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Abstract Network tra�c classification that is widely
applicable and highly accurate is valuable for many net-
work security and management tasks. A flexible and
easily configurable classification framework is ideal, as
it can be customized for use in a wide variety of net-
works. In this paper, we propose a highly configurable
and flexible machine learning tra�c classification method
that relies only on statistics of sequences of packets to
distinguish known, or approved, tra�c from unknown
tra�c. Our method is based on likelihood estimation,
provides a measure of certainty for classification deci-
sions, and can classify tra�c at adjustable certainty
levels. Our classification method can also be applied
in di↵erent classification scenarios, each prioritizing a
di↵erent classification goal. We demonstrate how our
classification scheme and all its configurations perform
well on real-world tra�c from a high performance com-
puting network environment.

Keywords Network tra�c classification · Unknown
detection · Science DMZ

1 Introduction

E↵ective and practical classification of network tra�c
is crucial to many network management and security
tasks. Categorization of network tra�c yields valuable
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information on a network’s activity, and timely clas-
sification enables this information to be quickly acted
upon to ensure a secure and e�cient network. Anomaly
detection, quality of service monitoring, intrusion or at-
tack detection, and resource allocation planning are all
di�cult network management tasks where tra�c clas-
sification plays a critical role in solving [17]. With the
pervasive and diverse usage of the internet and online
devices, large volumes of tra�c from many di↵erent
applications are constantly hosted on networks. Ro-
bust and flexible tra�c classification is a di�cult task
due to the wide variety of tra�c and dynamic nature
of source applications. Tra�c classification techniques
have changed greatly over time, in reaction to changes
in networking as a field.

Early and simple methods of tra�c classification
use port numbers to identify the tra�c sources [29,
30, 22]. However as more applications used undisclosed,
protocol-based, or configurable ports, port numbers be-
came too unpredictable to be a reliable source of clas-
sification [20, 26, 7]. In response to port-based clas-
sification becoming less e↵ective, research turned to
classification methods that use data packet inspection
to find application or protocol signatures, i.e. patterns
or data specific to the source application or protocol
[20, 15, 31, 16]. These methods require the ability to
inspect packet payloads, so they are unable to clas-
sify encrypted tra�c. Additionally, they are computa-
tionally expensive and require up-to-date application
or protocol signatures to match tra�c with [34]. These
issues present considerable limitations to inspection-
based classification.

Most current approaches to tra�c classification use
machine learning algorithms and statistical properties
of tra�c flows to categorize tra�c. A flow is usually de-
fined by all packets with the same 5-tuple: source/destination
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IP, source/destination port, protocol. The statistical
properties of flows, e.g., Inter-arrival time, Total Bytes,
Average Packet Size, are referred to as features. Us-
ing statistical features of networking activity for classi-
fication avoids using port numbers or packet payloads,
thereby remedying the limitations of the previously men-
tioned port and payload based methods. Machine learn-
ing techniques rely on the fact that di↵erent applica-
tions have di↵ering networking behavior and patterns.
These di↵erences are represented in features, then dis-
covered and used to discern flows’ classes by a machine
learning model.

In this paper, we focus on tra�c in the Science DMZ
[11], where we have a predominance of “elephant flows”
vs. “mice flows”[1]. We present a machine learning tech-
nique that uses the statistics of subflows, i.e. some sub-
set of packets from a flow, to classify tra�c with a mea-
sure of certainty. We classify tra�c using probabilistic
learning with likelihood estimation and adjustable cer-
tainty levels. This approach allows our method to clas-
sify tra�c at higher or lower confidence levels, based on
network preferences. This approach also allows network
administrators to configure and use our classification so
that it performs best on the most important tra�c in
their network.

Our method can operate in three di↵erent classifi-
cation scenarios: (1) classification performed with strict
certainty thresholds resulting in known, unknown, and
uncertain classification decisions; (2) classification with
majority likelihood, eliminating any uncertain classifi-
cation decisions; (3) incremental classification, where
the classifier gathers information subflow by subflow,
enabling the classifier to reach a classification decision
as soon as possible. These di↵erent classification op-
tions along with the adjustable classification certainty
level allows our technique to be easily customized to
best fit a network’s needs.

We classify tra�c into known and unknown classes.
The known class consists of tra�c from some group of
applications approved for network usage, and the un-
known class consists of tra�c from any applications not
in the known group. These class definitions fit well into
real-world networks like the Science DMZ, and take ad-
vantage of the fact that networks with specific intended
application usage usually allow applications with sim-
ilar functions and behaviors. The broad definition of
the unknown class allows it to include a huge array of
diverse application tra�c, so the variation between un-
known tra�c and known tra�c is bound to be greater
than the variation within the known tra�c class. The
known class will generally contain applications with
similar functions and tra�c, but the unknown class will
include a huge variety of applications that have di↵erent

behaviors from the known tra�c. Our method success-
fully finds and utilizes these di↵erences for classification
via machine learning. This class scheme is also flexible
since the known class can be defined with any set of
applications, allowing network administrators to define
a custom known class for their network with applica-
tions that are allowed for usage on their network. Thus,
our technique is easily configured to fit a variety of net-
work needs and is widely applicable to many real-world
networks. This work makes these main contributions:

• We present a probabilistic machine learning method
that classifies tra�c with a measure of certainty. We
describe how the certainty of classification decisions can
be easily configured to yield di↵erent results.
• We show that our method can be applied in 3 di↵er-
ent classification scenarios, each prioritizing a di↵erent
classification goal.
• We demonstrate how our method and all of its con-
figurations can be used to e↵ectively classify tra�c in
the Science DMZ [11] network setting.

2 Background and Related Work

Tra�c classification techniques using machine learning
comprise two main components: the representation of
network tra�c and the machine learning algorithm. Ad-
ditionally, many di↵erent classification schemes have
been used. From the vast existing research, we present
a brief overview of work relevant to ours.

2.1 Existing Work on Network Tra�c Representation

Many di↵erent representations and statistical features
of flows have been explored in previous work. Statistics
on packet size, arrival times, and packet types have re-
sulted in high classification accuracy when used with
a wide variety of machine learning methods [28, 26,
18, 16]. These features can be calculated over all the
packets in an entire flow or on some series of packets
sampled from the flow [28, 26, 24, 27]. Research also
exists on feature selection techniques which are used to
reduce the number of features needed for classification
and to find optimal features that result in the best clas-
sification performance [18, 36]. In these works, packet
size statistics and discrete feature values were found
to enable classification accuracy of 93% and above for
multiple machine learning algorithms [18].

Calculating features over an entire flow is not ideal
for timely classification, prompting more practical meth-
ods that classify sequences of packets in a flow. Using
features on only the first few packets of flows was found
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to yield reasonable classification results [28, 18]. Earlier
work also found that using a sequence of packets, or
subflows, of as few as 25 packets can result in classifica-
tion precision and recall of above 95% [24]. This subflow
work was expanded upon by [27], finding that classifi-
cation performance is not a↵ected by the position of
the subflow within the overall flow or the direction of
the packets. In [24, 27, 19] the length of the subflow
(value of N) results in a trade o↵ between classification
performance and processing requirements. They found
that higher values of N lead to better classification, but
require more processing time and memory [24, 27, 25].

2.2 Existing Work on Machine Learning Algorithms
for Network Tra�c Classification

Many di↵erent machine learning algorithms have been
used for tra�c classification. Early work used tradi-
tional supervised learning methods that classify traf-
fic into pre-defined classes, such as decision trees and
Bayesian analysis techniques [26, 21, 24, 32]. These meth-
ods have been shown to perform classification at accu-
racy above 95% on various sets of applications [26, 21].
Unsupervised and semi-supervised learning methods,
where tra�c is grouped based on similarity rather than
explicitly classified into a class, have also been explored
in [7, 9, 4, 37, 8, 34, 33]. Clustering unlabelled or par-
tially labelled tra�c resulted in classification accuracy
of 90-93% [7, 9].

Recent methods have used deep learning, with su-
pervised classification performed by convolutional neu-
ral networks and recurrent neural networks [28, 19].
Some other neural network methods have used unsu-
pervised learning to learn tra�c representations as well
as how to imitate tra�c, using auto-encoders and gener-
ative adversarial neural networks [28]. Various architec-
tures of neural nets used for classification have achieved
high accuracy of up to 96% [19].

2.3 Network Tra�c Classification Schemes

Most of this existing work classifies tra�c by mapping
it to an application, application type, or protocol. A few
classify tra�c into known and unknown classes by dis-
cerning a specific, known application or group of appli-
cations from other tra�c [24, 27, 3]. Our work uses this
latter scheme of known and unknown classification as it
is less explored, more flexible, and widely applicable. In
one setting, known tra�c could be defined as a broad
set of non-malicious activities for a well-protected, gen-
eral usage network. But in another setting it might be
a small set of specifically approved applications on a

network designed for specialized uses only, like the Sci-
ence DMZ. The flexibility of this known vs. unknown
classification brings additional challenges, as our classi-
fication method must be robust enough to perform well
on many di↵erent sets of known applications.

In addition to addressing the more challenging task
of classifying tra�c into flexible known and unknown
classes, we consider classification in the Science DMZ
network setting which has not been previously explored.
A Science DMZ is a subnetwork, usually part of a uni-
versity network, that is configured and designed to opti-
mize the usage of high-performance scientific comput-
ing applications [11]. This network definition fits well
with our known vs. unknown classification, as a Science
DMZ is intended to host tra�c from specific scientific
computing applications and no other tra�c. Our tra�c
dataset is sourced from the University of Utah’s Science
DMZ, which allows us to evaluate our method on real-
istic high-performance computing tra�c. Our approach
performs classification at or near 100% accuracy on rep-
resentative Science DMZ tra�c. In addition, we evalu-
ated our classification performance on a more challeng-
ing tra�c dataset to show that our method generalizes
well.

3 Tra�c Representation Methodology

A series of network tra�c statistics (e.g., Total Bytes,
Standard Deviation of Packet Size, Largest Packet Size)
forms a feature vector representation of network tra�c;
this feature vector representation is necessary in order
to use machine learning algorithms to classify network
tra�c. In this section we discuss how we represent net-
work tra�c flows in our machine learning approach.

3.1 Use of Sub-flows

Network tra�c flows are composed of packets with the
same 5-tuple: source/destination IP, source/destination
port, and protocol. No existing work uses statistical
properties of individual packets to classify flows, as sin-
gle packets do not provide enough information for ef-
fective classification. A notable amount of existing work
uses statistics on all packets in a flow to classify flows
[26, 7, 9, 3]. However, using all packets in a flow for
classification requires the flow to finish before it can be
classified. Therefore, techniques that analyze all packets
fail to stop flows of unapproved network activity from
completing, making them less viable for real-world net-
works. Using all packets for classification also incurs
high memory and computational costs, since flows can
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be long and data-intensive, especially in the large sci-
ence dataset transfers seen in the Science DMZ.

Because of the aforementioned issues with using sin-
gle or all packets in a flow, our classification method
uses subflows: some subset of N packets taken from
any point in a flow. The use of subflows was first intro-
duced in [24]. We use N -packet subflows to represent
our tra�c, where N = {25, 100, 1000}. These values of
N were discussed, experimented upon extensively, and
found to be su�cient subflow lengths in [24, 27, 25],
with the larger values of N leading to better classifi-
cation performance but requiring more processing time
and memory. Our statistical features are calculated over
each N -packet subflow and all of our flows are split into
N -packet subflows for classification.

Using subflows gives our classification approach the
additional advantage of being able to gather multiple
data points per flow. Each subflow gives our classi-
fier some statistical data on the overall flow, so it can
use each subflow to increase or decrease certainty in
a classification decision for the overall flow. Thus, our
classification approach can gain valuable classification
progress for each encountered subflow, and can make a
decision on an overall flow when a certainty threshold
is reached.

3.2 Statistical Features of Tra�c

Selecting useful statistical features calculated over a
series of packets to represent network tra�c is cru-
cial to e↵ective machine learning. Table 1 on page 71
of [26] breaks down various network tra�c statistics
and groups them according to previously used machine
learning approaches. We considered a broad set of statis-
tics used in previous work that were found to achieve
the best network tra�c classification performance [3,
18, 21, 16, 7].

To narrow down which features to use, we graphed
the cumulative density function (CDF) of feature value
distributions for our known and unknown tra�c datasets
to ensure that the features we use capture notable dif-
ferences between known and unknown tra�c. Fig. 1
shows example CDFs for various feature values.

From our CDF analysis, we found that 14 of the fol-
lowing features e↵ectively showed di↵erences between
known and unknown tra�c: Total Bytes, Largest Packet
Size, Smallest Packet Size, Number of TCP ACKs, Min-
imum Advertised Receive Window, Maximum Adver-
tised Receive Window, Standard Deviation of Packet
Size, Average Packet Size, Average Packet Inter-Arrival
Time, Standard Deviation of Packet Inter-arrival Time,
Maximum Packet Inter-arrival Time, Minimum Packet

Fig. 1: Feature Value CDFs for 100-Packet Subflows

Inter-arrival Time, Average Packet Throughput (pack-
ets per second), Average Byte Throughput (bytes per
second).

Out of these 14 features, an even smaller subset of
only 8 features were used in previous work that clas-
sified subflows to achieve high accuracies [24, 27]. Us-
ing a smaller number of features is favorable due to
lower computational and memory costs; so we ran ex-
periments using both sets of 14 and 8 features, to inves-
tigate whether or not using 14 features would yield per-
formance gains that outweighed the higher computa-
tional cost. We found that using 14 features did not no-
tably improve classification performance, so we used the
following 8 features to represent our tra�c: Maximum,
Minimum, Mean, and Standard Deviation of Packet
Inter-arrival Time and Packet Size. We calculate these
8 statistical features over all packets in each subflow;
so each subflow is represented by an 8 element data
point where each element is a feature value and is sub-
sequently processed by our machine learning method as
an 8-dimensional vector.

4 Machine Learning Methodology

In this section we discuss the formulation and compo-
nents of our machine learning approach as well as the
di↵erent ways our classification method may be applied.
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Fig. 2: Machine Learning Approach and Applications
(with corresponding paper sections)

Fig. 2 shows our methodology’s components, pipeline,
and multiple usage options.

4.1 Classification of Individual Subflows

Our machine learning approach classifies subflows, then
utilizes the classification of individual subflows of a flow
to classify the entire flow. We performed experiments
comparing the subflow classification performance of Naive
Bayes, Gradient Boosted Decision Tree (GBDT), Sin-
gular Vector Machine (SVM), and K-Nearest Neigh-
bors (KNN) models, as these classifiers have been found
to achieve high accuracies on tra�c classification tasks
in previous work [21, 3, 24, 26, 32]. Gradient-boosted
decision trees are known to be more powerful and ro-
bust than single decision trees [14]. For the SVM model,
we use the one-class variant which has performed well
on anomaly detection for networking tra�c in previous
work [35]. For our KNN experiments, we used K = 3.

Tables 1 and 2 show accuracies of all models for
all subflow lengths, evaluated on test sets from both of
our datasets; these test sets are held out from the data
used to train these models. All datasets and splits are
described in more detail in Section 5. Our results show
that the GBDTs and KNN models perform very well on
subflow classification, achieving accuracies above 98%.
Our ultimate goal is to classify entire flows rather than
just individual subflows, so these high subflow classifi-
cation accuracies serve as an important building block
for our overall solution.

Performing classification using KNN requires the
calculation of distances between each data point to its
K nearest neighbors, which is much more computa-
tionally expensive than classification using the GBDT
algorithm. Computational cost is especially important

Table 1: Science DMZ Dataset Accuracies

Classifier: 25-
Packet-
Subflows

100-
Packet-
Subflows

1000-
Packet-
Subflows

Naive

Bayes

98.4 97.6 99.1

Gradient-

Boosted

Decision

Tree

100 100 100

One Class

SVM

28.2 36.7 81.4

KNN 100 100 100

Table 2: General Dataset Accuracies
Classifier: 25-

Packet-
Subflows

100-
Packet-
Subflows

1000-
Packet-
Subflows

Naive

Bayes

83.4 84.96 77.6

Gradient-

Boosted

Decision

Tree

99.6 99.8 99.8

One Class

SVM

67.9 68.6 68.5

KNN 98.3 98.7 98.4

for practical network tra�c classification approaches,
as real-world flows can be large and real-time security
actions based on classification decisions are ideal. Be-
cause the GBDT had the highest accuracies and is more
computationally e�cient than KNN, we use a GBDT
model in the remainder of our machine learning frame-
work.

4.2 Establishing Flow Class Likelihoods From
Individual Subflow Classification

Our goal is to classify entire flows while only seeing sub-
flows. The general idea is that each encountered subflow
gives our classifier some statistical data on the overall
flow; so the classifier can use each subflow to increase
or decrease certainty in a classification decision for the
overall flow. We achieve this by assigning each subflow
classification known and unknown flow class likelihoods.
These flow class likelihoods can be thought of as esti-
mated probabilities that a subflow belongs to an overall
flow that is known or unknown, based on the subflow’s
label, or what the subflow is classified as. So we define
and assign known and unknown flow class likelihoods
to the known and unknown labels of subflows.

In the set of training subflows S, each has a true la-
bel (known or unknown) and is given a predicted label
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(known or unknown). On subflows outside of the train-
ing set, we only observe the predicted labels, so we can
use the ratio of true labels to estimate the likelihood of
the class on new data. Divide S into 4 sets:

– Sk
k are from the known class and predicted as known,

– Sk
u are from the known class and predicted as un-

known,
– Su

k are from the unknown class and predicted as
known, and

– Su
u are from the unknown class and predicted as

unknown.

We define flow class likelihoods in the following man-
ner. Given a subflow is predicted as known, the sample
likelihood it is actually known is: pk,k = |Sk

k |/|Sk
k [

Sk
u|. Similarly, the likelihood it is actually unknown is:

pk,u = |Sk
u|/|Sk

k [ Sk
u|. For subflows predicted as un-

known, we write the sample likelihood it is known as
pu,k = |Su

k |/|Su
k [ Su

u | and the likelihood that it is un-
known as pu,u = |Su

u |/|Su
k [ Su

u |.
With these class likelihoods associated with subflow

labels, our machine learning approach can build up the
likelihoods that a flow is known or unknown each time a
subflow is encountered. In the next section, we explain
in detail how these flow class likelihoods are utilized to
classify flows.

4.3 Classification Via Likelihood Estimation and
Certainty Threshold

We perform classification of a flow by combining the
class likelihoods of a sequence of subflows belonging to
that flow, using the class joint likelihoods of the sub-
flows. To create the class joint likelihoods over multiple
subflows, we assume independence and take the product
of all subflow likelihoods of the same class. These class
joint likelihoods can be used as estimated probabilities
that the sequence of subflows is of the corresponding
class. The flow likelihoods can also be used to form a
likelihood ratio, which we use as a measure of certainty
for classification. The likelihood ratio is a fraction of
the class likelihoods, indicating how much larger one
class likelihood is than the other. For example, if the
known class likelihood is 0.95 and the unknown class
likelihood is 0.05 then the likelihood ratio is 0.95

0.05 . This
indicates that under our model, we are 95% certain that
the flow is known, as the marginal probability that the
flow is known, given all the subflows the classifier has
seen, is 0.95. However, likelihoods of the numerator and
denominator may not sum to 1, and in general the joint
ones will not. But if the ratio is still 19, e.g., 0.019

0.001 , then
the confidence is still 95%.

In particular, using our classifier, and these statis-
tics, each subflow sj has a likelihood it is known pK(sj)
and a likelihood it is unknown pU (sj). These are defined
based on the label:

pU (sj) =

(
pu,u if sj labeled unknown

pk,u if sj labeled known

and

pK(sj) =

(
pk,k if sj labeled known

pu,k if sj labeled unknown.

We estimate the likelihood that a series of observed
subflows s1, s2, . . . , sm are known as:

L̂K = pK(s1) · pK(s2) · . . . · pK(sm)

and we use the same likelihood estimation for unknown
L̂U with the unknown likelihoods pU (sj).

We define the likelihood ration as:

L̂K

L̂U

=
pK(s1) · pK(s2) · . . . · pK(sm)

pU (s1) · pU (s2) · . . . · pU (sm)
.

By using a certainty threshold for classification, we
can easily enforce the likelihood required for a flow to
be classified. We enforce that m � 15, otherwise, be-
cause our subflow classifier has such high accuracy, it
will always reach a > 95% threshold after a single sub-
flow.

The use of di↵erent certainty thresholds for each
class is also possible, which may be useful if the cer-
tainty of classification should be di↵erent between known
and unknown tra�c. For example, if a network is using
our classification to block unknown tra�c and wants
to avoid disrupting allowed tra�c, our technique would
be applied with a very high certainty threshold for un-
known classifications to ensure blocked tra�c is clas-
sified as unknown with high confidence. The ease of
adjusting classification certainty allows the certainty to
be used as a parameter for classification. Di↵erent cer-
tainties can yield di↵erent classification accuracies de-
pending on the underlying known and unknown tra�c,
and certainty can be a cross-validated hyperparameter
that optimizes classification performance.

This likelihood estimation classification method can
be applied in 3 di↵erent scenarios that we describe be-
low and evaluate in our experiments:

4.3.1 Strict Certainty Classification

In this classification scenario, flows are classified as known,
unknown, or uncertain. If the known or unknown likeli-
hood ratio reaches the desired certainty level, then the
flow is classified as known or unknown. However, it is
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possible that neither likelihood ratio reaches the cer-
tainty level, so the flow is considered uncertain as its
subflows do not yield a likelihood of high enough cer-
tainty for either class. Uncertain flows are indicative of
tra�c that is not similar enough to either class for a
confident classification.

This designation of uncertain flows may be useful as
a means of filtering and monitoring tra�c, enabling un-
certain flows to be found and tracked. Uncertain flows
may be used for further analysis with a more specific
method of classification or inspected as the potential
source of network issues. The amount of tra�c classi-
fied as uncertain is configurable with the certainty level,
as higher certainties result in more uncertain decisions.

4.3.2 Majority Likelihood Classification

For this classification scenario, if neither of the class
likelihood ratios have reached the certainty level after
all available subflows are seen, then the flow is classi-
fied as the class with the larger likelihood. This scenario
results in no uncertain flow classifications since all un-
certain flows are classified by their majority likelihood.
This approach allows some flows to be classified with
less certainty than the given certainty level, but gen-
erally increases accuracy in our experiments and is a
viable option if uncertain flows are not desired.

4.3.3 Incremental Classification

In this classification scenario, the class likelihood ra-
tios are updated with each encountered subflow’s like-
lihoods, and classification occurs immediately once ei-
ther class likelihood ratio reaches the given certainty
level. Incremental classification takes full advantage of
our usage of subflows, utilizing each sequence of packets
in a flow to gain information on the flow and classify
it after seeing the least amount of subflows possible. A
classification decision is made as soon as possible, so
this scenario prioritizes classification speed. In our Re-
sults section, we show that this scenario results in very
fast classification after encountering a small fraction of
subflows with excellent unknown detection capabilities.
Note that incremental classification can use strict cer-
tainty or majority likelihood classification when making
its classification decisions.

5 Experiments And Results

5.1 Dataset

To demonstrate and evaluate our classification method,
we use the Science DMZ network. A Science DMZ is

Fig. 3: Data Collection Point in the University of Utah
Science DMZ Sub-network

Table 3: Dataset Statistics

Globus FDT rclone Mirror WIDE

Bytes

(GB)

51.6 129 82.1 42.6 30.48

Flows 185 72 12,292 2,239 1.112e6

a security zone of a university campus network that
is configured and designed to optimize the transfer of
large scientific datasets [11]. Researchers use the Sci-
ence DMZ to transfer their datasets at high bandwith
around the world, so a Science DMZ has performance-
optimized security measures or other policy di↵erences
to enable faster data transfers. This networking envi-
ronment fits well with our known vs. unknown classifi-
cation, as a Science DMZ hosts tra�c of specific scien-
tific research applications and little other tra�c.

Fig. 3 shows the location of our tra�c capture tap
in the University of Utah’s Science DMZ, and Table 3
shows size statistics of our dataset. Note that we have
di↵erent numbers of known and unknown flows, so our
experimental accuracies are calculated separately for
each label. All of our tra�c is TCP and uses IPv4.
We randomly select 80% of our data for training and
the rest for evaluation and ensured that the flows in the
train and evaluation sets are mutually exclusive.

The specifics and application breakdowns of our known
and unknown datasets are below.

5.1.1 Known Datasets

Our known tra�c is from 3 widely used large file trans-
fer applications: Globus [13, 2], FDT [23], and rclone
[6]. We consulted domain experts and system adminis-
trators at the Center for High Performance Computing
at the University of Utah to ensure that these 3 ap-
plications are commonly used by science researchers on
the Science DMZ. The Globus captures were of ongoing
file transfers between Globus endpoints at a university
and various other universities in the United States. The
FDT tra�c was generated by moving DNA sequencing
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datasets from the Hunstman Cancer Institute to and
from Data Transfer Nodes [12] in the Science DMZ.
The rclone tra�c was generated by transferring ESnet
test datasets [10] to and from Google Drive. We verified
with domain experts that our usage of FDT and rclone
to generate tra�c was consistent with their common
usage in science research workflows, to ensure that our
data is representative of real FDT and rclone tra�c.

5.1.2 Unknown Datasets

For our unknown tra�c, we use the Mirror and WIDE
datasets. The Mirror dataset consists of random cap-
tures from a mirror server on the University of Utah’s
Science DMZ subnetwork that hosts repositories and
other downloadable content. The WIDE dataset con-
sists of captures, performed on the same dates as the
Mirror captures, from the WIDE Tra�c Archive [5].
The WIDE captures are from the main internet ex-
change link and internet service provider transit link
of the WIDE organization [5].

For all of our classification experiments, we train
and evaluate our models using 2 di↵erent datasets. The
known dataset always consists of the Globus, FDT,
and rclone datasets but we use 2 di↵erent unknown
class definitions: Science DMZ and General. The Sci-
ence DMZ unknown class consists of only the Mirror
tra�c dataset, which was captured from the University
of Utah’s Science DMZ subnetwork but does not con-
tain known application tra�c. This approach allows us
to simulate tra�c classification in a realistic Science
DMZ setting. The General unknown class consists of
both the Mirror and WIDE datasets, resulting in a
much broader, more diverse unknown tra�c class since
WIDE’s tra�c is not from the same network and con-
tains many more flows. Using this more varied unknown
tra�c allows us to evaluate how well our classification
method generalizes when classifying more challenging,
varied tra�c.

5.2 Strict Certainty Classification Results

To evaluate Strict Certainty classification, we perform
our likelihood estimation classification and require a
flow’s class likelihood ratio to reach the given certainty
threshold to be classified as known or unknown. Flows
with class likelihood ratios that do not surpass the cer-
tainty threshold are considered uncertain. In our exper-
iments, we perform classification using 25%, 50%, 75%,
and 100% of subflows in each of the test set flows in
order to evaluate classification performance when vary-
ing amounts of packets in flows are seen. Note that

Table 4: Science DMZ Dataset - Strict Certainty and
Majority Likelihood Accuracies

Percentages
of Subflows

25% 50% 75% 100%

Known Accuracies:

25-Packet

Subflows

100 100 100 100

100-Packet

Subflows

100 100 100 100

1000-Packet

Subflows

100 100 100 100

Unknown Accuracies:

25-Packet

Subflows

100 100 100 100

100-Packet

Subflows

100 100 100 100

1000-Packet

Subflows

100 100 100 100

100% of subflows does not necessarily mean that all
packets of the flow (from handshake to termination)
are used, just that all captured packets of the flow are
used. We use real-world datasets so, where it would
be very limiting to only use completely captured flows
for our experimental data. We require at least 15 sub-
flows in a flow portion to perform classification. We
also perform classification on features calculated over
subflows of di↵erent packet lengths, using 25, 100, and
1000 packet subflows. We use these di↵erent combina-
tions of percentage-defined subflow subsets and di↵er-
ing lengths of subflows to thoroughly evaluate classi-
fication in many situations where di↵erent portions of
flows are seen.

5.2.1 Science DMZ Dataset

Table 4 shows classification accuracies on the Science
DMZ dataset, when using a strict certainty threshold
of 95%. Our accuracies are extremely high across all
subflow sizes and subflow percentage subsets, with all
experimental settings reaching 100% accuracy. These
results show that the unknown tra�c is very di↵erent
from the known application tra�c and our method can
successfully find and utilize these di↵erences for clas-
sification. No flows were classified as uncertain across
all experiments, even when requiring a high certainty
threshold of 95%.

5.2.2 General Dataset

Fig. 5 shows classification accuracies on the General
dataset, using the same strict certainty threshold of
95%. Our accuracies are extremely high across all sub-
flow sizes and subflow percentage subsets, with a mini-
mum accuracy of 97.5% and most experiments reaching
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Table 5: General Dataset - Strict Certainty Accuracies

Percentages
of Subflows

25% 50% 75% 100%

Known Accuracies:

25-Packet

Subflows

97.5 97.5 97.5 97.5

100-Packet

Subflows

100 100 100 100

1000-Packet

Subflows

100 100 100 100

Unknown Accuracies:

25-Packet

Subflows

100 99.8 99.8 99.8

100-Packet

Subflows

100 100 100 100

1000-Packet

Subflows

100 100 100 100

100% accuracy. These accuracies are slightly lower than
the Science DMZ accuracies, which is expected since the
General dataset contains unknown tra�c that is more
varied and similar to the known tra�c, resulting in a
more challenging classification task. For both known
and unknown classificatoin, the 25-packet subflows had
the poorest accuracies. This indicates that our classifi-
cation method performs better when subflows contain
more packets, which makes sense as this means there’s
more networking tra�c available for classification to
be based on. Only one experimental setting resulted
in any flows that were unable to reach the 95% cer-
tainty threshold necessary for classification, and thus
considered uncertain. When performing classification
on 50% of 25-packets subflows, approximately 0.1% of
flows were considered uncertain.

Across both datasets, a very small amount of flows
were considered uncertain even when a small percentage
of subflows are seen. This shows that even if a high cer-
tainty for classification is enforced and not all packets
in a flow are seen, our method can classify a majority
of flows.

5.3 Majority Likelihood Classification Results

To evaluate Majority Likelihood classification, we per-
form our likelihood estimation classification to classify
a flow as known or unknown if that flow’s correspond-
ing class likelihood ratio reaches the given certainty
threshold. If after all available subflows are seen and
the flow has no class likelihood ratio that has reached
the certainty threshold, then the flow is classified as
whichever class has the larger, or majority, likelihood
estimate. We use the same percentage-defined subflow
subsets and di↵ering lengths of subflows as the Strict
Certainty Classification experiments (25%, 50%, 75%,

Table 6: General Dataset - Majority Certainty Accura-
cies

Percentages
of Subflows

25% 50% 75% 100%

Known Accuracies:

25-Packet

Subflows

97.5 97.5 97.5 97.5

100-Packet

Subflows

100 100 100 100

1000-Packet

Subflows

100 100 100 100

Unknown Accuracies:

25-Packet

Subflows

100 99.9 99.8 99.8

100-Packet

Subflows

100 100 100 100

1000-Packet

Subflows

100 100 100 100

and 100% of a flow’s subflows each with 25, 100, and
1000 packet subflows).

5.3.1 Science DMZ Dataset

For this dataset, all flows had class likelihood ratios that
reached the 95% certainty threshold across all percent-
ages and sizes of subflows; so, no flows were considered
uncertain and none needed to be classified using the
majority class likelihood. This means that there are no
di↵erences in accuracy between Strict Certainty and
Majority Likelihood classification for all experiments
on the Science DMZ dataset, and Table 4 shows the
unknown and known flow classification accuracies for
Majority Likelihood classification.

5.3.2 General Dataset

Fig. 6 shows classification accuracies on the General
dataset when using a certainty threshold of 95%. Both
the known and unknown accuracies do not notably dif-
fer from the Strict Certainty classification accuracies,
as there were very few uncertain flows with class likeli-
hood ratios that did not reach the 95% threshold. Us-
ing Strict Certainty classification, only the experimen-
tal setting using 50% of 25-packet subflows resulted in
uncertain flows; so only this experimental setting has
a di↵erence between the Strict Certainty and Majority
Certainty classification accuracies. It can be seen from
the 0.1% increase in accuracy from Strict Certainty
classification that the 0.1% of flows that were consid-
ered uncertain using Strict Certainty classification were
classified correctly using Majority Certainty classifica-
tion. This indicates that classification by the larger class
likelihood is an e↵ective way to classify tra�c that is
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not similar enough to either class for a classification at
the certainty required by the given threshold.

5.4 Incremental Classification Results

To evaluate Incremental classification, we update a flow’s
class likelihoods and check if the given certainty thresh-
old is reached for every encountered subflow. Classi-
fication of the flow occurs immediately once a class
likelihood reaches the certainty threshold, and subflows
are encountered in chronological order of packet arrival;
so flows are classified as soon as possible. Thus, these
experiments allow us to evaluate how well our classi-
fication performs when reaching a classification deci-
sion in the fastest manner possible. We use both Strict
Certainty and Majority Likelihood classification with
this Incremental classification scheme, where Strict Cer-
tainty will allow for uncertain flows and Majority Like-
lihood will classify all flows as known or unknown even
if no certain decision is reached after all subflows are
seen. We evaluate on all lengths of 25, 100, and 1000
packet subflows.

5.4.1 Science DMZ Dataset

Fig. 4 shows classification accuracies on the Science
DMZ dataset when using Incremental classification with
both Strict Certainty and Majority Certainty classifica-
tions and a 95% certainty threshold. With Incremental
classification, there are flows with class likelihood ra-
tios that did not reach the certainty threshold, so the
accuracies of Strict Certainty and Majority Likelihood
classification notably di↵er.

Known accuracies of Strict Certainty classification
are high across all subflow sizes, with a minimum ac-
curacy of 95.5%. The average percentage of subflows
needed to make a classification decision are overall very
low: 1% for 25-packet subflows, 5.4% for 100-packet
subflows, and 1.7% for 1000-packet subflows. This shows
that our method can classify known tra�c very quickly
with high accuracy, after seeing a very small percent-
age of packets or subflows. With Majority Likelihood
classification, all known accuracies reach 100%. This
indicates that the small percentage of flows incorrectly
classified by Strict Certainty classification were clas-
sified as uncertain and were correctly classified using
Majority Likelihood classification.

Unknown accuracies of Strict Certainty classifica-
tion for 25 and 100 packet subflows are around 98%,
but drop to 42.9% for 1000-packet subflows. This ac-
curacy drop is due to the 1000-packet subflow flows
having considerably less subflows available for classifi-
cation compared to the 25 and 100 packet subflow flows,

(a) Strict Certainty Classification

(b) Majority Likelihood Classification

Fig. 4: Science DMZ Dataset: Incremental Classification

since 1000-packet subflows require 10 times more pack-
ets per subflow than 100-packet subflows. This smaller
number of subflows available for classification resulted
in many flows being classified as uncertain, dropping
the accuracy. With Majority Likelihood, all unknown
accuracies reach 100. This indicates that classifying un-
certain flows that did not reach the required certainty
threshold by their majority class likelihood is an e↵ec-
tive approach. These results show that classifying tra�c
using majority likelihood is a viable and simple option
that enables improved classification accuracy and the
elimination of uncertain flows.

5.4.2 General Dataset

Fig. 5 shows classification accuracies on the General
dataset from Incremental classification with both Strict
Certainty and Majority Likelihood classifications and a
95% certainty threshold.

Known accuracies of Strict Certainty classification
are high across all subflow sizes, with a minimum ac-
curacy of 95.12%. The average percentage of subflows
needed to make a classification decision for all subflow
sizes were in the 1-5% range, very low and similar to the
percentages on the Science DMZ dataset. This shows
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(a) Strict Certainty Classification

(b) Majority Likelihood Classification

Fig. 5: General Dataset: Incremental Classification

that even on a more di�cult dataset, our method is
very e↵ective at classifying known tra�c as quickly as
possible. Majority Likelihood classification either im-
proves known accuracies to 100% or does not change
accuracy.

Unknown accuracies from Strict Certainty classifi-
cation are low but this is remedied by using Majority
Likelihood classification, where accuracies reach a min-
imum of 99.85%. This indicates that the low Strict Cer-
tainty classification accuracies are due to a considerable
portion of flows being incorrectly classified as uncer-
tain, but with Majority Likelihood classification these
flows can be correctly classified. These results further
support the viability of Majority Likelihood classifica-
tion as a method to improve classification performance,
especially when there are many uncertain flows from
Strict Certainty classification. The average percentage
of subflows needed to make a classification decision is
41% for 25-packet subflows, 43.2% for 100-packet sub-
flows, and 53% for 1000-packet subflows; so overall a
classification decision was made before half of available
subflows were seen.

Across both datasets, Incremental classification has
better performance on known tra�c than unknown traf-
fic. A classification can be made quickly after seeing less

than half of subflows for both tra�c classes, reinforc-
ing our conclusions from Strict Certainty and Majority
Likelihood that our method can classify a flow correctly
after seeing a small portion of the flows’ packets. Classi-
fications of known tra�c were made especially quickly,
after seeing only 1-5% of subflows, at accuracies above
95%. This indicates our method can correctly classify
known flows very quickly with minimal computation, as
it only needs to process a tiny percentage of packets be-
fore making a classification. For unknown tra�c, incre-
mental classification using a strict certainty threshold of
95% yields many uncertain flows. When Majority Like-
lihood classification is used, unknown flows that were
considered uncertain with Strict Certainty classification
can be correctly classified.

6 Conclusion and Future Work

In this paper, we introduced a machine learning method
that uses statistics on sequences of packets, called sub-
flows, to classify networking tra�c as known or un-
known with a measure of certainty. Our technique uses
a gradient-boosted decision tree-based subflow classifier
to assign class likelihoods to subflows, then uses joint
likelihood estimations over multiple subflows to classify
entire flows at a customizable certainty threshold.

This method of classification allows tra�c to be
classified at an easily configurable certainty threshold
and in three di↵erent ways. If used with Strict Cer-
tainty thresholds, flows are only classified as known or
unknown if they can be classified at the given certainty
level, and our method can find uncertain flows that are
not similar enough to either class. If used with Majority
Likelihood, all flows are classified as known or unknown
by allowing some flows to be classified with whichever
class likelihood estimate is higher rather than strictly
requiring the certainty level. If used in an Incremental
classification manner, each subflow updates the flow’s
class likelihood estimate and classification of a flow oc-
curs after seeing the fewest number of subflows possible.

We evaluated our technique on tra�c from the Sci-
ence DMZ subnetwork domain [11], as it naturally fits
our class scheme and has not been used as a tra�c clas-
sification setting before. We also evaluate on a more
general, challenging dataset to ensure that our method
can generalize well. Our results show that our classifica-
tion performs very well in the Science DMZ setting, able
to reach 100% accuracy for all classification options.
On the general dataset, we maintained high accuracy
on known tra�c classification, reaching up to 100%,
though unknown classification accuracies dropped in
the Strict Certainty classification scenario.
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Our method was shown to perform well even when
only seeing a small percentage of flows, reaching accu-
racies up to 100 on both datasets when only a fourth
of available subflows in a flow are used for classifica-
tion. With Strict Certainty classification, very few flows
are considered uncertain even when requiring 95% cer-
tainty and seeing partial flows. The use of Majority
Likelihood classification was shown to correctly clas-
sify flows deemed uncertain in Strict Certainty classi-
fication, improving classification performance. The In-
cremental classification approach reached classification
decisions very quickly after seeing small amounts of sub-
flows and maintained high accuracies on known flows
across both datasets.

Our experiments show that in a real-world Science
DMZ, our method is e↵ective at classifying known and
unknown tra�c very quickly. With Incremental classi-
fication, accuracies above 95% were reached after en-
countering as little as 1% of subflows. Our Strict Cer-
tainty and Majority Likelihood results indicate that for
all subflow sizes there’s no drop in performance between
the di↵erent percentages of subflows used for classifica-
tion. This indicates our method can classify a flow well
without needing to see a certain percentage of the flow’s
packets. Strict Certainty is able to correctly classify
flows that reach the given certainty threshold and iden-
tify uncertain flows. If uncertain flows are not desired in
a network setting, then Majority Likelihood classifica-
tion can be used e↵ectively; as it had extremely high ac-
curacy across all experiments, even when used with In-
cremental classification. Incremental classification with
Majority Likelihood has high performance and can clas-
sify known flows after seeing a tiny amount of subflows,
meaning classification requires minimal time and com-
putation.

Out of all the classification scenarios, Incremental
classification accuracies dropped the most between the
Science DMZ and General dataset results, so further
work could be done to achieve more generalizable Incre-
mental classification performance. In Incremental clas-
sification unknown accuracies are also generally lower
than known accuracies, especially on the more di�cult
dataset. Maintaining high performance on unknown traf-
fic classification is an expected challenge, as we de-
fine unknown tra�c as any tra�c that is not from the
known applications, so unknown tra�c can have huge
variety. The most challenging datasets and network set-
tings would have unknown tra�c that has similar func-
tion and behavior as known tra�c. Future work apply-
ing our approach to more challenging datasets could
explore more sophisticated subflow classifiers, di↵erent
formulations of class likelihoods of subflow classifica-

tions, or the use of regularization on class likelihoods
to maintain high accuracies.
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