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Topological lattices have recently generated a great deal of interest based on the unique mechanical
properties rooted in their topological polarization, including the ability to support localized modes at
certain floppy edges. The study of these systems has been predominantly restricted to the realm of in-
plane mechanics, to which many topological effects are germane. In this study, we stretch this paradigm by
exploring the possibility to export certain topological attributes to the flexural wave behavior of thin lattice
sheets. To couple the topological modes to the out-of-plane response, we assemble a bilayer lattice by
stacking a thick topological kagome layer onto a thin twisted kagome lattice. The band diagram reveals the
existence of modes whose out-of-plane character is controlled by the edge modes of the topological layer, a
behavior elucidated via simulations and confirmed via laser vibrometer experiments on a bilayer prototype
specimen. These results open an alternative direction for topological mechanics whereby flexural waves
are controlled by the in-plane topology, leading to potential applications for flexural wave devices with
engineered polarized response.
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I. INTRODUCTION

Maxwell lattices are a special class of lattices charac-
terized by having an equal number of degrees of free-
dom and constraints [1], thus being on the verge of
mechanical instability [2–5]. A prototypical example in
two dimensions is the kagome lattice, which has gar-
nered considerable attention for its mechanical properties
[6–9], tunable wave-propagation characteristics [10–14],
and for its potential for reconfigurability and property tun-
ing [15,16]. Some of the most interesting phenomena arise
at the boundaries of finite lattice domains [17–19]. Cer-
tain edge properties are conceptually analogous to those
observed in electrical or quantum systems, such as topo-
logical insulators [20–23].

Recently, a subclass of Maxwell lattices has been shown
to exhibit topological behavior [2,24,25], including the
ability to localize deformation at a floppy edge in the form
of zero-frequency floppy modes, leaving the opposite edge
rigid. Although the topological properties manifest at the
edges, they are, in fact, intrinsic to the bulk, a property
known as bulk-edge correspondence. Further, the topolog-
ical behavior has been shown to be tunable through a cell
reconfiguration, obtained by subjecting the lattice to global
zero-energy soft strains, which can cause phase transitions
between polarized and nonpolarized states [26]. Analogous
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phenomena have also been realized in structural lattices,
an exercise that requires relaxing the perfect hinges to
finite-thickness ligaments that can support in-plane bend-
ing [27,28]. As a result, the floppy modes have been shown
to rise to finite frequencies, but the signature of polariza-
tion and the ability to localize wave modes asymmetrically
persist.
Thus far, the investigation of the topological behavior

of two-dimensional (2D) Maxwell lattices has been pre-
dominantly restricted to their native in-plane mechanics,
without exploring broader implications for their out-of-
plane response. In this work, we attempt to close this gap
by answering, through a combination of simulations and
experiments, the following questions. Are the topological
modes exportable to the out-of-plane realm? If so, with
what degree of dilution? What is the interplay between
flexural bulk and edge modes and how can we distill
the signature of the out-of-plane edge modes from com-
plex multimodal wavefields? Note that, while a number of
extensions of topological mechanics to three-dimensional
(3D) domains have been proposed [29–31], our focus
here is on the out-of-plane response of systems whose
periodicity remains strictly two-dimensional.
To promote coupling between in-plane and out-of-plane

response in a thin structure, we need to establish some
degree of nonuniformity through its thickness, which can
be obtained by modulating either the material properties
or the geometric characteristics, and/or by imposing an
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FIG. 1. (a) Schematic of coupling-induced bending in a bilayer
structure due to strain in the soft layer; (b) localized bending due
to excess of softness on one edge of the soft layer; (c) bilayer
lattice assembly strategy; (d) close-up details of the front and
rear face of the lattice; (e) details of the top and bottom edge.

eccentric loading stimulus. In a lattice, a natural avenue
to modulate the equivalent stiffness is by varying the unit-
cell geometry. This modulation can be either continuous
through the thickness (as in a functionally graded struc-
ture), or piecewise uniform (as in a laminate). Consider, for
instance, a bilayer beam obtained by stacking a soft layer
on a thinner and stiffer layer. Intuitive structural mechan-
ics considerations suggest that an in-plane state of strain
established in the soft layer would result in coupling to
an out-of-plane (flexural) deformation experienced by the
entire bilayer [Fig. 1(a)]. The bending kinematics would
necessarily emerge from the different ability of the two
layers to accommodate in-plane deformation and from the
compatibility requirements at their interface. This notion
is commonly exploited in the design of bimorph elements
for soft robotics [32] and wave control [33], and to excite
flexural waves using piezoelectric patches [34].
For a conventional bilayer, in which the mismatch

between the layers is established uniformly over the entire
domain, the coupling is also experienced globally by the
structure. Suppose instead that the state of strain induced
in a layer is localized at one edge, as in a floppy mode of
a polarized lattice. We can then expect the resulting cou-
pling to display an analogous degree of localization at the
same edge [Fig. 1(b)], transferring the asymmetry to the
flexural response. The remainder of this paper is devoted
to demonstrate this conjecture and quantify the signature
of this flexural polarization.

II. A BILAYER LATTICE ARCHITECTURE THAT
PROMOTES COUPLING

To explore this idea, we propose a bilayer consisting of
a polarized topological kagome lattice stacked on a nonpo-
larized twisted kagome lattice [Fig. 1(c)]. The two layers
have complementary roles. The topological layer provides
the in-plane polarization required to trigger the desired

edge behavior. The twisted kagome merely provides some
impedance against the edge deformation mechanisms of
the topological layer, thus promoting coupling. Accord-
ingly, we make the twisted kagome layer as thin as practi-
cally realizable to maximize its flexural compliance while
maintaining its in-plane stiffness. This also ensures that
the in-plane mechanics of the bilayer are predominantly
controlled by the topological layer. In our configuration,
henceforth referred to as ML Topo90, 90% of the total
thickness is occupied by the topological layer and 10%
by the twisted kagome layer. The triangles in the twisted
kagome feature 2.35-cm sides, 0.12-cm-thick hinges, and a
twist angle of 16.4o. The topological layer has two scalene
triangles with side lengths 2.82, 2.45, and 2.18 cm, and
0.12-cm-thick hinges. The total thickness of ML Topo90
is 1.65 cm. Isometric close-up renderings of the front and
rear faces are shown in Fig. 1(d). It is also helpful to define
a reference lattice, which we refer to as Topo100, consist-
ing solely of the topological layer of ML Topo90 taken
in isolation. Throughout our analysis, we assume all lat-
tices made from acrylonitrile butadine styrene (ABS) (E =
2.14 GPa, ν = 0.35), although the results are scalable to
other materials.
Note that we deliberately amend the lattice edges by

trimming the protruding portion of the edge triangles
[Fig. 1(e)]. The purpose of this correction is to filter out, or
minimize, any edge effects that could result from the direct
activation of flexural motion of the edge quasidangling
protruding elements. The localization resulting from such
mechanisms, if established, would have a trivial nature
in that it could not be linked to any intrinsic topological
polarization of the bulk and would depend on the specific
geometric features of the edges. While trivial edge effects
are modest in in-plane problems, their flexural counter-
parts can display large amplitudes, with the possibility to
pollute, if not overshadow, the actual topological effects
that we seek to observe. This correction virtually eradicates
this possibility, thus distilling the contribution to the edge
localization and lattice asymmetry that is germane to the
topological polarization. Further details and visualization
of the trivial effects observed in an untrimmed version of
this lattice are discussed in Appendix A.

Figure 2(a) shows the band diagram for an ML Topo90
16-cell supercell, modeled using 3D elasticity. The coex-
istence of in-plane and out-of-plane modes results in a
richer and highly hybridized band spectrum compared to
the prototypical case of a topological lattice deforming
only in-plane, as studied in Ref. [27]. This additional
modal complexity makes the identification of topologically
polarized modes more challenging. In the 2D model of a
single layer, the topological edge modes live in a frequency
interval with low modal density, in which the only other
available modes are the in-plane acoustic modes, which
can be easily discriminated from the topological ones for
their long-wavelength content. In a 3D model of a bilayer,
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FIG. 2. Band diagram of 16-cell supercell for ML Topo90 with
mode shapes for the first two modes at π (b),(c); edge mode
shapes at π for Topo100 (d),(e) shown for reference.

the edge modes co-exist with a plethora of flexural modes
with comparable wavelengths. Therefore, their identifica-
tion cannot rely solely on the spectral characteristics of the
branches, but must involve a morphological inspection of
the associated mode shapes.
Here we focus of our attention on modes 1 and 2 of

ML Topo90 at ξ = π , whose mode shapes are shown in
Figs. 2(b) and 2(c), respectively, with in-plane (IP) defor-
mation shown in the top-down view (color proportional
to in-plane displacement along y) and out-of-plane (OOP)
deformation shown in the side view. For comparison, the
first two branches of the band diagram for Topo100, calcu-
lated using 2D elasticity, are reported in Fig. 3(b), and their
mode shapes at ξ = π are plotted in Figs. 2(d) and 2(e).
We observe that both in-plane and out-of-plane compo-
nents of the ML Topo90 mode shapes feature a high decay
rate at the top (floppy) edge, a clear signature of polar-
ization. Interestingly, the mode shapes of Topo100 display
a similar deformation pattern and decay rate, supporting
the hypothesis that the flexural response of ML Topo90
imports its polarization attributes from the topological
layer through coupling.
To quantify the link between the morphological char-

acteristics of the ML Topo90 modes and their Topo100
in-plane counterparts, we perform a modal assurance
criterion (MAC) analysis, where the quantity MAC =
|φ1 · φ2|/(φ1 · φ1)(φ2 · φ2) estimates the degree of com-
patibility between two eigenvectors, φ1 and φ2. The MAC
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FIG. 3. (a) MAC analysis between in-plane deformation of
ML Topo90 modes and Topo100 modes [shown in (b)]; the
analysis highlights the spectral points with the highest modal cor-
relation, which define a qualitative spectral region of influence in
which the bilayer response is dictated by the in-plane behavior of
the topological layer.

values vary between 0 and 1, with 1 indicating perfect
compatibility and 0 orthogonality. We sweep the band dia-
gram to find the modes of ML Topo90 that display the
highest MAC correlation, at each value of ξ , to the topo-
logical modes of Topo100. Figure 3 highlights the spectral
points on the branches of ML Topo90 whose eigenmodes
are most correlated with those of either edge mode of
Topo100 (blue and red markers referring to mode I and
II, respectively), with color intensity proportional to the
strength of correlation. It is evident that, near ξ = π ,
where the first two modes of ML Topo90 are spectrally
isolated, the correlation with Topo100 is high, consistent
with our visual inspection of the mode shapes in Figs.
2(b)–2(e). As we move away from π , the identified spec-
tral points are more scattered across the available branches,
as expected given the competition of several hybridiz-
ing modes at longer wavelengths. This said, the highest
compatibility points remain organized along spectral paths
that are qualitatively reminiscent of the Topo100 edge-
mode branches [Fig. 3(b)], and identify a spectral “region
of influence” [whose qualitative support is highlighted in
green in Fig. 3(a)] in which the response of ML Topo90 is
heavily controlled by the topological layer. These observa-
tions corroborate the notion that the out-of-plane response
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of the ML Topo90 modes is dictated by the in-plane topo-
logical behavior of the topological kagome layer through
coupling. Moving closer to the continuum limit increases
the chance of “false positives” due to the higher morpho-
logical similarity between modes at long wavelengths. For
these reasons, we restrict our considerations to ξ > π/2.

III. FULL-SCALE SIMULATIONS AND THE
EMERGENCE OF ASYMMETRIC FLEXURAL

WAVEFIELDS

To illustrate the manifestation of these phenomena at the
lattice scale we simulate wave propagation in an 8 × 19
ML Topo90 lattice excited with a five-cycle tone burst. In
order to maximize the achievable coupling and promote
the in-plane localization that we intend to transfer to the
flexural modes, we prescribe an in-plane excitation force
directly to the plane corresponding to the outer face of the
topological layer. Figure 4 shows snapshots of a propa-
gating flexural wavefield for excitation prescribed at the
top (floppy) and bottom (nonfloppy) edges, respectively,
with carrier frequencies of 500 Hz [Figs. 4(e) and 4(f)],
1000 Hz [Figs. 4(a) and 4(b)], and 1500 Hz [Figs. 4(g) and
4(h)]. Excitation at 1000Hz, falling in the interval where
the modes display the strongest polarization, reveals strong
asymmetry between waves fired from the floppy and non-
floppy edges. Specifically, from the nonfloppy side, waves
travel into the bulk isotropically with the typical circular
crest structure of flexural waves, while, from the floppy
side, the penetration into the bulk is more impeded and we
observe a certain degree of localization along the edge.
It is worthwhile to note that, in this problem, we observe

some wave leakage into the bulk even from the floppy
edge, resulting in a weaker asymmetry between the edges
than the one recorded for in-plane waves in Ref. [27].
This is due to the fact that, in the frequency interval of
our burst, the band spectrum features several flexural bulk
modes than can be activated in conjunction with the edge
modes. This is not the case in the in-plane problem, where
the only competition to the edge modes comes from the
acoustic S and P modes. In contrast with the 1000-Hz
case, the wavefields for excitation at 500 and 1500 Hz are
significantly more symmetric, suggesting that the asym-
metric wave transport is frequency selective and is mostly
absorbed below and above the frequency interval of the
polarized modes.
The nontriviality of this result can be appreciated by

considering the complementary case in which the bilayer
is excited with an out-of-plane force. The scope of this test
is to confirm that the observed asymmetry is indeed due to
topological polarization, and, as such, intrinsic to the bulk
and topologically protected, and not a mere consequence
of some trivial asymmetry between the local geometric
features of the edges. Wavefields for an out-of-plane exci-
tation at 1000 Hz from the floppy and nonfloppy edges are
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FIG. 4. Full-scale simulations. Snapshots of out-of-plane
wavefields for in-plane excitation at 500, 1000, and 1500 Hz
from the nonfloppy (a),(e),(g) and floppy (b),(f),(h) edges; out-
of-plane wavefields for out-of-plane excitation at 1000 Hz from
the nonfloppy (c) and floppy (d) edges.

shown in Figs. 4(c) and 4(d), respectively. The response
features circular-crested waves propagating into the bulk,
with no edge localization and nearly matching behavior
between the edges. If the lattice displayed any trivial edge
behavior associated with the protruding edge elements,
such effects would be magnified by an out-of-plane force
that would directly activate the flexural motion of these
elements. This is clearly not the case here, suggesting that
the asymmetry observed at 1000 Hz [Figs. 4(a) and 4(b)]
must originate from the polarization of the in-plane modes.
To pinpoint which modes are responsible for the estab-

lished asymmetry, we can again resort to MAC analysis.
To this end, from Figs. 4(a) and 4(b) we choose a strip
of 16 cells spanning the entire lattice and we compare its
in-plane and out-of-plane displacement fields against the
eigenvectors of the ML Topo90 supercell. In Figs. 5(a) and
5(b), the markers show the ML Topo90 modes that display
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FIG. 5. MAC analysis between the response of a strip
extracted from the ML Topo90 lattice wavefield excited at
1000 Hz from the floppy (a) and nonfloppy (b) edge and the ML
Topo90 supercell modes available in the same spectral interval;
(c) example of bulklike modeshapes activated by nonfloppy edge
excitation.

the highest modal correlation with the strip deformation at
each value of ξ in the neighborhood of 1000 Hz, for exci-
tation from the floppy [Fig. 5(a)] and nonfloppy [Fig. 5(b)]
edge. For excitation at the floppy edge, the procedure high-
lights the two coupled topological modes near ξ = π . In
contrast, excitation at the nonfloppy end appears to acti-
vate bulk flexural modes that lack topological character
[Fig. 5(c)].
Additional insight into the wave-transport characteris-

tics of the bilayer lattice can be gained from the inspection
of the in-plane displacement wavefields extracted from
the same set of simulations. Figure 6 shows displacement
wavefields in the y direction for excitation at the non-
floppy and floppy edges at carrier frequencies of 500 Hz
[Figs. 6(a) and 6(b)], 1000 Hz [Figs. 6(c) and 6(d)], and
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FIG. 6. Simulated in-plane displacement wavefields for in-
plane excitation from the nonfloppy and floppy side at frequen-
cies of 500 (a),(b), 1000 (c),(d), and 1500 Hz (e),(f), respectively.

1500 Hz [Figs. 6(e) and 6(f)]. At 1000 Hz, where the
polarized in-plane supercell modes fold, the wavefield dis-
plays a marked asymmetry between the edges akin that of
Ref. [27]. Specifically, excitation at the nonfloppy edge
results in nearly perfect isotropic wave propagation deep
into the bulk, while excitation at the floppy edge features
directionality and substantial localization at the edge. Note
that also the excitation from the floppy end is not com-
pletely immune from a certain degree of leakage into the
bulk, likely due to the influence of the twisted kagome
layer, which is nonpolarized; however, this effect is almost
insignificant compared to the bulk wavefield from the
nonfloppy edge.

IV. EXPERIMENTS ON STRUCTURAL LATTICES

To verify these phenomena experimentally, we per-
form laser-assisted (Polytec PSV 400 3D Laser Doppler
Vibrometer) experiments on a 7 × 17-cell ML Topo90 pro-
totype manufactured via double-side computer numerical
control (CNC) machining of an ABS sheet; an image of
the manufacturing process is shown in Fig. 7(d). Due to
the complexity of this structure, the machining is done in
two steps. First, a plastic plate is fastened to a previously
machined manufacturing plate and the twisted kagome
layer is milled to 10% of the total thickness. The struc-
ture is then flipped over to the opposing face, reattached
to the manufacturing plate, and the topological kagome
layer is milled. The result is a bilayer lattice made from
one single piece of ABS plastic. The specimen has the
notable advantage of featuring identical material proper-
ties everywhere. Also, it lacks the interface nonidealities
that would inevitably affect any configuration obtained by
bonding separate layers, which would derive from regions
of debonding or from the inherent mechanical response of
the bonding material.
The excitation is applied by a shaker with the stinger

probing the outer face of the topological layer parallel to
the lattice plane. The laser scans the lattice surface, mea-
suring the out-of-plane velocity at one point per triangle.
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(b)

FIG. 7. (a) Front and (b) rear detail of the lattice revealing
high-precision realization of the hinges in both layers obtained
via double-side CNC machining; (b) experimental setup and
(c) manufacturing of the bilayer lattice via double-sided CNC
machining (cutting of the topological layer shown).

The experimental setup is shown in Fig. 7(b), with detailed
closeups of the specimen in Figs. 7(a) and 7(b). Rep-
resentative wavefield snapshots for a 1000-Hz in-plane
excitation at the nonfloppy and floppy side are shown in
Figs. 8(a) and 8(b), respectively, while snapshots for an
out-of-plane excitation at the nonfloppy and floppy edge
are shown in Figs. 8(g) and 8(h), respectively. The results
match the simulations nicely. The in-plane excitation pro-
duces an asymmetric response, with localization at the
floppy side and isotropic propagation into the bulk from
the nonfloppy side. In contrast, the out-of-plane excitation
triggers flexural bulk waves that are virtually insensitive to
the polarization.
For completeness, we also perform experiments at 500

and 1500 Hz. Figure 8 shows wavefield snapshots for in-
plane excitations from the floppy and nonfloppy edges at
carrier frequencies of 500 Hz [Figs. 8(c) and 8(d)] and
1500 Hz [Figs. 8(e) and 8(f)], and for out-of-plane exci-
tation from the floppy and nonfloppy edges at 500 Hz
[Figs. 8(i) and 8(j)] and 1500 Hz [Figs. 8(k) and 8(l)]. The
flexural wavefields show that flexural excitation induces
only isotropic waves propagating into the bulk regardless
of the excited edge, a result confirming the key finding
that the in-plane mechanics are a required mediator to trig-
ger the desired topological behavior. However, somewhat
surprisingly, we find that the asymmetric behavior expe-
rienced by the lattice for in-plane excitation at 1000 Hz
persists at 500 and 1500 Hz, albeit in a much weaker form,
especially for the latter. This may be due to a number
of imperfections, which are inevitable in an experimental
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FIG. 8. Laser-assisted wave-propagation experiments—out-
of-plane wavefield snapshots due to in-plane excitation from the
nonfloppy and floppy edges at 500 (a),(b), 1000 (c),(d), and
1500 Hz (e),(f); out-of-plane wavefield snapshots due to out-
of-plane excitation from the nonfloppy and floppy edges at 500
(g),(h), 1000 (i),(j), and 1500 Hz (k),(l).

setting, that may cause it to deviate from its numerical
counterpart. Specifically, there may exist a slight spec-
tral mismatch between the lattice used in simulations and
the actual prototype due to some meshing shortcomings in
our computational model, which we could curb, but not
fully remove, within the limitations of our finite-element
platform. Another factor could be the much lower num-
ber of measurement points used in the experiment (two
scan points per unit cell) versus the simulation (about 1100
nodes per unit cell). These discrepancies require more
investigations and will be further studied in our future
work.
It is worth mentioning that we can consider a variety

of alternate avenues to promote coupling between the lay-
ers. In Appendix B, for the sake of example, we report the
analysis of a bimaterial configuration featuring geometri-
cally identical layers, in which the mismatch is promoted
solely by the moduli mismatch between the layers. This
solution offers a qualitatively similar response, suggesting
that the physics reported in this study may have a fairly
universal applicability, beyond the specifics of the selected
configuration.

V. CONCLUSIONS

In conclusion, by designing a bilayer with in-plane
to out-of-plane coupling capabilities, we demonstrate the
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ability to export topological modes from their native in-
plane elastodynamics to the flexural realm. These results
open the doors to the application of topological wave-
manipulation strategies to thin structures traditionally
designed to operate in bending. The study reveals the role
of the in-plane topologically polarized modes as an essen-
tial mediator between a prescribed excitation and the onset
of polarization effects in the flexural response.
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APPENDIX A: TRIVIAL EDGE MODES IN A
BILAYER TOPOLOGICAL LATTICE PRIOR TO

EDGE CLIPPING

To demonstrate how the establishment of trivial flexural
edge behavior would be detrimental to our ability to extract
the signature of topological polarization, in Fig. 9(a) we
show the band diagram of the lattice prior to edge clipping.
In-plane displacement (with color proportional to displace-
ment in the y direction) and out-of-plane displacement
(with color proportional to out-of-plane displacement) for
modes 1, 2, and 5 at ξ = π are shown in Figs. 9(b)–9(d),
respectively. While the behavior of mode 1 is qualitatively
analogous to that discussed for the trimmed edge, the inter-
pretation of mode 2 becomes more problematic. Here we
see a very aggressive localization of out-of-plane displace-
ment on the left (floppy) edge. Although a localization at
this edge is nominally what we want, it is clear that here
the localization is concentrated in the last half cell and can
be therefore attributed to the quasidangling nature of the
protruding element, rather than to the existence of polariza-
tion in the bulk. Perhaps of more relevance, if we inspect
mode 5 (a mode not discussed in the paper because of its
lack of interesting features in the edge-clipped version of
this structure) we see that it displays a similar out-of-plane
localization on the nonfloppy edge, acting as the trivial
twin of mode 2. In addition, the out-of-plane localization
is incommensurate to its in-plane displacement pattern,
confirming that this flexural behavior is not triggered by
topological in-plane modes.

APPENDIX B: BIMATERIAL BILAYER LATTICE

We consider other strategies to achieve coupling
between in-plane and out-of-plane deformation, and trans-
fer floppy-edge behavior to the flexural modes. For the
sake of completeness, we report here the results for
one of these strategies, which involves a bimaterial plat-
form. Here the layers are geometrically identical and the
impedance mismatch between the layers is solely due to

(a)

(b)

(c)

(d)

F
re

qu
en

cy
 (

hz
)

ML Topo90 - no edge clipping

FIG. 9. (a) ML Topo90 band diagram prior to edge clipping,
with lattice in the bottom right corner inset and supercell high-
lighted; in-plane and out-of-plane displacement for modes 1 (b),
2 (c), and 5 (d) of ML Topo90 prior to edge clipping.

the difference between the materials’ elastic moduli. The
band diagram in Fig. 10 refers to a bimaterial topological
kagome whose thickness breakdown is as follows: 99%
soft and 1% stiffer (by 3 orders of magnitude). Note that
the specific moduli used here are toy parameters selected
for this demonstration with the sole purpose to model a
stiffness contrast, and are not meant to be representative
of any actual material. Modes 1 and 2 (the two low-
est modes) are those associated with the topological edge
modes of the topological kagome. Figures 10(b) and 10(c)
show the mode shapes for mode 1 at ξ = 3π/4 and ξ = π ,
respectively, where the top-down view shows the in-plane
deformation (with color corresponding to displacement
along y) and the side view captures the out-of-plane defor-
mation (with color corresponding to displacement along z).
Both mode shapes show consistency between the decay
rates of the out-of-plane and in-plane deformation at the
floppy end (left end). Note that the out-of-plane deforma-
tion is stronger when we move away from ξ = π towards
ξ = 3π/4, suggesting that the displacement modes asso-
ciated with out-of-plane deformation couple best with
this edge mode toward the crossing point of the modes,
where stronger hybridization occurs. Figure 1(d) shows the
mode shape for mode 2 at ξ = π . Here, the out-of-plane
deformation’s decay rate and morphology does not seem
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(a)

(b)

(c)

(d)

FIG. 10. (a) Band diagram: topological kagome—99% soft
(E = 2e9) and 1% stiff (E = 2e12); mode shapes for mode 1 at
(b) ξ = 3π/4 and (d) ξ = π , and (e) mode 2 at ξ = π .

commensurate to that of its in-plane counterpart, suggest-
ing that the coupling from in-plane to out-of-plane may
include some trivial edge effects not directly associated
with the topological character of the in-plane edge mode.
In addition, some localized out-of-plane deformation can
be seen at the nonfloppy end (right end), further suggesting
the presence of a trivial component.
Overall, the bilayer in this paper seems to provide supe-

rior coupling performance in terms of preserving features
of the topological mode in the flexural response. Nev-
ertheless, we deem this configuration quite effective at
localizing flexural waves at the floppy edge, making it a
viable alternative to the strategy discussed in the paper
and confirming that the main philosophy explored in this
paper has universal applicability beyond the specifics of
the structure considered in our analysis.
This said, the configuration studied in this work features

one advantage. Working with a single material platform
presents major practical advantages in terms of manufac-
turability and testability. In practice, working with two
materials would require either making two lattices and
bonding them together a posteriori, or 3D printing the
bilayer switching between materials after a few layers of
deposition. The first option would require a layer of bind-
ing material, which would in turn introduce nonidealities
in the response. The second option would be limited by
the quality and reliability of the 3D-printed materials cur-
rently available, which are generally not satisfactory for

dynamical applications. Either way, the structure would
exhibit high levels of damping, nonlinearities, material
properties’ uncertainty and heterogeneity, unwanted poros-
ity and scattering, and other nonidealities that would likely
result in noisy and elusive measurements. Working with a
single material allows us instead to rely solely on more
traditional machining (albeit using a nontrivial two-face
approach, as discussed above). As a result, we can employ
sheets of ABS with very uniform and well-known material
properties.
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