that a moderate enhancement of the power distribution network can
significantly mitigate the compound hazard risk. Thus, climate adaptation actions, such as
strategically undergrounding distribution network and developing distributed energy sources, are

urgently needed to improve coastal power system resilience.
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Hurricane (generally called tropical cyclones or TCs) threaten 59.6 million people in the U.S.
(2018) [1,2] and are important initiating causes of large-scale failures of power systems. In 2017,
Hurricane Maria devastated Puerto Rico’s power grid, resulting in a power loss of 3.4 billion
customer hours and the worst blackout in US history [3]. Hurricane Irma (2017) deprived over 7
million customers of electricity, 2.1 million of whom still lacked access to electricity after four
days [3]. Hurricane Harvey (2017), making landfall on the Texas coast, disrupted hundreds of
overhead electricity lines and disabled over 10,000 megawatts (MW) of electricity generation
capacity; local utility companies spent over a week to restore the system [4]. In 2020, Hurricanes
Isaias, Laura, Sally, Delta, and Zeta caused ~3.8, 1.5, 0.9, 0.8, and 2.0 million power outages,
separately [5]. Similarly, Hurricane Florence (2018) cut electric power for around 1.4 million
customers; the system took two weeks to recover [6]. Hurricane Sandy (2012) affected over 8.5
million customers [7,8]. These disruptions, leaving millions of customers without electricity for
days, call for an investigation of power system resilience and ultimately a re-design of the energy
infrastructure [9]. Moreover, the U.S. power grid may become more vulnerable to weather and
climate-induced failures in the future due to climate change [10]. In particular, hurricane-induced
power outages are likely to become more severe, as increasing evidence shows that hurricane
intensity will increase due to climate change (e.g., 11-17). This potential change should be

quantified and accounted for in planning future energy infrastructure.

Projected with greater confidence, climate change may also induce more heat extremes that are
beyond human tolerance [18-21]. Heatwaves are the primary cause of weather-related mortality
(due to heat cramps, syncope, exhaustion, stroke, etc.) in the U.S. [22], and they may harm
mental health [23,24], sleep quality [25], and social stability [26] in different ways. Ref. [27] is
an early research to connect TCs with heatwave impacts. With TC-induced power outages, the
impact of heatwaves would dramatically increase, as air conditioning, with around 1.6 billion
units in operation over the U.S. [28], is critical in reducing the vulnerability to extreme heat (the
fatality risk under heatwaves without air conditioning is estimated to triple, as revealed by a post-
heatwave analysis in Chicago [29]). Ref. [27] found that TC-heatwave compound events have

been rare and affected only about 1000 people worldwide, as the seasonal peak of extreme heat
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precedes that of major TCs. Due to global warming, Ref. [27] projected that the TC-heatwave
compound hazard would affect a much larger population in the future, e.g., over two million in a
world 2°C warmer than pre-industrial times. However, Ref. [27]’s projection neglected potential
changes in TC climatology in the future, which may result in an underestimation of the
compound hazard, given that TCs will likely become stronger (e.g., 11-16) and possibly occur
earlier in the season [30]. Also, ref. [27] focused on TC-heat compound hazard, but the potential
impact of the compound hazard depends also on the reliability and resilience of the power

system.

To better quantify the evolving joint impact of TCs and heatwaves, here we model the TC-
blackout-heatwave compound hazard risk and resilience in a changing climate. We combine
statistical-deterministically-downscaled TC climatology and directly-projected heatwave
climatology from general circulation models (GCMs), and we explicitly model the power system
failure and recovery process under the climate hazard scenarios. We investigate how the risk of
residents experiencing prolonged TC-blackout-heatwave compound hazards may change from
the current to future climates. To illustrate we apply the analysis to Harris County (including
major part of Houston City) in Texas (see Methods and Supplementary Fig. S1 for a description
of the area’s geographics and power network). Harris County has the highest population density
along the Gulf Coast and, as located in the subtropics, may face disproportionally large increase

in heatwaves [31] and TCs [32] in a warming climate.

As TCs cannot be well resolved in typical GCMs due to their relatively small scales, we apply
large datasets of synthetic storms generated by a deterministic-statistical TC model [33] for the
study area [34], for the historical climate of 1981-2000 based on the National Centers for
Environmental Prediction (NCEP) reanalysis and for the future climate of 2081-2100 under the
emissions scenario RCP8.5 based on 6 GCMs in the fifth Coupled Model Inter-comparison
Project (CMIPS5; see Methods). Based on the performance of the GCMs in terms of their
historical simulations compared to the reanalysis-based simulation, we bias-correct the GCM-
simulated storm frequency and landfall intensity distribution and combine the 6 simulations into
a single projection for the future climate. Then we stochastically resample the synthetic storms
from the combined projection to form 10,000 20-year simulations for the historical climate and

10,000 20-year simulations for the future climate (Methods). Here we focus on wind effects on
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the power grid (see Discussion) and apply a parametric model to estimate the spatial-temporal
wind field for each synthetic storm. We apply a physics-based power outage and recovery model
[35], validated by two historical cases (Hurricanes Harvey and Ike) for the study area, to
simulate the wind-induced power system failure and recovery process at a census tract level for

each synthetic storm (see Methods).

The US National Weather Service issues warnings when a forecast heat index (HI)
characterizing humid heat exceeds 40.6°C. Ref. [27] defines a compound TC-heat event as a
major TC followed within 30 days by an HI greater than 40.6°C at the site of landfall. Here we
also define a heat event as an HI over 40.6°C, but we are interested in a range of time scales,
especially over 5 days following the TC landfall. (Considering that TCs usually start to interrupt
the life pace of local residents at least 2 days ahead of landfall [36], a greater-than-5-day power
outage plus heatwave means affected residents cannot resume normal life for over a week, which
is usually a benchmark for resilience design for critical infrastructure systems [37].) Based on the
same reanalysis and GCM datasets, we calculate and bias-correct the HI for the study area during
and after the landfall of each synthetic storm (see Methods). In addition, we modify the HI to
statistically account for the interdependence between TCs and heatwaves (Methods). Combining
the obtained HI dataset and TC power outage analysis enables us to estimate the risk of Harris
residents experiencing prolonged (e.g., 5 day) heatwaves (HI>40.6°C) after losing power due to
TC-induced damage. We first focus on the estimated risk for the high-emissions scenario
RCPS8.5 and the end-of-the-century (2081-2020) time frame (Results); we then investigate the
sensitivity of the estimated risk to the emission scenario, the mid-of-the-century time frame, and,
considering the large uncertainty regarding how TC frequency will change (e.g., 15,16,38,39),
the storm frequency projection (Discussion). Also, we assume the power system and recovery
operation will remain the same in the future (Results), but we investigate possible effects of

heatwaves on power restoration and future power capacity upgrade (Discussion).

In addition to quantifying the risk, we explore efficient strategies to enhance power system
resilience for combating future TC-blackout-heatwave compound hazards. Consistent with
previous results [8], our network analysis (see Methods) shows that local power failures have a
disproportionally large non-local impact on the power system; the reliability of local power

distribution networks (i.e., the final stage of energy infrastructure) is particularly critical. Thus,
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we propose an undergrounding strategy (burying parts of the power network covered by anti-
water pipelines [40-42]; see Methods) to protect a small portion of wires that are close to the root
nodes of local power distribution networks. We show that such a targeted undergrounding
strategy is much more efficient than the widely-applied uniform undergrounding strategy in
increasing the resilience of the power system and decreasing the risk of future TC-blackout-

heatwave compound hazards.

Results

Historical Cases. Hurricanes Harvey and Ike are the main events in the past 20 years that led to
significant power outages (over 10% of residents lost power) in Harris County. Ike had a higher
gust wind observation (~92 mph) when it hit Houston; Harvey was weaker (<50 mph) but lasted
longer and brought heavy rainfall [43]. The wind during Ike broke many more poles, leading to a
larger power outage. As shown in Fig. 1 for the total impact for Harris County from Hurricanes
Ike and Harvey, results from the power grid outage and recovery model compare relatively well
with the observation (although the model slightly overestimates the initial power outage under
Harvey), indicating the model’s success in capturing both large and relatively small power
outage events. The model estimates a relatively small power outage (1% [0%-1%]) after the 5-
day restoration period for Harvey and a large power outage (63% [60%- 66%]) for Ike for over 5
days, agreeing with observations (Fig. 1). The model results at the census tract level for
Hurricanes lke and Harvey compare also relatively well with observations (Supplementary Fig.

S2), with a mean error over all census tracts less than 10%.

Post-TC Heatwaves. While heatwaves did not follow Hurricanes Ike and Harvey, they may
become more likely to follow future TCs. Under RCPS8.5, the projected change in global mean
surface air temperature for the late 21 century relative to the reference period of 1986-2005 is
3.7 °C based on all GCMs in the IPCC report [44]. The 6 GCMs used in this study predict an
increase of the average global temperature by 3.4°C in the future climate (2081-2100) compared
to that in the historical climate (1981-2000). We analyze the synthetic TC and heatwave datasets

to investigate the likelihood and duration of future post-TC heatwaves. Fig. 2a shows how the
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probability for experiencing a heatwave with a certain duration following a TC changes from the
historical to future climate for the study area. The probability of a heatwave, especially a long-
lasting one, following a TC is quite small for the historical climate, which is consistent with the
observation that TC-heatwave hazards have affected only ~1000 people worldwide during 1979—
2017 [27]. However, the probability curve is much higher for the future climate. The probability
for a post-TC heatwave lasting over 5 days is 2.7% (1.8% - 4.2%) under the historical climate
but 20.2% (12.0%-31.5%) in the future climate. For a post-TC heatwave to last over 12 days is
almost impossible in the historical climate, but a nonnegligible probability of 7.5%
(4.8%~11.9%) exists for it to happen in the future climate. To better reveal the timescale of
climate change impact, Fig. 2b shows the relative climate risk, defined as the probability of
experiencing a heatwave lasting for a certain duration following a TC in the future climate
divided by that in the historical climate. The relative climate risk increases sharply with the
duration, reaching the peak around 13 days. The probability for a 1-day heatwave following a TC
in the future climate would be ~5 (3-9) times larger than that in the historical climate, the
probability for a 5-day heatwave would be 7 (4 ~ 12) times larger, and the probability for a 13-
day heatwave would be 22 (14~33) times larger. This time-scale pattern of climate change
impact should be considered when developing maintenance and emergency response strategies
for urban infrastructure systems. For example, resilience criteria of these systems should be
enhanced to avoid “resonance” effects of climate change. A typical recovery cycle for the power
system is currently 5 days or longer [37]; the dramatic change in the climate risk may render

such a time scale of recovery not resilient.

Blackout and Compound Hazard Risk. Incorporating the power outage and recovery
modeling, we analyze the TC-induced blackout and TC-blackout-heatwave compound hazard
risk for the study area. We apply an agent-based approach and record the largest duration of the
hazards each resident could experience during each of the 20,000 20-year synthetic simulations.
Figs. 3a and 3b show the estimated percentage of Harris residents who may not experience post-
TC power outages longer than a certain duration over a 20-year period under the historical and
future climates, respectively. On average, the TC-induced power outage could affect 50% of

residents during a 20-year period in the historical climate and 73% of residents in the future.



177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192

193
194
195
196
197
198
199
200
201
202
203
204
205
206

12.8% residents would not be subject to any post-TC blackout during the 20-year period under
the worst case in the historical climate, while only 2.7% residents would not be affected under
the worst case in the future climate. In the historical climate over a 20-year period, on average
14% of Harris residents could face at least one longer-than-5-day post-TC power outage, which
is less than one third of the expected level of 44% in the future. For 90% of cases under the
historical climate, the utility company (CenterPoint Energy) could fully repair the power system
within about 15 days, which matches recent-year records (e.g., 12 days for Hurricane Irma in
2017, and 13 days for Hurricanes Michael and Florence in 2018 [5]). With the same response
strategies and resources, the utility company might spend over 25 days in repairing the power
system in the future under severe TCs. By comparison (with Fig. 1), the probability of
experiencing the scale and duration of power outage induced by Hurricane ke during a 20-year
period is about 10% in the historical climate and 35% in the future. Hurricane Harvey is a below-
average event in both the historical (87%) and future (96%) climates. These analyses show that
climate change may dramatically increase the outage risk of the power system, especially the tail

of the risk that people will face.

Figs. 3c and 3d show the estimated percentage of Harris residents who may not experience any
TC-blackout-heatwave compound hazard longer than a certain duration over a 20-year period
under the historical and future climates, respectively. The chance for a resident to experience at
least one longer-than-5-day compound hazard is almost zero (0.8%) under the historical climate.
However, the chance for a resident to be affected by at least one such compound hazard in the
future climate (18.2%) would be 23 times larger. Recall that, due to climate change, the 5-day
post-TC power outage risk is estimated to increase by 3 times (Figs. 3a & 3b), and 5-day post-
TC heatwave compound hazard is estimated to increase by 7 times (Fig. 2b). The 23-time
increase of TC-blackout-heatwave compound hazard risk, which is larger than the product of the
two factors as if TCs and heatwaves are climatologically uncorrelated (21 times), indicates that
strong TCs and long-lasting heatwaves may become more likely to co-occur under climate
change. In other words, strong TCs leading to larger power outages may be more likely followed
by longer-lasting heatwaves, affecting over 18% of Harris residents towards the end of the

century.
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To investigate the spatial distribution of the risk, we estimate the percentage of residents to
experience at least one longer-than-5-day TC-induced power outage (Figs. 4a and 4b) and TC-
blackout-heatwave compound hazard (Figs. 4c and 4d) over a 20-year period for each census
tract in Harris County in the historical and future climates. Changing from the historical to the
future climate, the power outage risk of all the census tracts would at least double. The
compound hazard risk would increase even more dramatically. Over 95% people in all census
tracts would experience no longer-than-5-day compound hazard in the historical climate; in the
future, over 95% of census tracts would have over 5% of the residence experiencing at least one
such compound hazard during a 20-year time period. The distribution of risk is heterogeneous,
which implies a heterogeneous distribution of the resilience level of the power system, as the
heatwave is constant (given the GCM resolution) and TC winds vary only slightly over this
relatively small region. The spatial pattern shows that residents near the center of Houston (the
middle and lower part of the County) may experience lower power outage and compound hazard
risk than residents in rural (e.g., the upper part) areas of the County. The varying densities of

power substations and spatial patterns of distribution networks induce most of this difference.

Scaling Law of Power System Failure. To better understand the power system, we apply
network analysis to investigate links between local disruptions (the failure of a specific pole or
distribution/transmission line) and global failures, using our large datasets of synthetic storm
events. For each storm event, we calculate /¥(x), the percentage of service interruptions induced
by all local disruptions that affect more than x customers, and P(x), the percentage of local
disruptions that affect more than x customers. W(x) also represents the probability for a customer
to be subject to a disruption that affects more than x customers, and P(x) is the probability for a
disruption to affect more than x customers. Fig. 5a shows the obtained generalized scaling law
[8] between W(x) and P(x), for each simulated event and averaged over all the events for the
historical climate. Rather than a linear relationship indicating a uniform distribution of damages,
the concave scaling curve shows that on average the largest 20% of local disruptions are
responsible for 72% (71%~75%) of the global power outage (measured by the number of

affected customers). This result obtained from the synthetic analysis for Harris County is
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comparable with a previous empirical result for Upstate New York that during Hurricane Sandy
the top 20% of local disruptions induced 79%-89% of the service interruptions [7]. In fact, the
difference in the scaling curves among the full range of synthetic TCs is quite small, which
confirms the robustness and generalizability of the scaling law in describing a TC-damaged
power system. Further, ref. [8] found that the scaling curve developed using data on failures in
daily operation is also similar, suggesting that the power network vulnerability (i.e., local
disruptions inducing large-scale interruptions) exists independently of exogenous effects. Thus,
reliability-based redesign against various TCs may not need to differ fundamentally from the

daily-operation-based enhancement, as confirmed later (Figure 6).

Large power outages are usually induced by local damages (as shown in our analysis and
previous studies [8]), and large portions of local damages are due to distribution network
failures, so we analyze the connection between power outages and local distribution network
topology. Fig 5b. shows the correlation between the percentage of residents experiencing a
longer-than-5-day power outage (averaged over all simulated synthetic storms for the historical
climate) and the harmonic mean length of the power distribution network sectors at the census
tract level. The results show that the longer the length of the local power distribution networks,
the higher the risk. The mean length of the power distribution networks is highly related to the
pattern of urban development. A region with a lower population density may have a larger mean
length of power distribution networks, as it may have fewer substations to support residents who
live relatively far away. Thus, our results indicate that, for TC-prone regions, the scaling of
urban development may have contributed significantly to the spatial distribution of power outage
risks. The observed high correlation between the power outage rate and the mean length of
distribution networks and the generalized scaling relationship between the probability of local
failure and the failure impact, shown in Fig. 5, can be explained theoretically and generally for
acyclic (the most common) power distribution networks (see theoretical analysis and Fig. S3 in

Supplementary Materials).

Efficient Undergrounding Strategy. Based on an improved understanding of the power

network vulnerability, we test three network enhancement strategies to mitigate the TC-blackout-
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heatwave compound hazard risk in the future. Fig. 6 compares the reduction of the TC-blackout-
heatwave compound hazard risk, measured by the percentage of residents affected by longer-
than-5-day compound hazard, as a function of the enhancement rate for the three strategies; the
enhancement rate is the total length of enhanced networks divided by the total length of the
network sections that could be enhanced. Random enhancement of the high-voltage transmission
network (burying transmission branches randomly) provides limited improvement of the global
system performance. This finding confirms that the local distribution networks dominate global
pattern of the power outage and subsequent recovery process. Randomly undergrounding low-
voltage power distribution networks improves the system performance linearly, which means
that the power distribution networks without protection face the same risk as before the
enhancement. Given the acyclic topology of the power distribution networks, a greedy
undergrounding strategy is used to protect a small portion of wires close to the root nodes of the
distribution networks. In the simulation, the algorithm simply protects the root sector of the
longest overhead branches of the distribution network iteratively until the enhancement rate is
reached (i.e., “greedy” undergrounding). The greedy undergrounding strategy improves the
system performance much more than the other two strategies. For example, with the first 5%
power distribution networks undergrounded, the expected percentage of residents who might
face the compound hazard for over 5 days drops to 11.3% from 18.2% (Fig. 3d). This
performance improvement (6.9%) is ~15 times more than that of randomly undergrounding
distribution networks (0.5%) or randomly undergrounding transmission network (0.1%),
demonstrating a superior cost-efficiency of the greedy strategy. The topological law for power
outages that we found here may help utility companies to plan resilient power networks to

combat change climate.

Discussion

The results of this analysis demonstrate how dramatically the impact of TCs may increase over
time, due to compound effects of storm and heatwave climatology change. For Harris County,
the expected (average) percentage of residents experiencing at least one longer-than-5-day
heatwave without power post-TCs in a 20-year period would increase from 0.8% in the historical

climate (1980-1999) to 18.2% towards the end of the 21 century (2080-2099), under the high-
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emissions scenario RCP8.5. For the current (2000-2019), near-future (2020-2039), and mid-of-
the century (2040-2059) time frames, which are also highly relevant to decision making, this
impact percentage would increase to 2.2%, 5.1%, and 6.7%, respectively (see Supplementary
Fig. S4). Even if we account for the uncertainty in the prediction of storm frequency [16] and
remove the predicted increase in the storm frequency for the study area (by applying the
frequency in the historical climate), the impact percentage would still increase significantly, to
11.2% towards the end of the 21" century (Supplementary Fig. S5). Only if we assume that the
warming is well controlled under the low-emissions scenario RCP 2.6 and the TC activity
(including both frequency and intensity) remains the same as the historical level, the compound
hazard would change slightly, with the impact percentage changing from 0.8% in the historical
climate to 1.0% towards the end of the century (Supplementary Fig. S6). If the RCP8.5 scenario
is considered an upper bound [45] and the ideal RCP2.6 scenario a possible lower bound, this
additional analysis indicates that the compound hazard risk may be largely avoided under
rigorous climate mitigation policies in line with the Paris Agreement. However, large
uncertainties exist in the economic and political systems [45] as well as in the climate system
(including possibly complex physical interactions between TCs and heatwaves); climate

adaptation and risk mitigation are still necessary and urgent.

Other uncertainties exist in the modeling of the future compound hazard and risk. As the first
attempt in quantifying the compound hazard risk, here we focus on the dominate power damage
effects -- winds and induced falling trees [46]. Located relatively high above the sea level (see
elevation map in Supplementary Fig. S1), our study area, Harris County, is affected mainly by
extreme winds, as evident in historical events including Hurricanes Ike and Harvey (though
lower Houston beyond the Harris County was heavily flooded by Harvey’s extreme rainfalls and
compound flooding). Accounting for significantly less impact (< 10% TC-induced power
outages; [46]), however, flooding and associated debris during TCs can also cause damage to the
power system, and they usually impede the early recovery of a power network. Flood-prone
regions may experience higher risks than estimated here, and future development of the
modeling method must take flood impact into account. A precise prediction of flood-induced
power outage and recovery requires accurate prediction of the magnitude and timing of the
flooding (from storm surge and/or heavy rainfall) [47], power system vulnerability under

flooding [48], and operational logistics of local utilities when repairing wetted power system
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components. The heatwave may also trigger power outages due to excessive power demand,
however, these outages usually restore at a time scale of hours [49], rather than at a daily or

weekly restore time scale for the TC damage induced outages that we consider in this study.

The power system operation may also be affected by extreme heat. According to the
Occupational Safety and Health Administration (OSHA) criteria, outdoor workers can work for
only limited hours (<75% of normal hours) under extreme heat and humidity (H[>39.4°C).
Assuming there is no advanced technology to improve outdoor working condition and the
recovery operation follow the OSHA criteria, the expected percentage of Harris County residents
experiencing at least one longer-than-5-day TC-blackout-heatwave compound hazard in a 20-
year period under the future climate could increase from 18.2% (workers working normally) to
23.3% (see Supplementary Fig. S7). Aging of the power system, which is not accounted for, can
also reduce the resilience and increase the compound hazard risk, although proactive system
maintenance may reduce this effect. Moreover, the scaling relationship between the power
network and the population in a growing city may enlarge the affected population in the future,
as power facilities usually develop much slower than the growth of local population (a 0.87-
power scaling [50]). Given this scaling effect, unbalances between local population and network

density may increase, and thus future risks may be higher than those estimated herein.

On the other hand, we do not account for the benefits of backup generators or solar panels here.
These local devices could temporarily support residents who lose power from the main grid --
another possible way to mitigate impacts of TC-blackout-heatwave compound hazards. The
power demand and dependence may reduce during TCs thanks to evacuation, but high power
demand may still exist if electrical vehicles are increasingly adopted and used for evacuation
[51]. Also, as the temperature increases in the future climate, it is possible that utilities will have
the incentive to upgrade the power system capacity to match with the higher temperature-related
power demand. However, improving the power capacity would not significantly improve the
power system reliability and resilience under TCs, even when the capacity is increased by 50%

(see Supplementary Fig. S8).

Strategically undergrounding local distribution networks can efficiently enhance the resilience of

the power system to adapt to climate change. Our analysis shows that undergrounding only 5%
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of the distribution networks close to the root nodes can reduce the expected percentage of Harris
County residents experiencing at least one longer-than-5-day TC-blackout-heatwave compound
hazard from 18.2% to 11.3%. As the power outages under TCs and daily operation are both
dominated by the generalized scaling law (e.g., top 20% of local damages would trigger over
80% of total outage), the reliability-based enhancement of power grids against TCs can be
considered jointly with daily-operation-based enhancement. This finding points further to the
potential to develop a unified design framework for enhancing the power system resilience
against various damage sources. The potential co-benefit and improved cost efficiency induced
by the unified strategy may better motivate utility companies to mitigate the compound hazard
risk. Furthermore, the power outage and compound hazard we consider herein can significantly
disrupt local business and supply chains, leading to secondary losses [52], and the enhanced
connectivity of local and global economics potentially would further foster the impact [53]. The
coupled modeling of the compound hazard and induced economic disruption may be applied in

future studies to quantify the cost-benefit [54] of proposed risk mitigation strategies.

To develop efficient and economic risk mitigation strategies, quantifying the reliability and
resilience of infrastructure systems under the impact of future compound hazards is essential but
is still associated with various uncertainties, as discussed above. Risk analysis requires
continuous updates wherein improved modeling and new data become available. As extreme
climate events become more frequent, coastal megacities also develop rapidly [1, 55]. To ensure
sustainable development, effective strategies to mitigate the TC-blackout-heatwave compound
hazard risk, a pronounced example of physical-social connected extremes [56], should be
carefully developed. The analysis results for Harris County obtained in this study may be
qualitatively representative for coastal megacities in the subtropical regions of the U.S., but the
developed methodological framework can be applied to quantify power system resilience and
develop risk mitigation strategies for any TC-prone areas. More generally, this study
demonstrates an interdisciplinary approach that integrates the-state-of-art climate science and
infrastructure engineering to project climate change impact and develop risk mitigation

strategies, with the goal of achieving resilient and sustainable communities.

Methods
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TC Projection.

TCs cannot be well resolved in typical climate models due to their relatively small scales, except
perhaps in a few recently developed high-resolution climate models (e.g., 38). Dynamic
downscaling methods can be used to better resolve TCs in climate-model projections (e.g., 57),
but most of these methods are still computationally too expensive to be directly applied to risk
analysis. An effective approach is to generate large numbers of synthetic TCs under reanalysis or
GCM-projected climate conditions to drive hazard modeling. In this study, we apply large
datasets of synthetic storms generated by a deterministic-statistical TC model [33]. This model
uses thermodynamic and kinematic statistics of the atmosphere and ocean derived from
reanalysis or a climate model to produce synthetic TCs. The model, when driven by reanalysis
environment, is shown to generate synthetic storms that are in statistical agreement with
observations [58], and it has been widely used to study TC wind, storm surge, and rainfall

hazards under climate change effects (e.g., 59,32,33).

Specifically, we apply the synthetic TC datasets generated with this model by ref. [34] for the
Houston area. Each synthetic storm passes within 300 km of Houston, with a maximum wind
speed of at least 22 m/s (sensitivity analysis shows that the hazard modeling results are not
sensitive to the storm selection radius when it is greater than 200 km). The datasets include 2000
synthetic TCs under the historical climate over the period of 1981-2000 based on the National
Centers for Environmental Prediction (NCEP) reanalysis as well as 2000 synthetic TCs for the
historical climate (1981-2000) and 2000 synthetic TCs for the future climate (2081-2100 under
the high-emissions scenario RCP8.5) based on each of 6 CMIP5 GCMs (chosen based on data
availability and following previous studies): the National Center for Atmospheric Research
CCSM4, the United Kingdom Meteorological Office Hadley Center HadGEM2-ES, the Institute
Pierre Simon Laplace CM5A-LR, the Japan Agency for Marine-Earth Science and Technology
MIROC-5, GFDL-CM3.0 (NOAA Geophysical Fluid Dynamics Laboratory), and the Japan
Meteorological Institute MRI-CGCM3.

To account for possible biases in the climate projection, we bias-correct storm frequency and
landfall intensity and apply stochastic modeling to resample the storms. Specifically, for each
GCM-driven projection, we bias-correct the projected storm frequency for the future climate by

multiplying it by the ratio of the NCEP estimated frequency (where the NCEP frequency was
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calibrated to be 1.5 times/year for Houston using historical data [60]) and GCM estimated
frequency for the historical climate, assuming no change in the model bias over the projection
period, following ref. [32]. We apply the same assumption to bias-correct the projected landfall
intensity (maximum wind speed) for the future climate, through cumulative density function
(CDF) quantile mapping based on comparison of the NCEP and GCM estimated CDF of the
annual maximum landfall intensity for the historical climate, similar to ref. [61], and reweighting
each TC simulation based on the bias-corrected intensity distribution. To obtain a single
projection for the future climate, we combine the bias-corrected projections from the 6 GCMs,
weighted (as in ref. 62) according to their performance in estimating the CDF of the annual
maximum landfall intensity for the historical climate compared to NCEP estimates. Finally, we
stochastically resample the storms from the combined projection based on the adjusted weight
for each storm simulation for the specific climate condition; 10,000 20-year simulations are
generated for the historical climate and 10,000 20-year simulations are generated for the future
climate. The storm occurrence times (generated in the physical model according to storm
climatology) are matched with the heatwave analysis for the study area. For each sampled storm,
we generate the spatial-temporal wind field, employing the classical Holland wind profile [63],
accounting for the effects of surface friction and large-scale background wind based on ref. [64],
and converting 1-min. mean winds to 3-second wind gusts using gust factors [65], to drive the

power grid outage analysis.

Heatwave Projection. Similar to ref. [27], the HI is calculated at the daily level as a function of
near-surface (at 2 m) air temperature (daily maximum), specific humidity (daily mean), and
surface pressure (daily mean). To be consistent with the TC simulation, we obtain these data for
Houston from the NCEP reanalysis and 6 GCMs mentioned above, matched in date with the
landfall (defined as when the storm is at its closest point to Houston) of each generated synthetic
storm. The GCM-projected future HI is bias-corrected [31,66] by adding to it the difference
between the NCEP reanalysis and GCM-estimated historical HI (monthly average cubic-spline
interpolated to daily). When combining the datasets of storm and heatwave events (HI > 40.6°C),
we account for their possible correlation. Based on observations, ref. [27] found that TCs arrive
after an anomalously high HI from amplified air temperatures and specific humidity; after TC

passage, HI anomalies decrease to negative and return to zero within approximately 10 days.
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Ref. [27] neglected the interdependence between storms and heatwaves when estimating
compound TC-heat events on a 30-day time scale. Here, concerning compound events on shorter
time scales, we account for the interdependence statistically: we add the composite impact of TC
passage to the meteorological variables used to calculate the HI, where the composite impact is
estimated based on historical data (Fig. 3a in ref. [27]). Accounting for this correction reduces
the HI values within 5 days of TC passage and thus the probability of 5-day compound TC-
blackout-heatwave events defined in this study. Also, we consider hazard compounding as when
the heatwave starts before or on the day of TC landfall (i.e., neglecting heatwaves that occur

after landfalls), which results in a conservative estimation of the compound risk.

Power System Modeling. While various statistical models [67,68] have been developed to
estimate TC-induced blackout, we employ a physics-based model to better account for future
evolving factors, e.g., climate change, infrastructure upgrade, and utility maintenance.
Specifically, we apply the power grid outage and recovery model developed by ref. [35] to
simulate TC impact on the electric power system in Harris County, TX. This system serves
approximately 1.7 million residents in a service area around 4,600 km?, and over 90%
metropolitan households in Southwestern America use air-conditioning [69]. The power grid
includes high-voltage transmission networks, where 551 transmission lines connect 23 power
plants and 394 substations and low-voltage, generated star-like distribution networks (discussed

below), which contain ~40,000 branches [35] (Supplementary Fig. S1).

Given the TC wind hazard (i.e., local maximum wind gust during the storm), the power grid
failure model first applies probabilistic fragility functions to estimate the damage states of five
main vulnerable component types of the power network: transmission substations, transmission
lines, distribution nodes, distribution lines, and local distribution circuits. Component failures
alter the power grid topology and may separate the power grid into unconnected sub-grids. A
direct current (DC)-based power flow simulation is then performed to capture the power flow
pattern in each sub-grid, and the local demand is cut when overflow happens until the system
achieves a steady state (refs. 70,71 used a similar approach). The power system is open and
connects with systems outside the study area via transmission lines; the performance of the
power grid outside the study area is assumed normal. The recovery model, developed based on

emergency response plans and operational data, applies estimated recovery resources based on a
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priority-oriented strategy to repair damaged transmission substations, transmission lines, and
critical facilities vital to public safety, health, and welfare before local distribution networks [35].
The power grid outage and recovery model was calibrated for the study area by ref [35] using
observed data for Hurricane Ike (2008). We further evaluate the model adding data from
Hurricane Harvey (2017). The same wind field modeling method applied to the synthetic storms
is used for these two historical storms with storm characteristics (i.e., track, intensity, and size)

taken from the extended best track data [72].

The power system model we use here, though physics-based, cannot resolve all details during
power outage and recovery processes. Given that distribution networks and protective device data
are generally not available, star-like network [35] and minimal spanning tree (MST) [73] models
(and models combining these two [73,74]) are usually used to generate synthetic distribution
networks and features that may have minor effects on predicting the daily scale power outage and
recovery under hurricanes including protective devices are usually neglected [73-75]. Based on
these assumptions, the adopted simulation framework is arguably the best model that we can use
to capture the power outage and recovery process at a meso-scale level, e.g., for each zip code or
census tract, rather than at the individual household level, for risk and resilience analysis. The
model using star-like distribution networks and neglecting protective devices is also validated for
Hurricane ke and Harvey at both the county level (Fig. 2) and census tract level (Fig. S2). The
well consistency between the daily scale simulated results using this model and the real
observations, together with the fact that this research mainly takes its produced census-tract level
outage scenarios to support the compound hazard resilience analysis, proves the power system

model useful enough to support this research as well as the main findings.

Nevertheless, we perform further analysis for Hurricane Ike to test the assumptions on the
distribution networks and protective deceives (Supplementary Fig. S9). To test the assumption on
the distribution networks, we use the road network in Harris County to generate the MST structure
of the power distribution networks and find that the specifics of the acyclic distribution network
structure does not affect the accuracy of the global power system simulation (Figs. S9a and S9c).
Although the distribution network topology is generally not available in a large domain, e.g., whole
east coast of the United States, the data is available for Harris County. The power system

simulation results based on the true distribution networks are similarly accurate (Fig. S9d).
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Protective devices protect the distribution/transmission lines from overflow induced physical
damages; however, the power outage caused by protective devices usually would be restored in
hours, which is not at the same scale of the post-hurricane power outage (weekly level). To further
investigate how the protective devices could potentially impact the power system resilience, we
assume all power lines are equipped with protective devices and incorporated the overload-induced
component failures into the power outage modeling (the same as in Ref. [75]). We find that the
recovery process is similar between the case considering cascading failure and the case not
considering cascading failure (prevented by protective devices) (Figs. S9a and S9c). Also,
although under the normal demand there would be ~10% overloaded lines post the hurricane, when
the demand is less than 95% of the normal demand (due to, e.g., hurricane evacuation) the
overloading hardly happens (Fig. S9b). These findings illustrate that the impact of protective
devices is relatively small on the daily-scale power outage and recovery under hurricanes, where
a large number of physically damaged power system components often need days to weeks to fully
repair. However, it is still worthy of note that the post-hurricane behavior of the electric power
system, though simplified in this work to capture the census-level statistics of power outage, is
extremely complex, involving numerous physical processes on the transmission and distribution
networks and a variety of devices and operations. Future research may develop more detailed

models to better capture physical mechanisms of post-hurricane power system failure.

Network Analysis and Enhancement Investigation. After investigating the TC-blackout-
heatwave compound hazard risk, we apply network analysis to investigate how the spatial pattern
of power outage is related to the network pattern of local power distribution sectors, using our
large synthetic TC dataset. Specifically, we investigate the generalized scaling relationship
between the probability of local failures and their impact on the global outage, proposed by ref.
[8], to understand the reliability of the power system. We analyze the connection between power
outage and local distribution network topology by linking the power outage rate to the mean
length of local distribution sectors. These analyses support the aim of designing efficient hazard

mitigation strategies.

Various strategies have been proposed to enhance the post-hurricane resilience of power
networks [42], e.g., adding recovery resources, applying stricter structural criteria, and

undergrounding network branches. Adding significant recovery recourses or applying stricter
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design criteria would raise daily costs, while benefiting emergency recovery more than daily
operation [40]. Thus, based on our findings, we design an undergrounding plan to enhance the
resilience of the power system. Specifically, we propose greedily reducing the mean length of
local distribution networks by protecting a small portion of wires close to root nodes of the
distribution networks. We compare this strategy with undergrounding strategies that randomly
bury transmission lines and distribution sectors (similar to the generally used uniform
undergrounding strategies) to evaluate its efficiency in reducing future risk of TC-blackout-
heatwave compound hazard. The results, based on the star-like distribution networks, is shown in
Fig. 6. We test the effect of the assumption on the distribution networks by applying the analysis
to the MST-based distribution networks and the true distribution networks and find similar
results (Supplementary Fig. S10; e.g., for an enhancement rate of 5%, the expected percentage of
residents experiencing at least one longer-than-5-day TC-blackout-compound hazard is different
only by 2% between MST and star-like based models and by 3% between the true distribution

networks and star-like based networks).

Data availability statement:

The power network data (including topology data for transmission and distribution networks)
and the historical power outage data were obtained from CenterPoint Energy, Inc.
(www.centerpointenergy.com). The hurricane data were provided by Kerry Emanuel (MIT). The
generated power system failure statistics are deposited to the NSF DesignSafe-CI under ODC
license (https://doi.org/10.17603/ds2-bqc0-sn69).

Code availability statement:

The code for simulating power system failures are deposited in the NSF DesignSafe-CI under
ODC license (https://doi.org/10.17603/ds2-bqc0-sn69).
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Figure 1. Comparison of simulated and observed power outage and recovery process for
Hurricanes Harvey and Ike in Harris County, TX. Red curve shows median values of the
simulation results, with 32% to 68% quantile range shown by shade. Blue curves show the

observations of power outage.
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Figure 2. Analysis of likelihood and duration of post-TC heatwaves for Harris County. a)
Probability for a post-TC heatwave lasting over a certain duration in the historical climate
(blue curve showing median, with 32% to 68% quantile range shown by shade) and future
climate (red curve showing median, with 32% to 68% quantile range shown by shade). b)
Relative climate risk, defined as the ratio of future probability and historical probability of
post-TC heatwave, as function of heatwave duration (shade shows 32% to 68% quantile

range).
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Figure 3. Analysis of TC-heatwave compound hazard risk for Harris County. Estimated
percentage of residents who may not experience outage days after TC landfall in a 20-year
period are shown for a) the historical climate and b) the future climate. Orange dot shows
simulated worst case of power outage over all simulations. Dashed black line shows 10%
worst case of power recovery. Estimated percentage of residents who may not experience TC-
blackout-heatwave compound hazard days after TC landfall in a 20-year period are shown for
c) the historical climate and d) the future climate. In all panels, the dashed and dashed-dotted
curves show expectation and +1c6 range based on all simulations. Shade shows CDF,
indicating probability of less than certain (y) percentage of residents not affected, with darker
color corresponding to higher probability and thus higher risk. Green stars highlight expected
percentage of residents not affected 5 days post TC landfall.
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Figure 4. Estimated percentage of residents facing at least one longer-than-5-day post-TC
power outage (a & b) and blackout-heatwave compound hazard (¢ & d) in the historical (a &

¢) and future climate (b & d) for each census tract in Harris County.
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Figure 5. Network analysis of the synthetic-TC-induced power outage in Harris County. a)
Generalized scaling law for the Harris power system: empirical probability W(x) of a
customer being affected by a disruption that affects more than x customers vs. empirical
probability P(x) for a disruption to affect more than x customers during a storm event. Blue
curve shows the average over all synthetic events in the historical simulation; gray curves
show randomly selected 100 events. b) Percentage of residents experiencing a longer-than-5-
day power outage averaged over all synthetic storms simulated for the historical climate vs.
harmonic mean length (reciprocal of the arithmetic mean of reciprocals) of power distribution
network sectors for each census tract in Harris County. Red line shows the linear fit; dashed

curves show the £16 uncertainty range.
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Figure 6. Reduced impact of longer-than-5-day TC-blackout-heatwave compound hazard

under various risk mitigation strategies. Solid curves show percentage of affected residents in

a 20-year period in the future as a function of network enhancement rate with three strategies:

randomly undergrounding power transmission networks (green), randomly undergrounding
power distribution networks (red), and greedily undergrounding power distribution networks

(blue). Curves show the expectation; error bars show £1c uncertainty range.




