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Abstract 13 

Species distribution models (SDMs) are a commonly used tool, which when combined with earth 14 
system models (ESMs), can project changes in organismal occurrence, abundance, and phenology 15 
under climate change.  An often untested assumption of SDMs is that relationships between 16 
organisms and the environment are stationary.  To evaluate this assumption, we examined whether 17 
patterns of distribution among larvae of four small pelagic fishes (Pacific sardine Sardinops sagax, 18 
northern anchovy Engraulis mordax, jack mackerel Trachurus symmetricus, chub mackerel Scomber 19 
japonicus) in the California Current remained steady across time periods defined by climate regimes, 20 
changes in secondary productivity, and breakpoints in time series of spawning stock biomass (SSB).  21 
Generalized additive models (GAMs) were constructed separately for each period using temperature, 22 
salinity, dissolved oxygen (DO), and mesozooplankton volume as predictors of larval occurrence.  23 
We assessed non-stationarity based on changes in six metrics: 1) variables included in SDMs; 2) 24 
whether a variable exhibited a linear or non-linear form; 3) rank order of deviance explained by 25 
variables; 4) response curve shape; 5) degree of responsiveness of fishes to a variable; 6) range of 26 
environmental variables associated with maximum larval occurrence.  Across all species and time 27 
periods, non-stationarity was ubiquitous, affecting at least one of the six indicators.  Rank order of 28 
environmental variables, response curve shape, and oceanic conditions associated with peak larval 29 
occurrence were the indicators most subject to change.  Non-stationarity was most common among 30 
regimes defined by changes in fish SSB.  The relationships between larvae and DO were somewhat 31 
more likely to change across periods, whereas the relationships between fishes and temperature were 32 
more stable.  Respectively, S. sagax, T. symmetricus, S. japonicus, and E. mordax exhibited non-33 
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stationarity across 89%, 67%, 50%, and 50% of indicators.  For all species except E. mordax, inter-34 
model variability had a larger impact on projected habitat suitability for larval fishes than differences 35 
between two climate change scenarios (SSP1-2.6 and SSP5-8.5), implying that subtle differences in 36 
model formulation could have amplified future effects.  These results suggest that the widespread 37 
non-stationarity in how fishes utilize their environment could hamper our ability to reliably project 38 
how species will respond to climatic change.  39 

Contributions to the Field 40 

Species distribution models are a primary tool to project where and when organisms will occur as 41 
climate changes.  These models contain a fundamental assumption that conditions that provide 42 
optimal habitat for marine organisms today will provide optimal habitat in the future.  When 43 
relationships between fishes and environmental conditions change, this is referred to as a non-44 
stationary relationship.  Detecting non-stationary relationships can be difficult because this often 45 
requires tracking how fishes respond to conditions over several decades.  Most time series of marine 46 
organisms are not long enough to do this.  We used 65 years of data on four fish species to 47 
investigate whether their relationships with temperature, salinity, dissolved oxygen, and zooplankton 48 
were stable.  We found widespread non-stationarity across three types of ocean ecosystem changes 49 
and six evaluation metrics.  Fishes had more consistent relationships with temperature than other 50 
variables and less consistent relationships with dissolved oxygen.  The importance of non-stationarity 51 
was amplified when making projections about future climate change impacts.  Knowledge about non-52 
stationarity is important because species distribution models are increasingly used in marine resource 53 
management to determine how to adapt management to climate change.  Non-stationary fish-54 
environment relationships could affect the accuracy of such projections used in fisheries 55 
management.  56 
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1 Introduction 57 

Marine fishes in many ecosystems have shifted their distribution poleward and deeper as climate 58 
change has warmed the oceans (Murawski, 1993; Perry et al., 2005; Nye et al., 2009; Hsieh et al., 59 
2008, 2009; Pinsky et al., 2013; Poloczanska et al., 2013; Walsh et al., 2015).  Many of these changes 60 
are occurring at a rate faster than in terrestrial habitats (Poloczanska et al., 2013; Sunday et al., 2012; 61 
Blowes et al., 2019; Pinsky et al., 2019).  Climate velocity, a measure of the rate of temperature 62 
change across spatial gradients, has proven to be an accurate predictor of the magnitude and direction 63 
of shifts in species distributions in many ecosystems (Chen et al., 2011; Pinsky et al., 2013), although 64 
other aspects of a species’ ecological niche also influence distribution changes (McHenry et al., 65 
2019).  Throughout the 21st century, climate models project that changes in species distribution will 66 
continue unabated or further accelerate (Cheung et al., 2009, 2016b; Morley et al. 2018).  Shifts in 67 
fish distribution have implications for trophic interactions (Selden et al., 2018), global biodiversity 68 
patterns (Cheung et al., 2009), and food security (Golden et al., 2016; Free et al., 2019).   69 

Many projections of changes in fish distribution, biomass, and phenology under climate change are 70 
based on statistical models referred to as species distribution models (SDMs), ecological niche 71 
models, or bioclimate envelope models.  These models link spatial and temporal variations in 72 
organismal occurrence with environmental variables (Elith and Leathwick, 2009).  Based on these 73 
empirical relationships, changes in environmental conditions derived from climate models are used to 74 
project future shifts in species occurrence or abundance.  Due to the growing importance of climate 75 
change, there has been a rise in studies using SDMs and aligned models over the last 20 years (Fig. 76 
1). 77 

A key assumption of SDMs is that the relationship between organisms and environmental conditions 78 
is stationary and not subject to changes due to variations in organismal abundance, climate, or 79 
ecosystem state.  Since statistically derived relationship between a species and the environment form 80 
the basis for SDM projections, non-stationarity in this relationship could result in inaccurate 81 
projections of climate change impacts.  Assumptions about stationarity in relationships between 82 
fishes and climatic variables have rarely been investigated (Litzow et al., 2019), but it is imperative 83 
to do so to assess the uncertainty associated with projections about how marine conservation 84 
initiatives will fare under climate change.  Among planktonic organisms, such as dinoflagellates, 85 
diatoms, and copepods, SDMs developed using data from one decade failed to accurately project in 86 
species distribution during other decades (Brun et al., 2016).  This reflects the patchy distribution of 87 
plankters, boom-bust cycles in abundance, and the potential for advection of plankton by currents 88 
outside their preferred habitat.  Since projections made for copepods had greater model skill than 89 
those for primary producers, SDMs may have improved predictability for higher trophic level 90 
organisms, such as fishes.  Nonetheless, recent work suggests that non-stationarity might be a 91 
common, albeit understudied, feature among SDMs that project changes in fish distribution (Litzow 92 
et al., 2018, 2019, 2020; Puerta et al., 2019; Roberts et al., 2019; Muhling et al., 2020).   93 

At least seven ecological, climatic, and statistical mechanisms can lead to non-stationary fish-climate 94 
relationships.  First, non-stationarity could arise if key variables influencing a species’ ecological 95 
niche are excluded from an SDM.  For example, many SDMs neglect to account for interspecific 96 
relationships, such as predator-prey dynamics (Fernandes et al., 2013).  Second, over-97 
parameterization of models can lead to the appearance of non-stationarity if this results in a 98 
relationship between an environmental variable and fish distribution that is solely due to a statistical 99 
artifact.  Third, non-stationarity can result from density-dependent occurrence patterns where a fish is 100 
found in its optimal habitat at low density but, as its abundance increases, spreads to additional 101 
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habitats to reduce interspecific competition (MacCall, 1990).  Such dynamics are especially common 102 
among small pelagic fishes (SPF)1 (Barange et al., 2009).  Fourth, overfishing can truncate fish age 103 
structure, which can increase sensitivity to climatic variables since younger and smaller fishes often 104 
exhibit heightened sensitivity (Anderson et al., 2008).  Fifth, at times, fish distribution has been 105 
related to basin-scale climate indices, such as the Pacific Decadal Oscillation (PDO), North Pacific 106 
Gyre Oscillation, and North Atlantic Oscillation.  Many of these indices represent statistical 107 
compilations of several climatic variables.  If the relationship between these indices and local climate 108 
variables changes over time (Joyce et al., 2002; Litzow et al., 2018, 2020), this can lead to non-109 
stationarity between species distribution and climate indices (Litzow et al., 2018, 2019, 2020; Puerta 110 
et al., 2019).  Also, some species have been shown to react differently to environmental conditions, 111 
such as temperature, depending on the phase of climate oscillations likely due to the influence of 112 
these oscillations on larval advection or interspecific interactions (Roberts et al., 2019). Lastly, non-113 
stationarity across climate oscillations could occur because some climate indices, such as the PDO, 114 
are detrended.  Sixth, the distribution of some species may be constrained by non-climatic factors, 115 
such as depth, reliance on biogenic habitats, or lack of dispersal corridors (Reglero et al., 2012; Asch 116 
et al., 2019).  When such constraints exist, organisms may be retained in their historical habitats, 117 
even though the climate of those habitats has shifted.  This can result in a non-stationary relationship 118 
between species and climate.  Lastly, phenotypic plasticity, acclimation to new conditions, or rapid 119 
adaptation could lead to changes in how species distribution is related to climate (Donelson et al., 120 
2012; Anderson et al., 2013). 121 

Despite numerous reasons why non-stationarity may occur, there have been relatively few 122 
assessments of non-stationarity in SDMs for marine fishes due to a paucity of spatially resolved, 123 
long-term datasets that can be used to test historical changes in how fish react to the environment.  124 
One such dataset that is well suited to examine non-stationary, fish-climate relationships is California 125 
Cooperative Ocean Fisheries Investigations (CalCOFI).  This program has surveyed ichthyoplankton 126 
along six transects in its core region off southern California since 1951.  This region has been subject 127 
to several climate regime shifts that affected living marine resources (McGowan et al., 2003; Di 128 
Lorenzo et al., 2008; Peabody et al., 2018; Litzow et al., 2020), making it a useful testbed for 129 
evaluating whether fishes react differently to environmental variables during each phase of a regime.  130 
Also, some of the fastest rates of species distribution change in U.S. waters are projected to occur in 131 
this area (Morley et al., 2018), making it an important region for studying non-stationarity. 132 

Our analysis of non-stationarity focuses on SPF since these species account for approximately one-133 
third of global fish catch (Smith et al., 2011). Also, pelagic fishes are often more sensitive to climate-134 
induced range shifts than demersal fishes (Murawski et al., 1993; Cheung et al., 2009; Walsh et al., 135 
2015).  SPF connect lower trophic organisms in upwelling systems with higher trophic level 136 
predators, such as piscivorous fishes, squid, seabirds, and marine mammals (Cury et al., 2011; 137 
Pikitch et al., 2014; Kaplan et al., 2017).  Furthermore, their potential sensitivity to non-stationary 138 
dynamics is likely since SPF exhibit boom-bust cycles of abundance over multi-decadal periodicities 139 
(Schwartzlose et al., 1999; Chavez et al., 2003; McClatchie et al., 2017). 140 

More specifically, we focus on four species managed under the Coastal Pelagic Species Fisheries 141 
Management Plan: northern anchovy (Engraulis mordax), Pacific sardine (Sardinops sagax), chub 142 
mackerel (Scomber japonicus), and jack mackerel (Trachurus symmetricus) (PFMC, 2019).  Previous 143 

 
1 SPF refer to small-bodied fishes that live in the epipelagic zone (0-200 m), typically exhibit schooling behavior, and 
consume a planktivorous diet.  The largest fisheries for SPF target species in the order Clupeiformes, which includes 
sardines, anchovies, herrings, menhadens, and shads. 
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research has shown that these species are sensitive to fluctuations in oceanic conditions connected to 144 
climate variability and change (Lluch-Belda et al., 1991; Checkley et al., 2000; Reiss et al., 2008; 145 
Rykaczewski and Checkley, 2008; Weber and McClatchie, 2010, 2012; Zwolinski et al.., 2011; Asch 146 
and Checkley, 2013; Koslow et al., 2013; Howard et al., 2020).   147 

Non-stationary relationships between SPF and environmental conditions were observed in the 148 
California Current System (CCS) in 2014-2017 when a marine heat wave (MHW) resulted in sea 149 
surface temperature (SST) anomalies exceeding three standard deviations above normal conditions 150 
(Di Lorenzo and Mantua, 2016).  Historically the probability of adult S. sardinops occurrence 151 
declines when temperature exceeds 18°C, but during this event the probability of encountering S. 152 
sardinops peaked in some areas warmer than >19°C (Muhling et al., 2020).  While this study did not 153 
detect similar incidents of non-stationarity when examining data from 1980 through present, it was 154 
unclear whether the rapid environmental change during the MHW was the main cause for non-155 
stationarity or if similar non-stationary events might be observed if a longer time series were 156 
examined (Muhling et al., 2020).  We addressed the latter question by determining if non-stationarity 157 
is prevalent in SDMs developed for larval E. mordax, S. sardinops, S. japonicus, and T. symmetricus 158 
between 1951-2015.  This time series emphasizes the period prior to the MHW.  We first determined 159 
if there were change points in time series of climate indices, oceanic variables, and fish spawning 160 
stock biomass (SSB).  These change points are proxies for regime shifts.  For each period associated 161 
with a different regime, we constructed a SDM for each species.  Six metrics for identifying non-162 
stationarity were inspected to determine if the relationships between fishes and oceanic conditions 163 
changed across regimes.  Lastly, we examined whether SDMs developed under different regimes 164 
produce equivalent projections of future changes in fish habitat suitability under low and high 165 
greenhouse gas emissions. 166 

2 Materials and Methods 167 

2.1 Data Sources 168 

2.1.1 Larval Fish Data  169 

CalCOFI has sampled E. mordax, S. sagax, S. japonicus, and T. symmetricus larvae since 1951, with 170 
the highest concentration of samples from a core region of southern California that extends offshore 171 
from San Diego (33.0°N) to north of Point Conception (35.1°N).  CalCOFI data are publicly 172 
available from the NOAA ERDDAP server.2  Data on oblique ring and bongo net tows from January 173 
1951 through April 2015 were downloaded for CalCOFI lines 76-93.3.  Study sites farther offshore 174 
than CalCOFI Station 120 were filtered from this dataset because these stations were sampled less 175 
consistently.  These criteria resulted in selection of 18,899 net tows.  Sample collection occurred 176 
monthly during the 1950s, near monthly during the 1960s, 1970s, and early 1980s, albeit with 177 
substantial gaps during the 1970s, and quarterly since 1985.  The methods for collecting and 178 
processing bongo and ring net samples were described in Kramer et al. (1972) and changes to 179 
sampling methodology were documented in Ohman and Smith (1995) and Thompson et al. (2017). 180 
 181 
2.1.2 Oceanic Data 182 
 183 
Four environmental variables were selected for inclusion in SDMs because they were measured since 184 
1951 concurrently at stations where CalCOFI ichthyoplankton samples were collected and because 185 

 
2 https://coastwatch.pfeg.noaa.gov/erddap/index.html  



  Running Title 

 
6 

This is a provisional file, not the final typeset article 

these variables were previously shown to influence target species (Checkley et al., 2000; Lynn, 2003; 186 
Rykaczewski and Checkley, 2008; Weber and McClatchie, 2010, 2012; Zwolinksi et al., 2011; Asch 187 
and Checkley, 2013; Weber et al., 2018; Howard et al., 2020).  These variables included potential 188 
temperature, salinity, dissolved oxygen (DO), and mesozooplankton displacement volume 189 
(abbreviated as ZDV for zooplankton displacement volume).  Both salinity and DO can be 190 
interpreted as indicators of water masses with distinct characteristics (e.g., Pacific subarctic water has 191 
low temperature and salinity, but high DO, whereas North Pacific Central water has high temperature 192 
and salinity, with low DO; McClatchie, 2013).  Low DO can also act as a stressor affecting the 193 
physiology, distribution, and abundance of SPF (Howard et al., 2020).  Upwelling of hypoxic and 194 
anoxic waters on the inner shelf has been observed in the northern CCS (Chan et al., 2008).  In the 195 
southern CCS where upwelling is less vigorous, hypoxic waters do not frequently encroach into 196 
depths where SPF larvae reside (Dussin et al., 2019), so we interpret variations in DO primarily as an 197 
indicator of water mass properties.  Temperature, salinity, and DO from Niskin bottles were averaged 198 
over the upper 50 m.  This depth was selected because SPF eggs are most concentrated across this 199 
range (Curtis et al., 2007).  Environmental data were downloaded from ERDDAP between January 200 
1951 and February 2015 and extending between 29.7-35.3º N and 117.2-125.8º W.  This area 201 
corresponded to transects selected for fish larvae.  Within these constraints, 18,925 environmental 202 
observations were identified for analysis.   203 
 204 
ZDV was obtained from the same bongo and ring nets as larval fishes.  We used displacement 205 
volumes where gelatinous organisms with biovolumes >5 cm3 were removed (Kramer et al., 1972).  206 
Bias corrections from Ohman and Smith (1995) were applied to account for a change in tow depth 207 
(switch from 140 m to 210 m) and net type (switch from a 550-µm silk mesh net to a 505-µm nylon 208 
mesh net) in 1969 and a second change in net type (switch from a 1.0-m diameter ring net to a 0.71-209 
m diameter bongo net) in 1977.  ZDV measurements were ln(x+1) transformed prior to analysis.  As 210 
a result, measurements of ZDV are presented with units of the log of the zooplankton volume 211 
measured in cm3 divided by the standardized volume of seawater filtered during a plankton net tow 212 
(1,000 m3).  18,746 observations of ZDV were available for analysis. 213 
 214 
Oceanic and biological data were matched based on the year, month, transect, and station number.  If 215 
multiple sets of environmental variables were matched to a single tow, data were averaged.  After 216 
matching, a final sample size of 14,767 was obtained.  217 
 218 
During initial SDM development, we considered including month and station number (a proxy for 219 
distance from shore) as independent variables.  While these factors improved model fit, we decided 220 
to exclude them because they would constrain future shifts in species distribution and phenology.  221 
Since our research goal was to assess model performance over a multidecadal period as a proxy to 222 
better understand how such models would perform when detecting future shifts in species 223 
distribution and seasonal occurrence, including independent variables that constrain such shifts 224 
would be counter to achieving this objective.  Similarly, latitude and longitude were not included in 225 
SDMs as independent variables since they would also constrain future shifts in species distribution. 226 
Also, since many environmental variables in this ecosystem exhibit onshore-offshore gradients 227 
(McClatchie, 2013), multicollinearity between station number and environmental variables could also 228 
influence our ability to detect non-stationary relationships.  Previous studies have shown that stock 229 
size can influence the amount of suitable habitat occupied by our target species (Weber and 230 
McClatchie, 2010, 2012; Muhling et al., 2020).  However, since earth system models (ESMs) cannot 231 
directly project future stock size, this is not a covariate that could be easily included in a model of 232 
future changes in species distribution or phenology.  Since our goal is to provide a framework for 233 
assessing performance of such models, we did not include stock size as a covariate here. 234 
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 235 
2.2 Classification of Change Points in Ocean Ecosystems  236 
 237 
The term regime shift describes low-frequency and high-amplitude changes in biological and 238 
physical conditions.  However, there are disagreements about key characteristics of regime shifts.  239 
Different authors use this term to describe stochastic processes characterized by red noise; non-linear, 240 
alternative stable states; changes at multiple levels of ecological organization (e.g., species, 241 
assemblage, community, ecosystem); and processes related to both external perturbations and internal 242 
reorganization of ecological communities (Collie et al., 2004; Overland et al., 2008).  Due to this 243 
multiplicity of definitions, we used three approaches to determine if relationships between fish and 244 
the environment were stable across different regimes.  Since most of our regime shifts were defined 245 
based on changes in time series, we use the terms regime shift and change point synonymously.  246 
 247 

2.2.1 Pacific Decadal Oscillation (PDO) 248 

The PDO is the first principal component of detrended winter SST in the North Pacific (Hare et al., 249 
1999). During the latter half of the 20th century, this index exhibited decadal variability characterized 250 
by predominantly negative values during 1947-1976 and positive values during 1977-1998.  Negative 251 
(positive) PDO values correspond to cool (warm) conditions in the southern CCS.  The 1976/1977 252 
shift in PDO sign coincided with large changes in the abundance of marine organisms across several 253 
trophic levels (Chavez et al., 2003; McGowan et al., 2003).  In the CalCOFI region, this shift was 254 
associated with a 1.0ºC increase in temperature over the upper 50 m of the water column and a ZDV 255 
decline of 68.4 cm3/1,000 m3 (Fig. S1).  Statistically significant, albeit smaller, changes in mean 256 
salinity and DO coincided with this regime shift (Fig. S1).  Since 1998, the PDO has displayed 257 
oscillations at an interannual rather than decadal scale (Peterson, 2009). Furthermore, the PDO has 258 
recently exhibited a decreased correlation with North Pacific climatic and ecological indicators 259 
(Puerta et al., 2019; Litzow et al., 2020).  Consequently, we assessed whether non-stationary 260 
relationships between fish and environmental variables were evident across the 1976/1977 shift but 261 
did not consider years after 1998.  262 

2.2.2 Change Points in Oceanic Variables 263 

Beyond the PDO, we took an empirical approach to identify change points associated with regime 264 
shifts in times series of environmental variables and SSB.  First, we estimated change points 265 
separately for temperature, salinity, DO, and ZDV.  To accomplish this, we performed a principal 266 
component analysis (PCA) on each variable to identify its dominant mode of temporal variability.  267 
Since PCA cannot be performed on datasets with missing observations, we binned data into seven 268 
groups that represented an onshore-offshore gradient.  Our seven bins were based on the following 269 
CalCOFI stations: ≤40 (closest to shore), 40-50, 50-60, 60-70, 80-90, 90-100, and ≥100 (farthest 270 
offshore).  Stations in each bin were annually averaged.  In cases when no observations were 271 
available in a bin for a year, linear interpolation across the onshore-offshore gradient was used to fill 272 
this gap.  The years 1951, 1984, and 1982 were removed due to persistent gaps in coverage.  Such 273 
gaps were more widespread for DO than other variables, which necessitated removal of additional 274 
years (1953-1955, 1957, 1960, 1967, 1975, 1980-1981).  PCA was performed after these data 275 
processing steps. 276 

Change point analysis was applied to the first principal component of each environmental variable 277 
using the Bayesian change point detection algorithm developed by Ruggieri (2013).  Change point 278 
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analysis was performed in MATLAB (version R2017a).  The Ruggieri (2013) algorithm detected 279 
changes in time series mean, variance, or slope.  We used uninformative priors.  Algorithm 280 
parameters were set such that a maximum of three change points could be detected over a time series 281 
and change points needed to be separated by ≥10 years.  Other parameters were set following 282 
guidance from Ruggieri (2013) (k0=0.01, n0=2, and s0

2=observed variance).  500 iterations of this 283 
algorithm were run for each time series to generate posterior probability distributions.  Subsequent 284 
analyses examining non-stationarity across regimes were based on the number of change points with 285 
the highest posterior probability and years with the highest probability of a change point.  In a 286 
sensitivity test, parameters related to maximum number of change points and minimum regime 287 
duration were varied between 2-4 and 8-12 years, respectively.  This was found to affect the years of 288 
some change points by ±3 years or less.   289 

2.2.3 Change Points in SSB 290 

Change point analysis was applied to assess whether habitat use among SPF varied as a function of 291 
stock size.  For this analysis, we used stock assessment data from Thayer et al. (2017) for 1951-2015 292 
for E. mordax and Crone and Hill (2015) for 1983-2014 for S. japonicus.  For S. sagax, we combined 293 
data from three stock assessments to obtain information for 1951-1963 (Jacobson and MacCall, 294 
1995), 1981-2008 (Hill et al., 2008), and 2009-2015 (Hill et al., 2018).  No stock assessment was 295 
available for T. symmetricus, so this species was excluded from this analysis.  SSB was log 296 
transformed prior to analysis since histograms indicated SSB had a log-normal distribution.  Change 297 
point detection parameters were the same as listed above, except the minimum duration for a regime 298 
was set to five years for S. sagax and S. japonicus since shorter SSB time series were available.  For 299 
S. sagax, results were not sensitive to the choice of the minimum regime duration or to the use of 300 
only the more recent stock assessments by Hill et al. (2008, 2018).    301 

2.3 Species Distribution Modeling (SDM) 302 
 303 
We used generalized additive models (GAMs) to assess non-stationarity across change points.  While 304 
a variety of SDMs exists, GAMs were selected because this technique has been widely used in 305 
fisheries science (e.g., Bell et al., 2015; Morley et al., 2018; McHenry et al., 2019).  GAMs were run 306 
separately for each species and period associated with a change point to determine if there were 307 
differences in model characteristics across regimes.  Since our goal was to examine environmental 308 
influences on species distribution, presence/absence of larvae was used as the response variable.  309 
Independent variables included temperature, salinity, DO, and log-transformed ZDV.  Any bongo 310 
and ring net tows that did not have a full suite of environmental variables associated with them were 311 
removed from analysis.  GAMs were formulated using the binomial family and logit link.  GAMs 312 
were parameterized to have a maximum of four knots to prevent overfitting (Weber and McClatchie, 313 
2010; Lindegren and Eero, 2013; Tommasi et al., 2015).  This step was important because an 314 
overparameterized model is more likely to be non-stationary when that model is applied to a different 315 
period.  The decision to limit the number of knots was a conservative choice aimed at decreasing the 316 
likelihood of detecting non-stationarity.  For each species and regime, 16 GAMs with different 317 
combinations of environmental variables were run. The Akaike Information Criteria (AIC) was 318 
minimized to select which of these models was the most parsimonious and determine the number of 319 
knots to include in that model.  If the AIC for several models differed by ≤2, we used a multi-model 320 
approach including results from several models (Burnham and Anderson, 2002).  Akaike weights (wi) 321 
for the selected models were examined to assess the degree of confidence in the selection process. 322 
 323 
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GAMs can be fit using either the gam or mgcv package in R (version 4.1.1).  The latter uses a 324 
Bayesian approach for variance estimation, which results in smaller confidence intervals than those 325 
from the gam package (Wood, 2006).  Since smaller confidence intervals may increase the likelihood 326 
of detecting differences across regimes, we used the gam package since it would provide more 327 
conservative results regarding non-stationarity.  Nonetheless, a comparison of the gam and mcgv 328 
packages for E. mordax produced similar models.  Tests for multicollinearity between independent 329 
variables, spatial autocorrelation, and inspection of GAM residuals for outliers are described in the 330 
Supplementary Material 1.1, Table S1, and Fig. S2. 331 

2.4 Indicators for Detecting Non-Stationarity 332 
 333 
We used six metrics to assess non-stationarity across regimes.  These metrics evaluated whether there 334 
were changes in: 1) variables included in SDMs; 2) linearity of partial environmental variable 335 
responses in SDMs; 3) relative importance of environmental variables; 4) response curve shape; 5) 336 
degree of responsiveness of fishes to a variable, and; 6) the range of conditions associated with 337 
maximum larval occurrence.  Changes in any metrics between regimes was interpreted as an 338 
indicator of non-stationarity.  In cases where multiple models were selected for a regime, differences 339 
needed to be observed amongst the full suite of candidate models for periods to be classified as non-340 
stationary. 341 

Each non-stationarity metric has pros and cons but when viewed together they provide a 342 
complementary and comprehensive picture of the occurrence of non-stationary environmental 343 
relationships.  For example, some metrics are quantitative and can be evaluated for statistical 344 
significance, whereas other metrics are qualitative (e.g., response curve shape).  Some metrics 345 
principally detect large changes in model formulation, such as the lack of significance of a previously 346 
important variable, whereas others identify subtler changes, such as a shift in the relative ranking of 347 
variables affecting fishes.  By considering multiple metrics, one can avoid the pitfalls associated with 348 
any one metric.  For example, changes in maximal larval occurrence or degree of responsiveness are 349 
more likely to be affected by extrema.  Shifts in rank importance of environmental variables could be 350 
due to a small change among two variables with similar effect sizes (Planque et al., 2007).  When 351 
using a combination of metrics, biases affecting a single metric can be avoided, producing more 352 
reliable results.  Details on how each metric was calculated are provided below. 353 

2.4.1 Inclusion of Variables in SDMs 354 
 355 
Model selection was based on AIC minimization.   356 

2.4.2 Linearity 357 
 358 
Selected model(s) could include an environmental variable with either one, two, or three equivalent 359 
degrees of freedom (edf) in its partial response function.  An edf of 1 was indicative of a linear 360 
model, whereas increasing edfs indicated greater non-linearity (Hastie, 1991).  Changes in edf 361 
between regimes were used to assess changes in linearity.   362 

2.4.3 Relative Importance of Variables 363 
 364 
To assess the relative importance of environmental variables, we compared the change in deviance 365 
(DD) in GAM outputs between a full model and models when one variable was removed.  DD was 366 
compared across variables to assess the rank importance of variables.  Changes in ranking between 367 
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regimes were interpreted as a qualitative indicator of non-stationarity.  This is a qualitative indicator 368 
because at times changes in rank can reflect small differences in DD among nearly equally ranked 369 
variables. 370 

2.4.4 Response Curve Shape 371 
 372 
Response curve shape refers to the graphical relationship between an environmental variable and the 373 
probability of fish occurrence.  The y-axis of response curves was presented on a logit scale.  374 
Response curve shape was assessed in a semi-quantitative manner in two stages.   First, we 375 
qualitatively inspected shifts in shape.  This step went beyond looking at changes in linearity, 376 
maximum value of the response curve, and response curve amplitude.  Secondly, we inspected the 377 
95% confidence intervals of response curves to evaluate overlap between different periods.  If the 378 
confidence intervals had a substantial amount of overlap, periods were classified as similar to each 379 
other regardless of qualitative differences in response curve shape.  In contrast, if confidence 380 
intervals did not overlap in entirety and response curve shape also differed, this was interpreted as an 381 
indication of non-stationarity.   382 

2.4.5 Degree of Responsiveness 383 
 384 
The degree of responsiveness of a fish to an environmental variable was estimated based on the 385 
amplitude of the SDM response curve.  A larger amplitude suggested that a fish was more responsive 386 
to a variable.  To assess whether this metric differed between periods, we ran a bootstrap analysis in 387 
which observations were selected randomly with replacement 1,000 times for each species and 388 
regime (Efron and Tibshirani, 1998).  The number of observations randomly selected during each 389 
bootstrap iteration was the same as the sample size for each SDM (Table S2).  No spatio-temporal 390 
weighting was used when resampling data during bootstrap analysis.  GAMs were recalculated for 391 
each dataset and response curves were plotted.  We performed this analysis only for the most 392 
parsimonious model(s) selected with the AIC.  Bootstrap permutations were used to develop 95% 393 
confidence intervals for response curve amplitude.  In cases where multiple models were selected 394 
based on AIC scores, bootstraps were run separately for each model and confidence intervals were 395 
constructed jointly across models by weighting each model based on wi.  A lack of overlap between 396 
confidence intervals across regimes was an indication of non-stationarity. 397 

2.4.6 Range of Environmental Variables Associated with Maximum Larval Occurrence 398 
 399 

The sixth non-stationarity metric was the range of an environmental variable that maximized the 400 
probability of fish occurrence.  A bootstrap was used to determine environmental conditions 401 
associated with maximum larval occurrence across 1,000 SDM realizations.  For each bootstrap 402 
iteration, we identified the maximum value of the response curve and the corresponding value of the 403 
environmental variable at this maximum.  These values were sorted from smallest to largest and we 404 
identified the lower 2.5th and upper 97.5th percentiles of this empirical distribution.  These 95% 405 
confidence intervals were used to assess whether the range of conditions associated with maximum 406 
larval habitat suitability differed between regimes.  Weighted means of confidence intervals were 407 
used in cases where multiple models were selected for a regime.  408 

2.5. Future Projections 409 
 410 
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An ESM was used to make future projections of habitat suitability.  ESM projections focused 411 
specifically on quantifying uncertainty associated with ecological and climatic change points and 412 
determining their importance compared to other sources of projection uncertainty.  ESM output was 413 
obtained from the World Climate Research Programme’s Coupled Model Intercomparison Project – 414 
Phase 6 (CMIP6).  CMIP6 output is publicly available from Lawrence Livermore National 415 
Laboratory.3  Our criteria for model selection from the CMIP6 ensemble were that ensemble 416 
members needed to contain output on all environmental variables used in SDMs for a historical 417 
simulation (1980-1999) and two future simulations (2080-2099).  The historical period was selected 418 
to be 100 years earlier than the period used for future simulations.  The two future climate change 419 
scenarios considered were Shared Socioeconomic Pathway (SSP) 5-8.5 and 1-2.6, which 420 
corresponded, respectively, to a high-end greenhouse gas emissions scenario and a climate change 421 
mitigation scenario consistent with the Paris Agreement (O’Neill et al., 2016).  When data were 422 
downloaded from the CMIP6 archive (18 December 2019), only one ESM had full data available for 423 
all four variables, all three simulations, and both 20-year periods.  This model, known as CNRM-424 
CERFACS-ESM2.1 (abbreviated name: CNRM-ESM2), was developed by the French National 425 
Centre for Meteorological Research and couples the CNRM-CM6-1 atmosphere-ocean general 426 
circulation model with the PISCESv2-gas ocean biogeochemistry model (Séférian et al., 2019).  The 427 
ESM has an approximately 100-km latitudinal/longitudinal resolution and 75 depths.  PISCESv2-gas 428 
tracks 26 biogeochemical state variables and four plankton functional groups (diatoms, 429 
nanophytoplankton, microzooplankton, and mesozooplankton).   430 

Monthly CNRM-ESM2 data on environmental variables were extracted from the core CalCOFI 431 
region (29.8-35.2°N and 117.3-125.9°W).  This included 63 model grid cells, resulting in a similar 432 
number of grid cells to the number of CalCOFI stations.  CNRM-ESM2 included 19 depth layers 433 
over the upper 50 m of the water column.  Shape-preserving piecewise cubic interpolation was used 434 
to calculate the temperature, salinity, and DO exactly at 50 m by interpolating between the 18th and 435 
19th model depth layers.  We computed the mean of each variable over the upper 50 m, weighting this 436 
average by the width of each depth layer.  Units of DO and mesozooplankton concentration differed 437 
between CNRM–ESM2 and CalCOFI.  Unit conversions were applied to allow CNRM-ESM2 output 438 
to be used as independent variables in GAMs developed for SPF species (Supplementary Material 439 
1.2). 440 

Many ESMs overestimate coastal temperatures and underestimate primary production in Eastern 441 
Boundary Upwelling Systems (Stock et al., 2011; van Oostende et al., 2018).  To compensate for 442 
this, we performed a bias correction on variables from CNRM-ESM2 using the delta method (Hare et 443 
al., 2012).  Biases were estimated using the monthly mean climatology from CalCOFI observations 444 
for 1980-1999.  Next separate GAMs were run for each species and regime using CNRM-ESM2 data 445 
as independent variables.  Projections were made for 1980-1999 and 2080-2099 with the SSP5-8.5 446 
and SS1-2.6 scenarios.  Mean habitat suitability for SPF species was computed for each grid cell and 447 
month, with 95% confidence intervals based on variations between years during each period.  In this 448 
context, habitat suitability is equivalent to the modeled probability of larval occurrence and has a 449 
range between 0 (larval absence) and 1 (larval presence).  Spatio-temporally integrated habitat 450 
suitability (IHS) for a given year was also calculated by summing suitability scores across CRNM-451 
ESM2 grid cells during spring (i.e., the peak season for occurrence of most SPF species, 452 
Supplementary Material 1.2). IHS is unitless and its value is dependent on the number of grid cells 453 
and months in the integration.  In cases where multiple models were selected, IHS was calculated 454 

 
3 https://esgf-node.llnl.gov/projects/cmip6/ 
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based on the weighted means of models.  A two-way crossed ANOVA assessed whether SSP 455 
scenario and GAM model period had a significant effect on IHS.  The mean coefficient of variation 456 
(CV) was calculated for the historical and SSP5-8.5 scenarios to assess if variations in IHS were 457 
projected to increase under unmitigated climate change.  Mean CVs were calculated as a function of 458 
species, regime shift type, environmental variables, and indicators of non-stationarity.  For 459 
environmental variables and non-stationarity indicators, CV calculations only included GAMs where 460 
there was some indication of non-stationarity for a particular variable or metric.  Instances of non-461 
stationarity associated with the rank importance of variables were not included in CV calculations 462 
since it was not possible to attribute changes to a single environmental variable. 463 

3 Results 464 

3.1 Change Point Detection 465 

3.1.1 Oceanic Variables 466 

Across all oceanic variables, the first principal component (PC1) of their time series accounted for 467 
63.3-91.2% of variance, whereas the second principal component (PC2) accounted for a reduced 468 
percentage of variance (4.9-17.2%; Table 1).  PC1 captured region-wide variations in temperature, 469 
salinity, DO, and ZDV at an interannual scale.  PC2 was characterized by onshore-offshore 470 
differences where nearshore and offshore stations exhibited PCA loadings in different directions. 471 
This pattern was consistent across PC2 for all variables. 472 

Each oceanic variable’s principal component time series exhibited distinct temporal patterns (Fig. 2).  473 
PC1 for temperature was primarily negative at the start of the time series, exhibited mainly positive 474 
values during the warm phase of the PDO between 1977-1998, displayed anomalies centered around 475 
zero during much of the 2000s and early 2010s, and rose sharply at the end of the time series in 476 
2014-2015 coincident with MHW onset (Fig. 2A; Di Lorenzo and Mantua, 2016).  In contrast, PC1 477 
of salinity was less closely correlated with the PDO, as has also been shown by Di Lorenzo et al. 478 
(2008).  Instead, this PC exhibited greater variability at the interannual rather than decadal scale (Fig. 479 
2B).  PC1 for DO was characterized by heightened variability at the start of the time series, with 480 
greater stability in more recent years (Fig. 2C).  Similar to the results for temperature, the PDO 481 
seemed to have a substantial influence on the zooplankton PC1 (Pearson correlation coefficient r=-482 
0.49, p=0.0001, d.f.=54).  Zooplankton PC1 was characterized primarily by positive anomalies up 483 
until the mid-to-late 1970s and experienced a period dominated by negative anomalies after the PDO 484 
entered its warm phase (Fig. 2D).   485 

The change point detection algorithm did not identify any regime shifts in the PC1 time series of 486 
temperatures, salinity, or DO.  There was a 93.6% probability of zero change points detected in the 487 
temperature time series, 99.3% probability of zero salinity change points, and 63.7% probability of 488 
zero DO change points.  In contrast, the posterior probability distribution indicated a 75.8% 489 
probability of two change points in the zooplankton PC1 time series, with 24.2% chance of one 490 
change point.  The highest probabilities of change points were detected in 1968 and 1983.  Prior to 491 
1968, the PC1 time series for ZDV consistently exhibited positive anomalies (Fig. 2D).  During 492 
1969-1983, ZDV was characterized by highly variable and declining abundance, while after 1983 this 493 
time series was fairly stable with anomalies close to zero. 494 

3.1.2 SSB 495 
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With a posterior probability of 78.1%, one change point was detected in the time series of E. mordax 496 
SSB (Fig. 3A).  This change occurred in 1963, separating a period of low, but recovering SSB from a 497 
period when this species was fairly abundant.  A decline in E. mordax biomass was observed at the 498 
end of this time, but there was only a 21.9% posterior probability that this decline was associated 499 
with a second change point. 500 

For S. sagax, there was a 99.9% probability that its time series contained two change points, which 501 
were detected in 1963 and 1997 (Fig. 3B).  The 1963 change was associated with a decline in S. 502 
sagax biomass and its subsequent recovery.  The precise date of this change is uncertain because of a 503 
discontinuity in the S. sagax time series due to a lack of stock assessments between 1964-1980.  504 
However, the fact that E. mordax also exhibited a change point during 1963 bolsters confidence in 505 
this result for S. sagax and suggests asynchronous dynamics between species.  The second change 506 
point for S. sagax detected in 1997 was associated with stable, high fish biomass, with some declines 507 
near the time series end. 508 

Log-transformed S. japonicus SSB was in decline throughout most of the period when biomass 509 
estimates were available (Fig. 3C).  With a posterior probability of 92.5%, no change points were 510 
detected for S. japonicus. 511 

3.2 Non-stationarity Detection Using GAMs 512 

Assessment of non-stationarity in models of all four species for each of the three types of regime 513 
shifts is described in the Supplementary Material 2.1-2.3 and Figs. S3-11.  Here we provide an in-514 
depth, illustrative summary for one species as a case study and then compare general trends across all 515 
species and regime shift types.  516 

3.2.1 Case Study – Changes Points in S. sagax SSB 517 

For each SSB regime, a single model was selected for S. sagax where the selected GAM had an 518 
Akaike weight >0.8 (Table S3).  This indicated a >80% likelihood that the selected model was the 519 
most parsimonious choice of the candidate models.  520 

Evidence of non-stationarity in how S. sagax relates to oceanic variables was found across all 521 
indicators.  For the first indicator (inclusion of different variables in the selected GAM), non-522 
stationarity was indicated by the fact that the model formulation changed across regimes.  During the 523 
first two SSB regimes (1951-1963 and 1964-1997), temperature, salinity, and ZDV were included in 524 
the selected model, but DO was excluded (Table S2).  In contrast, during the regime from 1998-2015, 525 
ZDV was excluded from the model. 526 

The second indicator of non-stationarity was related to changes in whether fishes had linear or non-527 
linear relationships with oceanic variables.  In most models, the best-fit GAM included non-linear 528 
terms, with an edf of 3 (Table S2).  Evidence of non-stationarity was observed since salinity initially 529 
had a linear relationship with larvae occurrence, which later became non-linear (Table S2, Fig. 4). 530 

Non-stationarity changes in the ranked importance of oceanic variables were also observed.  Ranking 531 
of salinity declined over time, while DO ranking increased (Fig. 5J).  Temperature and ZDV 532 
exhibited variability in their ranking, but without long-term trends. 533 

Changes in response curve shape was the fourth indicator of non-stationarity.  Temperature response 534 
curves had a negative, parabolic shape during the 1951-1963 and 1964-1997 regimes.  During 1998-535 
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2015, the temperature response curve had a flatter shape, and a higher probability of encountering S. 536 
sagax larvae at low temperatures was observed (Fig. 4).  The flattened response curve shape during 537 
the third regime may indicate a reduced influence of temperature on sardine distribution, which is 538 
also consistent with changes in the relative ranking of temperature during this regime (Fig. 5J).  S. 539 
sagax were most frequently encountered at higher salinities throughout all periods, but the salinity 540 
response curve shape changed across periods.  During 1951-1963, this species had a positive, linear 541 
relationship with salinity; during 1964-1997, this relationship had a negative, parabolic form; from 542 
1998-2015, S. sagax distribution was less responsive to variations in salinity as indicated by a 543 
flattened response curve (Fig. 4).  Less change in response curve shape was observed for ZDV since 544 
it exhibited a negative, parabolic response curve during both periods when included in GAMs (Fig. 545 
4).  Changes in curve shape could not be assessed for DO, since this variable was only included in 546 
the selected model during the third SSB regime.   547 

Changes in the amplitude (or range) of the response curve was the fifth indicator of non-stationarity.  548 
A decrease in response curve amplitude is suggestive of a reduced influence of a variable on larval 549 
fishes.  For temperature, response curve range was significantly larger during 1964-1997 than 1998-550 
2015 (Fig. 6I).  The period when S. sagax was most sensitive to temperature based on this indicator 551 
coincided with low biomass of this species (Fig. 3B).  No significant changes were seen in response 552 
curve range for salinity and ZDV.  Changes could not be assessed for DO since it was only included 553 
in the selected model during a single regime. 554 

Significant changes in the sixth indicator of non-stationarity (shifts in the peak of the response curve) 555 
were observed for several oceanic variables.  For temperature, S. sagax was most commonly found in 556 
areas with significantly cooler temperatures during 1998-2015 compared to prior periods (Fig. 7I).  557 
The maximum likelihood of detecting larvae occurred at significantly lower salinities in 1964-1997 558 
than 1951-1963 (Fig. 7J).  Sardine larvae were found in areas with significantly less zooplankton 559 
during 1964-1997 than 1951-1963 (Fig. 7L).  Since the former period was characterized by reduced 560 
ZDV (Fig. S1), this might reflect a change in the availability of zooplankton rather than an active 561 
shift in habitat selection. 562 

3.2.2 Comparisons Across Species and Regime Shift Types 563 

Every combination of species and regime type exhibited at least one indication of non-stationarity, 564 
implying that non-stationarity is ubiquitous across SPF in the CCS.  A summary of patterns observed 565 
across non-stationarity indicators, oceanic variables, species, and regime types is included below. 566 

A change in oceanic variables included in GAMs was observed across 60% of the combinations of 567 
species and regime shifts (Table 2).  Nearly half of the selected of the selected models contained all 568 
four environmental variables, but in several cases the most parsimonious model(s) excluded DO or 569 
ZDV (Table S2).  In a smaller number of cases, a simplified model containing 1-2 environmental 570 
variables was selected.    571 

Changes in the linearity of the relationship between fishes and environmental variables also occurred 572 
across 60% of the combinations of species and regime shifts (Tables 2 and S2).  Salinity and DO 573 
were the most common variables to exhibit changes in linearity.   574 

Changes in the ranked importance of oceanic variables were very common, with evidence of non-575 
stationarity occurring across all species (Fig. 5).  Temperature and salinity were frequently ranked as 576 
having the greatest or second greatest influence on fish larvae, with lower rankings more common 577 
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among DO and ZDV.  Among S. sagax and T. symmetricus, the relative ranking of DO increased 578 
during recent periods.   579 

Changes in response curve shape were observed across 80% of species and regime combinations 580 
(Table 2).  The only cases where pronounced changes in response curve shape were not detected was 581 
among shifts between PDO phases for E. mordax and S. japonicus (Figs. S3 and S5).  Of the four 582 
oceanic variables, temperature was the least likely to have a change in response curve shape, usually 583 
displaying a negative, parabolic shape (Figs. 4, S3-S11).  Like temperature, ZDV often exhibited a 584 
negative, parabolic response curve shape, especially at the start or mid-point of time series.  In many 585 
cases (e.g., Figs. S6-S8 and S11), ZDV response curves displayed a flatter shape during later periods, 586 
indicating a reduced influence of this variable.  The response curves for salinity and DO usually 587 
displayed wide confidence intervals at extrema, indicating reduced certainty in how fishes respond to 588 
these variables under conditions deviating from the mean.  Lastly, compared to other species, S. 589 
sagax displayed a greater propensity for changes in response curve shape (Figs. 4, S4, and S8). 590 

The amplitude of response curves, which is an indicator of sensitivity to oceanic variables, displayed 591 
non-stationarity across four of the ten combinations of species and regime shifts (Table 2).  Only one 592 
significant change in this indicator was observed across PDO and SSB regimes, whereas deviations 593 
from stationarity were more common among zooplankton regimes (Fig. 6).  Deviations from 594 
stationarity for this indicator were most common among S. sagax. 595 

Shifts in peak habitat use tied for the second most incidences of non-stationarity.  This indicator 596 
refers to changes in the range of environmental variables associated with maximum larval 597 
occurrence.  For 80% of species and regime shift combinations, at least one oceanic variable 598 
exhibited non-stationarity for this indicator (Table 2).  Multiple species exhibited changes in the 599 
temperature and salinity at which their response curve peaked (Fig. 7), but no overarching pattern of 600 
change between periods was identified amongst these variables.  In contrast, whenever there was a 601 
significant change in peak DO use, fishes tended to occur in areas with higher DO in more recent 602 
years (Fig. 7G and K).  In four out of five cases where there was a significant change in peak use of 603 
ZDV, fishes occurred in areas with less ZDV during more recent years (Fig. 7D, H, and L).  This 604 
may be related to long-term declines in ZDV in this ecosystem (Roemmich and McGowan, 1995; 605 
Lavaniegos and Ohman, 2007).  Compared to other species, S. sagax was most likely to display 606 
significant changes in this indicator.   607 

When integrating across all indicators, S. sagax was the species whose relationship with oceanic 608 
variables displayed the most signs of non-stationarity (Table 2).  S. japonicus and E. mordax 609 
displayed the fewest indications of non-stationarity, even though some non-stationarity was detected 610 
for them across >50% of the indicators and regime shift types.  Non-stationarity was most common 611 
among salinity and DO, whereas the relationship between fish presence/absence, temperature, and 612 
ZDV exhibited slightly more stability.  Among different regimes, non-stationarity was observed most 613 
frequently for SSB regimes when integrated across indicators (Table 2). 614 

3.3 Future Projections 615 

CNRM-ESM2 was used to produce end of the 21st century projections of suitable habitat for larval 616 
fishes and assess whether these projections differed significantly depending on which ecological or 617 
climatic regime was used to parameterize projection models.  For E. mordax, S. sagax, and S. 618 
japonicus, habitat suitability declined during future projections, with a steeper loss in suitable habitat 619 
under SSP5-8.5 (Fig. 8).  For this scenario, decreases in mean IHS varied between 40.5-90.8% 620 
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relative to the historical baseline.  Under SSP1-2.6, declines in suitable habitat never exceeded 53.1% 621 
for any species or regime.  In contrast to other species, T. symmetricus habitat suitability was 622 
projected to increase under SSP1-2.6 and SSP5-8.5 during spring (Fig. 8D and H).  623 

Two-way ANOVAs indicated that GAM model choice had a significant effect on habitat suitability 624 
in most cases (Table 3).  The two exceptions to this occurred among E. mordax during regimes 625 
defined by PDO and SSB changes.  For most species and regime shift types, F statistics from 626 
ANOVAs were larger for the GAM effect than the SSP effect, implying that the period used to 627 
parameterize the GAM had a larger impact on habitat suitability than SSP scenario.  Furthermore, 628 
most species exhibited significant interactions between SSPs and GAMs from different regimes.  One 629 
common pattern among interaction terms was that GAMs parameterized during periods with greater 630 
habitat suitability tended to undergo larger changes under future climate scenarios. 631 

Changes in the mean CV between the historical and SSP5-8.5 scenarios were assessed to determine if 632 
variability in suitable habitat may increase under climate change.  Increased variability was observed 633 
for all species, except T. symmetricus, under SSP5-8.5 (Table 4A).  Variance in IHS was greater 634 
under regimes defined by changes in ZDV than other types of regimes (Table 4B).  Regimes 635 
characterized by non-stationarity in salinity and ZDV exhibited greater variability than regimes with 636 
non-stationarity in temperature and DO (Table 4C).  However, many regimes exhibited concurrent 637 
non-stationarity across multiple environmental variables, making it challenging to partition these 638 
effects among variables.  The largest increases in variability under climate change were observed 639 
when there was non-stationarity associated with shifts in which variables were included in GAMs 640 
and changes in response curve amplitude (Table 4D).  641 

4 Discussion 642 

Non-stationary relationships between organismal distribution and climate can result in inaccurate 643 
projections of how species respond to climate change, but this subject has not been widely 644 
investigated across ecosystems (Litzow et al., 2019).  We found that indications of non-stationarity 645 
were nearly ubiquitous among SPF species when models were constructed for three types of regime 646 
shifts.  Non-stationarity most frequently resulted in changes in response curve shape, shifts in the 647 
peak range of conditions where larvae occurred, and changes in the relative importance of oceanic 648 
variables.  Non-stationarity was most frequently associated with changes in ecological conditions, 649 
such as shifts in fish SSB or ZDV, rather than changes in the PDO.  Relationships between fishes and 650 
temperature were more stable than other environmental variables.  This might partially reflect greater 651 
uncertainty in relationships between fish distribution, salinity, and DO, which is indicated by the 652 
large confidence intervals associated with these variables’ response curves.  For several combinations 653 
of regimes and species, DO had a greater influence on distribution in recent years (Figs. 5 and 7).  654 
Often the effects of non-stationarity on larval habitat suitability were larger than changes projected 655 
under high and low greenhouse gas emissions.   656 

4.1 Non-stationary Fish-Environment Relationships 657 

Among fishes, non-stationarity can affect how environmental factors influence species distribution, 658 
recruitment, and fisheries productivity.  Here we integrate our discussion across these types of non-659 
stationarity.  While non-stationarity has not been frequently considered in the scientific literature, 660 
when it has been investigated, results are similar to ours in that changes in organismal-environmental 661 
relationships are widespread.  In studies comparing whether fish and invertebrate density, biomass, 662 
recruitment, and catch can be best modeled with stationary or non-stationary models, there is a 663 
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pattern where the best fit model is usually non-stationary (Ciannelli et al., 2007; Lindegren and Eero, 664 
2013; Beggs et al., 2014; Litzow et al., 2018; van der Sleen et al., 2018; Puerta et al., 2019).  Similar 665 
results have been seen among non-marine taxa.  For example, among British butterflies, changes in 666 
distribution in response to warming were not consistent across periods (Mair et al., 2012). 667 

Among SPF, non-stationarity has been observed in multiple ecosystems and may be related to the 668 
boom-bust cycles of abundance common to this functional group.  In the Northwest Atlantic, Atlantic 669 
menhaden (Brevoortia tyrannus) occurrence has a non-stationary relationship with temperature 670 
modulated by the North Atlantic Oscillation (Roberts et al., 2019).  Changes in sardine (S. sagax) and 671 
anchovy (E. encrasicolus) spawning habitat preferences in the southern Benguela could be partially, 672 
but not fully, explained by warming, suggesting non-stationarity relationships occur among these 673 
stocks (Mhlongo et al., 2015).  Among Japanese anchovy (E. japonicus), temperature where fish 674 
occurred as eggs and larvae differed between 1978-1991 and 1992-2004, which is suggestive of non-675 
stationarity (Takasuka et al., 2008).   676 

It is unclear whether SPF are more likely to exhibit non-stationary dynamics than other fishes.  SPF 677 
are adapted to environments with a high degree of climate variability (Checkley et al., 2017), which 678 
could be indicative of resilience to fluctuating conditions.  Conversely, SPF are more subject to 679 
population collapse than other fishes (Pinksy and Byler, 2015), suggesting highly non-linear and 680 
unstable dynamics.  Fernandes et al. (2020) showed that SDMs have a reduced capacity to predict the 681 
normalized biomass of pelagic species compared to benthic species.  However, the mechanism 682 
behind this observation is unclear and could be due to either greater non-stationarity among pelagic 683 
fishes or differences in sampling efficacy. 684 

4.1.1 Non-stationarity in the California Current System (CCS) 685 

Within the CCS, evidence has previously suggested that non-stationarity may be common among S. 686 
sagax, but much less research has investigated dynamics of other SPF.  One early publication 687 
indicating that S. sagax has a variable relationship with environmental conditions is Lynn (2003) who 688 
found that SST delimits the northern extent of S. sagax spawning habitat, but that the specific limit 689 
differs between years.  Several studies have documented that the relationship between temperature 690 
and S. sagax recruits per spawner is sensitive to time period and source of temperature data (Jacobson 691 
and MacCall, 1995; McClatchie et al., 2010; Lindegren and Checkley, 2012; Zwolinski and Demer, 692 
2019).  Muhling et al. (2020) found indications of non-stationarity for S. sagax during the 2014-2017 693 
MHW when fish occurred at temperatures warmer than projected by SDMs.  Our results expand upon 694 
Muhling et al. (2020) by identifying changes in the sensitivity of S. sagax to environmental variables 695 
during earlier periods, indicating that non-stationarity during the MHW was not solely due to the 696 
inability of S. sagax to avoid unfavorable habitats during rapid change.  Our results confirm that non-697 
stationarity among S. sagax can occur in absence of novel environmental conditions, such as those 698 
associated with an MHW.  Instead, non-stationarity likely emerges due to interplay between multiple 699 
factors (e.g., variations in population size, prey availability, interactions between oceanic conditions, 700 
shifts in where and when fish spawn). 701 

Our results help explain some contradictions between earlier publications on SPF spawning habitat.  702 
There is generally a consensus that the northern stock of S. sagax spawns at 12-16° C, with several 703 
publications indicating peak spawning at temperatures around 13-14° C (Checkley et al., 2000; Lynn, 704 
2003; Reiss et al., 2008; Zwolinski et al., 2011; Asch and Checkley, 2013).  Our results are consistent 705 
with this consensus, although there are variations between periods in how quickly optimal spawning 706 
habitat declines at temperatures moving away from this peak.  E. mordax generally spawn at 12-18° 707 
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C, but the exact range of temperatures occupied by this species varies between studies, which may 708 
reflect variations in the rate at which response curves decline moving away from peak temperatures 709 
(Fiedler, 1983; Lluch-Belda et al., 1991; Checkley et al, 2000; Weber and McClatchie, 2010; Reiss et 710 
al., 2008; Asch and Checkley, 2013).  Checkley et al. (2000) and Asch and Checkley (2013) found 711 
that S. sagax eggs were most frequently observed at intermediate salinities of 33.0-33.4 psu, whereas 712 
Weber and McClatchie (2010) identified a monotonically decreasing relationship between S. sagax 713 
larvae and salinity.  This contradiction likely reflects the fact that each study considered a different 714 
period since the shape of salinity response curves is sensitive to the years used to parameterize 715 
SDMs.  In contrast, all previous research including ours indicate that E. mordax spawn at higher 716 
salinities in the southern CCS (Checkley et al., 2000; Weber and McClatchie, 2010; Asch and 717 
Checkley, 2013).  However, given that this species resides in the Columbia River plume in the 718 
northern CCS (Kaltenberg et al., 2010), phenotypic plasticity or local adaptation might influence E. 719 
mordax larval occurrence with regard to salinity.  Different studies have identified positive and 720 
negative relationships between S. sagax and zooplankton concentration (Checkley et al., 2000; Lynn, 721 
2003; Agostini et al., 2007).  While this might reflect differences in the life stage of S. sagax studied, 722 
variations in zooplankton species composition, or spurious correlations, non-stationary relationships 723 
provide an alternative explanation.   724 

Less research has been conducted on the relationship between SPF and DO in the southern CCS.  725 
Koslow et al. (2013) suggested that there was a positive relationship between DO and S. sagax 726 
larvae, which is consistent with our results across the majority, but not all, regimes.  Howard et al. 727 
(2020) indicated that the distribution of E. mordax is sensitive to DO, especially at high temperatures, 728 
which is comparable to our results from recent years, although other patterns are seen early in the 729 
CalCOFI time series.  These two papers mainly focused mid-water column depths because projected 730 
declines in DO concentration under climate change are maximized across this range (Dussin et al., 731 
2019).  Our research focused on environmental conditions in the upper 50 m of the water column 732 
coincident with the peak vertical distribution of SPF eggs and larvae.  Since hypoxic conditions at 733 
these depths only occur during extreme upwelling, the reaction of SPF larvae to DO in our study is 734 
more representative of the influence of DO as an indicator of water mass characteristics rather than as 735 
a physiological stressor. 736 

Less research has been conducted on environmental influences on the species distribution of S. 737 
japonicus and T. symmetricus in the southern CCS.  Our results are consistent with prior studies of 738 
the influence of temperature and salinity on their spawning distribution (Weber and McClatchie, 739 
2012; Asch and Checkley, 2013).  However, this is less so for ZDV.  For S. japonicus, Weber and 740 
McClathie (2012) found that larvae were most likely to be present at intermediate ZDVs of ~5-7 log 741 
cm3 1,000 m-3.  While we observed a similar relationship between ZDV and S. japonicus larvae 742 
during 1951-1968 (Fig. S9), this pattern was not apparent in other periods.  Asch and Checkley 743 
(2013) identified the highest probability of T. symmetricus eggs at low ZDV.  The current study 744 
identified a similar pattern during 1984-2015, which coincides with years examined by Asch and 745 
Checkley (2013).  However, differing relationships between T. symmetricus distribution and ZDV 746 
were observed during earlier periods.   747 

T. symmetricus was the only species to experience a projected increase in IHS under SSP1-2.6 and 748 
SSP5-8.5.  We hypothesize that this increase in suitable habitat is related to a shift in spawning 749 
phenology of T. symmetricus under climate change.  Future projections were made for March-May 750 
since an empirical formula for converting between mesozooplankton carbon biomass from CNRM-751 
ESM2 to ZDV was only available for this season (Supplementary Material 1.2).  While these months 752 
coincided with the seasonal peak in larval concentration for E. mordax, S. sagax, and S. japonicus, 753 
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maximum concentrations of T. symmetricus are observed in June (Moser et al., 2001).  Asch (2015) 754 
identified T. symmetricus as belonging to a group of fishes whose phenology has become earlier in 755 
recent decades in response to warming.  The projected future increase in habitat suitability for T. 756 
symmetricus during March-May likely represents a continuation of this shift towards earlier 757 
spawning phenology. 758 

Since fish-environmental relationships change over time, this emphasizes the importance of 759 
accurately detecting timing of regime shifts.  Our study analyzed change points associated with the 760 
1976/1977 PDO phase change, 1968/1969 and 1983/1984 shifts in ZDV, changes in S. sagax and E. 761 
mordax SSB in 1963/1964, and a second shift in S. sagax SSB in 1997/1998.  No change points were 762 
detected in time series of temperature, salinity, and DO, which may reflect that biological time series 763 
often have more non-linear dynamics than physicochemical variables (Hsieh et al., 2005).  The 764 
change points detected were well supported by other studies of the southern CCS.  The 1976/1977 765 
PDO transition was associated with reduced survival young-of-year E. mordax (Nishikawa et al., 766 
2019).  The presence of a mid-1960s regime shift was consistent with an analysis of 35 species of 767 
CCS ichthyoplankton (Peabody et al., 2018).  Other ichthyoplankton studies have identified faunal 768 
shifts during 1983/1984 and the late 1990s (Miller and McGowan, 2013; Peabody et al., 2018; 769 
Thompson et al., 2019a), which approximately coincide with our change points in ZDV and S. sagax 770 
SSB, respectively.  Unlike previous studies, we did not detect a 1989/1990 regime shift (Miller and 771 
McGowan, 2013; Koslow et al., 2015; Peabody et al., 2018).  This might reflect that this change 772 
point seems to be principally associated with shifts among a few highly abundant taxa in the southern 773 
CCS (Peabody et al., 2018).  Our Bayesian change point algorithm indicated that there was some 774 
uncertainty in the exact year of transitions (Figs. 2-3).  This uncertainty may reflect gaps in CalCOFI 775 
time series coverage, discontinuities in stock assessments, the decision to log-transform SSB prior to 776 
change point detection, and uncertainty related to parameter choice during change point detection 777 
(Overland et al., 2008; Peabody et al., 2018).  For instance, the choice of minimum regime length 778 
affects detection of recent ecological shifts, such as the crash and subsequent recovery of E. mordax 779 
(Thayer et al., 2017; Thompson et al., 2019b). 780 

4.2 Mechanisms Responsible for Non-stationary Dynamics 781 

Currently there is limited capacity for predicting the occurrence of non-linear ecosystem regime 782 
shifts.  A meta-analysis of 4,600 global change impacts concluded that such shifts were rarely 783 
detectable in advance (Hildebrand et al., 2020).  While many regime shifts are characterized by 784 
increased time series variance (Lenton, 2011), this signal can be obscured by small variations in 785 
organismal responses (Hildebrand et al., 2020).  Similarly, Field et al. (2009) concluded that 786 
fluctuations in SPF abundance in paleo-ecological time series were characterized by red noise that 787 
was not predictable.  When combined with novel environmental conditions and changes in how fish 788 
react to oceanic variables across regimes, these factors challenge the ability of empirically derived 789 
models to make accurate future projections needed for management.  However, models that 790 
incorporate physiological principles and mechanistic ecological understanding may fare better. 791 

While our study did not directly investigate mechanisms responsibility for non-stationarity, some 792 
insights can be attained and may help generate hypotheses for future research.  Given the greater 793 
amount of literature on S. sagax and E. mordax, more hypotheses exist to explain non-stationary 794 
dynamics among these species.  Previous studies suggested that the relationships between these 795 
fishes and SST may be a proxy for other environmental factors (e.g., prey availability) that more 796 
directly influence population dynamics (Fiedler, 1983; Jacobson and MacCall, 1995).  This could 797 
lead to non-stationarity if relationships between SST and the direct influences on a species become 798 
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decoupled.  However, this seems unlikely to explain the non-stationarity observed here because the 799 
relationship between temperature and larval habitat exhibited greater stationarity than other variables.  800 
Previous studies have indicated that DO in the CCS is correlated with variations in nutrient and 801 
chlorophyll concentration, water mass characteristics, and geostrophic flow (Weber and McClatchie, 802 
2010; Koslow et al., 2013).  Since the relationship between DO and larval presence/absence was 803 
subject to greater non-stationarity, changes in the strength of these correlations could be possibly 804 
responsible for this non-stationarity. 805 

Changes in modes of climate variability and trophodynamic relationships have also been 806 
hypothesized to be mechanisms responsible for non-stationarity in SDMs (Litzow et al., 2019).  We 807 
observed slightly more non-stationarity across zooplankton regime changes than PDO shifts, 808 
suggesting support for trophodynamic changes as an underlying cause of non-stationarity.  Related to 809 
this point, it must be noted that an environmental variable needs to exceed an organism’s tolerance 810 
range to affect its distribution.  Under modes of climate variability that are favorable to an organism, 811 
this tolerance range might not be exceeded.  However, values outside of their tolerance may be 812 
experienced by fishes during the opposite phase of climate variability or as the climate continues to 813 
change.  This mechanism could lead to the appearance of non-stationarity when using SDMs 814 
parameterized with data from different periods. 815 

Additional mechanisms for explaining non-stationarity are related to migration and dispersal.  Since 816 
larvae are subject to advection, they do not have complete control over habitats occupied, which 817 
could increase the likelihood of non-stationarity (Brun et al., 2016).  Conversely, movement by adults 818 
can help fishes track favored environmental conditions whereas less migratory species may be unable 819 
to follow such conditions (Reglero et al., 2012).  This would imply that less migratory species may 820 
be subject to greater non-stationarity.  However, migratory species may be equipped to face a greater 821 
variety of conditions encountered along migration pathways, implying that their distribution may be 822 
less tightly coupled with oceanic conditions.  S. sagax displays greater seasonal migratory behavior 823 
than E. mordax (Zwolinski et al., 2011) and exhibited a greater incidence of non-stationarity.  This 824 
suggests the latter idea (i.e., migratory behavior is associated with fewer environmental distribution 825 
constraints) has more support based on our data.  Our results are also consistent with Planque et al. 826 
(2007), Weber and McClatchie (2010), and Muhling et al. (2020) who found that E. mordax 827 
distribution could be better fit by SDMs than S. sagax.  S. sagax tends to exhibit greater variability in 828 
distribution than E. mordax at interannual-to-decadal scales, expanding its distribution offshore and 829 
northward when abundant (MacCall, 1990).  This expansion, hypothesized to be driven by density-830 
dependent habitat use, may be responsible for greater non-stationarity among S. sagax.  831 

Beyond migratory behavior, there are at least two other hypotheses that could explain the high degree 832 
of non-stationarity among S. sagax.  This species is known to undergo demographic changes as its 833 
abundance fluctuates.  S. sagax reaches maturity at age 1 under low biomass and matures at age 2 at 834 
high biomass (Hill et al., 2008).  Such demographic changes can increase the sensitivity of species to 835 
environmental variability (Anderson et al., 2008), which could generate non-stationarity.  Another 836 
potential explanation could be related to intermixing between the U.S. and southern Baja California 837 
stocks of S. sagax, which use distinct thermal habitats (Lynn, 2003; Dorval et al., 2011).  838 
Nonetheless, the thermal history of habitat occupancy recorded in S. sagax otoliths from the southern 839 
CCS suggests intermixing of stocks is somewhat rare (Dorval et al., 2011).  840 

4.3 Non-Stationarity Among Oceanic Variables  841 
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Climate change projections for marine organisms may be improved by focusing on oceanic variables 842 
less likely to exhibit non-stationarity.  Of the variables considered, temperature most frequently 843 
exhibited stable relationships with larvae distribution (Table 2).  This reflects that temperature has a 844 
direct influence on biological processes as diverse as gene expression, enzyme kinetics, metabolism, 845 
consumption, and growth in poikilotherms (Hare et al., 2012).  Most marine fishes do not change 846 
their mean temperature of occurrence over time (Nye et al., 2009) and track climate velocity by 847 
shifting their distribution and depth to reflect changing temperatures (Pinsky et al., 2013).  Rates of 848 
evolution of thermal niches are projected to be much slower than rates of future environmental 849 
change, leading to niche conservatism (Jezkova and Wiens, 2016).  Consequently, SDMs driven by 850 
thermal preferences may be more reliable for making future projections than those with substantial 851 
influences from other variables.  Nonetheless, multivariate SDMs generally are better at predicting 852 
historical distribution than univariate models (McHenry et al., 2019).   853 

Salinity and ZDV exhibited an intermediate-to-high amount of non-stationarity.  Species were often 854 
less responsive to these variables during recent regimes as indicated by exclusion of these variables 855 
from models, flattened response curves, or decreases in their ranking (e.g., Figs. 4-5).  For ZDV, in 856 
some cases, fishes were less likely to display a unimodal response curve in recent years.  Some non-857 
stationarity observed among these variables may be related to the fact that their response curves had 858 
wider confident intervals near the minima and maxima of observed conditions.  Due to wide 859 
confidence intervals, it was not always possible to determine whether changes in response curves 860 
between regimes represented changes in larval occurrence or solely a lack of capacity to precisely 861 
quantify responses to infrequently observed states.  Brun et al. (2016) obtained similar results where 862 
SDMs displayed decreased skill near the edges of a species range where conditions were more 863 
extreme.  It is important to understand how species react to such extremes since they are projected to 864 
occur more frequent under climate change (Frölicher et al., 2018).  Laboratory experiments may be 865 
useful since they allow for replication of extremes observed infrequently in nature. 866 

DO often exhibited a greater influence on SPF during recent regimes (Figs. 5-6, S2).  Under climate 867 
change, DO in the CCS is projected to decline due to reduced solubility of oxygen in warmer water, 868 
increased stratification, changes in deep-water circulation causing reduced ventilation, and changes in 869 
upwelling strength (Rykaczewski and Dunne, 2010; Dussin et al., 2019).  These changes have been 870 
documented to influence the historical abundance of mesopelagic fishes in the southern CCS 871 
(Koslow et al., 2011) and are projected to affect the future persistence of E. mordax in the region 872 
(Howard et al., 2020).  Our findings are consistent with these patterns.   873 

4.4 Projection Uncertainty 874 

For climate change impacts to be considered in fisheries management, uncertainty in future 875 
projections must be quantified.  This is because managers will need to contemplate both best- and 876 
worst-case scenarios in the planning process (Cheung et al., 2016a).  In ecological models, 877 
uncertainty can result from incomplete observational records, different approaches to conceptual and 878 
numerical model formulation, parameter estimation, model selection, choice of spatiotemporal scale, 879 
and adaptability of living systems (Planque et al., 2011).  Future research should consider non-880 
stationarity in fish-environmental relationships as another source of model uncertainty.  Here we 881 
showed that the period used to parameterize SDMs can have a substantial impact on future 882 
projections due to non-stationarity, with the magnitude of this effect sometimes exceeding the effect 883 
of different climate scenarios.  One understudied area with respect to climate change uncertainty is 884 
whether there might be interactions between different sources of uncertainty.  We found that an 885 



  Running Title 

 
22 

This is a provisional file, not the final typeset article 

interaction exists between uncertainty due to non-stationarity and SSP scenario, with an increasing 886 
effect of non-stationarity at higher emissions.   887 

As with most SDMs, there are a number of qualifications that may affect our results.  To take 888 
advantage of the multi-decadal CalCOFI time series, our analysis focused on the southern CCS, 889 
which does not encompass the full range of target species.  Nonetheless, given the pronounced 890 
onshore-offshore gradients sampled by CalCOFI, this dataset covers several oceanic water masses 891 
exhibiting different conditions (McClatchie, 2013).  Also, previous research has used CalCOFI to 892 
understand how environmental change affects fish distribution despite the dataset’s limited spatial 893 
extent (Hsieh et al., 2008; Hsieh et al., 2009; Howard et al., 2020; Muhling et al., 2020).  A second 894 
qualification is that some of the changes in how fishes respond to the environment could be related to 895 
interactions between multiple variables influencing fish distribution.  Similarly, changes in response 896 
curve shape may reflect the fact that partial responses from GAMs depend on the partial response of 897 
a species to other variables.  For example, the extent to which DO is a stressor depends on 898 
temperature (Howard et al., 2020).  GAMs often do not account for such interactions, but other 899 
SDMs do.  We evaluated non-stationarity across periods with change points in S. sagax SSB using a 900 
second model that accounts for such interactions (the non-parametric probabilistic ecological niche 901 
model; Beaugrand et al., 2011; R.G. Asch unpublished data).  Since non-stationarity was also 902 
common when using this alternative SDM, the high incidence of non-stationarity in the GAMs 903 
cannot be explained solely by multivariate interactions.  Our models purposely did not include SSB 904 
as an independent variable because it is unlikely that future SSB would be precisely known when 905 
projecting climate change impacts.  However, SSB can influence S. sagax and S. japonicus larval 906 
distribution (Weber and McClatchie, 2010, 2012).  Models may display fewer incidences of non-907 
stationarity due to density dependence if different SSB scenarios are included in long-range 908 
projections.  Another critique of SDMs is that they do not typically allow for acclimation or 909 
adaptation to changing conditions.  However, it is also unclear how important these processes are for 910 
fishes since thermal niches evolve slowly (Jezkova and Wiens, 2016). Also, fishes may migrate 911 
towards preferred conditions prior to acclimation (Habary et al., 2016). 912 

4.5 Recommendations for Improving SDM Projections for Marine Fishes 913 

Moving forward, it is important to determine if the high incidence of non-stationarity detected here is 914 
widespread or mainly a characteristic among SPF larvae in upwelling systems.  For populations 915 
likely subject to non-stationary environmental relationships, we recommend validating SDMs with 916 
independent datasets whenever possible.  Cross-validation with a subset of the original dataset can 917 
result in potential overestimation of model skill due to temporal and spatial autocorrelation or 918 
overfitting (Araújo et al., 2005; Planque et al., 2011).  Some measures of model skill, such as the true 919 
skill statistic, perform similarly regardless of the time lag between datasets used for model 920 
development and testing (Brun et al., 2016).  Wider use of the true skill statistic could help 921 
realistically assess model skill when an independent dataset is unavailable for validation.  Since 922 
variables exhibiting indications of non-stationarity were more likely to have SDM response curves 923 
with wide confidence intervals, we recommend that response curve confidence intervals be more 924 
frequently reported.  Nonetheless, some climate-envelope models may underestimate confidence 925 
intervals associated with the centroid of species distribution (Thorson et al., 2018).   926 

Another suggestion for guarding against non-stationarity and improving confidence in SDM 927 
projections is to compare model-derived environmental niches against those from physiological 928 
experiments (Asch and Erisman, 2018; Muhling et al., 2020).  Alternatively, physiologically based 929 
thermal tolerances can be used to parameterize SDMs (Hare et al., 2012).  However, it is not unusual 930 
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to see discrepancies between laboratory-derived and field-based estimates of thermal niche due to 931 
differences between fundamental and realized niches (Henderson et al., 2019).  Related to this, fishes 932 
may not fully occupy suitable habitat within their realized niche during low abundance (Planque et 933 
al., 2007), which can lead to non-stationary relationships.  Using thresholds GAMs where a threshold 934 
is prescribed based on fish biomass is a common way to mitigate against such dynamics (Lindegren 935 
and Eero, 2013; Beggs et al., 2014; van der Sleen et al., 2018).   936 

Obtaining reliable projections of fish species distribution, phenology, and population dynamics is 937 
important, because it allows fisheries managers to better engage in adaptive management.  Networks 938 
of marine protected areas and the timing of seasonal fishing closures may need adjustment as fishes 939 
undergo range shifts or phenological changes (McLeod et al., 2009; Peer and Miller, 2014).  940 
Fisheries independent surveys can be made more efficient when relationships between fish 941 
distribution and the environment are used to adaptively adjust sampling (Zwolinski et al., 2011).  942 
Most stock assessments assume population processes affecting fisheries are stationary, which can 943 
create retrospective bias in estimates of population parameters if there has been a change in fishery 944 
productivity (Szuwalksi and Hollowed, 2016). Stock assessments may be improved by incorporating 945 
environmentally variable recruitment, growth, mortality, or catchability into assessments (Adams et 946 
al., 2015; Pershing et al., 2015; Tommasi et al., 2017).  If the productivity of stocks changes as a 947 
function of climate, it may be necessary to adjust acceptable biological catch to meet management 948 
objectives (Vert-pre et al., 2013).  Alternative approaches to dealing with non-stationarity when 949 
setting management targets include adopting targets that harvest a constant fraction of the stock and 950 
only considering the most recent regime when parameterizing stock assessments (Vert-pre et al., 951 
2013; Szuwalski and Hollowed, 2016).  Management strategy evaluation also relies on robust 952 
assessments of climate change impacts on fishes when assessing which strategies produce resilient 953 
fisheries (Szuwalski and Hollowed, 2016).  Non-stationary relationships that create greater 954 
uncertainty in future projections may reduce the reliability of these management strategies for 955 
adapting to change.  However, this challenge only further underscores the importance of adaptive 956 
management to account for the non-stationary reactions of fishes. 957 

In conclusion, we determined that non-stationary relationships between larval occurrence and 958 
environmental variables were nearly ubiquitous in the CCS, occurring across multiple types of 959 
indicators, regime shifts, oceanic variables, and species.  This has implications for the robustness of 960 
future projections of species distribution changes since most projections rely on statistical models 961 
that assume stationary relationships.  Differences between alternative projections became amplified 962 
under climate change, suggesting this source of uncertainty may become increasingly important in 963 
the future.  Nonetheless, the relationship between temperature and larval occurrence was more stable 964 
than other variables, likely due to effects of temperature on fish physiology.  Non-stationarity was 965 
especially pronounced when examining regime shifts defined by biological changes, such as shifts in 966 
SSB and ZDV.  This suggests that density dependence and prey availability may play key roles 967 
modulating how fishes react to oceanic conditions. 968 
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Table 1. Principal components analysis (PCA) performed on environmental variables binned by 1454 
onshore-offshore strata.  Strata are indicated by station numbers from California Cooperative Ocean 1455 
Fisheries Investigations (CalCOFI).  Data on the percent variance explained by each principal 1456 
component (PC) and loadings of the PC on each stratum are presented below. 1457 
 1458 
    CalCOFI station numbers         

Principal Component 
(PC) 

Variance 
explained 

(%) ≤40 40-50 50-60 60-70 70-80 80-90 >90 
Temperature PC1 72.6 0.389 0.366 0.383 0.359 0.370 0.382 0.397 

Temperature PC2 14.4 -0.230 -0.445 -0.320 -0.005 0.004 0.163 0.788 

Salinity PC1 73.8 0.335 0.295 0.315 0.429 0.420 0.443 0.381 

Salinity PC2 11.1 -0.506 -0.522 -0.237 -0.005 0.113 0.330 0.542 

Oxygen PC1 63.3 0.415 0.261 0.452 0.362 0.386 0.373 0.369 

Oxygen PC2 17.2 0.393 0.671 0.188 -0.306 -0.376 -0.333 -0.117 

Zooplankton PC1 91.2 0.355 0.377 0.379 0.391 0.404 0.393 0.343 

Zooplankton PC2 4.9 -0.576 -0.408 -0.182 0.102 0.181 0.296 0.579 
 1459 
  1460 
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Table 2. Percent incidence of non-stationarity by indicator metric, species, oceanic variable, and 1461 
change point type for generalized additive models (GAMs).  In (a), (b), and (d), non-stationarity is 1462 
assessed at the model level, whereas in (c) it is assessed across each oceanic variable included in a 1463 
model.  1464 
 1465 
(A) Percent incidence of non-stationarity by 
metric 

Variables included in model 60% 

Degree of non-linearity 60% 

Rank order of deviance explained 70% 

Response curve shape 80% 

Degree of responsiveness 40% 

Peak environmental range 80% 
(B) Percent incidence of non-stationarity by 
species 

Engraulis mordax 50% 

Sardinops sagax 89% 

Scomber japonicus 50% 

Trachurus symmetricus 67% 
(C) Percent incidence of non-stationarity by 
oceanic variable 

Temperature 25% 

Salinity 33% 

Dissolved oxygen 37% 

Zooplankton volume 33% 
(D) Percent incidence of non-stationarity by 
type of change point 

PDO 58% 

Zooplankton volume 67% 

SSB 75% 
  1466 
  1467 
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Table 3. Two-way crossed analysis of variance (ANOVA) examining interactions between shared 1468 
socioeconomic pathway (SSP) simulations and projections from generalized additive models 1469 
(GAMs) trained during different ecological and climatic regimes.  The ANOVA response variable is 1470 
the habitat suitability for larval fish species integrated over each year of the 20-year period examined 1471 
by each SSP simulation. 1472 
 1473 

Term Sum of 
squares d.f. Mean 

squares F p 

PDO regime shifts – E. mordax   
GAM 174.0 1 174.0 0.8 0.3823 
SSP 98,191.9 2 49,096.0 217.1 <0.0001 
GAM*SSP 47.7 2 23.8 0.1 0.9001 
PDO regime shifts – S. sagax   
GAM 11,829.7 1 11,829.7 366.9 <0.0001 
SSP 9,735.6 2 4,867.8 151.0 <0.0001 
GAM*SSP 4,363.3 2 2,181.6 67.7 <0.0001 
PDO regime shifts – S. japonicus   
GAM 1,723.5 1 1,723.5 265.5 <0.0001 
SSP 681.7 2 340.8 52.5 <0.0001 
GAM*SSP 361.7 2 180.9 27.9 <0.0001 
PDO regime shifts – T. symmetricus   
GAM 21,853.1 1 21,853.1 393.3 <0.0001 
SSP 6,135.2 2 3,067.6 55.2 <0.0001 
GAM*SSP 723.9 2 361.9 6.5 0.0021 
Mesozooplankton volume regime shifts – E. mordax   
GAM 5,140.4 2 2,570.2 14.5 <0.0001 
SSP 112,616.6 2 56,308.3 316.6 <0.0001 
GAM*SSP 7,600.6 4 1,900.2 10.7 <0.0001 
Mesozooplankton volume regime shifts – S. sagax   
GAM 9,920.9 2 4,960.4 943.7 <0.0001 
SSP 2,697.0 2 1,348.5 256.5 <0.0001 
GAM*SSP 2,011.0 4 502.8 95.6 <0.0001 
Mesozooplankton volume regime shifts – S. japonicus   
GAM 9,842.1 2 4,921.1 225.0 <0.0001 
SSP 2,637.9 2 1,318.9 60.3 <0.0001 
GAM*SSP 2,943.3 4 735.8 33.6 <0.0001 
Mesozooplankton volume regime shifts – T. symmetricus   
GAM 47,321.5 2 23,660.7 411.3 <0.0001 
SSP 6,621.6 2 3,310.8 57.6 <0.0001 
GAM*SSP 3,343.8 4 835.9 14.5 <0.0001 
SSB regime shifts – E. mordax 
GAM 445.5 1 445.5 2.7 0.1025 
SSP 68,597.3 2 34,298.7 208.6 <0.0001 
GAM*SSP 1,194.7 2 597.3 3.6 0.0295 
SSB regime shifts – S. sagax   
GAM 1,337.2 2 668.6 33.9 <0.0001 
SSP 8,009.1 2 4,004.6 202.9 <0.0001 
GAM*SSP 670.3 4 167.6 8.5 <0.0001 

 1474 

  1475 
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Table 4. Mean coefficient of variation (CV) for GAM model projections of annual integrated habitat 1476 
suitability (IHS) under the historical and SSP5-8.5 climate scenarios.  Mean CVs are presented by 1477 
(A) species, (B) change point type, (C) environmental variable, and (D) non-stationary metric.  In (C) 1478 
and (D), only models for which there is some evidence of non-stationary are included in the means. 1479 

 1480 
(A) Species            

 
E. mordax S. sagax S. japonicus T. 

symmetricus   
Historical scenario           

Mean CV 0.24 0.67 0.96 0.54   
SSP5-8.5             

Mean CV 0.61 0.88 1.04 0.50     

       
              
(B) Change point type           

 
PDO Zooplankton 

displacement SSB 
   

Historical scenario           

Mean CV 0.59 0.69 0.29    
SSP5-8.5             

Mean CV 0.71 0.88 0.58       

       
              
(C)  Environmental variables         

 
Temperature Salinity Dissolved 

oxygen 
Zooplankton 

volume   
Historical scenario           

Mean CV 0.55 0.68 0.51 0.65   
SSP5-8.5             

Mean CV 0.71 0.83 0.72 0.87     
       
              
(D) Non-stationarity metric         

 

Metric 1 
(variables in 

GAM) 

Metric 2 
(linearity) 

Metric 3  
(rank order) 

Metric 4 
(response 

curve shape) 

Metric 5 
(response 

curve range) 

Metric 6 
(peak value) 

Historical scenario           

Mean CV 0.56 0.66 0.62 0.58 0.58 0.55 

SSP5-8.5             

Mean CV 0.79 0.80 0.78 0.75 0.82 0.71 
 1481 
 1482 
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Figure Captions 1372 

Figure 1.  Web of Science search examining the cumulative number of records in the scientific 1373 
literature on species distribution models, habitat models, ecological niche models, and bioclimate 1374 
envelope models between 1970-2020.  Five Web of Science searches were performed: (1) species 1375 
AND distribution AND model*; (2) habitat AND model*; (3) ecolog* AND niche AND model*; (4) 1376 
environment* AND niche AND model*, and; (5) bioclimate AND envelope AND model*.  Results 1377 
from the third and fourth search were combined in this figure.  1378 

Figure 2.  Time series of the first principal component of (A) temperature, (B) salinity, (C) dissolved 1379 
oxygen (DO) concentration, and (D) mesozooplankton displacement volume from the southern 1380 
California Current System.   Note that there are some gaps in DO measurements during the early 1381 
years of the CalCOFI time series.  Horizontal, dashed lines indicate principal component scores of 1382 
zero, while thick, vertical lines represent the timing of break points identified in time series.  Gray 1383 
bars show the posterior probability of a change point occurring each year in the time series of each 1384 
oceanic variable.  The winter Pacific Decadal Oscillation (PDO) is included as a blue line in (A) and 1385 
its inverse is included as a turquoise line in (D) to illustrate correlations among principal components 1386 
and this regional climate index. 1387 

Figure 3.  Time series of the natural log transformed spawning stock biomass (SSB) of (A) E. 1388 
mordax, (B) S. sagax, and (C) S. japonicus.  No SSB data are available for T. symmetricus.  Dashed 1389 
line indicates the time period of low S. sagax biomass when no stock assessments were conducted to 1390 
estimate this species’ SSB.  Gray bars show the posterior probability of a change point in the SSB 1391 
time series occurring each year.  Black, vertical lines indicate the timing of break points identified in 1392 
each time series. 1393 

Figure 4. Generalized additive model (GAM) response curves for S. sagax during three different 1394 
spawning stock biomass (SSB) change points: 1951-1963 (A-D; blue), 1964-1997 (E-H; green), and 1395 
1998-2015 (I-K; red).  Dashed lines indicate that 95% confidence intervals for each response curve.  1396 
Missing subplots (e.g., log zooplankton during 1998-2015) are indicative that a particular oceanic 1397 
variable was not included in the most parsimonious GAM.  Rug plots are displayed at the bottom of 1398 
each subplot. 1399 

Figure 5. Rank order comparison between the influence of each oceanic variable on the 1400 
presence/absence of larvae of E. mordax, S. sagax, S. japonicus, and T. symmetricus.  Results are 1401 
shown for change points designated based on changes in the sign of the Pacific Decadal Oscillation 1402 
(PDO; A-D); break points in the mesozooplankton volume time series (E-H; the abbreviation “zoop” 1403 
is used when labeling the title of these subplots), and; break points in the time series of E. mordax 1404 
and S. sagax spawning stock biomass (SSB; I-K).  Unless otherwise specified, time periods for each 1405 
type of change point are the same across all species.  Only the start year of a particular regime is 1406 
listed here.  Oceanic variables are abbreviated as follows: T – temperature, S – salinity, O2 – 1407 
dissolved oxygen concentration, Z – mesozooplankton volume.  Comparisons between variables are 1408 
based on the change in deviance (DD) when one variable is removed relative to the deviance of the 1409 
full model.  The scale for DD is shown in the lower, right corner of the figure.  Note that DD is 1410 
influenced by sample size so this metric is comparable across from a single regime, but not across 1411 
multiple regime types due to variations in sample size.  The rank order of different environmental 1412 
variables for each period is shown based on circle size and color: green – 1st rank, turquoise – 2nd 1413 
rank, blue – 3rd rank, purple – 4th rank.   1414 
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Figure 6.  Changes between periods in the response curve range from generalized additive models 1415 
(GAMs).  Response curve range is defined as the difference between the maximum and minimum 1416 
value in a GAM response curve and is indicative of how strongly an environmental variable 1417 
influences larval fish occurrence.  Median values and 95% confidence intervals from bootstrap 1418 
analysis are shown.  Results are shown for change points designated based on changes in the sign of 1419 
the Pacific Decadal Oscillation (PDO; A-D); break points in the mesozooplankton volume time series 1420 
(E-H), and; break points in the time series of E. mordax and S. sagax spawning stock biomass (SSB; 1421 
I-L).  GAM results for different periods are displayed in groups, with the first period represented by 1422 
the left most bar in a group (dark blue color) and the last period displayed to the right (light blue 1423 
color).  Intermediate periods are displayed in the middle of each group.  Stars indicate that periods 1424 
are significantly different from each other for a given species and environmental variable based on 1425 
non-overlapping 95% confidence intervals.  White squares indicate that a particular variable was not 1426 
included in the best fit GAM model(s).  Numbers shown in some subplots indicate the maximum 1427 
response curve range in a few cases where the maximum value exceeds the y-axis limit of a graph.  1428 
Species names are abbreviated based on the first letter of the genus and the first letters of the species 1429 
name: Em – Engraulis mordax; Ss – Sardinops sagax; Sj – Scomber japonicus; Ts – Trachurus 1430 
symmetricus. 1431 

Figure 7.  Changes between periods in the peak value of generalized additive model (GAM) 1432 
response curves.  The peak in response curves is indicative of the environmental conditions that 1433 
maximize the likelihood of occurrence of E. mordax, S. sagax, S. japonicus, and T. symmetricus.  1434 
Median values and 95% confidence intervals from bootstrap analysis are shown.  Results are shown 1435 
for change points designated based on changes in the sign of the Pacific Decadal Oscillation (PDO; 1436 
A-D); break points in the mesozooplankton volume time series (E-H), and; break points in the time 1437 
series of E. mordax and S. sagax spawning stock biomass (SSB; I-L).  Bar colors, symbols, and 1438 
species name abbreviations are the same as in Fig. 6.  1439 

Figure 8. Integrated habitat suitability (IHS) for larval fishes during spring months based on 1440 
projections from the CNRM Earth System Model (CNRM-ESM-2-1).  Annual mean IHS scores (± 1441 
95% confidence intervals) are shown for a historical simulation for the years 1980-1999 (abbreviated 1442 
as Hist) and two future simulations (SSP1-2.6 and SSP5-8.5) for the years 2080-2099.  Using the 1443 
climate forcing from each CNRM-ESM-2-1 simulation, habitat suitability is projected based on 1444 
generalized additive models (GAMs) parameterized with data from different regimes and species.  1445 
Results are shown for change points designated based on changes in the sign of the Pacific Decadal 1446 
Oscillation (PDO; A-D); break points in the mesozooplankton volume time series (E-H; abbreviated 1447 
as Zoop), and; break points in the time series of E. mordax and S. sagax spawning stock biomass 1448 
(SSB; I-J).  GAM results for different periods are displayed in groups, with the first period 1449 
represented by the left most bar in a group (dark blue color) and the last period displayed to the right 1450 
(light blue color).  Intermediate periods are displayed in the middle of each group.  In cases where 1451 
multiple models were selected for a particular regime, separate bars are shown for each model using 1452 
the color coding described above.  1453 
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