
Gaussian process aided function comparison
using noisy scattered data

Abhinav Prakash, Rui Tuo, and Yu Ding
Department of Industrial and Systems Engineering

Texas A&M University

Abstract

This work proposes a nonparametric method to compare the underlying mean
functions given two noisy datasets. The motivation for the work stems from an ap-
plication of comparing wind turbine power curves. Comparing wind turbine data
presents new problems, namely the need to identify the regions of difference in the
input space and to quantify the extent of difference that is statistically significant.
Our proposed method, referred to as funGP, estimates the underlying functions for
different data samples using Gaussian process models. We build a confidence band
using the probability law of the estimated function differences under the null hy-
pothesis. Then, the confidence band is used for the hypothesis test as well as for
identifying the regions of difference. This identification of difference regions is a dis-
tinct feature, as existing methods tend to conduct an overall hypothesis test stating
whether two functions are different. Understanding the difference regions can lead to
further practical insights and help devise better control and maintenance strategies
for wind turbines. The merit of funGP is demonstrated by using three simulation
studies and four real wind turbine datasets.

Keywords: Function comparison, Hypothesis test, Gaussian process, Wind power curves

1 Introduction

Comparing information from two datasets is an important topic in statistics. Various

methods exist to compare datasets arising from univariate and multivariate distributions,

for example, two sample t-test (Fisher, 1925) and Hotelling’s T 2 test (Hotelling, 1931),

respectively. The literature is not just limited to comparing finite dimensional objects, but

1

ar
X

iv
:2

00
3.

07
89

9v
2

 [s
ta

t.M
E]

 1
9

Fe
b

20
21

also extends to functions. In this article, we focus on nonparametric methods that compare

functions.

Our work is motivated by an application in the wind energy sector, where the goal is

to compare two power curves. The power curve of a wind turbine is a function with wind

power as the output and some environmental variables (such as wind speed, wind direction,

air density) as the inputs. Power curves are used to characterize the performance of wind

turbines (IEC, 2005). Hence, comparing power curves plays a critical role in assessing and

benchmarking turbine performance, devising maintenance plans, and justifying expensive

overhauls or retrofits (Hwangbo et al., 2017; Ding, 2019). Some important aspects for

comparing power curves are to understand where the power curves differ (in the input

space) and how much is the difference. It is not only important to check whether two

power curves differ, but more crucial to identify the regions of difference and quantify the

difference for guiding economically justifiable actions. In addition to the need for identifying

the regions of difference, the datasets arising from wind turbines entails two other features:

the input conditions (e.g. wind speed or wind direction) for the observations cannot be

controlled, and as a result, the input points for any two datasets are not the same, and

there lacks replicates for any input point. Taken altogether, our research objective is to

to develop a nonparametric function comparison method that meets the following three

requirements:

• The method can identify the regions between two functions that are statistically

different and quantify the difference;

• The input data points associated with the two functions are not necessarily the same;

2

• There are no replications in the data points.

The problem of testing the equality of two nonparametric functions has been studied

extensively in the literature. One early work is Hall and Hart (1990). They defined a test

statistic for the problem using the smoothed (estimated) function values and obtained a

distribution of their test statistic using bootstrap method. King et al. (1991) also studied

the same problem using smoothing techniques and proposed an exact distribution for their

test statistic under the normality assumption for the errors. Delgado (1993) proposed

another test statistic using marked empirical process. Fan and Lin (1998) worked on

reducing the dimension of the problem using discrete Fourier transforms so that standard

multivariate techniques can be used to test the hypothesis. These works assume that the

two datasets under comparison have identical input points. This assumption is relaxed

in Kulasekera (1995); Kulasekera and Wang (1997); Munk and Dette (1998); Neumeyer

and Dette (2003), which propose tests that are valid under different input points among

the datasets. The literature mentioned hitherto are global tests, providing a binary answer

on whether the functions are statistically the same or not. They do not provide any insights

on the regions of the input space where the functions are different, or which function has

higher or lower function values.

Cox and Lee (2008) addressed this problem of identifying difference regions, using a

pointwise testing procedure based on the Westfall-Young randomization technique (Westfall

and Young, 1993). However, Cox and Lee’s method does not meet our aforementioned

requirements, because (a) Cox and Lee (2008) requires replications of data points, as Cox

and Lee’s method is based on permutation, which requires data replication. (b) Cox and

3

Lee (2008) identifies the region but cannot easily quantify the statistical difference. Their

method produces pointwise p-values rather than a coherent confidence band for functional

differences. It is not straightforward to convert the pointwise p-values into functional

differences. (c) Cox and Lee (2008) developed their method for the cases when the input

points for the two functions are at the same locations.

In this work, we propose a new nonparametric function comparison method that satisfies

the three requirements posed above. We first use a Gaussian process (GP) regression model

to recover the functions from the noisy datasets. Given a prescribed type I error, we then

build a confidence band on the difference between the functions throughout the input space

under the null hypothesis. If the actual difference between the functions computed using

the data is beyond the confidence band, we reject the null hypothesis. We call the method

function comparison using Gaussian Process or funGP.

The funGP method does not require the input points among the samples to be the same,

nor does it need replicates of the observations. When the null hypothesis is rejected, funGP

identifies the regions of difference in the input space and quantifies the estimated difference

using the established confidence band. Although we assume the functions as realizations

of GPs, we demonstrate that the method works well for deterministic functions also. We

apply our method to real wind turbine datasets and compare the results with some existing

work for turbine performance characterization. That GP regression works for a large class

of functions makes the proposed method applicable to many problems. GP models also

provide uncertainty quantification, enabling a statistically reliable function comparison.

We organize the rest of the paper as follows. Section 2 provides the details of the

4

proposed method. Section 3 presents the simulation examples and comparison studies with

two existing functional tests. We apply the funGP method to wind turbine datasets in

Section 4. We conclude the work with some discussions in Section 5.

2 The funGP Method

In this section, we describe the mathematical formulation and the implementation details

of the proposed funGP method.

2.1 Problem Formulation

Let us consider two datasets, {Di | i = 1, 2}, with n1 and n2 data points, respectively. Each

data point consists of a d-dimensional input vector and a real-valued output. Assume that

D1 can be denoted by an ordered pair {X(1),y(1)}, where X(1) is a n1× d matrix with each

row corresponding to input variable values for one data point and y(1) is a vector of length

n1 with each component as response for one data point. Similarly D2 can be denoted as

{X(2),y(2)}. Specifically,

y(1) =



y11

y12

...

y1n1


, X(1) =



−x>11−

−x>12−

...

−x>1n1
−


, y(2) =



y21

y22

...

y2n2


, X(2) =



−x>21−

−x>22−

...

−x>2n2
−


.

We also assume that these datasets come from underlying models given by:

yij = fi(xij) + εij, i = 1, 2, j = 1, . . . , ni, (1)

5

where f1(·) and f2(·) are two smooth continuous functions with the same compact domain

X ⊂ Rd and εij
i.i.d.∼ N (0, σ2

ε) with a constant variance σ2
ε <∞. We here consider the same

noise variance for both datasets. This assumption is introduced only for simplicity and can

be relaxed.

The goal is to test the following null and alternative hypotheses. The null hypothesis

is that the functions are identical, whereas the alternative hypothesis is that the functions

differ for at least one x ∈ X . Under the null hypothesis, H0:

f1(x) = f2(x) for all x ∈ X .

And, under the alternative hypothesis, H1:

there exists x ∈ X such that f1(x) 6= f2(x).

A rigorous frequentist testing of the null hypothesis H0 usually relies on a test statistic

whose distribution is (approximately) independent of the underlying function f := f1 = f2

under H0. One would consider using the estimator of f1 − f2 to build a test statistic.

Specifically, we in this work invoke a GP framework for calculating the distribution in the

presence of an unknown f . This assumption allows for calculating the distribution of an

intuitive estimator of f1−f2. Of course, doing this requires us to replace the null hypothesis

H0. Details will be presented in the next subsection.

In addition to the above discussion, we stress that our application requires the test

statistic to be a functional statistic, as we are interested in identifying the region of input

space where the functions are different. Specifically, when H0 is rejected, we need to identify

the set S = {x : f1(x) 6= f2(x)}. Most of the existing methods reviewed in Section 1, such

6

as Munk and Dette (1998), use a univariate statistic to test the hypothesis and cannot

identify the region of difference. Under certain conditions, such as the input points of the

two datasets are identical and replicated response, a functional test is available; see Cox

and Lee (2008). To the best of our knowledge, no statistics have been proposed in the

literature under the general conditions as in the current context.

2.2 Hypothesis testing with a GP prior

The general idea for a hypothesis testing is to find a test statistic and subsequently have

a decision rule to either accept or reject the null hypothesis based on the value of the test

statistic. In the application described, we are not only interested in the binary answer that

whether the two functions are different, but also want to understand where the difference

lies in the input space. This requires us to obtain a test statistic at the input points for

which we do not have any data. We also assume that the input points for the two datasets

are not the same. Thus, we would have to assume some structure in the functions (such as

the functions are smooth and continuous) in order to recover the functions and estimate

the noise in the model. Here we adopt a Bayesian idea that imposes a prior structure on

the functions. Specifically, we use a GP prior with zero mean and a covariance function

given by k(x,x′). The zero mean assumption is for mathematical simplicity, and we can

assume a different mean function, if necessary.

Despite the use of the GP prior, we still follow a frequentist hypothesis testing frame-

work, by considering a new null hypothesis HGP
0 , still stating f1(x) = f2(x) for all x ∈ X ,

7

but incorporating the following prior information:

yij = f(xij) + εij,

f ∼ GP(0, k(x,x′)),

where εij
i.i.d.∼ N (0, σ2

ε). In Sections 2.2 and 2.3, we assume that k(·, ·) and σ2
ε are known.

So far, our goal can be described as testing HGP
0 against the alternative hypothesis

H1. We will propose a test method, so that its type-I error under HGP
0 has a probability

controlled by a prespecified significance level α. Note that the type-I error under HGP
0 is

∫
f

P(HGP
0 is rejected|f1 = f2 = f)dPGP ,

where PGP denotes the probability measure of the GP prior. It is worth noting that the

type-I above is not identical to the type-I error under the original null hypothesis H0.

However, we expect that the proposed method can serve as an approximate method for the

fixed-function testing problems, and we will verify this expectation via numerical studies

in Section 3.

The main idea of our test is as follows. First we can reconstruct f based on the datasets

D1 and D2 separately, and denote the reconstructed functions as f̂1 and f̂2, respectively.

Under HGP
0 , f̂1 and f̂2 should be close. Thus we can test HGP

0 by computing the difference

between f̂1 and f̂2.

To reconstruct f , We start off by defining a cross-covariance matrix KX,X′ between a

pair of input variable matrix X and X′, and a covariance vector r(x) between the input

8

data X and any point x as follows:

KX,X′ =



k(x1,x
′
1) k(x1,x

′
2) . . . k(x1,x

′
n)

k(x2,x
′
1) k(x2,x

′
2) . . . k(x2,x

′
n)

...
...

. . .
...

k(xm,x
′
1) k(xm,x

′
2) . . . k(xm,x

′
n)


, r(x) =



k(x1,x)

k(x2,x)

...

k(xm,x)


, (2)

where x1 . . .xm are the vectors in the rows of the matrix X, and x′1 . . .x
′
n are the vectors

in the rows of the matrix X′. When X = X′, KX,X is then a symmetric covariance matrix.

The standard GP prediction theory suggests (Rasmussen and Williams, 2006)

f̂1(x) = r1(x)>[KX(1),X(1) + σ2
ε In1]

−1y(1), (3)

f̂2(x) = r2(x)>[KX(2),X(2) + σ2
ε In2]

−1y(2), (4)

where r1(x) is the covariance vector between X(1) and any point x, KX(1),X(1) is the co-

variance matrix for X(1), and In1 is the identity matrix of proper size—n1×n1 in this case.

The notations in Equation (4) are likewise defined.

It is worth noting that although f̂1(x) and f̂2(x) are posterior means from a Bayesian

perspective, here we take a frequentist point of view and regard them merely as statistics,

i.e., functions of the data. To test the null hypothesis HGP
0 , we use the statistic G(x) :=

f̂1(x)− f̂2(x). Clearly, given (X (1),X(2))T , the randomness of G(x) comes solely from the

data (y(1),y(2))T , which follows a zero-mean multivariate normal distribution under HGP
0 .

Therefore, under HGP
0 and given the input data, G(x) is a centered GP and we write

G(·)|X(1),X(2), HGP
0 ∼ GP(0, c(·, ·)). (5)

9

After some calculations, we derive the expression for covariance function c(·, ·) (see Ap-

pendix A.1 for details), given by

c(x,x′) = r2(x)>[KX(2),X(2) + σ2
ε In2]

−1r2(x
′) + r1(x)>[KX(1),X(1) + σ2

ε In1]
−1r1(x

′)

− 2r2(x)>[KX(2),X(2) + σ2
ε In2]

−1KX(2),X(1) [KX(1),X(1) + σ2
ε In1]

−1r1(x
′).

(6)

Therefore, to test HGP
0 , it suffices to find a 1− α probability band of G(·) under HGP

0 ,

i.e, a pair of functions l(x) and u(x) such that

PG∼GP(0,c(·,·))
(
l(x) ≤ G(x) ≤ u(x) for all x

)
≥ 1− α.

With a slight abuse of terminology, we shall call the band between l(x) and u(x) a 1 −

α confidence band for GP(0, c(·, ·)). It is worth noting that this band is related to the

distribution of G(x) only under the null hypothesis HGP
0 . The test then proceeds by

checking whether G(·) remains within the confidence band. If there exists an x for which

G(x) is outside the band then we reject the null hypothesis. Clearly, such a testing method

ensures a 1 − α type-I error under HGP
0 . The question now is how to efficiently build an

effective confidence band for GP(0, c(·, ·)).

2.3 Building the confidence band

To build a 1−α confidence band for GP(0, c(·, ·)), the main idea is to sample from a set with

a coverage probability of 1−α. For notational simplicity, we suppose G(x) ∼ GP(0, c(·, ·))

in this subsection, i.e., the null hypothesis HGP
0 is true. Since G(x) is an infinite dimen-

sional object, it is more convenient to work with a finite dimensional representation of it.

To this end, we employ the Karhunen Loève (KL) expansion on G(x). The KL expansion

10

for the zero mean Gaussian process G(x) is given as follows: G(x) =
∑∞

k=1

√
λkφk(x)zk,

where {zk}∞k=1 are uncorrelated standard normal random variables, {φk(·)}∞k=1 are the basis

functions, {λk}∞k=1 are the eigenvalues. In practice, this infinite sum is truncated for two

reasons: 1) If the process is smooth, the eigenvalues would decay rapidly, 2) To make the

computation tractable. Under the assumption that the underlying functions under com-

parison are smooth, we discard all the eigenvalues smaller than a certain threshold. For

practical purposes, we find a threshold value of 10−6×λmax to work well, where λmax is the

largest eigenvalue. Thus, the KL expansion decomposes the process into independent com-

ponents and also reduces the dimension of the problem by finding a sparse representation

of the process using its eigenfunction basis.

Let the truncation number computed from the aforementioned rule be m, that is, only

the m largest eigenvalues are significantly “large”. Then, we write the truncated KL

expansion for G(x) as follows:

G(x) ≈
m∑
k=1

√
λkφk(x)zk (7)

In Equation (7), the randomness is introduced by zk’s. Hence, in order to build a 1 − α

confidence band on G(x), we build the same level confidence band for the joint distribution

of zk | k = 1, . . . ,m, which can be constructed as follows. We know that for an m-

dimensional uncorrelated standard normal vector, a confidence region R, with probability

P(R) = 1 − α, can be described using a hypersphere of radius r. This radius can be

expressed as r = ||z||, where ||z|| = ||z21 +z22 + · · ·+z2m|| is the `2 norm. The sum of squares

of m uncorrelated standard normals follows a chi-square distribution with m degrees of

freedom, that is, r2 = z21 + z22 + · · ·+ z2m ∼ χ2
m. Hence, r is computed by inverting the CDF

11

of a chi-square distribution in the following way:

r =
√
F−1m (1− α), (8)

where F−1m (·) is the inverse CDF of χ2
m. Once we have the radius r, we sample z from the

region with a coverage probability of 1 − α using the following rule:

• sample zi from N (0, 1) | i ∈ {1 . . .m},

• if
∑m

i=1 z
2
i ≤ r2, accept z = (z1, z2, . . . , zm)>; else, reject it.

The samples of z obtained as above can be easily converted to samples from G(x) that are

from 1−α confidence set using Equation (7). In order to test the hypothesis, we would need

to compare the actual difference in the predictive means g(x) with the confidence band

at all the points x ∈ X . This is practically intractable, as for any continuous function,

there are infinitely many points in the domain. Hence, we discretize the domain using a

finite-sized evenly spaced test grid to approximate X . Let Xtest be a ntest × d matrix with

each row corresponding to one grid point xtj | j = 1, . . . , ntest. We compare the function

difference with the confidence band on these grid points. Testing on this regular grid is a

reasonable approximation to testing for all x ∈ X because of our underlying assumption

that the functions are continuous and smooth. Let CXtest,Xtest be the covariance matrix

generated using the covariance function c(x,x′) using all the points in Xtest in a similar

way as KX,X′ is defined in Equation (2). Let Λ be an m × m diagonal matrix with m

largest eigenvalues of CXtest,Xtest and let U be an ntest × m matrix whose columns are

the eigenvectors corresponding to the m largest eigenvalues of CXtest,Xtest . Then, the KL

expansion at all the points in Xtest, denoted by a random vector G such that its jth

12

component (G)j = G(xtj), can be expressed using the matrix notation as follows (see

Appendix A.2 for details):

G = UΛ
1
2z. (9)

In order to construct the confidence band, we sample a large number (say 1,000) of z

from its confidence set, then the values of the confidence band at all points in Xtest is given

by the vectors:

ub = MaxzUΛ
1
2z,

lb = −ub,
(10)

where ub is the vector of upper bounds and lb is the vector of lower bounds for the

confidence band. We accept the null hypothesis HGP
0 at the confidence level of 1−α if the

value of g(xtj) are within the band, that is,

(lb)j ≤ g(xtj) ≤ (ub)j for all j = 1 . . . ntest,

where the notation (a)j is the jth component of a vector a. Similarly, we reject the null

hypothesis HGP
0 at the 1− α confidence level if there is at least one violation, that is,

there exists j ∈ {1 . . . ntest} such that g(xtj) /∈ [(lb)j, (ub)j].

It is also worth noting that we are getting an approximate band because of using

a truncated KL expansion. This may result in losing some confidence on the test. In

other words, the probability of the confidence band would be less than 1 − α. A possible

compensation can be made by setting a slightly higher confidence level than the nominal

level.

13

The points for which the null hypothesis is rejected would form a discrete grid on the

difference region(s) and the absolute value of the statistically significant difference at these

points would be given as: δ(xtj) = |g(xtj)| − (ub)j. Needless to say that the difference at

the points where the null hypothesis is not rejected would be considered zero.

2.4 Estimating the hyperparameters

Until now, we have assumed the values of the hyperparameters of the covariance matrix

and the nugget σε are known. Next, we describe the method we use to estimate these

hyperparameters.

Let us assume that θ is the vector containing all the hyperparameters of the covari-

ance function and the nugget σε. We estimate these hyperparameters by merging the two

datasets as y = (y(1),y(2)) and X = (X(1),X(2)), and jointly maximizing the likelihood as

follows:

θ̂ = arg max L(θ;D1,D2), (11)

where L(θ;D1,D2) = 1
(2π)(n1+n2/2)|KX,X+σ2

ε I|
e(−y

>[KX,X+σ2
ε I]
−1y). We provide a summary of

the funGP algorithm as Appendix A.3.

3 Simulation Study

In this section, we present three simulation studies for the funGP method to estimate

the type I and the type II errors and compare it with two methods from the existing

literature. We estimate the type II error for some small perturbations. In order to quantify

the difference between a function and its perturbation, we use an L2-distance percentage

14

defined as follows:

L2 dist % =
‖f − g‖L2

‖f‖L2

× 100%,

where f is the underlying function, and g is its perturbation. After fixing the nominal level

of HGP
0 to α = 0.05, we conduct 1,000 runs for each simulation example to estimate the

type I/type II errors. We also examine the effect of the sample size, the number of points

in the test grid, and the truncation number in the KL expansion on the type I and type II

errors using different experiments.

3.1 Functions used in the simulations

The first simulation study is based on functions sampled from a known Gaussian process.

Our method also assumes the functions to be GP samples, so this study represents a case

when there is no model misspecification, that is, the GP part in HGP
0 is indeed true.

Whereas the other two simulation studies are based on some parametric functions available

in the literature; we use GP as a surrogate for the true function. Thus, for these two fixed

functions, the estimated type I/type II errors are for the original hypothesis test H0, even

though we are controlling the type I error only under HGP
0 . Hence, the last two simulations

evaluate the efficacy of the funGP method under a potential model misspecification. In

order to generate the datasets, we randomly sample two sets of points from the input

domain of the functions. We then generate response by adding some i.i.d Gaussian noise

to the function values at the sampled input points. For conducting all the simulation

studies, we use a constant mean and a squared exponential covariance function for the GP

modeling.

15

The following are the specifications of the simulated functions. We consider a one-

dimensional input x ∈ [0, 1] for the first simulation study, the GP sample. The model can be

described as: y = f(x) + ε; f(x) ∼ GP(0, k(x, x′)); ε ∼ N (0, σ2
ε). The covariance function

k(x, x′) is squared exponential with the following form: k(x, x′) = σ2
f exp

(
−
[
x−x′
θ

]2)
. The

hyperparameters for the covariance function, k(x, x′), are set to σf = 5, and θ = 0.2. The

standard deviation of the noise, σε, is set to 0.5. For each simulation run, a different sample

is generated from the given GP model, and the estimated type I error is the percentage of

runs for which the null hypothesis is rejected. For estimating the type II error, we create

a perturbation g(x) in the following way:

g(x) =


f(x) + 1

3
sin
(
π
(

x−0.2
0.8−0.2

))
, x ∈ [0.2, 0.8],

f(x), otherwise.

The functions f(x) and g(x) sampled for one simulation run (left panel) along with two

noisy datasets generated from it (right panel) are shown in Figure 1. One can see that the

difference between the functions is small and gets masked visually in the noisy data.

For the other two studies, we use two parametric functions available in the litera-

ture: piston simulation function (Kenett and Zacks, 1998) and borehole simulation func-

tion (Harper and Gupta, 1983). We use these functions with two dimensional input by

fixing the rest of their input variables to certain values. More details about these func-

tions, including the function plots, are provided as Appendix A.4 to maintain the flow for

the readers and save space.

16

0 0.2 0.4 0.6 0.8 1
x

-15

-10

-5

0

5
f(x)
g(x)

0 0.2 0.4 0.6 0.8 1
x

-15

-10

-5

0

5
y1
y2

Figure 1: Plots for GP sample. Left panel: f(x) and its perturbation, g(x); Right panel:

Noisy realizations from f(x) and g(x).

3.2 Results

Table 1 shows the estimated type I and type II errors for all the simulation studies, along

with the L2 distance between the function f and its perturbation, g. The results in Table 1

are based on the following specifications. The sample size for one-dimensional function (GP

sample) and two-dimensional functions (piston and borehole) are 500 and 1,000, respec-

tively, randomly sampled from their respective input domain. The test grid is 500 evenly

spaced points in the domain for the GP sample and 50 × 50 evenly spaced grid for the

piston and the borehole functions. We follow the same truncation rule for the truncation

number m as described in Section 2.3. The L2 distance varies between 3 to 5 %.

Table 1: Estimated type I and type II errors for the simulated functions.

Function Type I error Type II error L2 dist %
GP sample 0.049 0.031 4.7

Piston 0.041 0.008 3.8
Borehole 0.065 0.022 3.4

For the first case study, when the true functions are GP samples, the estimated type

17

I error is very close to the nominal level of 0.05 (5%). This result is very much expected,

as both we are controlling the type I error under HGP
0 and the GP assumption is indeed

true. In the other two simulation studies, the estimated type I error is not as close to the

nominal value as the first simulation study. This can be attributed to the fact that the

estimated type I error is for H0, and we are controlling the type I error for HGP
0 . The form

of the mean and covariance function required to sample these functions from a GP is not

known and we use approximations in these studies. The agreement between the estimated

type I error and the nominal value would depend on how well the GP approximates the

function. If it is difficult to approximate a function using a known parametric covariance

function, we can either come up with more sophisticated mean and covariance functions, or

we can increase the confidence level of the test to a value greater than the desired level to

account for model uncertainty. For the given sample size, we are satisfied that the method

can identify the difference in the underlying functions even with small perturbations. We

would, next, conduct experiments to see how the method performs under different sample

sizes, test grid sizes and truncation numbers.

3.3 Further experiments

We repeat the three simulation experiments carried out previously under different sample

sizes while keeping the test grid and the truncation rule fixed. The sample sizes are set at

four levels: 100, 200, 500, and 1,000. Table 2 presents the results of these experiments. The

table clearly shows a reduction in type II error as the sample size increases while keeping

the type I error stable, which is consistent with our understanding of statistical hypothesis

18

Table 2: Estimated type I and type II errors under different sample sizes.

Function Estimate
Sample size for each dataset
100 200 500 1,000

GP
sample

Type I error 0.032 0.040 0.049 0.049
Type II error 0.721 0.450 0.031 0.001

piston
Type I error 0.031 0.032 0.027 0.041
Type II error 0.845 0.639 0.201 0.008

borehole
Type I error 0.058 0.058 0.070 0.065
Type II error 0.757 0.460 0.091 0.022

tests. The numerical results indicate that in order to render sufficient detection power, a

large enough sample is needed for detecting small difference between two functions.

The test grid size experiment is carried out while keeping the sample size fixed at the

same value as used for the main result in Section 3.2. We use a test grid of size 100, 400, 900,

and 2,500 for each simulated function so that it corresponds to 10×10, 20×20, 30×30, and

50×50 test grid, respectively, for two-dimensional functions (piston and borehole). Table 3

presents the results of this experiment. There is no significant effect of the test grid size

on the type I and type II errors. This is expected as our test relies on the truncated KL

expansion and the number of eigenvalues (m) remains constant for different test grid sizes

because we use the same truncation rule.

We contemplate how the results may change when we use any arbitrary truncation

number instead of using the aforementioned rule for calculating the truncation number.

Table 4 displays the result of using different truncation numbers on the type I and type II

errors. We note that the hypothesis test remains a level-α test as long as the truncation

number is larger than a certain threshold, of which the specific value would depend on the

function under study. For the first two cases, a truncation number of 10 or greater appears

sufficient, whereas for the third case, a truncation number may need to be as large as 50.

19

Table 3: Estimated type I and type II errors under different test grid sizes.

Function Estimate
Number of test points

100 400 900 2500
GP
sample

Type I error 0.039 0.038 0.059 0.049
Type II error 0.033 0.033 0.034 0.022

piston
Type I error 0.025 0.032 0.044 0.041
Type II error 0.020 0.014 0.014 0.008

borehole
Type I error 0.035 0.050 0.046 0.065
Type II error 0.063 0.027 0.024 0.022

Table 4: Estimated type I and type II errors under different truncation numbers.

Function Estimate
Truncation number
10 50 100

GP
sample

Type I error 0.051 0.034 0.029
Type II error 0.023 0.043 0.048

piston
Type I error 0.036 0.013 0.024
Type II error 0.016 0.020 0.026

borehole
Type I error 0.260 0.046 0.039
Type II error 0.014 0.020 0.018

When one chooses a smaller truncation number than the problem demands, then one cuts

off a significant portion of the 1−α confidence band, resulting in a high type I error. Thus,

we suggest using the recommended truncation rule, which adapts the truncation number

according to the problem.

3.4 Comparison with other methods

We compare our method with two other methods available in the literature. The first

comparison is with Munk and Dette (1998), which is a global test that works for datasets

without requiring common input points and replicates. Although it is a global test, we

can still use this method to compare with the funGP method in terms of the type I and

type II errors. This method builds its test statistic based on the L2-distance between the

20

functions. The method is developed for functions with one-dimensional input. For this

reason, we use this method only for the first simulation study, the GP sample.

Table 5 presents the results for the comparison. We note that out method is significantly

more powerful than Munk and Dette’s method. Munk and Dette (1998) provided an

expression for approximating the power of their test, given the L2-distance between the

functions, the sample size, and the noise level; see Equation (17) in Munk and Dette (1998).

The approximate power computed using that expression is 0.435, which is consistent with

the empirically estimated type II error in Table 5 (power = 1−type II error).

Table 5: Comparison between the funGP and Munk & Dette (1998) methods for the GP
sample simulation study.

Function Method Type I error Type II error
GP
sample

funGP 0.049 0.031
Munk & Dette 0.117 0.570

We also compare our method with Cox and Lee (2008), which identifies the difference

region in terms of p-values. Cox and Lee (2008) is based on a permutation test and requires

the datasets to have replicates and the same input points. Since the datasets simulated

for the funGP method do not have replicates and do not share the same input points,

we simulate different sets of samples with replicates keeping the input points the same

for the two functions. We apply both funGP and Cox and Lee’s methods to these newly

generated datasets to estimate the type I and type II errors. We still use 1,000 runs for the

simulation. We use 50 input points with 10 replications each for 1-dimensional case (GP

sample function) and 100 input points with 10 replications each for 2-dimensional cases

(piston and borehole functions). The sample sizes are chosen such that the total number

of the samples is equal to that of the main simulation study, that is, 500 for 1-dimensional

21

Table 6: Comparison between funGP and Cox and Lee methods.
Function Method Type I error Type II error
GP
sample

funGP 0.039 0.042
Cox & Lee 0.023 0.160

piston
funGP 0.027 0.011

Cox & Lee 0.017 0.071

borehole
funGP 0.042 0.098

Cox & Lee 0.020 0.017

case and 1,000 for 2-dimensional case. In each case, the nominal level of the test is set to

α = 0.05.

The results for this comparison are presented in Table 6. The proposed funGP method

performs better than Cox and Lee in two out of three cases—the GP sample and the piston

cases, and worse for the borehole case, in terms of the type II error. We would like to

articulate that we advocate the merit of our method as identifying the difference region

and quantifying the difference for datasets arising from a broader setting, namely without

the same input points and replicates, and not purely in terms of its power in a binary

decision. Yet, our method performs comparably, and sometimes even better, than other

methods such as Cox and Lee (2008) and Munk and Dette (1998).

4 Application

In this section, we apply the funGP method to a wind energy problem. A common tech-

nique to characterize the performance of a wind turbine is through the use of its power

curve (Ding, 2019, Chapters 5 and 6). A univariate power curve is a functional curve with

the wind speed as the input and the generated wind power as the output. But researchers

realize that the wind power output is affected by other inputs more than just the wind

22

0 5 10 15 20 25

0
20

40
60

80
10

0
No

rm
al
ize

d
po

w
er
, !

Wind speed, " (m/s)

Rated
power

"# "$%"$&

Active pitch control

Figure 2: A nominal wind power curve. Vci: the cut-in wind speed, Vr: the rated wind

speed; Vco: the cut-out wind speed.

speed. Consequently, multivariate power curves have been developed; see, for instance,

Chapter 5 of Ding (2019) or Lee et al. (2015).

A nominal wind power curve is shown in Figure 2. The turbine does not produce power

below the cut-in wind speed Vci. Above the cut-in speed, the power gradually rises till the

rated power and then capped at that level till the cut-out wind speed Vco, at which the

turbine operation is stopped in order to protect its components against damage. The pitch

control is one of the main mechanisms to regulate a wind turbine’s power output (Senjyu

et al., 2006); in Figure 2, we mark the wind speed region where the pitch control is active.

The power curve (univariate or multivariate) is generally learned through data; please

see Chapter 5 of Ding (2019) for various methods. If one wants to compare the performance

of two turbines or the same turbine over multiple time periods, they can do so by comparing

the learned power curves. This raises a question that whether the difference in the learned

curves is due to the randomness in the samples, or the difference is genuine in turbine

23

performance beyond random fluctuation. Our proposed method can, hence, be employed

to answer this question.

We apply our method to the four datasets as used by Hwangbo et al. (2017), which also

constitutes a large portion of Chapter 6 of Ding (2019), and we download the four datasets

from the book website of Ding (2019). Each dataset corresponds to a different turbine.

The four turbines are labeled as WT1, WT2, WT3, and WT4. The datasets WT1 and

WT2 are from onshore turbines and have the following five input variables: wind speed

(V), wind direction (D), air density (ρ), turbulence intensity (I), and wind shear (S). The

other two datasets (WT3 and WT4) correspond to offshore wind turbines with the input

variable S replaced with humidity (H), with the rest of the variables the same as that of

the onshore turbines. Each of the four datasets comprises four years of data. We conduct

a year to year comparison for each turbine, as done in Hwangbo et al. (2017). For this

reason, each turbine’s dataset is divided into four annual datasets.

The marginal distributions of the covariates are different for each year, thus before

computing their metric, Hwangbo et al. (2017) apply a method called covariate matching

to the annual datasets. Covariate matching tries to match the marginal distributions of all

the available environmental variables among the annual datasets by selecting the proper

data subsets. Covariate matching is applied here in order to enable a fair comparison in

turbine performance by ensuring that the distributions of the environmental variables are

similar. We follow the same strategy with the same specifications as given in Hwangbo

et al. (2017). After the covariate matching, Hwangbo et al. (2017) uses only the wind

speed as the input variable to estimate the power curve. We also proceed in a similar way.

24

Table 7: Percentage of test points with statistically significant difference between annual
datasets.

Turbine Year 1 & 2 Year 1 & 3 Year 1 & 4 Year 2 & 3 Year 2 & 4 Year 3 & 4
WT1 49.5 58.1 53.6 13.9 0 0
WT2 40.6 41.3 41.3 0 0 0
WT3 85.6 81.4 73.1 55.4 72.7 41.9
WT4 74.9 60.8 64.3 44.4 69.6 2.7

In other words, we have wind speed as the input and wind power as the output. We input

these datasets to our funGP algorithm and do a pairwise comparison between the annual

datasets for each turbine using the following specification. We select 1,000 evenly spaced

points from the range of the input variable (wind speed) as the test grid and compare the

power curves for any two annual datasets for a given turbine on the defined test grid. A

typical wind turbine operates at wind speeds between 5 m/s to 15 m/s for most of the

time. Thus, we select this range to test the difference. Hwangbo et al. (2017) developed

a 90 % confidence interval for their performance metric using the bootstrap method. For

comparison, we also build a 90 % confidence band on the difference of the power curves.

The outputs from our method is the pointwise difference in the power curves and the

90 % confidence band on the difference for the power curves to be the same. In Table 7, we

report the percentage of points, out of the 1,000 test points, where the difference between

two given yearly datasets is statistically significant. Whenever the percentage is greater

than zero, we claim that the difference between corresponding two curves is statistically

significant.

Speaking of the current industry practice for turbine performance comparison in the

wind energy sector, the most popular method is to compare their peak power coefficient

estimated from the data (IEC, 2005). The power coefficient, Cp, of a turbine is computed

25

by using the following formula:

Cp =
2y

ρAV 3
,

where y is the wind power output and A is the sweeping area of the turbine blades. Here

Cp is not a constant but rather a function of wind speed and a few other factors. The

exact formula linking Cp to other physical variables does not exist. So it is empirically

estimated. Using a functional Cp is not easy, and because of that, practitioners simply

choose the peak value on the Cp-versus-wind-speed curve to represent the performance of

a turbine. The power coefficient has a theoretical upper bound, known as the Betz limit,

which is 0.593 (Ding, 2019) but the practical Cp is generally smaller than 0.5. It is obvious

that this Cp metric is just a point metric of an otherwise functional difference.

Hwangbo et al. (2017) suggested another technique to compare the performance of

wind turbines using the concepts of production economics. They devise a performance

metric called productive efficiency which takes into account the overall power curve and

not just the peak performance. But their final output is again a point metric of the

functional difference, much like the power coefficient. Hwangbo et al. (2017)’s study find

the productive efficiency metric has a good similarity with the power coefficient metric,

although not exactly the same. Using the four datasets mentioned above, the performance

quantifications using the two metrics registered a correlation of 0.75 (Hwangbo et al., 2017).

Other than being a point metric, both the power coefficient and the productive efficiency

methods do not quantify the estimation uncertainty on their own—one can go through

an expensive bootstrap approach to get a confidence interval on the performance metrics.

The funGP method, on the other hand, can lead to any level of confidence bands on the

26

Turbine Year 1 & 2 Year 1 & 3 Year 1 & 4 Year 2 & 3 Year 2 & 4 Year 3 & 4
WT1
WT2
WT3
WT4

Figure 3: Comparison chart for the results obtained using funGP method to that of the

peak power coefficient and the productive efficiency method. Vertical lines imply that the

results agree. Horizontal lines imply that the results differ.

difference of the performance.

We compare our results with the metrics, peak power coefficient and productive effi-

ciency, obtained by Hwangbo et al. (2017, Table II). We illustrate the comparison in a

chart (see Figure 3) using vertical and horizontal lines with the following criteria:

• If the two metrics used by Hwangbo et al. (2017) agree with each other (that is, they
both say the two annual periods are different or they both say the same), and they
also agree with our result, then we use vertical lines to demonstrate that.

• If the two metrics do not agree with each other, but one of them agree with our result,
we still use vertical lines.

• However, if the two metrics agree with each other, but they do not agree with our
method, we use horizontal lines to show that.

In other words, the vertical lines imply an agreement between our method and at least

one of the two metrics, where as the horizontal lines mean a disagreement between the two

metrics and the funGP method. We observe that when the difference between two power

curves is statistically significant, the confidence intervals of the peak power coefficient or

the productive efficiency for the same two curves tend not to overlap, leading naturally to

the overwhelming agreement pattern observed in Figure 3.

27

There is one comparison outcome for which using funGP and either metric in Hwangbo

et al. (2017) disagree: WT1 for Year 2 versus Year 3. Taking a closer look reveals that

the percentages of test points where the two curves are different, as reported in Table 7, is

13.9%. The percentage is much smaller than the percentage values in other cases for which

two curves are declared different. When we look at the power coefficient and productive

efficiency values in Hwangbo et al. (2017, Table II), they are as such:

• WT 1’s power coefficient. Year 2: 0.388 with the 90% confidence intervals as [0.386, 0.392],

and Year 3: 0.393 with the 90% confidence intervals as [0.390, 0.397].

• WT1’s productive efficiency. Year 2: 0.969 with the 90% confidence intervals as

[0.966, 0.973], and Year 3: 0.972 with the 90% confidence intervals as [0.969, 0.975].

Apparently, for the power coefficient and productive efficiency metrics, their 90% confidence

intervals are only marginally overlapping, not really contradicting with the small regions

of difference detected by using the funGP method. It is not unreasonable to consider that

the funGP method is more sensitive to the difference between the two curves.

The funGP method provides a quantification of the regions of difference. Better yet,

funGP can be used to compute the difference in the power curves at any point in the

domain of the curve, and thus, gives a more detailed picture of the difference between any

two curves, so that the practitioners can see where the difference lies and thus make an

informed decision regarding whether the difference region matters or not. Figure 4 shows

this difference vs wind speed plot for all the annual datasets for the first turbine (WT1).

As described in Section 1, knowing the regions of difference is helpful in deciding the

maintenance plan for the turbine. For instance, if the difference occur in low power range,

28

one may not necessarily need to go for expensive maintenance as doing so is unlikely to

result in large change in the power output. Another important implication of knowing the

difference regions is to decide the pitch control configuration of the turbine. As Creaby

et al. (2009) explains, wind turbine’s aerodynamic characteristics change with time because

of surface wear, dirt and other factors. Therefore, knowing the region of difference can help

adjust the control laws to optimize the pitch control for different regions of operations, in

order to maximize the power output. The funGP method is better suited in this application

as a more powerful and informative testing and comparison method.

5 Discussions

This work presents a new nonparametric method that compare functions, referred to as

the funGP method. Unlike many methods in the literature, the novelty of funGP lies in its

ability to identify the regions of difference in the input space of the functions and quantify

this difference, rather than simply returning a binary answer on whether the difference

exists or not. This ability makes the funGP method a truly functional test.

From an application point of view, particularly in engineering, comparing processes of-

ten mean subsequent decision making. For instance, comparing wind power curves guides

the maintenance strategy. Under these circumstances, a binary answer for function com-

parison can easily run to its limit, as it may not be of much help in driving the decision

making process. Understanding a fuller picture of function difference through region identi-

fication and subsequent quantification, on the other hand, could lead to better engineering

and economic decisions. We hope that our work paves the way and shifts the focus of

29

5 10 15
Wind speed (m/s)

-20

-10

0

10

20
Year 2 vs Year 1

Difference
90% Confidence band

5 10 15
Wind speed (m/s)

-20

-10

0

10

20
Year 3 vs Year 1

Difference
90% Confidence band

5 10 15
Wind speed (m/s)

-20

-10

0

10

20
Year 4 vs Year 1

Difference
90% Confidence band

5 10 15
Wind speed (m/s)

-20

-10

0

10

20
Year 3 vs Year 2

Difference
90% Confidence band

5 10 15
Wind speed (m/s)

-20

-10

0

10

20
Year 4 vs Year 2

Difference
90% Confidence band

5 10 15
Wind speed (m/s)

-20

-10

0

10

20
Year 4 vs Year 3

Difference
90% Confidence band

Figure 4: Difference in curves vs wind speed for WT1.

30

function comparison research towards more informative function tests, which would have

broader applications and impact in the engineering fields.

In the work, we use evenly spaced input points to conduct the comparison of the curves.

In the higher dimensions, the numbers of grid points can grow rapidly and may become

computationally burdensome. One worthy future research direction that would directly ad-

vance this work is to devise an adaptive grid—based on the characteristics of the function

under study—to quickly identify and quantify the differences while reducing the computa-

tional time.

Acknowledgment

Prakash and Ding’s research is partially supported by NSF grant IIS-1741173. Tuo’s re-

search is supported by NSF DMS-1914636. Ding and Tuo’s research is also supported by

NSF grant CCF-1934904.

References

Cox, D. and Lee, J. S. (2008). Pointwise testing with functional data using the Westfall–
Young randomization method. Biometrika, 95(3):621–634.

Creaby, J., Li, Y., and Seem, J. E. (2009). Maximizing wind turbine energy capture using
multivariable extremum seeking control. Wind Engineering, 33(4):361–387.

Delgado, M. A. (1993). Testing the equality of nonparametric regression curves. Statistics
& Probability Letters, 17(3):199–204.

Ding, Y. (2019). Data Science for Wind Energy. Chapman & Hall/CRC Press, Boca Raton,
FL.

Fan, J. and Lin, S.-K. (1998). Test of significance when data are curves. Journal of the
American Statistical Association, 93(443):1007–1021.

31

Fisher, R. A. (1925). Application of “Student’s” distribution. Metron, 5:90–104.

Hall, P. and Hart, J. D. (1990). Bootstrap test for difference between means in nonpara-
metric regression. Journal of the American Statistical Association, 85(412):1039–1049.

Harper, W. and Gupta, S. (1983). Sensitivity/uncertainty analysis of a borehole sce-
nario comparing Latin Hypercube Sampling and deterministic sensitivity approaches.
BMI/ONWI-516, Office of Nuclear Waste Isolation, Battelle Memorial Institute, Colum-
bus, OH.

Hotelling, H. (1931). The generalization of Student’s ratio. The Annals of Mathematical
Statistics, 2(3):360–378.

Hwangbo, H., Johnson, A., and Ding, Y. (2017). A production economics analysis for
quantifying the efficiency of wind turbines. Wind Energy, 20(9):1501–1513.

IEC (2005). Wind Turbines-Part 12-1: Power Performance Measurements of Electricity
Producing Wind Turbines. International Electrotechnical Commission 61400-12-1 Ed. 1,
Geneva, Switzerland.

Kenett, R. S. and Zacks, S. (1998). Modern Industrial Statistics: The Design and Control
of Quality and Reliability. Duxbury Press, Pacific Grove, CA.

King, E., Hart, J. D., and Wehrly, T. E. (1991). Testing the equality of two regression
curves using linear smoothers. Statistics & Probability Letters, 12(3):239–247.

Kulasekera, K. B. (1995). Comparison of regression curves using quasi-residuals. Journal
of the American Statistical Association, 90(431):1085–1093.

Kulasekera, K. B. and Wang, J. (1997). Smoothing parameter selection for power opti-
mality in testing of regression curves. Journal of the American Statistical Association,
92(438):500–511.

Lee, G., Ding, Y., Genton, M. G., and Xie, L. (2015). Power curve estimation with
multivariate environmental factors for inland and offshore wind farms. Journal of the
American Statistical Association, 110(509):56–67.

Morris, M. D., Mitchell, T. J., and Ylvisaker, D. (1993). Bayesian design and analy-
sis of computer experiments: Use of derivatives in surface prediction. Technometrics,
35(3):243–255.

Munk, A. and Dette, H. (1998). Nonparametric comparison of several regression functions:
Exact and asymptotic theory. The Annals of Statistics, 26(6):2339–2368.

Neumeyer, N. and Dette, H. (2003). Nonparametric comparison of regression curves: An
empirical process approach. The Annals of Statistics, 31(3):880–920.

32

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning.
The MIT Press, Cambridge, MA.

Senjyu, T., Sakamoto, R., Urasaki, N., Funabashi, T., Fujita, H., and Sekine, H. (2006).
Output power leveling of wind turbine generator for all operating regions by pitch angle
control. IEEE Transactions on Energy conversion, 21(2):467–475.

Westfall, P. H. and Young, S. S. (1993). Resampling-Based Multiple Testing: Examples and
Methods for p-Value Adjustment. John Wiley & Sons, New York, NY.

Appendix

A.1 Derivation for c(x,x′)

The predictive mean for f1(.) given D1 is as follows:

f̂1(x) = r1(x)>[KX(1),X(1) + σ2
ε In1]

−1y(1).

Similarly, the predictive mean for f2(.) conditioned on D2 is given by:

f̂2(x) = r2(x)>[KX(2),X(2) + σ2
ε In2]

−1y(2).

33

Thus c(x,x′) = Cov(f̂2(x)− f̂1(x)) is expressed as follows:

Cov(f̂2(x)− f̂1(x))

= Cov(r2(x)>[KX(2),X(2) + σ2
ε In2]

−1y(2) − r1(x)>[KX(1),X(1) + σ2
ε In1]

−1y(1))

= V ar(r2(x)>[KX(2),X(2) + σ2
ε In2]

−1y(2)) + V ar(r1(x)>[KX(1),X(1) + σ2
ε In1]

−1y(1))

− 2 Cov(r2(x)>[KX(2),X(2) + σ2
ε In2]

−1y(2), r1(x)>[KX(1),X(1) + σ2
ε In1]

−1y(1))

= r2(x)>[KX(2),X(2) + σ2
ε In2]

−1 V ar(y(2)) [KX(2),X(2) + σ2
ε In2]

−1r2(x
′)

+ r1(x)>[KX(1),X(1) + σ2
ε In1]

−1 V ar(y(1)) [KX(1),X(1) + σ2
ε In1]

−1r1(x
′)

− 2 r2(x)>[KX(2),X(2) + σ2
ε In2]

−1 Cov(y(2),y(1)) [KX(1),X(1) + σ2
ε In1]

−1r1(x
′)

= r2(x)>[KX(2),X(2) + σ2
ε In2]

−1 r2(x
′) + r1(x)> [KX(1),X(1) + σ2

ε In1]
−1r1(x

′)

− 2 r2(x)>[KX(2),X(2) + σ2
ε In2]

−1 KX(2),X(1) [KX(1),X(1) + σ2
ε In1]

−1r1(x
′).

A.2 Karhunen-Loève expansion of a Gaussian process

Karhunen-Loève expansion provides a framework to decompose any stochastic process as

an infinite linear combination of orthogonal basis functions. Since, we are interested in

Gaussian processes, we will discuss the KL expansion only for GPs. Let us now consider

that f(x) is a zero mean Gaussian process with k(x,x′) as the covariance function. This

process can decomposed as follows:

f(x) =
∞∑
k=1

√
λkφk(x)zk, (12)

34

where zk | k = 1, . . . ,∞ are the uncorrelated standard normal random variables, λk | k =

1, . . . ,∞ are the eigenvalues, and φk(.) | k = 1, . . . ,∞ are the basis eigenfunctions. The

values of λk and φk(.) can be obtained by solving the following integral eigenproblem∫
k(x,x′)φ(x′)dx′ = λφ(x). (13)

In practice, Equation (13) can be solved by discretizing the integral. Let us again assume

that we have n data points from the process f(·). Then, we consider the following matrix

eigenproblem

Kuk = λmatk uk, (14)

where K is again the covariance matrix with entries Kij = k(xi,xj) | i, j = 1 . . . n;

λmatk are the eigenvalues of the covariance matrix K;

uk are the normalized unit eigenvectors of the covariance matrix K.

The eigenvalues and eigenfunctions of the integral problem are related to the eigenvalues

and eigenvectors of the matrix problem in the following way:

λk ≈
λmatk

n
, (15)

φk(xj) ≈
√
n(uk)j, (16)

where (uk)j is the jth component of the eigenvector uk. The above approximation reduces

the infinite sum in the KL expansion to a finite sum (truncated KL expansion) as follows:

f(xj) ≈
n∑
k=1

√
λmatk

n

√
n(uk)jzk,

=
n∑
k=1

√
λmatk (uk)jzk.

(17)

If lambdak’s decay rapidly, this sum can be be truncated further by considering only m

largest eigenvalues, where m < n. This decomposition can be written compactly in the

35

matrix form. If we consider a vector, f = (f(x1), f(x2), . . . , f(xn))>, then it can be

decomposed as follows:

f = UΛ
1
2z, (18)

where U is the matrix with columns as eigenvectors of covariance matrix K; Λ is a diagonal

matrix with eigenvalues of K and z is a vector of length n with uncorrelated standard

normal random variables as its components.

A.3 funGP algorithm

Algorithm 1: funGP: function comparison using Gaussian process

Input: D1 = {X(1),y(1)}, D2 = {X(2),y(2)}, Xtest, α
Procedure:
1: Choose a covariance function.
2: Estimate the hyperparameters for the covariance function and the nugget, σε,
by optimizing the likelihood function given in Equation (11).

3: Compute the predictive mean functions f̂1 using D1, and f̂2 using D2 using
Equations (3) and (4).

4: Compute the covariance matrix CXtest,Xtest using the covariance function in
Equation (6) for the points in Xtest.

4: Compute the difference between predictive means for the points in Xtest,
g(xtj) = f̂2(xtj)− f̂1(xtj) | j = 1, . . . , ntest.

6: Do the eigen decomposition of CXtest,Xtest and store the m largest eigenvalues
following the truncation rule in Section 2.3 in a diagonal matrix Λ and the
corresponding eigenvectors in a matrix U.

7: Compute the radius, r, of a standard normal vector of dimension m with a
coverage probability of 1− α using Equation (8).

8: Sample a large number (say 1,000) of standard normal vector z such that
||z|| ≤ r.

9: Compute the vector of upper bounds, ub, and lower bounds, lb, for all the test
points using Equation (10).

Output:
If (lb)j ≤ g(xtj) ≤ (ub)j ∀ j = 1, . . . , ntest, functions are same at 1− α
confidence level.

Else, functions are different at 1− α confidence level.

36

A.4 Details of the simulated functions

Piston simulation function

The piston simulation function, as the name suggests, is used to simulate the motion of

a piston inside an engine. This function was proposed by Kenett and Zacks (1998). The

response is the cycle time in seconds, i.e. the time required to complete one cycle, and is

given by:

f(x) = 2π

√
M

k + S2 P0V0
T0

Ta
V 2

,

where

V =
S

2k

(√
A2 + 4k

P0V0
T0

Ta − A

)
,

A = P0S + 19.62M − kV0
S
,

where M is the weight of the piston (kg), k is the coefficient of the spring, S is the piston

surface area (m2) , P0 is the atmospheric pressure (N/m2), V0 is the initial gas volume

(m3), T0 is the filling gas temperature (K), and Ta is the ambient temperature (K). The

number of input variables in this function are seven. We only choose two of them, V0 and

T0, as input variables. The other variables are fixed at M = 45, S = 0.01, k = 2, 000,

P0 = 100, 000, Ta = 292. A perturbation on the function, g(x), is obtained by changing the

value of the the spring coefficient from k = 2, 000 to k = 2, 500 . The range of the function

is approximately between [0.3, 0.7], so the value of the noise standard deviation is set at

σε = 0.05. Figure 5 presents f(x) and its perturbation, g(x) along with the noisy datasets.

Borehole simulation function

The borehole function is used to model the flow of water through a borehole (Harper and

37

2 4 6 8 10
V0 10-3

0

0.2

0.4

0.6

0.8

1
y1
y2

340 345 350 355 360
T0

0

0.2

0.4

0.6

0.8

1
y1
y2

Figure 5: Plots for the piston function. Top left: f(x); Top right: g(x); Bottom left: noisy

responses versus V0; Bottom right: noisy responses versus T0.

38

Gupta, 1983) and has been widely used for computer experiments. See, for example, Morris

et al. (1993). The response for this function is the water flow rate in the unit of m3/year,

given by:

f(x) =
2πTu(Hu −Hl)

ln(r/rw)
(

1 + 2LTu
ln(r/rw)r2wKw

+ Tu
Tl

) ,
where rw is the radius of the borehole (m), r is the radius of the influence (m), L is the

length of the borehole (m), Tu is the transmissivity of the upper aquifer (m2/year), Tl is

the transmissivity of the lower aquifer (m2/year), Hu is the potentiometric head of the

upper aquifer (m), Hl is the potentiometric head of the lower aquifer (m), and Kw is the

hydraulic conductivity of the borehole (m/year). The number of input variables for the

borehole function is eight. Again, we only consider two input variables (r and rw) while

fixing other variables are fixed at Tu = 78, 000, Hu = 1, 050, Tl = 84, Hl = 760, L = 1, 400,

Kw = 11, 000. In this simulation study, a perturbation, g(x), is obtained by changing the

value of L from 1400 to 1450. The range of this function is approximately between [0, 150],

so we set the value of the noise standard deviation at σε = 10. Figure 6 show the functions

and the noisy data plots.

39

0.05 0.1 0.15
rw

0

50

100

150

200
y1
y2

0 1 2 3 4 5
r 104

0

50

100

150

200
y1
y2

Figure 6: Plots for the borehole function. Top left: f(x); Top right: g(x); Bottom left:

noisy responses versus rw; Bottom right: noisy responses versus r.

40

	1 Introduction
	2 The funGP Method
	2.1 Problem Formulation
	2.2 Hypothesis testing with a GP prior
	2.3 Building the confidence band
	2.4 Estimating the hyperparameters

	3 Simulation Study
	3.1 Functions used in the simulations
	3.2 Results
	3.3 Further experiments
	3.4 Comparison with other methods

	4 Application
	5 Discussions

