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Abstract The unprecedented growth of solar generation adoption indicates
that solar can become a significant source of modern and clean energy for
our power grids in just a few decades. Despite solar’s growing criticality for
generation, few studies have proposed models to assess solar generation dur-
ing natural disasters. In particular, hurricanes bring environmental conditions
that may drastically reduce solar generation even if solar infrastructure re-
mains fully functional. Here, we present a stochastic model to quantify irra-
diance decay during hurricanes. The model is developed through mixed-effect
regression on a dataset that merges historical Global Horizontal Irradiance
and Atlantic hurricane activity, exhibiting higher irradiance decays for higher
hurricane categories and closer to the hurricane center. Accordingly, our model
describes the irradiance decay as a function of hurricane category and the dis-
tance the hurricane center normalized by the hurricane size. We show that
category-dependent shapes and scales increase the statistical performance of
the irradiance decay function based on the Akaike Information Criterion. Sim-
ilarly, the hurricane’s radius of outermost closed isobar performs best as nor-
malizing distance. Our study suggests that hurricanes reduce irradiance due to
optically thick clouds that absorb and reflect light. These clouds are close to the
hurricane center and often become thicker during intensification. To showcase
the methodology’s applicability, we use it to generate stochastic simulations
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2 Luis Ceferino et al.

of irradiance in the Southern United States during a synthetic storm from
its genesis to its dissipation. Our results also show that generation in Miami-
Dade, Florida, can decrease beyond 70% in large regions during a category-4
synthetic hurricane even if the solar infrastructure is undamaged. Further-
more, generation losses can also last beyond three days, and this timeframe
will be exacerbated if solar panels become non-functional. Our follow-up study
integrates our proposed model with panel fragility functions to offer analysis
capabilities for forecasting time-varying solar generation during hurricanes.

Keywords Disaster resilience - Solar panels - Solar irradiance - Hurricanes -
Optically thick clouds

1 Introduction

Solar generation is becoming a pillar in modern power systems. Solar energy
accounted for nearly 40% of all the new electric generating capacity installed
on the U.S. grid in 2019, the highest share in its history (Perea et al., 2019).
The rapid adoption of panels to harvest solar energy is transforming key power
system features such as its economics, environmental contributions to global
warming, and resilience (Moriarty and Honnery, 2016). These new power sys-
tem features may be a crucial part of our future grids, and government pro-
jections state that solar generation will be 20-30% of the global electricity by
2050 (International Energy Agency, 2014; Shah and Booream-Phelps, 2015;
The International Renewable Energy Agency, 2018; Solaun and Cerdd, 2019).
Research has already highlighted and projected solar energy’s long-term envi-
ronmental (Solangi et al., 2011; Creutzig et al., 2017) and economic (Devab-
haktuni et al., 2013; Kannan and Vakeesan, 2016) benefits. However, there is
significantly less understanding of the benefits of solar generation for increas-
ing the resilience of our vulnerable existing grids.

Hurricanes have exposed significant vulnerabilities in our power grids. For
example, Hurricane Maria caused the total loss of power in multiple major
cities in Puerto Rico in 2017, leaving regions without power for up to eight
months (Wang et al., 2018; Campbell et al., 2018). Similarly, in mainland
United States, Hurricane Sandy in 2012 left more than eight million cus-
tomers without power across 21 states (Henry and Ramirez-Marquez, 2016).
Solar generation can increase resilience through decentralization, a fundamen-
tal paradigm switch where users can generate energy locally, e.g., through
rooftop solar panels (Colson et al., 2011; Panteli and Mancarella, 2015; Wang
et al., 2016). Only a recent investigation has proposed a framework based on
risk analysis to quantify the resilience of modern power systems with rooftop
solar panels, but exclusively for earthquake hazards (Patel et al., 2021; Ce-
ferino et al., 2020). As hurricanes pose an enormous threat to urban centers
worldwide, this paper focuses on building a cornerstone solar irradiance model
that enables the risk analysis of modern power systems with solar generation
during hurricanes (generally called tropical cyclones).
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Stochastic Modeling of Solar Irradiance during Hurricanes 3

Unlike earthquakes, hurricanes bring environmental conditions that may
drastically reduce solar generation even if solar infrastructure remains fully
functional. Figure 1 exemplifies the effect of hurricanes on the spatial distri-
bution of solar irradiance and thus generation. The plot shows Global Horizon-
tal Irradiance (GHI) at 3pm UCT (9 am local time) when Hurricane Katrina
made landfall in Louisiana as a category three event in 2005 compared to
the GHI distribution the year after. The comparison shows that the hurricane
reduced GHI even for sites that were hundreds of kilometers away from the
hurricane center. This observation is consistent with recent findings on GHI
decay during past hurricanes (Cole et al., 2020). Yet, to integrate this obser-
vation into a risk analysis framework that assesses solar generation resilience,
we lack a predictive model that generalizes GHI reduction under hurricanes,
i.e., parametrizing GHI decay with key hurricane features.
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(a) 2005 (during hurricane Katrina) (b) 2006 (one year after hurricane Kat-
rina)

Fig. 1: Global horizontal irradiance decay during hurricanes with two snap-
shots at the same time but in different years. Both plots show the spatial
distribution of GHI on August 29th, at 3 pm UTC (or 10 am local time in
Lousiana). (a) The plot shows GHI in 2005 during Hurricane Katrina, indi-
cating the hurricane’s track, radius of maximum wind, radius at a wind speed
of 34 knots, and radius of the outermost closed isobar. (b) The plot shows
GHI in 2006 in the same region at the same time. Data retrieved from NREL
(Sengupta et al., 2018).

To fill this research gap, we conduct an extensive data analysis on his-
torical GHI during the hurricane seasons from 2001 to 2017 by combining
the hurricane Best Track Database (Landsea and Franklin, 2013) with a GHI
database from the National Renewable Energy Laboratory (NREL) (Sengupta
et al., 2018). The analysis identifies hurricane features that best predict the
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4 Luis Ceferino et al.

intensity and extent of GHI decay. Next, we develop a probabilistic mixed-
effects model to capture irradiance decay through different functional forms.
These functions describe time and space-varying GHI reduction factors from
the hurricane center to unaffected regions using critical hurricane features with
different model complexities. We fit the different functional forms and highlight
the best predictive model based on the Akaike Information Criterion (AIC).

In application, we propose to first estimate solar irradiance when and where
a hurricane occurs but for normal conditions (Sengupta et al., 2018). Then,
we adjust the GHI estimates to the hurricane condition using our proposed
probabilistic model for hurricane-induced GHI decay. Because the proposed
GHI decay model is built for different times of the day and throughout the
entire hurricane season, our integrative framework quantifies the time-series of
solar irradiance for any real or synthetically simulated tropical cyclone since
its landfall to dissipation.

To showcase our proposed methodology’s broad and regional applicability
for irradiance modeling, we use the framework to simulate solar generation
for a synthetic storm in the United States’s southern region. We compare
our modeling results to existing studies on GHI decay to analyze its perfor-
mance. This application demonstrates that this methodology can successfully
simulate spatiotemporal distributions of irradiance under varying hurricane
conditions from genesis to dissipation. Ceferino et al. (2021) integrates the
proposed model with fragility functions for panel failure due to high winds to
assess time-varying solar generation during hurricanes in residential or utility-
scale panel arrays. These integrative approaches demonstrate the importance
of GHI decay models for assessing the resilience of power systems with solar
infrastructure to hurricanes.

The rest of the article begins with a statistical analysis of GHI during his-
torical storms. Then, it proposes a probabilistic model for capturing GHI de-
cays during hurricanes. Next, it shows the application to the Southern United
States. Finally, the article provides a summary and conclusions of our analysis.

2 Analysis of GHI during historical storms

Hurricane conditions reduce solar irradiance intensity at the ground level over
large geographical extents, limiting the ability of PV panels to harvest energy
in communities. Figure 1 shows intense GHI decays during Hurricane Katrina
in most regions within the radius (R34) at a wind speed of 17 ms~! (34 knots),
which reached 262 km. In some regions, intense decays extended to distances
similar to the radii of the outermost closed isobar (ROCI), which reached 556
km. While Figure 1 shows only a snapshot for one hurricane demonstrating
irradiance decays, we consistently observe the same trend in other hurricanes.
In contrast to cloudless conditions of clear skies, which are associated with
maximum solar generation, hurricanes cover extensive regions with different
cloud structures from the eyewall to the rainbands (Houze, 2010). These clouds
absorb and scatter light, reducing direct incident radiation and generally lead-
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Stochastic Modeling of Solar Irradiance during Hurricanes 5

ing to lower GHI and reduced solar panel generation (Xie et al., 2016, 2019).
Clouds that have high moisture density and vertical depth, i.e. optically thick
clouds, can drastically reduce direct incident radiation (Nouri et al., 2019). Ac-
cordingly, hurricanes can significantly and rapidly lessen generation through
optically thick cloud structures such as large cumulonimbus. However, hurri-
canes can also reduce generation significantly even with less optically thick
cloud structures like stratiform clouds because they can cover large geograph-
ical extents.

To systematically investigate the effect of hurricanes on irradiance, we cou-
pled a large dataset of GHI with historical hurricane data. We used the Physi-
cal Solar Model (PSM) version 3 from the National Solar Radiation Database
(NSRDB) published by the National Renewable Energy Laboratory (NREL) to
extract GHI with high spatial and temporal resolution (Sengupta et al., 2018).
The PSM combines satellite-derived atmospheric and land surface properties
with radiative transfer models to solve solar radiation through the Earth’s
atmosphere. The PSM provides solar irradiance at a 4-km horizontal resolu-
tion for 30-minute intervals from 1998 to 2017. The PSM enable us to observe
the GHI behavior at different timesnaps for different hurricanes since 1998 for
multiple sites and under various hurricane conditions.

2.1 Historical hurricane dataset

We compiled hurricane data from the revised Atlantic hurricane database
(HURDAT?2) (Landsea and Franklin, 2013). The data contain multiple hur-
ricane features and span several decades; however, key spatial information
including hurricanes’ radii is only available since 1998. The hurricane data
include ROCI, the radius of maximum wind (RMW), radius at wind speeds
of 17 ms~! (R34, 34 knots) and 33 ms~! (R64, 64 knots), hurricane category,
and maximum wind speeds. The hurricane data have a 3-hour temporal reso-
lution, which is coarser than the PSM temporal resolution; thus, we reduced
the granularity of the GHI dataset from 30 minutes to 3 hours and matched
the hurricane recording times. After performing a preliminary assessment to
estimate the geographical extent impacted by the hurricane, we collected GHI
records from the 4x4-km spatial grid within two times ROCI from the hurri-
cane center, which reached several hundreds of kilometers for massive storms.

We analyzed 22 hurricanes whose geneses were in the North American
basin, made landfall on the Atlantic coasts of Central and North America
and the Caribbean, and whose lifetime maximum intensity reached a category
of at least three. The intensity threshold filtered out the disproportionately
large number of storms that did not reach high intensities. While these events’
maximum intensities were high, we tracked them from landfall to dissipation,
covering the full range of intensities from high categories until they weakened
into tropical depressions. 22 events had tropical storm winds in their lifespan,
and nine reached a category of 5 (Figure S1).
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The 22 hurricanes cover an extensive geographical region of our assessment
(Figure 2). These hurricanes have a wide variety of conditions, with maximum
wind speeds up to 80 ms™! (category 5), ROCI from 200 km to above 800
km, RMW up to 250 km, and radii at circulating wind speeds of 0 (R0) from
200 km to above 2000 km (Figure S1). HURDAT?2 omitted RO, the shortest
distance where hurricane circulating wind effects dissipate entirely. ' Thus, we
estimated RO with a wind profile model that captures the radial structure of
tropical cyclones (Chavas et al., 2015).

$ T TV
; — IRIS2001 —— FELIX2007
‘—— MICHELLE2001 —— GUSTAV2008
—— ISIDORE2002  —— IKE2008
—— CHARLEY2004 PALOMA2008
20°N —— JEANNE2004 KARL2010
—— DENNIS2005 SANDY2012
—— EMILY2005 MATTHEW2016
—— KATRINA2005 ~ —— OTT02016
—— RITA2005 —— HARVEY2017
30°N —— WILMA2005 — IRMA2017

DEAN2007 MARIA2017

20°N

10°N

100°W 80°W 60°W 40°W 20°wW

Fig. 2: List of hurricanes and their tracks included in GHI decay assessment
in the North American basin

2.2 Key features for predicting GHI during hurricanes

To characterize GHI decay under different hurricane conditions, we define
I" as GHI during a hurricane. Previous research shows that GHI has strong
temporal and spatial variability during normal conditions, i.e., no hurricane
(Lehr et al., 2017; Patel et al., 2018). We account for such variability and
characterize GHI deviations from normal conditions in the logarithm space as

5 = m(?) (1)

where I represents the median of the GHI under normal conditions at the same
location and at the same time of the year as I". Since multiplicative factors
capture clouds’ effects on solar irradiance, i.e., Beer-Bouguer-Lambert law of
extinction (Liou, 2002; Xie et al., 2019), we assume 6", in the logarithmic

1 Notice that there is environmental wind at RO.
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Fig. 3: Sciaiter plots showing relationship between GHI decay and key hurricane
features. 6" during different hurricanes/l\lave different color. For each hurricane,
the plots show a running average for §" using solid lines. The plots also show
linear regressions in dotted lines and their corresponding R? values when the
multi-hurricane data is lumped together. For visual clarity, there are only 50k
randomly sampled data points in each plot.

space, can capture hurricane effects on GHI. We used 20 years of GHI data to
estimate E for all the geographical extent covered by the hurricanes using a
3-hour temporal resolution. We used 20 years of GHI data to estimate I for
all the geographical extent covered by the hurricanes using a 3-hour temporal
resolution. We assume that at each time of the day, GHI has approximately
the same distribution for a given month. As a result, we used approximately
600 instead of 20 data points to estimate the GHI medians. For example, to
estimate GHI at 10 a.m. in June, we lumped the data of its days from 1998 to
2017. We observe that for sites farther from the center of the hurricane, the
median of §" approaches zero, implying that the site is outside the area where
hurricanes reduce GHI, i.e., I = I".

We analyzed GHI during the 22 hurricanes to estimate the samples 6% and
understand GHI behavior during different hurricane conditions. Because our
focus was only on times of the day when communities can generate energy, we
only included in our analysis daytime data where and when I > 10 W-h/m?,
which finally resulted in ~28M data points. Figure 3 shows 6" as a function
of distance from the site to the hurricane’s center and category.

Figure 3a shows the relatlonshlp between distances to the hurricane center
d and 5", On average, " has reduced values for small d and grows steadily up
to a plateau close to 0 for d values larger than 600 km. We fitted a line with
d below 600 km to account mainly for the sites with significant irradiance
decays and found an R? of 0.2 (correlation p = 0.45). We observe that the
fitted line is not able to represent the transition between small distances to
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8 Luis Ceferino et al.

the plateau for large d where hurricanes have little effect. The observed tran-
sition is consistent with the spatial distribution of cloud optical thicknesses
in hurricanes. Hurricane eyewalls, which surround the hurricane eye typically
at 10-50 km from the center (Weatherford and Gray, 1988), are composed of
optically thick clouds as a result of high moisture densities and large verti-
cal depths (Kokhanovsky and von Hoyningen-Huene, 2004; John et al., 2020),
thus significantly reducing direct incident radiation through high absorption
and reflection. Outside the eyewall, clouds’ optical thicknesses are high only in
rainbands and significantly lower in between them. Outside the regions with
rainbands, a regular combination of clear-sky and partially cloudy conditions
arise, bringing GHI back to normal levels (Kokhanovsky and von Hoyningen-
Huene, 2004; Luo et al., 2008; John et al., 2020). Figure 3a shows that this
occurs beyond 600 km from the hurricane center.

Additionally, we find that high hurricane intensity exacerbates GHI decay.
To focus on sites with the largest hurricane decay and cover areas within hur-
ricane eyewalls, we analyzed sites located at 100km or less from the hurricane
center. Figure 3b shows a decaying trend between hurricane category C' and
5t values, indicating that more intense hurricanes indEEe larger reductions in
solar irradiance. A similar trend is observed between ¢ and maximum winds
V (Figure S2a) because V has high colinearity with C' as the latter variable
is an increasing step function of V. Thus, we see that the linear fit performs
very similarly with R? of nearly 0.11 (p = -0.34) in both cases. Lower irra-
diance levels for higher hurricane categories are also consistent with recent
evidence on satellite-derived cloud microphysical features during hurricanes
(John et al., 2020). There are larger regions with higher cloud optical thick-
nesses associated with large and thick cloud structures such as cumulonimbus
during hurricane maturity and intensification rather than during hurricane
development or dissipation.

To investigate hurricane size effect, we evaluated the relationship between
different hurricane size metrics and both the intensity and geographical extent
of GHI decay. To study whether GH/I\decays are larger for bigger hurricanes, we
analyzed the relationship between 6" and ROCI, RMW, and RO, respectively.
We observe that hurricane size/\does not intensify GHI decay as linear fits
between the size metrics and 6* have low R? values of 0, 0.05, and 0.02,
respectively (Figure S2).

To study how hurricane size correlates with the geographical extent of GHI
decay, we analyzed the relationship between GHI and distance to the storm’s
center normalized by the hurricane size. We normalized d by four hurricane
size metrics, ROCI, RMW, RO, and R34, where R34 is the radius at which
the maximum wind speed is 34 knots, the minimum speed for the event to
be categorized as a tropical storm. We split the data by hurricane category
because C' showed predictive power for hurricane decay intensification (Figure
3).

When the distance is normalized by ROCI and R34, we generally observe
better fitting performance than for the absolute distance, with improved per-
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formance for higher hurricane categories (Figure 4 and S5). We estimated that
a linear fit between R = d/ROCI and 5h has an R? of 0.38 for category 5,
almost twice the value found for absolute distance for all storms (Figure 3a).
For R = d/R34, R? values show comparably good fitting performance to using
ROCT as normalizing distance (Table S1). The slopes of linear fits are steeper
for higher categories, further demonstrating that the intensity of the hurricane
intensifies GHI decay. As discussed earlier, this feature of GHI decay is driven
by optically thicker cloud structures occurring during hurricane maturity and
intensification. Distances normalized by RMW and RO give lower performance,
which, however, still illustrate how the effect of the hurricane on irradiance
dissipates for large enough values of d (Figure S3 and S4).

The analysis also shows that the regions with GHI decay easily extend
beyond RMW and R34 as they only define hurricanes’ inner-core circulation
(Table S1). In contrast, the regions with significant GHI decay do not reach
RO but are close to being bounded by ROCI. Thus, these observation suggests
that the outer structure and radial extent of circulation bounded by ROCT is
coupled with the cloud structures absorbing and reflecting light during hurri-
canes.

3 Developing GHI decay model through mixed-effects re-
gression

To leverage well-established mixed-effects regression models (Pinheiro and
Bates, 2006), we assume that In(I") is Gaussian, i.e., I" is lognormaly dis-
tributed, during daytime, when generation is not negligible, i.e., I > 0. Thus

In(I") = ln(ﬁ) + et (2)

where I" is the GHI median, and € is a Gaussian random variable with
zero mean that accounts for the variability of GHI during hurricanes in the
logarithmic space. We also assume that hurricanes reduce median GHI from
normal conditions to I such that in the logarithmic space

In(I") = In(I) + f(R,C) + " (3)

where I is the median GHI during normal conditions, and f(R,C) is a re-
duction factor that is function of the normalized distance to the hurricane’s
center R and the hurricane category C. f uses both R and C' because they
demonstrated to have good predictive power for GHI decay in the previous
section. Using the expression in Equation 1, then

6" = f(R,C) + € (4)

Using Equation 4 and the samples of 6" from our dataset, we conducted a
mixed-effect regression analysis to test multiple functional forms f(R,C) and
formulate a predictive model for irradiance decay during hurricanes.
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(a) Tropical storm (b) Category 1

o
Cwes R2=0.25 "

0.5 1.0 1.5 0.5 1.0 1.5 2.0
R = d/ROCI R = d/ROCI

(c) Category 2 (d) Category 3

e ee RZ2=024 G
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R =d/ROCI R =d/ROCI
(e) Category 4 (f) Category 5
= |RIS2001 = JEANNE2004 = RITA2005 = GUSTAV2008 SANDY2012 = HARVEY2017
= MICHELLE2001 = DENNIS2005 = WILMA2005 = |KE2008 ww MATTHEW2016 === IRMA2017
= |SIDORE2002 = EMILY2005 = DEAN2007 PALOMA2008 == OTT02016 = MARIA2017
= CHARLEY2004 = KATRINA2005 == FELIX2007 KARL2010

Fig. 4: Scatter plot showing relationship between GHI decay and distance
normalized by ROCI for ﬂultiple categories. For each hurricane, the plots
show a running mean for §" using solid lines. Linear trends are fitted for R
between 0 and 1.2 when the multi-hurricane data is lumped together. There
are 10k randomly sampled data points in each plot.

3.1 Functional forms for GHI reduction factors

We tested four different functional forms for f(R,C). These functions are
shown in Equation 5. All of them include a logarithmic growth as a function of
R followed by a plateau when f(R, C) reaches 0. The functional forms include
a short-distance correction factor b and a scale factor ¢ that further calibrate
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the influence of R on the irradiance decay. The short-distance correction factor
is added to the value of R so that the logarithmic function approaches the
observed values rather than —oo when the site is close to the center of the
hurricane, i.e., R — 0. The scale factor further normalizes R to define where
the plateau is reached.

While all of the functional forms include a slope that varies with the hur-
ricane category (a1C + az), they vary in their complexity, differing in the
representation of the short-distance correction factor b and the scale factor
c. In the functional form f; in Equation 5a, b and ¢ remain constant for all
hurricane categories. In the functional form fy in Equation 5b, b varies with
category but ¢ remains constant, and in the functional form f3 in Equation
5¢, b is constant and ¢ varies with hurricane category. In the functional form
f1 in Equation 5d, both b and ¢ vary with hurricane category.

(a2C +ar) x In(EL) if R+b<c

filRO) = 0 " ifR+b>c (5a)
_ (a20+a1) X ln(w) 1fR+ (b20+ bl) <c
f2(R, C) = 0 if R+ (b,C +by) >c (5b)

asC + ay) % ln(@%‘fcl) ifR+b<cC+cq (50)
0 1fR+bZCQC+Cl

(GQC+CL1) X ln(%) if R+ (b20+ bl) <cC+
0 1fR+(bQC+b1)ZCQC+Cl

(5d)

3.2 Mixed-effects model formulation for GHI decay

We used a mixed-effects model to capture the main observed features of ir-
radiance decay during hurricanes. Unlike other methods such as fixed-effects
model, this model allows us to explicitly decompose the random variable €”
in Equation 4 into two independent factors (Pinheiro and Bates, 2006), one
factor accounting for the variability between different time steps represented
by the random variable 5 and another accounting for the spatial variability
at a fixed time represented by the random variable .

5" = f(R,C)+n" +&" (6)

Through this explicit decomposition, we properly represent the high GHI
temporal and spatial variability structrure as extensively discussed in previ-
ous research (Lehr et al., 2017; Patel et al., 2018; Mihailovié et al., 2021). The
mixed-effects regression has both fixed and random components (Pinheiro and
Bates, 2006). With the fixed effect component, we capture how hurricanes de-
crease the (logarithm of the) median GHI with the factor f(R,C) (Equation
5). With the random component of the model, we capture spatial uncertainty
at a time step with a within-time random effect £" and uncertainty across time
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steps with a between-time step random effect ". The model assumes that "
and " are independent. Similar techniques and independence assumptions
have been used to model natural disaster intensities with radiating decay. For
example, mixed-effects models and similar independence assumptions are ex-
tensively used to assess ground shaking that propagates from an earthquake
epicenter to a large geographical extent (Campbell and Bozorgnia, 2014; Abra-
hamson et al., 2016).

3.3 Fitting the GHI decay model

We lumped all hurricane data to fit the parameters of f(R,C). Notice that
for a fixed time ¢, an observation of §" at site j (5%—) is the sum of 0, sﬁj
and f(Ry;,Ct). As Nl only captures temporal uncertainty, at a fixed time t,
it takes the same value for all sites. 52 ; captures spatial uncertainty, thus at
fixed time ¢, it varies for each specific site j. Similarly, while C; varies at each

time step ¢, R; ; also varies for each site j. Thus, for each observation,

(Sthdﬂ = f(Rt}j, Ct) + 77? + EZJ (7)

As described previously, we estimated 52 ; for around ~28 M observations
corresponding to multiple time steps and sites of GHI recordings during the
22 hurricanes in the NREL dataset. We preprocessed the data by removing
sites at long distances where hurricanes did not have significant effect on GHI,
ie., d/ROCI> 2, d/RMW> 20, d/R0> 1, and d/R34> 4 (Table S1). We then
balanced the observations across the hurricane categories and distances from
the center to the sites. There are more data samples for smaller hurricane cat-
egories and at larger distances from the center. To avoid that these samples
heavily control the regression, we randomly selected the same number of sam-
ples for different categories and four equally spaced intervals of R, resulting in
~ 0.75 M data points for the analysis.

We conducted mixed-effect regressions for all 16 combinations of functional
forms f(R, C) and normalizing radii. We estimated the model parameters using
maximum likelihood estimation (MLE) for the non-linear mixed-effects regres-
sion with a Matlab package. The package uses an expectation-maximization
algorithm to solve for the parameters of the fixed component in Equation 5
while accounting for the unobserved component of the regression in Equation 7
(Lindstrom and Bates, 1990). We fitted the parameters for the four functions
considering the four previously analyzed normalization radii, ROCI, RMW,
RO, R34.

We report all fitted parameters in Table 1 and show the fitted functional
forms for f; in Figure 5. Regardless of the normalizing radii, the fitted func-
tions show that GHI decays are the strongest closer to the hurricane center
and higher hurricane categories. These observations are consistent with the
presence of optically thick cloud structures close to the hurricane center and
during hurricane maturity and intensification, as noted previously.
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Fig. 5: Fitted functional form f; in Equation 5d for distances normalized by
the four different normalizing radii.

The regressions also show that the decay extends up to sites well beyond
RMW and R34, reaching sites ~ 15RMW and ~ 2ROCI away from the hur-
ricane center. The decay is also well within RO, reaching sites only up to
~ 0.35 — 0.75R0. The decay extents are most consistent with ROCI as they
are bounded by ~1.3 times its size from the hurricane center (Figure 5a),
confirming the observation that the cloud structures and radial extent of hur-
ricane circulation defined by ROCI are strongly coupled with the hurricane
mechanism for high light absorption and reflection. Because this threshold (~
1.3) does not change significantly for different categories, hurricanes with low
categories can cover more extensive regions with clouds that reduce GHI than
hurricanes with high categories as long as they have larger ROCI. However,
the level of decay will be smaller for lower categories.

3.4 Statistical Performance

We compared the statistical performance of the 16 regressions in Figure 5
using the AIC (Akaike, 1974). The AIC assesses the trade-off between the
model goodness of fit and its simplicity. The AIC is estimated as —2] — 2K,
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Table 1: Fitted parameters for the four functional forms of f in Equation 5
using different normalizing radii.

Model | Norm. Radius Parameters
a1 [ az b1 [ b2 c [ c2
ROCI 1.38 2.37 x10~1 6.43 x10~1T 1.95
RMW 778 X101 | 8.85 x10 2 1.27 1.34 x107?
h RO 6.42 x10~ T | 1.47 x10 © 5.45 X102 1.04
R34 1.55 2.45 x10~ T 1.30 3.43
ROCI 1.37 2.46x10~T | 6.43 x10~T | 3.01 x10~3 1.95
RMW 727x10~T | 1.08x10~ T | 9.43x10° ! 1.29x10~ 1T 9.74x10T
f2 RO 1.63 750x10- T | 4.66x10 T | 4.62x10 2 1.05
R34 1.47 3.47x10~ 1 1.33 5.28x10 7 3.60
ROCI 1.34 2.53 x10~1 6.47 x10~1 2.01 -1.90x10~2
RMW 8.52x10~ T | 9.73x10~2 1.69 1.62x107T 5.89x10 T
fs RO 761x10 T | 2.11x10 1T 1.06x10~ 1T 9.01x10 T | -8.59x10~ 2
R34 1.40 2.90x10 T 1.27 3.64 “7.70x10~2
ROCI 1.97 9.65 x10~2 1.15 -1.26x107 1T 2.48 -1.39x107 1
RMW 774x10~ T | 1.41x10~ T 1.02 2.77x10~ T 1.57x10T 7.98x10~ T
fa RO 1.43 8.66x10-2 | 3.99x10 T | -6.36x10 2 1.16 “1.44%x10° 1T
R34 2.57 4.96x10~ 7 2.99 -3.84x10~ T 5.31 ~4.59%x10~ T

where [ is the logarithm of the marginal likelihood and K is the “degrees of
freedom correction” equal to the number of fixed parameters plus the number
of mean and variance parameters of the random component. K represents a
penalty for an increased risk of overfitting with higher model complexity, i.e.,
with more parameters.

The results show that the model that performs the best (with the lowest
AIC score) is f4 with R = d/ROCI (Table S2). In fact, for all normalizing radii,
fa, which takes six parameters, performs better than f3 and f5, which take
5 parameters, and than fi, which takes 4 parameters. Moreover, f3 performs
better than f5 in all cases, suggesting that having a category-dependent scale
factor co is more effective than having a category-dependent short-distance
correction factor bs. f; performs worse than fs, but in a few cases, it performs
better than fs.

ROCI and R34, which are the radii with the first and second-best AIC
performance (Figure S6), exhibit a similar shape where hurricanes with lower
categories take slightly longer distances to reach normal levels of GHI, i.e., fy =
0. RO, the radius with third-best performance, shows much longer distances to
reach the plateau for hurricanes with smaller categories. In contrast, RMW,
which has the lowest performance, exhibits smaller extents with GHI decay
for hurricanes with lower categories. Based on these AIC scores, we suggest
using f4 with R = d/ROCI to track GHI decay during hurricanes.
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4 Probabilistic modeling of solar irradiance during hurri-
canes

4.1 Stochastic model formulation

We use stochastic modeling for spatiotemporal simulation of solar irradiance
during hurricanes and solve the problem with Monte Carlo simulation. The
analysis estimates irradiance during a hurricane h for each site j (out of N
sites of interest) and multiple time steps ¢. Following Equation 3, samples of
GHI realizations can be as

" =T x RO+ (8)

In the logarithmic space, €” accounts for spatiotemporal variability in GHI

during hurricanes. Under our initial assumption that hurricanes only modify
the GHI logarithmic mean, ¢" remains the same as normal-conditions e. Thus

I" =T x f(RC)+e (9)

Following the lognormality assumption for GHI during normal conditions,
I" can be estimated by transforming GHI during normal conditions to GHI
during hurricane conditions

I" = I x f(BC) (10)

This equation enables us to leverage well-defined GHI normal-conditions
data throughout the entire U.S. to find decayed GHI during hurricanes with
a clean and simple formula. We fit probability distributions for I using data
from the NREL Physical Solar Model (PSM) version 3 (Sengupta et al., 2018).
This 20-year dataset is sufficient to characterize two-hour variations of normal-
conditions GHI within a day for each month and up to 4-km spatial resolution.
Then, for each site j and time ¢, a realization of GHI during normal conditions
(I;;) is sampled and adjusted to hurricane conditions using f(R; ;, C) as

Ih

=1, x el (e300 (11)

4.2 Assessing GHI in the Southern United States for a synthetic
storm

We estimated irradiance for 839 counties (N = 839) in the United States’s
southern region for a large hurricane from its genesis to its dissipation, fo-
cusing on the counties’ centroids. We selected the hurricane from a synthetic
dataset with 5018 physically possible landfalling storms in the U.S. generated
from a statistical-deterministic tropical cyclone (TC) model (Marsooli et al.,
2019). The selected synthetic storm reaches a category of 5 before making
landfall in Florida affecting a large region, e.g., ROCI of ~500 km (Figure 6a).
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The model output the hurricane’s track, maximum sustained winds, and radii
of maximum winds in 2-hour intervals, which were coupled with irradiance
estimates using the exact synthetic hurricane’s temporal resolution. Addition-
ally, at each time step, we estimated RO based on both the radius of maximum
wind and maximum wind using the same TC wind field profile model applied
to the historical storms (Chavas et al., 2015). We estimated ROCI using the
expression ROCI = 0.18 x RO + 226 (km), which was obtained conducting
a regression on the 22 historic TC described previously. This application il-
lustrates how our proposed framework combines synthetic storm simulations,
irradiance quantification, and our proposed GHI decay model.

L1 T - o) 15 - ’
[ e J;'W == = Normal conditions (It,j)
- ® *.?J" s ! s == This paper (I{,) »
30°N 53 \ NE 1.0 Cole et al. (2020) []
s in
K ) g VYT
. » = I i
e Track o T05 l\ |‘,|
ROCI g . U] o V3
20°N S N i
100°W 90°W 80°W 70°W
[ 0.0
0.0 0.2 0.4 0.6 8 20 8 20 8 20 8 20 8 20
GHI (kW/m?) Local Time in Florida (DST UTC—-04:00)

(a) Spatial simulation

(b) Temporal simulation

Fig. 6: Stochastic simulation of GHI during a synthetic storm making landfall
in Florida. The spatial simulation shows a GHI map at 2 pm local time (DST
UTC -4), i.e., to, when the hurricane has a category of 4 and a ROCI of ~500
km. The temporal simulation shows GHI during the storm in black for the
Miami-Dade county (white star in the map). The circle marks in magenta
show the GHI in Miami-Dade for the times when the hurricane center was at
corresponding circle marks for times ¢1, to , and t3 in the map. The hurricane
takes 44 hours to go from t; to to. A vertical dotted line depicts landfall time.

A snapshot map shows the resulting GHI, ft’fj, for 2 pm local time, i.e.,
fixed ¢, when the storm crossing Florida from West to East (Figure 6a). Under
normal conditions, GHI would be high at 2 pm, similar to the levels of Texas
or Louisiana on the map, with several regions above 0.6 kW/m?. However,
our simulations show that the hurricane significantly reduces generation to
values even below 0.1 kW /m? close to the hurricane center. Note that cloud
conditions of category-4 hurricanes drastically reduce the median GHI by 70%,
i.e., f4 = —1.21, even at distant sites 0.5ROCI away from the hurricane center
(Figure 5a). The resulting spatial distribution shows a good resemblance with
the radial decay during the 2005 Hurricane Katrina with significantly lower
GHI in the areas surrounding the hurricane center (Figure la).
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The simulation of multiple snapshots allows for the analysis of the temporal
variations of GHI during hurricanes at a specific site, i.e., fixed j. In Miami-
Dade county (in the white star in Figure 6b), Florida, the hurricane decreased
GHI before making landfall. The simulation shows that the hurricane reduces
GHI, f[fj, during three days. Through an analysis of 18 previous hurricanes,
Cole et al. (2020) noted that GHI decayed to 18-60%, from clear-sky GHI dur-
ing storms, and 39%-90% and 46%-100% for 72 hours before and after storms.
The event duration in that study was determined through a subjective assess-
ment of extreme wind conditions, resulting in an estimated average duration
of 44 hours for the 18 events.

For comparison, we estimated the range of GHI decay using Cole et al.
(2020)’s ratios, assuming that the synthetic storm’s critical effects on Miami-
Dade also last 44 hours. Our results give GHI estimates within Cole et al.
(2020)’s ranges, indicating consistency with these observations, for the three
days when our model predicts hurricane affects irradiance in Miami-Dade.
Nevertheless, Cole et al. (2020)’s study suggests that the hurricane will af-
fect GHI for five days, two more days than our model. These differences are
not significant in the final estimates of GHI, though, as Cole et al. (2020)
observed that GHI reductions before and after storms can also be modest,
10% and below. These slight differences arise from the subjective definition of
the hurricane duration in Cole et al. (2020)’s study. Defining a high thresh-
old for extreme hurricane winds would reduce the hurricane duration, further
reducing the timespan of decayed GHI.

Finally, our model demonstrates how irradiance can be simulated under
hurricane conditions using state-of-the-art hurricane hazard characterizations.
Our study systematically assesses instantaneous hurricane conditions through
intensity and radii. Thus, it allows us to model higher temporal resolution than
Cole et al. (2020)’s three intervals by coupling synthetic storms and irradiance
quantification methods to assess solar irradiance during these extreme events.
While the application focuses on a single synthetic storm, our framework allows
for the assessment of the entire hurricane dataset to analyze comprehensive
risk metrics (Ceferino et al., 2021).

5 Conclusions

This paper presents a stochastic model to capture irradiance decay during
hurricanes, which has not been developed before to the authors’ knowledge.
The irradiance decay model is based on an extensive assessment of GHI under
22 landfalling storms in the North American basin, which reached a category
of at least three during their lifetime. The dataset conclusively shows that
hurricanes reduce GHI throughout their tracks. We confirmed that the dis-
tance from a site to the hurricane and its category are critical predictors of
irradiance decay. We argue that the mechanism driving the decay is the forma-
tion of optically thick clouds in the eyewall, which often become thicker during
hurricane intensification. With high moisture density and vertical depth, these
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optically thick clouds reduce direct incident radiation by light absorption and
reflection.

We fitted four functional forms that vary in complexity to represent ir-
radiance decay using a mixed-effects regression. Multiple category-dependent
features controlling the intensity and shape of decay were tested, and the best
functional form was selected using AIC to demonstrate its suitable statisti-
cal performance. ROCI is shown to be a good size metric for normalizing the
distance in the functional forms of irradiance decay. Thus, we suggest using
ROCT if hazard modeling allows for its estimation in synthetic future storms.

Next, we described the application of the GHI decay model for stochastic
simulations of solar irradiance during hurricanes. We conducted a spatiotempo-
ral simulation of GHI during a synthetic storm for the United States’s southern
region in 839 counties. Our analysis shows to be consistent with empirical ob-
servations of GHI spatial and temporal distributions from previous datasets
and studies. Our results show that solar irradiance can decrease by more than
70% in vast regions during a category-4 hurricane. Furthermore, reductions in
irradiance lasted three days for Miami-Dade in our analysis, suggesting that
power loss can last several days. These results indicate that hurricanes can
significantly affect generation even if the solar infrastructure is undamaged.
Damage to the solar infrastructure will further exacerbate the losses reducing
generation to zero even if irradiance bounces back to normal after the hurri-
cane. Thus, comprehensive generation loss assessments require the integration
with and development of panel fragility functions as in Ceferino et al. (2021)’s
study.

Our results show that generation losses driven by GHI decay can be critical,
e.g., 70%. Functional power systems are crucial to support other urban systems
during emergency response and expedite recovery. Recently, Hurricane Ida
caused nearly 1M outages in Louisiana, reducing electricity access by more
than 60% in more than ten parishes (counties), affecting the functionality of
the water system and delaying recovery Goodman et al. (2021); Prevatt et al.
(2021). While our proposed model focuses on spatiotemporal forecasting of
irradiance rather than solar generation, it is essential to assess the effect of
power disruptions during hurricanes due to the importance of irradiance decay.
Solar generation is expected to become an essential source for our future power
systems. At the same time, hurricanes are projected to be stronger in the
future climate (Knutson et al., 2020). Coupling the presented model with risk
frameworks offers opportunities to assess the effectiveness of climate mitigation
and adaptation measures to make our grid more resilient to natural hazards
while it becomes cleaner with solar energy.
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