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Abstract

We propose an approximation to the forward-filter-backward-sampler (FFBS) algo-
rithm for large-scale spatio-temporal smoothing. FFBS is commonly used in Bayesian
statistics when working with linear Gaussian state-space models, but it requires in-
verting covariance matrices which have the size of the latent state vector. The com-
putational burden associated with this operation effectively prohibits its applications
in high-dimensional settings. We propose a scalable spatio-temporal FFBS approach
based on the hierarchical Vecchia approximation of Gaussian processes, which has been
previously successfully used in spatial statistics. On simulated and real data, our ap-
proach outperformed a low-rank FFBS approximation.

Keywords: state-space model, spatio-temporal statistics, data assimilation, Vecchia approxima-

tion, smoothing

1 Introduction

Developments in data collection and storage technologies over the past decade have led
to an unprecedented influx of data across scientific disciplines. Environmental sciences in
particular have profited immensely from these advances. For example, frequent and high-
resolution measurements of carbon dioxide acquired by the Orbiting Carbon Observatory
(Sun et al., 2017) helped to increase the understanding of CO2 sinks and sources. Massive
remotely-sensed data was demonstrated to be of help in determining the concentration of
volcanic ash in the atmosphere (Bugliaro et al., 2021), which is crucial for air traffic control
and weather forecasting. Not all big data sets are collected using satellites however. Recently,
Argo, a large system of autonomous floats, was deployed worldwide to collect data used in
studying ocean temperature changes and the water cycle (Jayne et al., 2017).

Data sets of this kind are often spatio-temporal in nature and typically measure some
scientifically interesting phenomenon. This leads the researchers to analyze them using a
“mechanistic” approach. Within this paradigm,changes in time are represented by a (possibly
discretized) differential equation, while the residual variation in space is captured using a
purely statistical model (e.g., Wikle et al., 2019). Using this framework, data can be used to
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estimate the true value of the variable of interest, filling in the gaps where the observations are
missing or inaccurate due to measurement errors, as well as to infer the unknown parameters.
The first of these objectives is traditionally accomplished using the Kalman filter (Kalman,
1960) and smoother (also known as the Rauch–Tung–Striebel smoother, Rauch et al., 1965),
while parameter inference is possible using a Gibbs sampler, often based on the forward-filter-
backward-sampler (FFBS; Durbin and Koopman, 2002; Frühwirth-Schnatter, 1994; Carter
and Kohn, 1994).

A major challenge in using these existing techniques with big environmental data is
their poor scalability as the number of observations or grid points grows. Specifically, the
computational cost of the canonical versions of filtering and smoothing methods is cubic
in the number of observations at each time point. Countless approximations have been
developed to address these problems, many of them being focused on filtering inference (see,
e.g., Jurek and Katzfuss, 2022, and the citations therein). A particularly promising class
of methods, which have recently gained prominence, are algorithms using an ensemble to
represent the distribution of the state vector (Evensen et al., 2022; Grudzien and Bocquet,
2021), most notably the Ensemble Kalman Filter (e.g. Evensen, 1994; Katzfuss et al., 2020).
Variational approaches led to the development of the so-called 4D-VAR algorithm (see e.g.
Evensen et al., 2022, for a comprehensive introduction), which has found mission-critical
operational applications (see e.g. ECMWF, 2021).

Relatively little attention has been devoted to smoothing. Among the existing works,
Katzfuss and Cressie (2012) propose a method based on a low-rank approximation of the
latent Gaussian random field, which scales well but may not be able to reproduce fine-scale
features. Stroud et al. (2010) suffers from somewhat of the opposite problem, because it relies
on tapering the sample covariance matrix and thus may struggle with smooth covariance
functions (see numerical experiments in Jurek and Katzfuss, 2021). Sigrist et al. (2015)
propose an approach based on spectral methods which are limited to observations on a
regular grid. Another technique for approximate smoothing inference uses particle-based
methods (Carvalho et al., 2010), but such methods cannot be used when the dimension
of the latent space exceeds several hundred because of particle collapse. A method that
is perhaps the closest to our in spirit is based on the ensemble Kalman smoother, which
is reviewed and extended in Katzfuss et al. (2020). However, it also requires additional
approximations such as tapering, and the number of distinct samples that it produces is
always equal to the size of the ensemble, which can be inefficient.

We propose a scalable algorithm for generating samples from the smoothing distribution,
directly approximating the FFBS algorithm, based on the hierarchical Vecchia approxima-
tion that has previously been used for spatio-temporal filtering (Jurek and Katzfuss, 2022).
We summarize the previous results developed in the context of filtering and extend them
to approximate smoothing inference. This is not straightforward because matrix approxi-
mations used in previous work cannot be easily applied in the context of smoothing. We
conducted numerical experiments showing that our sampler outperformed a low-rank ap-
proximation and showing how our method can be used to estimate unknown parameters
using a Gibbs sampler. We also applied our method to a real data set and showed that it
performed better than a competing approach. The code and data needed to reproduce our
results can be found at https://github.com/marcinjurek/scalable-FFBS.

This paper is organized as follows. Section 2 introduces notation and briefly describes the
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linear Gaussian state space model and the canonical methods used for filtering, smoothing
and sampling. Section 3 presents sparse Cholesky factorization and the hierarchical Vec-
chia approximation. In Section 4 we propose approximations to the canonical methods from
Section 2 and conclude with a scalable version of the FFBS algorithm. Section 5 contains
numerical experiments which demonstrate excellent performance of our approximate meth-
ods. Section 6 discusses an application to a real data set. Section 7 concludes and proposes
directions for future research.

2 Spatio-temporal state-space model

Consider a Gaussian process x(·) defined over a domain [1, 2, . . . , T ] × D ⊂ R2. Let S =

{s1, s2, . . . , snG} be a grid over D and let xt =
[
x(t, s1), x(t, s2), . . . , x(t, snG)

]>
. Note that

the grid is taken to be the same at all time points, which is common in the case of big
environmental data sets, for example those collected using remote sensing. We assume
that the dynamics of the process at the subsequent time points can be expressed as an
autoregressive model:

xt = Etxt−1 + wt, wt ∼ NnG(0,Qt), (1)

where the evolution matrix Et is assumed to be sparse. We do not make any special addi-
tional assumptions regarding the covariance matrix Qt. The initial state follows a normal
distribution: x0 ∼ NnG(µ0|0,Σ0|0).

We consider a situation in which at each time point we are given yt, an nt-dimensional
vector of data observed at time t = 1, 2, . . . , T , related to the true process through a linear
function:

yt = Htxt + vt, vt ∼ Nnt(0,Rt), (2)

We assume that observation error covariance matrix Rt is diagonal. (This can be extended
to block-diagonal Rt with small blocks.) We use y1:t := (y>1 , . . . ,y

>
t )> to denote a vector

of observations from time 1 to time t and we define x1:t analogously. At each time t, the
locations of the observations yt can be a (different) subset of size nt of the grid S, indicated
by the nt × n matrix Ht. In this paper we are interested in obtaining the filtering and
smoothing distributions of xt for t = 1, 2, . . . , T , i.e. p(xt|y1:t) and p(xt|y1:T ), respectively.
To accomplish this goal, we start with the canonical algorithms for filtering and generating
samples from the smoothing distribution.

2.1 The filtering distribution

Under the assumptions introduced in Section 2 the filtering distribution, [xt | y1:t] is Gaussian
and can be obtained using the Kalman filter (Kalman, 1960). We use µt|t to denote E[xt | y1:t]
and set Σt|t := Cov(xt | y1:t). To derive the Kalman filtering procedure, we first give the
one-step ahead forecasting distribution:

xt | y1:t−1 ∼ NnG(µt|t−1,Σt|t−1),

where µt|t−1 := Etµt−1|t−1 and Σt|t−1 := EtΣt−1|t−1E
>
t + Qt.
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Based on Bayes’ theorem, it follows that [xt | y1:t] ∝ [yt | xt][xt | y1:t−1]. Thus, we have

µt|t := µt|t−1 + Kt(yt −Htµt|t−1),

Σt|t := Σt|t−1 −KtHtΣt|t−1,

where Kt := Σt|t−1H
>
t (HtΣt|t−1H

> + Rt)
−1 is the nG × nt Kalman gain matrix.

Algorithm 1: Kalman Filter (KF)

Input: moments of the initial distribution µ0|0,Σ0|0, evolution model {Et,Qt}Tt=0,

observation model {Ht,Rt}Tt=0, data {yt}Tt=0

Result: moments of the filtering distribution
{
µt|t,Σt|t

}T
t=0

1: for t = 1, 2, . . . , T do
2: Compute forecast mean µt|t−1 = Etµt−1|t−1
3: Compute forecast covariance Σt|t−1 = EtΣt−1|t−1E

T
t + Qt.

4: Calculate Kt = Σt|t−1H
>
t (HtΣt|t−1H

>
t + Rt)

−1.
5: Calculate filtering mean µt|t = µt|t−1 + Kt(yt −Htµt|t−1).
6: Calculate filtering covariance Σt|t = Σt|t−1 −KtHtΣt|t−1.
7: end for

2.2 Kalman smoother

Computing the smoothing distribution can be accomplished using the Kalman smoother
(Rauch et al., 1965). Let µt|T := E(xt | y1:T ) and Σt|T := Cov(xt | y1:T ). Then the linear
Gaussian state-space model of Section 2 implies that the smoothing distribution will also be
Gaussian: xt | y1:T ∼ NnG(µt|T ,Σt|T ). Notice that

[xt | y1:T ] =

∫
[xt | xt+1,y1:T ][xt+1 | y1:T ] dxt+1,

where [xt | xt+1,y1:T ] ∝ [xt+1 | xt][xt | y1:t]. It follows that the conditional mean and
conditional covariance in the smoothing distribution are given by

µt|T := µt|t + Jt(µt+1|T − µt+1|t),

Σt|T := Σt|t + Jt(Σt+1|T −Σt+1|t)J
>
t ,

where Jt := Σt|tE
>
t+1Σ

−1
t+1|t.

The full Kalman Smoother typically can compute also the smoothing covariance matrix
Σt|T = Σt|t + Jt(Σt+1|T − Σt+1|t)J

>
t . We skip this calculation in our Algorithm 2, as it

is not necessary for the construction of the algorithm which samples from the smoothing
distribution.

2.3 Forward Filter Backward Sampler (FFBS)

In Bayesian statistics instead of calculating the full smoothing distribution, it is often enough
to be able to draw samples from [xt | xt+1,y1:T ]. This is particularly true in Markov Chain
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Algorithm 2: Kalman Smoother (KS)

Input: moments of the initial distribution µ0|0,Σ0|0, evolution model {Et,Qt}Tt=0,

observation model {Ht,Rt}Tt=0, data {yt}Tt=0

Result: moments of the smoothing distribution
{
µt|T ,Σt|T

}T
t=0

1: Obtain moments of the filtering distribution
{
µt|t,Σt|t

}T
t=0

using KF (Algorithm 1).
2: for t = T − 1, T − 2, . . . , 1 do
3: Compute Jt = Σt|tE

>
t+1Σ

−1
t+1|t

4: Compute smoothing mean µt|T = µt|t + Jt(µt+1|T − µt+1|t),
5: end for

Monte Carlo (MCMC) -based methods. Inspired by this fact, some authors (Frühwirth-
Schnatter, 1994; Carter and Kohn, 1994; Durbin and Koopman, 2002) developed algorithms
which draw a sample from (2)-(1) and then linearly transform it based on actual observations
from (2) to obtain a sample from the smoothing distribution. It is preferable to simulation
using moments generated by the Kalman smoother, which would require, in general, fac-
torization of all smoothing covariance matrices Σt|T . We briefly summarize the algorithm
known as forward filter backward sampler Durbin and Koopman (2002) below, using the
helpful insights from Jarociński (2015).

Algorithm 3: Forward Filter Backward Sampler (Durbin and Koopman, 2002;
Jarociński, 2015)

Input: moments of the initial distribution µ0|0,Σ0|0, evolution model {Et,Qt}Tt=0,

observation model {Ht,Rt}Tt=0, data {yt}Tt=0, desired number of samples
Nsamp

Result: sample from the smoothing distribution: x1:T

1: Generate x̂0|0 ∼ NnG(0,Σ0|0).
2: Generate x̂1:T and ŷ1:T using (2) - (1).
3: Calculate y∗1:T where y∗t = yt − ŷt.
4: Use KS (Algorithm 2) to obtain {µ̂t|T}Tt=1, where µ̂t|T = E(x1:T |ŷ∗1:t).
5: for t = 1, . . . , T do
6: xt = x̂t + µ̂t|T is a sample from [xt|y1:T ].
7: end for

We note, that a sample from the smoothing distribution can also be used as the approx-
imation of the full distribution. For example if we are interested in prediction, the sample
mean and quantiles can be used as a tool for making predictions and quantifying uncertainty,
respectively.

2.4 Computational complexity

Algorithms 2 - 3 rely on calculating the correction factor Jt, which requires computing the
inverse of the forecast covariance matrix Σt|t−1. In the case of Algorithm 1, a prerequisite for
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the other two, we also need to obtain the Kalman gain matrix Kt which is a linear function
of the inverse of HtΣt|t−1H

> + Rt. This proves to be the computational bottleneck, since
the number of operations required for matrix inversion is proportional to the cube of its
dimension. As the size of the grid nG and the number of observations at each time point nt

grow, these inversion operations take a prohibitive amount of time. In the next section we
review the sparse Cholesky factorization method and subsequently show how it can be used
to approximate Algorithms 1 - 3.

3 Sparse Cholesky factorization

3.1 Hierarchical Vecchia (HV) approximation

In this section we describe the hierarchical Vecchia (HV) approximation. It has recently
been shown that this approach ensures that the sparsity of the approximate Cholesky factor
of the filtering covariance matrix is the same at all time points (Jurek and Katzfuss, 2022).
Moreover, following the findings of Schäfer et al. (2020) the approximation to the forecast
distribution at each time point is optimal in the sense of KL-divergence, given the sparsity
pattern . Here we summarize a special case of the Vecchia approximation which was shown
to be near optimal (Zilber and Katzfuss, 2021) and which additionally has the property
of preserving the sparsity of the Cholesky decomposition of the covariance matrix under
inversion. As we show in the following sections, this characteristic is fundamental for a
construction of a scalable FFBS.

We start by defining an order relation ≺ among the elements of the grid S using the
maxmin ordering (Schäfer et al., 2020). From now on we assume that the elements of x0 are
sorted according to ≺. We then define a directed acyclic graph over the subsets of elements
of x0 in the following way. We begin by selecting the first r0 elements of x0, which we call
knots, and label them as K0. Next we partition the remaining nG − r0 variables into J
groups G1, . . . , GJ and for each preserve the order ≺ truncated to members of that group.
Finally, we select r1 knots from each group and label them as Kj for j = 1, . . . , J . Variables
K1 = {K1, . . . ,KJ} form the next level of the hierarchy.

The remaining elements of each group are further partitioned. For example, the #Gj−r1
remaining elements of Gj are divided into sets Gj,1, . . . , Gj,J . Then r2 first elements from
each of those smaller groups are put into sets Kj,1, . . . ,Kj,J . In this way, we obtain the
second level of the hierarchy K2 = {K1,1, . . . ,K1,J ,K2,1, . . . ,K2,J , . . . ,KJ,J}.

This hierarchy can be visually represented in the form of a directed graph G = (V,E)
where V = K0 ∪ K1 ∪ . . . and E is defined as follows. For two vertices Kj1,...,jm and Ki1,...,il

we have Kj1,...,jm → Ki1,...,il if Ki1,...,il ⊂ Gj1,...,jm and Kj1,...,jm ← Ki1,...,il if Kj1,...,jm ⊂ Gj1,...,j` .
The construction of this hierarchy is illustrated in Figure 1.

We also introduce lexicographic order ≺L on vertices Kj1,...,jm with respect to their sub-
scripts and define S to be an adjacency matrix of graph G. Note that this matrix is lower
triangular because for w, v ∈ V we can have w → v only if w ≺L v.

Further details of the HV construction can be found in Jurek and Katzfuss (2022).
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Figure 1: Construction of the hierarchical Vecchia approximation. The first panel shows the entire domain
with each dot representing an element of x0; note that they do not need to be regularly spaced. The black
dots, in accordance with the label above, represent the elements selected as K0. The second panel shows the
domain split in two. The elements of x0 corresponding to locations in the left half are assigned to G1, while
the remaining elements are assigned to G2. Black dots within each group denote elements of K1, the gray
dots stand for elements already assigned to K0 and the remaining dots are white. The right panel shows
another level of the hierarchy with each quadrant, from the top-left and counter-clockwise, the area covering
G1,1, G1,2, G2,1 and G2,2. Similar to the middle panel, the grey dots represent elements of K0∪K1 and black
dots represent elements of K2 split into four sets Ki,j such that Ki,j ⊂ Gi,j for i, j ∈ {1, 2}.

3.2 Sparse Cholesky decomposition based on HV

With the sparsity pattern encoding the HV approximation we now modify the standard
Cholesky factorization algorithm in the following way. If an i, j-th element of the sparsity
pattern matrix S equals 1, we calculate the corresponding element of the Cholesky factor,
using the the regular formula and set it to zero otherwise. Note also that given the HV
construction the diagonal elements will always be calculated. Our approach is summarized
in Algorithm 4.

Algorithm 4: Hierarchical Cholesky factorization (HCF)

Input: Sparsity pattern matrix S, p.d. matrix A of size n× n
Result: Sparse Cholesky factor L

1: for i = 1, . . . , n do
2: for j = 1, . . . i do
3: Li,j = Si,j · (Ai,j −

∑j−1
k=1 Li,kLj,k)/Lj,j

4: end for
5: Li,i = (Ai,i −

∑i−1
k=1 L2

i,k)1/2

6: end for

If we use N to denote the maximum number of nonzero elements in a row of S, then the
complexity of Algorithm 4 is O(nN2). This is because line 3 requires O(N) operations and
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is executed at most N times for each of the n rows.

4 Fast sampling using sparse Cholesky factorization

In this section, we show how Algorithm 4 (HCF) can be used to ensure the scalability of
Algorithm 3 (FFBS). Recall that the most computationally-instensive steps in Algorithm 3
were those calculating the Kt matrix in the forward pass and inverting the forecast covariance
in the backward pass. We show how HCF can be used to accelerate both.

4.1 Approximate filtering

The application of hierarchical Cholesky factorization to filtering was described previously
(Jurek and Katzfuss, 2022) and we briefly summarize it here. Unlike in Algorithm 1 we do not
calculate the entire filtering and forecast covariance matrices, Σt|t−1 and Σt|t, respectively,
but rather their hierachical Cholesky factor. In particular, given the prescribed sparsity
S, we approximate Σt|t−1 ≈ Σ̃t|t−1 = Lt|t−1L

>
t|t−1, where Lt|t−1 = HCF(S,Σt|t−1), which is

optimal in the sense of KL divergence (Schäfer et al., 2020). The computational benefits
of using this approximation can be further taken advantage of (Jurek and Katzfuss, 2022,
Section 3.3) as shown in the following

Claim 1. Assume Lt|t−1 = HCF(S,Σt|t−1), where S encodes the hierarchical Vecchia ap-
proximation, Σt|t−1 is a (approximate or exact) forecast covariance matrix and that P is an
order reversing permutation matrix. We have

Ut|t = P chol(P(L−>t|t−1L
−1
t|t−1 + HtR

−>
t Ht)P)P

and
Σ̃t|t = U−>t|t U−1t|t

We can thus define Lt|t := U−>t|t . Then, as Jurek and Katzfuss (2022) noted, given Lt|t−1
with at most N nonzero elements in a row, Lt|t has the same sparsity pattern as Lt|t−1 and
can be calculated in O(nN2) time. These properties allow us to approximate Algorithm 1
(Kalman Filter) using Algorithm 5, which Jurek and Katzfuss (2022) show to have O(nN2T )
time complexity.

Note that the approximate filtering and forecast means are denoted with a tilde over each
symbol, to differentiate them from their exact counterparts calculated in Algorithm 1.

4.2 Approximate sampling

Following Algorithm 2 we see that the most time consuming part of the backward pass
is matrix inversion in line 3. Additionally, the multiplication of dense nG × nG matrices
also requires much computation time for large nG. These bottlenecks can be eliminated
if matrices Σt+1|t and Σt|t are replaced with their hierarchical Cholesky factors Lt+1|t and
Lt|t, respectively. This substitution also decreases the cost of matrix multiplication, since
all matrices in line 3 are now sparse. This let allows us to approximate Algorithm 3 by
proposing a scalable FFBS in Algorithm 7.
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Algorithm 5: Hierarchical Vecchia filter (HVF)

Input: moments of the initial distribution µ0|0,Σ0|0, evolution model {Et,Qt}Tt=0,

observation model {Ht,Rt}Tt=0, data {yt}Tt=0 and sparsity matrix S
Result: approximate representation of the filtering and forecast distributions{

µ̃t|t−1,Lt|t−1
}T
t=0

,
{
µ̃t|t,Lt|t

}T
t=0

1: Calculate the HV sparsity matrix S
2: Calculate L0|0 = HCF(S,Σ0|0)
3: for t = 1, 2, . . . , T do
4: Compute µ̃t|t−1 = Etµ̃t−1|t−1

5: Calculate the (i, j)-th elements of Σ̃t|t−1 = EtLt−1|t−1L
>
t−1|t−1E

>
t + Qt, for (i, j) such

that Si,j = 1

6: Calculate the HCF of the forecast matrix Lt|t−1 = HCF(S, Σ̃t|t−1)
7: Calculate Lt|t using Claim 1.
8: Compute µ̃t|t = µ̃t|t−1 + Lt|tL

>
t|tH

>
t R−1t

(
yt −Htµ̃t|t−1

)
9: end for

Algorithm 6: Hierarchical Vecchia Smoother (HVS)

Input: moments of the initial distribution µ0|0,Σ0|0, evolution model {Et,Qt}Tt=0,

observation model {Ht,Rt}Tt=0, data {yt}Tt=0

Result: approximate mean of the smoothing distribution
{
µ̃t|T

}T
t=0

1: Obtain representation of the forecast and filtering distributions
{
µ̃t|t,Lt|t

}T
t=0

,{
µ̃t|t−1,Lt|t−1

}T
t=0

using HVF (Algorithm 5)
2: for t = T − 1, T − 2, . . . , 1 do
3: Compute approximate smoothing mean as

µ̃t|T = µ̃t|t + Lt|tL
>
t|tE

>
t+1L

−>
t+1|tL

−1
t+1|t(µ̃t+1|T − µ̃t+1|t),

4: end for

Similar to Algorithm 5 we used symbols with a tilde to denote the approximations of
corresponding variables in Algorithm 2. Regarding complexity of Algorithm 6, Ut|t+1 is
sparse with a known sparsity pattern which means that line 3 and can be executed in
O(nN2T ) time (Jurek and Katzfuss, 2022). Line 4 can be executed efficiently series of
matrix-vector multiplications is performed instead. The matrices Lt|t and Ut+1|t have at
most N nonzero elements in each row (Jurek and Katzfuss, 2021). Therefore, if we recall the
complexity of Algorithm 5 discussed in Section 4.1 and assume Et is sparse, then operations
in line 4 have complexity O(nN). Consequently, Algorithm 6 can be executed in O(nN2T )
time.

4.3 Scalable FFBS

Using the approximations described in Sections 4.1 and 4.2 we can now provide an algorithm
for a scalable FFBS. Following the approach adopted earlier in this section 3 we used the
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tilde notation to indicate approximations. Notice that we use Vecchia approximation in
order to quickly calculate the square roots {Lt}Tt=1 of the model error covariance matrices
{Qt}Tt=1. These square roots are then be used for quick generation the synthetic data.

Algorithm 7: Scalable FFBS

Input: moments of the initial distribution µ0|0,Σ0|0, evolution model {Et,Qt}Tt=0,

observation model {Ht,Rt}Tt=0, data {yt}Tt=0, and sparsity pattern S
Result: sample x1:T from the approximate smoothing distribution

1: Calculate L0|0 = HCF(S,Σ0|0).
2: Generate ε0 ∼ NnG(0, InG), and set x̂0|0 = L0|0ε0.
3: for t = 1, . . . , T − 1 do
4: Calculate LQ

t = HCF(S,Qt)
5: Calculate εt ∼ NnG(0, InG) and set ŵt = LQ

t εt.
6: end for
7: Generate x̂1:T and ŷ1:T using (2) - (1), replacing wt with ŵt.
8: Calculate y∗1:T where y∗t = yt − ŷt.

9: Use HVS (Algorithm 2) to obtain { ˆ̃µt|T}Tt=1, where ˆ̃µt|T = E(xt|ŷ∗1:t).
10: for t = 1, dots, T do
11: xt = x̂t + ˆ̃µt|T is a sample from an approximation of [xt|y1:T ].
12: end for

4.4 Computational complexity

Using the Hierarchical Vecchia approximation substantially reduces the computational cost
of sampling from the smoothing distribution. If S corresponds to a hierarchical Vecchia
approximation, the first line of the algorithm can be calculated in O(nN2) time. The com-
putationally intense operation in the second line is the matrix-vector multiplication, but
because L0|0 has the same sparsity pattern as S, this product can be obtained in O(nN)
time. Analogous arguments let us conclude that the total cost of line 3 is O(nN2T ). Gener-
ating synthetic data x̂1:T and ŷ1:T can be done in O(nNT ) time, because we assumed that
the evolution matrix Et is sparse and that Rt is block diagonal with small blocks. The only
operation in the remaining lines is the use of hierarchical Vecchia smoother in line 9, which
requires O(nN2T ) time.

A typical user of Algorithm 7 will typically generate Nsamp > 1 samples from the approx-
imate smoothing distribution, which means that it will take O(nN2TNsamp) time.

5 Numerical comparison

5.1 Setup

In this section we evaluate our scalable FFBS using simulated data.
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We consider an advection diffusion process x(s, t) defined over R2 × [0, . . . , T ], which
means that its dynamics are expressed by the following partial differential equation:

∂x

∂t
= α

(
∂2x

∂2sx
+
∂2x

∂2sy

)
+ β

(
∂x

∂sx
+
∂x

∂sy

)
+ η, (3)

where η(s, t) is a zero-mean stationary Gaussian process with an exponential covariance
function with marginal variance σ2

w = 0.1 and range λ = 0.15. This setting of λ allows the
process to exhibit clear variation over the chosen grid (see below) but preserves substantial
dependence between neighboring locations. We set α = 4× 10−5 and β = 10−2 which leads
to a stable differencing scheme for our chosen grid (below) while producing visible advection
and diffusion. We also assume that η(·, ·) is independent across time. We then consider
a regular grid of size nG = 34 × 34 = 1156 covering the square D = [0, 1] × [0, 1] and
discretize x over this grid using centered finite differences. This results in a vector xt with
each component representing the value of x at a corresponding grid point and gives a discrete
version of (3) which takes the form (1). We use x0 ∼ N (0,Σ0|0), where Σ0|0 corresponds to
the exponential covariance function with range λ, marginal variance σ2

0 = 1. This choice of
marginal variance, 10 times greater than the marginal variance of the model error, means
that most of the variation is explained by the model, but that the model error is nevertheless
non-negligible. We further assume that at each time point t ∈ [1, 2, . . . , T ], where T = 20,
we are given a set of noisy observations yt corresponding to some of the points from the
grid. We take the measurement error to be Gaussian which means that yt follows the data
model (2) with Rt = σ2

vInt where we set σ2
v = 0.05 and the matrix Ht is obtained by taking

a diagonal matrix InG and removing the rows which correspond to the grid points with no
associated observations. This choice of σ2

v means that the signal to noise ratio is relatively
high. A sample realization of this process at two time points is shown in Figure 2. Many
other combinations of parameter values were previously considered in the case of filtering
(Jurek and Katzfuss, 2021), but the relative performance of the analogues of the HV-based
and low-rank filters was robust to these changes.

We then perform several numerical experiments using the following methods:

scalable FFBS (Scalable): Our method as described in Algorithm 7.

Low-rank-based FFBS (Low-rank): A sampling method based on a low-rank approx-
imation of the latent process x. Within the context of our paper and for ease of
comparison, we can view it as a special case of Algorithm 7 with the S matrix in which
only the diagonal and the first N columns of S are nonzero. This is equivalent to using
the modified predictive process approach (Banerjee et al., 2008; Finley et al., 2009)
to approximate the process x and has the same computational complexity as scalable
FFBS.

standard FFBS (Standard): The method described in Algorithm 3. It can be viewed a
special case of Algorithm 7, in which S = 1nG1>nG

and N = nG.
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method Standard Low-rank Scalable
average time 322.2 13.2 13.3

Table 1: The average time in seconds required to generate one sample from the model from Section 5.1 using
each of the sampling methods.

5.2 Timing

We start by showing the difference in wall-clock time required to generate a single sample
using the model settings and sampling methods described in Section 5.1. We run our code
on a high-end laptop equipped with 16 Intel i7 CPUs each with a clock speed of 2.30GHz
and 16GB of memory. In order to eliminate the influence of random processes executed at
the same time, we use one method at a time, measure the time elapsed from the beginning
until the end of Algorithm 3, repeat it 10 times and report the average. The results are
shown in Table 1 and show that both approximate methods have a similar run time, which
is much less than the run time of the standard FFBS. In the subsequent simulations, we show
that the low-rank method, while comparable in execution time, is inferior in performance
according to several criteria.

5.3 Sampling the latent vector

In the second set of our simulations, we demonstrate the excellent accuracy of Algorithm 7
by generating a sample of size m from smoothing distribution of the latent vector xt. We
then compare the results generated by other methods using continuous rank probability score
(CRPS) for ensembles (Gneiting et al., 2008, Section 4.2). In general, if Q =

{
q1, . . . , qNsamp

}
is the ensemble of size Nsamp forecasting the vector q we can calculate this score as

CRPS(Q, q) =
1

Nsamp

Nsamp∑
i=1

‖qi − q‖2 −
1

2Nsamp

Nsamp∑
i=1

Nsamp∑
j=1

‖qi − qj‖2,

where ‖·‖2 denotes the second (i.e. Euclidian) norm. The lower the value of the CPRS, the
more accurately the ensemble predicts the true realization q. Under some mild conditions,
CRPS is a strictly proper scoring rule (Gneiting and Raftery, 2007; Gneiting and Katzfuss,
2014). In order to evaluate the performance of scalable FFBS we adopt the following ap-
proach. We generate a sample of size Nsamp = 50 using methods described in Section 5.1
and calculate the CRPS for each of them at each time point. For each of the approximate
methods we then calculate the ratio of their respective scores and the score of the standard
FFBS. We repeat this procedure Niter = 10 times and present these average score ratios in
Figure 3. We conclude that scalable version of the FFBS algorithm we propose is an excel-
lent approximation of its standard version and that it significantly outperforms the low-rank
approach.

5.4 Gibbs sampling

One of the more common applications of the standard FFBS algorithm consists in using it
as one of the steps in a Gibbs sampler. In this section we demonstrate the performance of
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such a sampler which which relies on the methods described in Section 5.1
Using the model from Section 5.1 now we assume that the σ2

w parameter is unknown.
Imposing an inverse gamma prior with shape parameter a = 0.001 and scale parame-
ter b = 0.001 results in the conditional posterior distribution p(σ2

w|x1:T ,y1:T ) that is in-

verse gamma with the shape parameter ã = a + n(T−1)
2

and the scale parameter b̃ =

b + 1
2

∑T
t=2 (xt − Etxt−1)

>Σ−1w (xt − Etxt−1). We then run the Gibbs sampler in which we
sample the latent vectors {xt}Tt=1 using each of the methods described at the beginning of
Section 1 assuming that we have observations corresponding to a random selection of 30%
of grid points, i.e. nt = 0.3nG. Figure 4 shows the samples from the conditional posterior
distribution. In each case the sampler was initialized at a random value between 0 and 0.5.
We used only the approximate methods in the construction of the Gibbs sampler, because
standard FFBS was not computationally feasible for a problem of this size. The results show
that the sampler based on the scalable method generates draws of σ2

w that are much closer
to the true value (0.1) than the draws obtained using the low-rank method.
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(c) t=10
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(d) t=20

Figure 2: Sample realization of the 2D advection diffusion process described in Section 5.1 at select time
points. The first row shows two consecutive time points while the plots in the second row, corresponding to
time points further apart, illustrates the long term evolution of the process.
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6 Analysis of total precipitable water

In this section we apply our proposed sampler to real observations of the amount total
precipitable water (TPW) in the atmosphere, defined as the mass of the water vapor in a
column of air above a given area. TPW is commonly used in numerical weather prediction,
forecasting extreme weather events, or assessing fire danger in drought-stricken areas. Hence,
inferring complete and noise-free spatio-temporal maps of TPW is of considerable scientific
value. The collection of data we work with is comprised of the total of 47,007 measurements
made over a portion of the continental United States and the Gulf of Mexico at T = 9 points
in time over a period of 40 hours in January 2011. Each data point corresponds to a cell in
a 0.5◦ × 0.5◦ latitude/longitude grid covering the area between −125.18◦W and −107.21◦W
and 37.14◦N and 50.07◦N, resulting in 15,876 spatial grid cells. All of the observations were
acquired using the Microwave Integrated Retrieval System (MIRS) satellite and are available
from the authors upon request.

A superset of the data we use here has been analyzed previously using a low-rank filtering
approach similar to the one described in Section 5.1 in Katzfuss and Hammerling (2017), and
a filtering approach based on the HV approximation (Algorithm 5) in Jurek and Katzfuss
(2022).

For a given time point t we use yt to denote the corresponding data, each of which is
assumed to contain an independently and identically distributed normal measurement error
with mean 0 and variance σ2

v. At each point we calculated the mean of all measurements and
subtracted it from the observations gathered at that time. The resulting value at selected
time points are shown in the first column in Figure 6. At each time point we set aside 1%
of all available measurements to be later used for result verification.

2 4 6 8

0.
15

0.
25

0.
35

time

cr
ps

 ra
tio

Figure 5: For the TPW data, CRPS for samples calculated using the scalable method relative to the CRPS
for samples calculated using the low-rank method.

We assume that the temporal evolution of TPW during the study period can be captured
by an advection-diffusion equation, as described in Section 5.1. We use the diffusion coeffi-
cient to be α = 0.000003 and the advection coefficient β = 0 (no advection). If Ẽt denotes
the temporal evolution operator obtained using differencing, we take Et = cẼt with c = 0.9
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λ σ2
0 σ2

w σ2
v c α β

1.0 74.7 8.3 1.63 0.9 0.000003 0

Table 2: Values of parameters used in the application to TPW

to allow for more random variation at each time point.
We take the initial covariance function Σ0|0 to be derived from a Matérn covariance

function with smoothness ν = 1.5, range λ, marginal variance σ2
0 and the Qt matrix to be

derived from a Matérn covariance function with the same smoothness ν = 1.5 and range λ
and marginal variance σ2

w.
In order to determine the values of parameters λ, σ2

0, σ
2
w and σ2

v we consider a purely
spatial problem and assume that at each time xt corresponds to a discretization of a mean-
zero, 2D Gaussian random field with a Matérn covariance function with smoothness 1.5,
range λt and marginal variance σ2

t and that yt are the corresponding observations with
yt|xt = N (xt, τ

2
t ). We use the Vecchia approximation with N = 80 nonzero elements in

each row of S and use it to optimize the approximate likelihood function (see Zilber and
Katzfuss, 2021). We take λ = 1

T

∑
t λt, σ

2
v = 1

T

∑
t τ

2
t . For the marginal variance parameters,

we assume that σ2
0 + σ2

w = 1
T

∑
t σ

2
t and then set σ2

w = (1 − c)σ2
0. Table 2 summarizes the

parameter values obtained in this way.
Then using Algorithm 7 we generate Nsamp = 20 samples {xi

1:T}
Nsamp

i=1 from the smoothing
distribution of the state vector xt using the scalable method and the low rank method with
the conditioning set of size N = 52. In Figure 6 we present the mean field x̄ = 1

Nsamp

∑Nsamp

i=1 xi
t

for select values of t.
In order to evaluate our method we use CRPS as described in Section 5.3 using the

observations which we set aside at the beginning. Because of the scale of the problem, the
standard method was not feasible. Instead we report the ratio rCRPS = 100%CRPSHV

CRPSLR
, which

tells us by what percentage the score is reduced, if we use the scalable method as opposed
to the low-rank method. We report the rCRPS for each time point in Figure 5. The results
show, that using the scalable method instead of the low-rank method leads to about 20%
lower CRPS at a typical point in time.

7 Conclusions

Our paper proposes an approximate method of sampling the latent state in the context of
linear Gaussian state space models. Our approach, called scalable FFBS, can be applied
even to fields with tens of thousands of random variables. It also outperforms samplers
based on a popular low-rank approximation according to several important metrics. The
proposed algorithm can be extended in several directions. First, combining it with the
Laplace approximation, similar to (Jurek and Katzfuss, 2022), it can be applied to a large
class of non-Gaussian distributions. Using the correlation distance (Kang and Katzfuss,
2021), might allow to accommodate data without a clear spatial structure. We also envi-
sion extending our framework to incorporate several random fields and non-linear temporal
evolution.
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Figure 6: Total precipitable water (1st column) and the pointwise mean of all the samples generated using
the scalable method (2nd column) and the low-rank method (3rd column).
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