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Abstract The unprecedented growth of solar generation adoption indicates6

that solar can become a significant source of modern and clean energy for7

our power grids in just a few decades. Despite solar’s growing criticality for8

generation, few studies have proposed models to assess solar generation dur-9

ing natural disasters. In particular, hurricanes bring environmental conditions10

that may drastically reduce solar generation even if solar infrastructure re-11

mains fully functional. Here, we present a stochastic model to quantify irra-12

diance decay during hurricanes. The model is developed through mixed-effect13

regression on a dataset that merges historical Global Horizontal Irradiance14

and Atlantic hurricane activity, exhibiting higher irradiance decays for higher15

hurricane categories and closer to the hurricane center. Accordingly, our model16

describes the irradiance decay as a function of hurricane category and the dis-17

tance the hurricane center normalized by the hurricane size. We show that18

category-dependent shapes and scales increase the statistical performance of19

the irradiance decay function based on the Akaike Information Criterion. Sim-20

ilarly, the hurricane’s radius of outermost closed isobar performs best as nor-21

malizing distance. Our study suggests that hurricanes reduce irradiance due to22

optically thick clouds that absorb and reflect light. These clouds are close to the23

hurricane center and often become thicker during intensification. To showcase24

the methodology’s applicability, we use it to generate stochastic simulations25
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of irradiance in the Southern United States during a synthetic storm from26

its genesis to its dissipation. Our results also show that generation in Miami-27

Dade, Florida, can decrease beyond 70% in large regions during a category-428

synthetic hurricane even if the solar infrastructure is undamaged. Further-29

more, generation losses can also last beyond three days, and this timeframe30

will be exacerbated if solar panels become non-functional. Our follow-up study31

integrates our proposed model with panel fragility functions to offer analysis32

capabilities for forecasting time-varying solar generation during hurricanes.33

Keywords Disaster resilience · Solar panels · Solar irradiance · Hurricanes ·34

Optically thick clouds35

1 Introduction36

Solar generation is becoming a pillar in modern power systems. Solar energy37

accounted for nearly 40% of all the new electric generating capacity installed38

on the U.S. grid in 2019, the highest share in its history (Perea et al., 2019).39

The rapid adoption of panels to harvest solar energy is transforming key power40

system features such as its economics, environmental contributions to global41

warming, and resilience (Moriarty and Honnery, 2016). These new power sys-42

tem features may be a crucial part of our future grids, and government pro-43

jections state that solar generation will be 20–30% of the global electricity by44

2050 (International Energy Agency, 2014; Shah and Booream-Phelps, 2015;45

The International Renewable Energy Agency, 2018; Solaun and Cerdá, 2019).46

Research has already highlighted and projected solar energy’s long-term envi-47

ronmental (Solangi et al., 2011; Creutzig et al., 2017) and economic (Devab-48

haktuni et al., 2013; Kannan and Vakeesan, 2016) benefits. However, there is49

significantly less understanding of the benefits of solar generation for increas-50

ing the resilience of our vulnerable existing grids.51

Hurricanes have exposed significant vulnerabilities in our power grids. For52

example, Hurricane Maria caused the total loss of power in multiple major53

cities in Puerto Rico in 2017, leaving regions without power for up to eight54

months (Wang et al., 2018; Campbell et al., 2018). Similarly, in mainland55

United States, Hurricane Sandy in 2012 left more than eight million cus-56

tomers without power across 21 states (Henry and Ramirez-Marquez, 2016).57

Solar generation can increase resilience through decentralization, a fundamen-58

tal paradigm switch where users can generate energy locally, e.g., through59

rooftop solar panels (Colson et al., 2011; Panteli and Mancarella, 2015; Wang60

et al., 2016). Only a recent investigation has proposed a framework based on61

risk analysis to quantify the resilience of modern power systems with rooftop62

solar panels, but exclusively for earthquake hazards (Patel et al., 2021; Ce-63

ferino et al., 2020). As hurricanes pose an enormous threat to urban centers64

worldwide, this paper focuses on building a cornerstone solar irradiance model65

that enables the risk analysis of modern power systems with solar generation66

during hurricanes (generally called tropical cyclones).67
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Unlike earthquakes, hurricanes bring environmental conditions that may68

drastically reduce solar generation even if solar infrastructure remains fully69

functional. Figure 1 exemplifies the effect of hurricanes on the spatial distri-70

bution of solar irradiance and thus generation. The plot shows Global Horizon-71

tal Irradiance (GHI) at 3pm UCT (9 am local time) when Hurricane Katrina72

made landfall in Louisiana as a category three event in 2005 compared to73

the GHI distribution the year after. The comparison shows that the hurricane74

reduced GHI even for sites that were hundreds of kilometers away from the75

hurricane center. This observation is consistent with recent findings on GHI76

decay during past hurricanes (Cole et al., 2020). Yet, to integrate this obser-77

vation into a risk analysis framework that assesses solar generation resilience,78

we lack a predictive model that generalizes GHI reduction under hurricanes,79

i.e., parametrizing GHI decay with key hurricane features.80

(a) 2005 (during hurricane Katrina) (b) 2006 (one year after hurricane Kat-
rina)

Fig. 1: Global horizontal irradiance decay during hurricanes with two snap-
shots at the same time but in different years. Both plots show the spatial
distribution of GHI on August 29th, at 3 pm UTC (or 10 am local time in
Lousiana). (a) The plot shows GHI in 2005 during Hurricane Katrina, indi-
cating the hurricane’s track, radius of maximum wind, radius at a wind speed
of 34 knots, and radius of the outermost closed isobar. (b) The plot shows
GHI in 2006 in the same region at the same time. Data retrieved from NREL
(Sengupta et al., 2018).

To fill this research gap, we conduct an extensive data analysis on his-81

torical GHI during the hurricane seasons from 2001 to 2017 by combining82

the hurricane Best Track Database (Landsea and Franklin, 2013) with a GHI83

database from the National Renewable Energy Laboratory (NREL) (Sengupta84

et al., 2018). The analysis identifies hurricane features that best predict the85
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intensity and extent of GHI decay. Next, we develop a probabilistic mixed-86

effects model to capture irradiance decay through different functional forms.87

These functions describe time and space-varying GHI reduction factors from88

the hurricane center to unaffected regions using critical hurricane features with89

different model complexities. We fit the different functional forms and highlight90

the best predictive model based on the Akaike Information Criterion (AIC).91

In application, we propose to first estimate solar irradiance when and where92

a hurricane occurs but for normal conditions (Sengupta et al., 2018). Then,93

we adjust the GHI estimates to the hurricane condition using our proposed94

probabilistic model for hurricane-induced GHI decay. Because the proposed95

GHI decay model is built for different times of the day and throughout the96

entire hurricane season, our integrative framework quantifies the time-series of97

solar irradiance for any real or synthetically simulated tropical cyclone since98

its landfall to dissipation.99

To showcase our proposed methodology’s broad and regional applicability100

for irradiance modeling, we use the framework to simulate solar generation101

for a synthetic storm in the United States’s southern region. We compare102

our modeling results to existing studies on GHI decay to analyze its perfor-103

mance. This application demonstrates that this methodology can successfully104

simulate spatiotemporal distributions of irradiance under varying hurricane105

conditions from genesis to dissipation. Ceferino et al. (2021) integrates the106

proposed model with fragility functions for panel failure due to high winds to107

assess time-varying solar generation during hurricanes in residential or utility-108

scale panel arrays. These integrative approaches demonstrate the importance109

of GHI decay models for assessing the resilience of power systems with solar110

infrastructure to hurricanes.111

The rest of the article begins with a statistical analysis of GHI during his-112

torical storms. Then, it proposes a probabilistic model for capturing GHI de-113

cays during hurricanes. Next, it shows the application to the Southern United114

States. Finally, the article provides a summary and conclusions of our analysis.115

2 Analysis of GHI during historical storms116

Hurricane conditions reduce solar irradiance intensity at the ground level over117

large geographical extents, limiting the ability of PV panels to harvest energy118

in communities. Figure 1 shows intense GHI decays during Hurricane Katrina119

in most regions within the radius (R34) at a wind speed of 17 ms−1 (34 knots),120

which reached 262 km. In some regions, intense decays extended to distances121

similar to the radii of the outermost closed isobar (ROCI), which reached 556122

km. While Figure 1 shows only a snapshot for one hurricane demonstrating123

irradiance decays, we consistently observe the same trend in other hurricanes.124

In contrast to cloudless conditions of clear skies, which are associated with125

maximum solar generation, hurricanes cover extensive regions with different126

cloud structures from the eyewall to the rainbands (Houze, 2010). These clouds127

absorb and scatter light, reducing direct incident radiation and generally lead-128
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ing to lower GHI and reduced solar panel generation (Xie et al., 2016, 2019).129

Clouds that have high moisture density and vertical depth, i.e. optically thick130

clouds, can drastically reduce direct incident radiation (Nouri et al., 2019). Ac-131

cordingly, hurricanes can significantly and rapidly lessen generation through132

optically thick cloud structures such as large cumulonimbus. However, hurri-133

canes can also reduce generation significantly even with less optically thick134

cloud structures like stratiform clouds because they can cover large geograph-135

ical extents.136

To systematically investigate the effect of hurricanes on irradiance, we cou-137

pled a large dataset of GHI with historical hurricane data. We used the Physi-138

cal Solar Model (PSM) version 3 from the National Solar Radiation Database139

(NSRDB) published by the National Renewable Energy Laboratory (NREL) to140

extract GHI with high spatial and temporal resolution (Sengupta et al., 2018).141

The PSM combines satellite-derived atmospheric and land surface properties142

with radiative transfer models to solve solar radiation through the Earth’s143

atmosphere. The PSM provides solar irradiance at a 4-km horizontal resolu-144

tion for 30-minute intervals from 1998 to 2017. The PSM enable us to observe145

the GHI behavior at different timesnaps for different hurricanes since 1998 for146

multiple sites and under various hurricane conditions.147

2.1 Historical hurricane dataset148

We compiled hurricane data from the revised Atlantic hurricane database149

(HURDAT2) (Landsea and Franklin, 2013). The data contain multiple hur-150

ricane features and span several decades; however, key spatial information151

including hurricanes’ radii is only available since 1998. The hurricane data152

include ROCI, the radius of maximum wind (RMW), radius at wind speeds153

of 17 ms−1 (R34, 34 knots) and 33 ms−1 (R64, 64 knots), hurricane category,154

and maximum wind speeds. The hurricane data have a 3-hour temporal reso-155

lution, which is coarser than the PSM temporal resolution; thus, we reduced156

the granularity of the GHI dataset from 30 minutes to 3 hours and matched157

the hurricane recording times. After performing a preliminary assessment to158

estimate the geographical extent impacted by the hurricane, we collected GHI159

records from the 4×4-km spatial grid within two times ROCI from the hurri-160

cane center, which reached several hundreds of kilometers for massive storms.161

We analyzed 22 hurricanes whose geneses were in the North American162

basin, made landfall on the Atlantic coasts of Central and North America163

and the Caribbean, and whose lifetime maximum intensity reached a category164

of at least three. The intensity threshold filtered out the disproportionately165

large number of storms that did not reach high intensities. While these events’166

maximum intensities were high, we tracked them from landfall to dissipation,167

covering the full range of intensities from high categories until they weakened168

into tropical depressions. 22 events had tropical storm winds in their lifespan,169

and nine reached a category of 5 (Figure S1).170
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The 22 hurricanes cover an extensive geographical region of our assessment171

(Figure 2). These hurricanes have a wide variety of conditions, with maximum172

wind speeds up to 80 ms−1 (category 5), ROCI from 200 km to above 800173

km, RMW up to 250 km, and radii at circulating wind speeds of 0 (R0) from174

200 km to above 2000 km (Figure S1). HURDAT2 omitted R0, the shortest175

distance where hurricane circulating wind effects dissipate entirely. 1 Thus, we176

estimated R0 with a wind profile model that captures the radial structure of177

tropical cyclones (Chavas et al., 2015).178

Fig. 2: List of hurricanes and their tracks included in GHI decay assessment
in the North American basin

2.2 Key features for predicting GHI during hurricanes179

To characterize GHI decay under different hurricane conditions, we define180

Ih as GHI during a hurricane. Previous research shows that GHI has strong181

temporal and spatial variability during normal conditions, i.e., no hurricane182

(Lehr et al., 2017; Patel et al., 2018). We account for such variability and183

characterize GHI deviations from normal conditions in the logarithm space as184

δh = ln

(
Ih

Ī

)
(1)

where Ī represents the median of the GHI under normal conditions at the same185

location and at the same time of the year as Ih. Since multiplicative factors186

capture clouds’ effects on solar irradiance, i.e., Beer-Bouguer-Lambert law of187

extinction (Liou, 2002; Xie et al., 2019), we assume δh, in the logarithmic188

1 Notice that there is environmental wind at R0.
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(a) Distance to the center (b) Category (TS: Tropical storm)

Fig. 3: Scatter plots showing relationship between GHI decay and key hurricane

features. δ̂h during different hurricanes have different color. For each hurricane,

the plots show a running average for δ̂h using solid lines. The plots also show
linear regressions in dotted lines and their corresponding R2 values when the
multi-hurricane data is lumped together. For visual clarity, there are only 50k
randomly sampled data points in each plot.

space, can capture hurricane effects on GHI. We used 20 years of GHI data to189

estimate It,j for all the geographical extent covered by the hurricanes using a190

3-hour temporal resolution. We used 20 years of GHI data to estimate Ī for191

all the geographical extent covered by the hurricanes using a 3-hour temporal192

resolution. We assume that at each time of the day, GHI has approximately193

the same distribution for a given month. As a result, we used approximately194

600 instead of 20 data points to estimate the GHI medians. For example, to195

estimate GHI at 10 a.m. in June, we lumped the data of its days from 1998 to196

2017. We observe that for sites farther from the center of the hurricane, the197

median of δh approaches zero, implying that the site is outside the area where198

hurricanes reduce GHI, i.e., Ī = Ih.199

We analyzed GHI during the 22 hurricanes to estimate the samples δ̂h and200

understand GHI behavior during different hurricane conditions. Because our201

focus was only on times of the day when communities can generate energy, we202

only included in our analysis daytime data where and when Ī > 10 W-h/m2,203

which finally resulted in ∼28M data points. Figure 3 shows δ̂h as a function204

of distance from the site to the hurricane’s center and category.205

Figure 3a shows the relationship between distances to the hurricane center206

d and δ̂h. On average, δ̂h has reduced values for small d and grows steadily up207

to a plateau close to 0 for d values larger than 600 km. We fitted a line with208

d below 600 km to account mainly for the sites with significant irradiance209

decays and found an R2 of 0.2 (correlation ρ = 0.45). We observe that the210

fitted line is not able to represent the transition between small distances to211
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the plateau for large d where hurricanes have little effect. The observed tran-212

sition is consistent with the spatial distribution of cloud optical thicknesses213

in hurricanes. Hurricane eyewalls, which surround the hurricane eye typically214

at 10-50 km from the center (Weatherford and Gray, 1988), are composed of215

optically thick clouds as a result of high moisture densities and large verti-216

cal depths (Kokhanovsky and von Hoyningen-Huene, 2004; John et al., 2020),217

thus significantly reducing direct incident radiation through high absorption218

and reflection. Outside the eyewall, clouds’ optical thicknesses are high only in219

rainbands and significantly lower in between them. Outside the regions with220

rainbands, a regular combination of clear-sky and partially cloudy conditions221

arise, bringing GHI back to normal levels (Kokhanovsky and von Hoyningen-222

Huene, 2004; Luo et al., 2008; John et al., 2020). Figure 3a shows that this223

occurs beyond 600 km from the hurricane center.224

Additionally, we find that high hurricane intensity exacerbates GHI decay.225

To focus on sites with the largest hurricane decay and cover areas within hur-226

ricane eyewalls, we analyzed sites located at 100km or less from the hurricane227

center. Figure 3b shows a decaying trend between hurricane category C and228

δ̂h values, indicating that more intense hurricanes induce larger reductions in229

solar irradiance. A similar trend is observed between δ̂h and maximum winds230

V (Figure S2a) because V has high colinearity with C as the latter variable231

is an increasing step function of V . Thus, we see that the linear fit performs232

very similarly with R2 of nearly 0.11 (ρ = -0.34) in both cases. Lower irra-233

diance levels for higher hurricane categories are also consistent with recent234

evidence on satellite-derived cloud microphysical features during hurricanes235

(John et al., 2020). There are larger regions with higher cloud optical thick-236

nesses associated with large and thick cloud structures such as cumulonimbus237

during hurricane maturity and intensification rather than during hurricane238

development or dissipation.239

To investigate hurricane size effect, we evaluated the relationship between240

different hurricane size metrics and both the intensity and geographical extent241

of GHI decay. To study whether GHI decays are larger for bigger hurricanes, we242

analyzed the relationship between δ̂h and ROCI, RMW, and R0, respectively.243

We observe that hurricane size does not intensify GHI decay as linear fits244

between the size metrics and δ̂h have low R2 values of 0, 0.05, and 0.02,245

respectively (Figure S2).246

To study how hurricane size correlates with the geographical extent of GHI247

decay, we analyzed the relationship between GHI and distance to the storm’s248

center normalized by the hurricane size. We normalized d by four hurricane249

size metrics, ROCI, RMW, R0, and R34, where R34 is the radius at which250

the maximum wind speed is 34 knots, the minimum speed for the event to251

be categorized as a tropical storm. We split the data by hurricane category252

because C showed predictive power for hurricane decay intensification (Figure253

3).254

When the distance is normalized by ROCI and R34, we generally observe255

better fitting performance than for the absolute distance, with improved per-256
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formance for higher hurricane categories (Figure 4 and S5). We estimated that257

a linear fit between R = d/ROCI and δ̂h has an R2 of 0.38 for category 5,258

almost twice the value found for absolute distance for all storms (Figure 3a).259

For R = d/R34, R2 values show comparably good fitting performance to using260

ROCI as normalizing distance (Table S1). The slopes of linear fits are steeper261

for higher categories, further demonstrating that the intensity of the hurricane262

intensifies GHI decay. As discussed earlier, this feature of GHI decay is driven263

by optically thicker cloud structures occurring during hurricane maturity and264

intensification. Distances normalized by RMW and R0 give lower performance,265

which, however, still illustrate how the effect of the hurricane on irradiance266

dissipates for large enough values of d (Figure S3 and S4).267

The analysis also shows that the regions with GHI decay easily extend268

beyond RMW and R34 as they only define hurricanes’ inner-core circulation269

(Table S1). In contrast, the regions with significant GHI decay do not reach270

R0 but are close to being bounded by ROCI. Thus, these observation suggests271

that the outer structure and radial extent of circulation bounded by ROCI is272

coupled with the cloud structures absorbing and reflecting light during hurri-273

canes.274

3 Developing GHI decay model through mixed-effects re-275

gression276

To leverage well-established mixed-effects regression models (Pinheiro and277

Bates, 2006), we assume that ln(Ih) is Gaussian, i.e., Ih is lognormaly dis-278

tributed, during daytime, when generation is not negligible, i.e., Ih > 0. Thus279

ln(Ih) = ln
(
Ih
)

+ εh (2)

where Ih is the GHI median, and εh is a Gaussian random variable with280

zero mean that accounts for the variability of GHI during hurricanes in the281

logarithmic space. We also assume that hurricanes reduce median GHI from282

normal conditions to Ih such that in the logarithmic space283

ln(Ih) = ln(Ī) + f(R,C) + εh (3)

where Ī is the median GHI during normal conditions, and f(R,C) is a re-284

duction factor that is function of the normalized distance to the hurricane’s285

center R and the hurricane category C. f uses both R and C because they286

demonstrated to have good predictive power for GHI decay in the previous287

section. Using the expression in Equation 1, then288

δh = f(R,C) + εh (4)

Using Equation 4 and the samples of δh from our dataset, we conducted a289

mixed-effect regression analysis to test multiple functional forms f(R,C) and290

formulate a predictive model for irradiance decay during hurricanes.291
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(a) Tropical storm (b) Category 1

(c) Category 2 (d) Category 3

(e) Category 4 (f) Category 5

Fig. 4: Scatter plot showing relationship between GHI decay and distance
normalized by ROCI for multiple categories. For each hurricane, the plots

show a running mean for δ̂h using solid lines. Linear trends are fitted for R
between 0 and 1.2 when the multi-hurricane data is lumped together. There
are 10k randomly sampled data points in each plot.

3.1 Functional forms for GHI reduction factors292

We tested four different functional forms for f(R,C). These functions are293

shown in Equation 5. All of them include a logarithmic growth as a function of294

R followed by a plateau when f(R,C) reaches 0. The functional forms include295

a short-distance correction factor b and a scale factor c that further calibrate296
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the influence of R on the irradiance decay. The short-distance correction factor297

is added to the value of R so that the logarithmic function approaches the298

observed values rather than −∞ when the site is close to the center of the299

hurricane, i.e., R → 0. The scale factor further normalizes R to define where300

the plateau is reached.301

While all of the functional forms include a slope that varies with the hur-302

ricane category (a1C + a2), they vary in their complexity, differing in the303

representation of the short-distance correction factor b and the scale factor304

c. In the functional form f1 in Equation 5a, b and c remain constant for all305

hurricane categories. In the functional form f2 in Equation 5b, b varies with306

category but c remains constant, and in the functional form f3 in Equation307

5c, b is constant and c varies with hurricane category. In the functional form308

f4 in Equation 5d, both b and c vary with hurricane category.309

f1(R,C) =
{

(a2C + a1)× ln
(
R+b
c

)
if R+ b < c

0 if R+ b ≥ c (5a)

f2(R,C) =
{

(a2C + a1)× ln
(R+(b2C+b1)

c

)
if R+ (b2C + b1) < c

0 if R+ (b2C + b1) ≥ c (5b)

f3(R,C) =
{ (a2C + a1)× ln

(
R+b

c2C+c1

)
if R+ b < c2C + c1

0 if R+ b ≥ c2C + c1
(5c)

f4(R,C) =
{

(a2C + a1)× ln
(R+(b2C+b1)

c2C+c1

)
if R+ (b2C + b1) < c2C + c1

0 if R+ (b2C + b1) ≥ c2C + c1
(5d)

3.2 Mixed-effects model formulation for GHI decay310

We used a mixed-effects model to capture the main observed features of ir-311

radiance decay during hurricanes. Unlike other methods such as fixed-effects312

model, this model allows us to explicitly decompose the random variable εh313

in Equation 4 into two independent factors (Pinheiro and Bates, 2006), one314

factor accounting for the variability between different time steps represented315

by the random variable ηh and another accounting for the spatial variability316

at a fixed time represented by the random variable εh.317

δh = f(R,C) + ηh + εh (6)

Through this explicit decomposition, we properly represent the high GHI318

temporal and spatial variability structrure as extensively discussed in previ-319

ous research (Lehr et al., 2017; Patel et al., 2018; Mihailović et al., 2021). The320

mixed-effects regression has both fixed and random components (Pinheiro and321

Bates, 2006). With the fixed effect component, we capture how hurricanes de-322

crease the (logarithm of the) median GHI with the factor f(R,C) (Equation323

5). With the random component of the model, we capture spatial uncertainty324

at a time step with a within-time random effect εh and uncertainty across time325
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steps with a between-time step random effect ηh. The model assumes that ηh326

and εh are independent. Similar techniques and independence assumptions327

have been used to model natural disaster intensities with radiating decay. For328

example, mixed-effects models and similar independence assumptions are ex-329

tensively used to assess ground shaking that propagates from an earthquake330

epicenter to a large geographical extent (Campbell and Bozorgnia, 2014; Abra-331

hamson et al., 2016).332

3.3 Fitting the GHI decay model333

We lumped all hurricane data to fit the parameters of f(R,C). Notice that334

for a fixed time t, an observation of δh at site j (δht,j) is the sum of ηht , εht,j335

and f(Rt,j , Ct). As ηht only captures temporal uncertainty, at a fixed time t,336

it takes the same value for all sites. εht,j captures spatial uncertainty, thus at337

fixed time t, it varies for each specific site j. Similarly, while Ct varies at each338

time step t, Rt,j also varies for each site j. Thus, for each observation,339

δht,j = f(Rt,j , Ct) + ηht + εht,j (7)

As described previously, we estimated δht,j for around ∼28 M observations340

corresponding to multiple time steps and sites of GHI recordings during the341

22 hurricanes in the NREL dataset. We preprocessed the data by removing342

sites at long distances where hurricanes did not have significant effect on GHI,343

i.e., d/ROCI> 2, d/RMW> 20, d/R0> 1, and d/R34> 4 (Table S1). We then344

balanced the observations across the hurricane categories and distances from345

the center to the sites. There are more data samples for smaller hurricane cat-346

egories and at larger distances from the center. To avoid that these samples347

heavily control the regression, we randomly selected the same number of sam-348

ples for different categories and four equally spaced intervals of R, resulting in349

∼ 0.75 M data points for the analysis.350

We conducted mixed-effect regressions for all 16 combinations of functional351

forms f(R,C) and normalizing radii. We estimated the model parameters using352

maximum likelihood estimation (MLE) for the non-linear mixed-effects regres-353

sion with a Matlab package. The package uses an expectation-maximization354

algorithm to solve for the parameters of the fixed component in Equation 5355

while accounting for the unobserved component of the regression in Equation 7356

(Lindstrom and Bates, 1990). We fitted the parameters for the four functions357

considering the four previously analyzed normalization radii, ROCI, RMW,358

R0, R34.359

We report all fitted parameters in Table 1 and show the fitted functional360

forms for f4 in Figure 5. Regardless of the normalizing radii, the fitted func-361

tions show that GHI decays are the strongest closer to the hurricane center362

and higher hurricane categories. These observations are consistent with the363

presence of optically thick cloud structures close to the hurricane center and364

during hurricane maturity and intensification, as noted previously.365
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(a) ROCI (b) RMW

(c) R0 (d) R34

Fig. 5: Fitted functional form f4 in Equation 5d for distances normalized by
the four different normalizing radii.

The regressions also show that the decay extends up to sites well beyond366

RMW and R34, reaching sites ∼ 15RMW and ∼ 2ROCI away from the hur-367

ricane center. The decay is also well within R0, reaching sites only up to368

∼ 0.35 − 0.75R0. The decay extents are most consistent with ROCI as they369

are bounded by ∼1.3 times its size from the hurricane center (Figure 5a),370

confirming the observation that the cloud structures and radial extent of hur-371

ricane circulation defined by ROCI are strongly coupled with the hurricane372

mechanism for high light absorption and reflection. Because this threshold (∼373

1.3) does not change significantly for different categories, hurricanes with low374

categories can cover more extensive regions with clouds that reduce GHI than375

hurricanes with high categories as long as they have larger ROCI. However,376

the level of decay will be smaller for lower categories.377

3.4 Statistical Performance378

We compared the statistical performance of the 16 regressions in Figure 5379

using the AIC (Akaike, 1974). The AIC assesses the trade-off between the380

model goodness of fit and its simplicity. The AIC is estimated as −2l̂ − 2K,381
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Table 1: Fitted parameters for the four functional forms of f in Equation 5
using different normalizing radii.

Model Norm. Radius
Parameters

a1 a2 b1 b2 c1 c2

f1

ROCI 1.38 2.37 ×10−1 6.43 ×10−1 1.95
RMW 7.78 ×10−1 8.85 ×10−2 1.27 1.34 ×102

R0 6.42 ×10−1 1.47 ×10−1 5.45 ×10−2 1.04
R34 1.55 2.45 ×10−1 1.30 3.43

f2

ROCI 1.37 2.46×10−1 6.43 ×10−1 3.01 ×10−3 1.95
RMW 7.27×10−1 1.08×10−1 9.43×10−1 1.29×10−1 9.74×101

R0 1.63 7.50×10−1 4.66×10−1 4.62×10−2 1.05
R34 1.47 3.47×10−1 1.33 5.28×10−2 3.60

f3

ROCI 1.34 2.53 ×10−1 6.47 ×10−1 2.01 -1.90×10−2

RMW 8.52×10−1 9.73×10−2 1.69 1.62×101 5.89×10−1

R0 7.61×10−1 2.11×10−1 1.06×10−1 9.01×10−1 -8.59×10−2

R34 1.40 2.90×10−1 1.27 3.64 -7.70×10−2

f4

ROCI 1.97 9.65 ×10−2 1.15 -1.26×10−1 2.48 -1.39×10−1

RMW 7.74×10−1 1.41×10−1 1.02 2.77×10−1 1.57×101 7.98×10−1

R0 1.43 8.66×10−2 3.99×10−1 -6.36×10−2 1.16 -1.44×10−1

R34 2.57 4.96×10−2 2.99 -3.84×10−1 5.31 -4.59×10−1

where l̂ is the logarithm of the marginal likelihood and K is the “degrees of382

freedom correction” equal to the number of fixed parameters plus the number383

of mean and variance parameters of the random component. K represents a384

penalty for an increased risk of overfitting with higher model complexity, i.e.,385

with more parameters.386

The results show that the model that performs the best (with the lowest387

AIC score) is f4 with R = d/ROCI (Table S2). In fact, for all normalizing radii,388

f4, which takes six parameters, performs better than f3 and f2, which take389

5 parameters, and than f1, which takes 4 parameters. Moreover, f3 performs390

better than f2 in all cases, suggesting that having a category-dependent scale391

factor c2 is more effective than having a category-dependent short-distance392

correction factor b2. f1 performs worse than f3, but in a few cases, it performs393

better than f2.394

ROCI and R34, which are the radii with the first and second-best AIC395

performance (Figure S6), exhibit a similar shape where hurricanes with lower396

categories take slightly longer distances to reach normal levels of GHI, i.e., f4 =397

0. R0, the radius with third-best performance, shows much longer distances to398

reach the plateau for hurricanes with smaller categories. In contrast, RMW,399

which has the lowest performance, exhibits smaller extents with GHI decay400

for hurricanes with lower categories. Based on these AIC scores, we suggest401

using f4 with R = d/ROCI to track GHI decay during hurricanes.402
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4 Probabilistic modeling of solar irradiance during hurri-403

canes404

4.1 Stochastic model formulation405

We use stochastic modeling for spatiotemporal simulation of solar irradiance406

during hurricanes and solve the problem with Monte Carlo simulation. The407

analysis estimates irradiance during a hurricane h for each site j (out of N408

sites of interest) and multiple time steps t. Following Equation 3, samples of409

GHI realizations can be as410

Ih = Ī × ef(R,C)+εh (8)

In the logarithmic space, εh accounts for spatiotemporal variability in GHI411

during hurricanes. Under our initial assumption that hurricanes only modify412

the GHI logarithmic mean, εh remains the same as normal-conditions ε. Thus413

Ih = Ī × ef(R,C)+ε (9)

Following the lognormality assumption for GHI during normal conditions,414

Ih can be estimated by transforming GHI during normal conditions to GHI415

during hurricane conditions416

Ih = I × ef(R,C) (10)

This equation enables us to leverage well-defined GHI normal-conditions417

data throughout the entire U.S. to find decayed GHI during hurricanes with418

a clean and simple formula. We fit probability distributions for I using data419

from the NREL Physical Solar Model (PSM) version 3 (Sengupta et al., 2018).420

This 20-year dataset is sufficient to characterize two-hour variations of normal-421

conditions GHI within a day for each month and up to 4-km spatial resolution.422

Then, for each site j and time t, a realization of GHI during normal conditions423

(Ĩt,j) is sampled and adjusted to hurricane conditions using f(Rt,j , Ct) as424

Ĩht,j = Ĩt,j × ef(Rt,j ,Ct) (11)

4.2 Assessing GHI in the Southern United States for a synthetic425

storm426

We estimated irradiance for 839 counties (N = 839) in the United States’s427

southern region for a large hurricane from its genesis to its dissipation, fo-428

cusing on the counties’ centroids. We selected the hurricane from a synthetic429

dataset with 5018 physically possible landfalling storms in the U.S. generated430

from a statistical-deterministic tropical cyclone (TC) model (Marsooli et al.,431

2019). The selected synthetic storm reaches a category of 5 before making432

landfall in Florida affecting a large region, e.g., ROCI of ∼500 km (Figure 6a).433
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The model output the hurricane’s track, maximum sustained winds, and radii434

of maximum winds in 2-hour intervals, which were coupled with irradiance435

estimates using the exact synthetic hurricane’s temporal resolution. Addition-436

ally, at each time step, we estimated R0 based on both the radius of maximum437

wind and maximum wind using the same TC wind field profile model applied438

to the historical storms (Chavas et al., 2015). We estimated ROCI using the439

expression ROCI = 0.18 × R0 + 226 (km), which was obtained conducting440

a regression on the 22 historic TC described previously. This application il-441

lustrates how our proposed framework combines synthetic storm simulations,442

irradiance quantification, and our proposed GHI decay model.443

(a) Spatial simulation (b) Temporal simulation

Fig. 6: Stochastic simulation of GHI during a synthetic storm making landfall
in Florida. The spatial simulation shows a GHI map at 2 pm local time (DST
UTC -4), i.e., t2, when the hurricane has a category of 4 and a ROCI of ∼500
km. The temporal simulation shows GHI during the storm in black for the
Miami-Dade county (white star in the map). The circle marks in magenta
show the GHI in Miami-Dade for the times when the hurricane center was at
corresponding circle marks for times t1, t2 , and t3 in the map. The hurricane
takes 44 hours to go from t1 to t2. A vertical dotted line depicts landfall time.

A snapshot map shows the resulting GHI, Ĩht,j , for 2 pm local time, i.e.,444

fixed t, when the storm crossing Florida from West to East (Figure 6a). Under445

normal conditions, GHI would be high at 2 pm, similar to the levels of Texas446

or Louisiana on the map, with several regions above 0.6 kW/m2. However,447

our simulations show that the hurricane significantly reduces generation to448

values even below 0.1 kW/m2 close to the hurricane center. Note that cloud449

conditions of category-4 hurricanes drastically reduce the median GHI by 70%,450

i.e., f4 = −1.21, even at distant sites 0.5ROCI away from the hurricane center451

(Figure 5a). The resulting spatial distribution shows a good resemblance with452

the radial decay during the 2005 Hurricane Katrina with significantly lower453

GHI in the areas surrounding the hurricane center (Figure 1a).454
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The simulation of multiple snapshots allows for the analysis of the temporal455

variations of GHI during hurricanes at a specific site, i.e., fixed j. In Miami-456

Dade county (in the white star in Figure 6b), Florida, the hurricane decreased457

GHI before making landfall. The simulation shows that the hurricane reduces458

GHI, Ĩht,j , during three days. Through an analysis of 18 previous hurricanes,459

Cole et al. (2020) noted that GHI decayed to 18-60%, from clear-sky GHI dur-460

ing storms, and 39%-90% and 46%-100% for 72 hours before and after storms.461

The event duration in that study was determined through a subjective assess-462

ment of extreme wind conditions, resulting in an estimated average duration463

of 44 hours for the 18 events.464

For comparison, we estimated the range of GHI decay using Cole et al.465

(2020)’s ratios, assuming that the synthetic storm’s critical effects on Miami-466

Dade also last 44 hours. Our results give GHI estimates within Cole et al.467

(2020)’s ranges, indicating consistency with these observations, for the three468

days when our model predicts hurricane affects irradiance in Miami-Dade.469

Nevertheless, Cole et al. (2020)’s study suggests that the hurricane will af-470

fect GHI for five days, two more days than our model. These differences are471

not significant in the final estimates of GHI, though, as Cole et al. (2020)472

observed that GHI reductions before and after storms can also be modest,473

10% and below. These slight differences arise from the subjective definition of474

the hurricane duration in Cole et al. (2020)’s study. Defining a high thresh-475

old for extreme hurricane winds would reduce the hurricane duration, further476

reducing the timespan of decayed GHI.477

Finally, our model demonstrates how irradiance can be simulated under478

hurricane conditions using state-of-the-art hurricane hazard characterizations.479

Our study systematically assesses instantaneous hurricane conditions through480

intensity and radii. Thus, it allows us to model higher temporal resolution than481

Cole et al. (2020)’s three intervals by coupling synthetic storms and irradiance482

quantification methods to assess solar irradiance during these extreme events.483

While the application focuses on a single synthetic storm, our framework allows484

for the assessment of the entire hurricane dataset to analyze comprehensive485

risk metrics (Ceferino et al., 2021).486

5 Conclusions487

This paper presents a stochastic model to capture irradiance decay during488

hurricanes, which has not been developed before to the authors’ knowledge.489

The irradiance decay model is based on an extensive assessment of GHI under490

22 landfalling storms in the North American basin, which reached a category491

of at least three during their lifetime. The dataset conclusively shows that492

hurricanes reduce GHI throughout their tracks. We confirmed that the dis-493

tance from a site to the hurricane and its category are critical predictors of494

irradiance decay. We argue that the mechanism driving the decay is the forma-495

tion of optically thick clouds in the eyewall, which often become thicker during496

hurricane intensification. With high moisture density and vertical depth, these497
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optically thick clouds reduce direct incident radiation by light absorption and498

reflection.499

We fitted four functional forms that vary in complexity to represent ir-500

radiance decay using a mixed-effects regression. Multiple category-dependent501

features controlling the intensity and shape of decay were tested, and the best502

functional form was selected using AIC to demonstrate its suitable statisti-503

cal performance. ROCI is shown to be a good size metric for normalizing the504

distance in the functional forms of irradiance decay. Thus, we suggest using505

ROCI if hazard modeling allows for its estimation in synthetic future storms.506

Next, we described the application of the GHI decay model for stochastic507

simulations of solar irradiance during hurricanes. We conducted a spatiotempo-508

ral simulation of GHI during a synthetic storm for the United States’s southern509

region in 839 counties. Our analysis shows to be consistent with empirical ob-510

servations of GHI spatial and temporal distributions from previous datasets511

and studies. Our results show that solar irradiance can decrease by more than512

70% in vast regions during a category-4 hurricane. Furthermore, reductions in513

irradiance lasted three days for Miami-Dade in our analysis, suggesting that514

power loss can last several days. These results indicate that hurricanes can515

significantly affect generation even if the solar infrastructure is undamaged.516

Damage to the solar infrastructure will further exacerbate the losses reducing517

generation to zero even if irradiance bounces back to normal after the hurri-518

cane. Thus, comprehensive generation loss assessments require the integration519

with and development of panel fragility functions as in Ceferino et al. (2021)’s520

study.521

Our results show that generation losses driven by GHI decay can be critical,522

e.g., 70%. Functional power systems are crucial to support other urban systems523

during emergency response and expedite recovery. Recently, Hurricane Ida524

caused nearly 1M outages in Louisiana, reducing electricity access by more525

than 60% in more than ten parishes (counties), affecting the functionality of526

the water system and delaying recovery Goodman et al. (2021); Prevatt et al.527

(2021). While our proposed model focuses on spatiotemporal forecasting of528

irradiance rather than solar generation, it is essential to assess the effect of529

power disruptions during hurricanes due to the importance of irradiance decay.530

Solar generation is expected to become an essential source for our future power531

systems. At the same time, hurricanes are projected to be stronger in the532

future climate (Knutson et al., 2020). Coupling the presented model with risk533

frameworks offers opportunities to assess the effectiveness of climate mitigation534

and adaptation measures to make our grid more resilient to natural hazards535

while it becomes cleaner with solar energy.536
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