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Adherence of a hyperelastic shell on a rigid planar substrate 
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A B S T R A C T   

A hyperelastic shell with spherical cap geometry is compressed to a rigid planar substrate. Using Maugis’ 
graphical method and a numerical approach, the quasi-static adhesion-detachment trajectory, the interrelation 
between applied load, approach distance and contact radius, and the critical pull-off parameters are determined 
for ranges of materials stiffness, shell thickness, shell depth and interfacial adhesion energy.   

1. Introduction 

Adhesion is ubiquitous in a wide spectrum of manmade and natural 
systems, for instances, robotic grippers (Swift et al., 2020; Mohammadi 
Nasab et al., 2020; Tatari et al., 2018; Carlson et al., 2012; Croll et al., 
2019), stiction in nano-/micro-electromechanical systems (N/MEMS) 
and nano-structures (Grierson et al., 2005; Joulaei et al., 2020; Wong 
et al., 2007), biomedical devices such as drug-eluting stents (Meng et al., 
2010; Du et al., 2012), bio-inspired adhesives for robotic locomotion 
(Kern et al., 2017; Sharifi et al., 2021), bacterial strains adhering on 
filters (Sun et al., 2020; Shi et al., 2013; Shi et al., 2012; Shi et al., 2011), 
and contact lenses (Wang et al., 2018). Despite the voluminous literature 
in thin film and high post adhesion/delamination (e.g. Luo et al., 2020; 
Freund and Suresh, 2009), adhesion mechanics of shells is compara
tively rare due to geometrical incompatibility and involved mathemat
ical formulation (Hutchinson, 2016). 

The Johnson-Kendall-Roberts (JKR) theory has been the standard 
model for solid–solid adhesion and meets many successes for decades 
(Johnson et al., 1971; Ciavarella et al., 2019). Modifications and reex
amination of the basic model have been extended to include surfaces 
with corrugation, undulation and roughness (Kern et al., 2017; Guduru 
and Bull, 2007; Davis and Crosby, 2011), long-range intersurface at
tractions (Grierson et al., 2005) etc. for a range of materials using 
analytical and computational techniques (Sauer, 2016). In this paper, 
we focus on adhesion of shells prone to deformation and conformation to 
substrate topology which is essential in designing robotic grippers, for 
instance. Although mechanics of thin shells has been investigated for 
decades especially for elastic materials, small deformation and buckling 
(Timoshenko and Woinowsky-Krieger, 1959; Flügge, 1973; Reddy, 

2007; Hutchinson, 2020), and adhesion of cylinders (Shi et al., 2013; Shi 
et al., 2012; Majidi and Wan, 2010; Tang et al., 2005). 

The JKR model is constructed based on the classical Hertz theory 
where two elastic spheres come into intimate adhesion contact (Johnson 
et al., 1971; Maugis, 2000). External compression results in elastic 
deformation and a small planar interface due to geometrical in
compatibility. In case of shells, a relatively small compression results in 
large contact area conforming to the substrate geometry. Shell thickness 
plays a crucial role in the adhesion mechanics. Our earlier spherical shell 
adhesion model is limited to linear elastic materials and small contact 
radius compared to shell radius (Shi et al., 2011). In this paper, we 
attempt to construct a model for large deformation in a hyperelastic 
shell. Rather than a convoluted analytical model which is difficult to 
apply to real situations, we will resort to a numerical approach for shells 
with specific dimension. We will adopt Maugis’ graphical method 
(Maugis, 2000) to investigate the behavior of a thin shell of finite 
thickness under large deformation. The shell taking the shape of a 
spherical cap is pressed against a rigid planar substrate in the presence of 
a strong intersurface attractive force with negligible range. The shell is 
deformed by a combined applied load and adhesion and is then allowed 
to relax while the contact area remains constant. The adhesion- 
detachment behavior and trajectory is numerically determined by 
minimization of the total energy comprising the potential energy due to 
the external load, the elastic energy stored in the shell, and the surface 
energy due to expanding or shrinking of the contact area. Unlike the 
classical Hertz contact, the elastic energy is derived from a nonlinear 
constitutive relation. We will demonstrate the working principle for a 
neo-Hookean solid shell. The interrelation between the measurable 
quantities of external compressive load, P, approach distance, δ, and 
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contact radius, a, will be numerically determined for a range of materials 
compliance. The critical parameters of (P*, δ *, a*) at pull-off or spon
taneous detachment will also be computed. 

2. Theory 

Fig. 1 shows a hemispherical shell with radius of curvature, R, and 
thickness, t, pressing against a rigid planar substrate. The shell is made 
of an incompressible hyperelastic material governed by the neo- 
Hookean limit of the Mooney-Rivilin model given by the strain energy 

potential, U = C10

(

I1 − 3
)

, with C10 the material parameters, I1 =

λ2
1 +λ2

2 +λ2
3 the first deviatoric strain invariant, λi = J−1

3λi the deviatoric 
stretches, J the total volume ratio, and λi the principal stretches. 

An external load is applied at the rim of the base with fixed radius, b. 
Similar to JKR, the constitutive relation is first established in the absence 
of adhesion with γ = 0. The mechanical response P(δ) is found using the 
finite element analysis software ABAQUS. Details of the mesh is given in 
Appendix. Initial loading with δ ≪ t leads to a small contact area where 
the compressive stress field in the shell is confined. The mechanical 
response P(δ) is in essence uninfluenced by t or R, and approaches the 
Hertz limit. As δ reaches or exceeds t, a becomes comparable with R, 
resulting in large strain close to the contact and large global geometrical 
deformation. The stress field grows beyond the contact region and ex
tends quickly to the entire thin shell. The global deformation leads to a 
bending dominant stress in both meridional and azimuthal directions. 
Fig. 2 shows the deformed profile and the von Mises stresses at excessive 
loading under compression and tension. In the absence of interfacial 
adhesion (γ = 0), compression (P > 0) leads to bulging at a ring below 
the rim where the diameter exceeds the rim dimension, a distinct feature 
of shells absent in solid spheres, as shown in Fig. 3. Stress field is 
axisymmetric about the shell axis and reaches a maximum close to the 
contact edge where maximum deformation is present. Within the con
tact circle, stress is a maximum at the contact interface, but vanishes 
close to the center. When the shell is sufficiently compressed, a large 
differential stress can cause buckling. At the contact edge, the shell 
surface form a sharp cusp in reminiscence of the Hertz contact. Now, 
say, a specific adhesion is introduced at the shell-substrate interface that 
maintains a independent of P and δ. A tensile load (P < 0) deforms the 
shell geometry. The contact edge turns into the classical Griffith-JKR 
parabola, contrasting the Hertzian cusp (Maugis, 2000). The contact 
circle now resembles a crack front in mode I fracture in an elastic solid, 
and its stress becomes singular where a non-zero stress intensity factor 
can be defined. 

Fig. 4 shows the mechanical response, P(δ). In the absence of adhe
sion, an external compressive load of P1 = P + Pad is first applied to give 
rise to a deformed geometry with δ 1 and a. Contrasting the Hertz contact 
theory for an elastic sphere with P ∝ δ3/2, a significant deviation occurs 
in P(δ) for a hyperelastic shell with bulging close to the base rim where 
external loading is acting. To account for a zero-range intersurface 
attractive force or adhesion (γ > 0) at the shell-substrate interface, the 

circular contact area is in intimate contact with the substrate and a is 
forced to remain constant hereafter. The external load now reduces from 
P1 to P and the approach distance from δ 1 to δ, following a path of 
Prel(δ). In JKR model, Prel(δ) is strictly linear. Here Prel(δ) is nonlinear 
and found by FEA and numerical integration. Elastic energy stored in the 
shell is thus given by 

UE =

∫ δ1

0
P⋅dδ −

∫ δ1

δ
Prel⋅dδ

⃒
⃒
⃒
⃒

a
(1) 

The first integral corresponds to initial loading from P = 0 to P1 and 
δ = 0 to δ 1 with a varying a. The second integral is the energy recovered 
from relaxation from P1 to P and δ 1 to δ with a constant a. The total 
energy UT of the system can now be written as 

UT = UP + UE + US (2)  

where UP = – P⋅δ is the potential energy of the applied load and dUP = – 
P⋅dδ, and US = –A⋅γ is the surface energy to expand the contact area 
A = πa2 and dUS = –2πa⋅γ⋅da. Thus, UT is determined as a function of A. 
The strain energy release rate is defined as G = d(UP + UE)/dA. There are 
two possible loading configurations. Under a fixed load (P = constant) or 
the shell being loaded by a dead weight, UT(A) is defined for specific 
values of P. Minimization of UT, or, dUT/dA = 0, yields the quasi-static 
thermodynamic balance with G = γ. Stable equilibrium further requires 
a local minimum in UT(A), or, d2UT/dA2 > 0 or dG/dA > 0. As load turns 
more negative (tension), the local minimum turns into a point of 
inflexion with d2UT/dA2 = 0, “pull-off” occurs when the contact circle 
spontaneously vanishes, and the shell detaches from the substrate. 
Under a fixed-grips configuration (dδ = 0), UT(A) is defined for specific 
value of δ. Here dUP = –P⋅d δ = 0 and UT = UE + US. Though equilibrium 
occurs also at G = γ similar to the fixed-load counterpart, the nature of 
stability is quite different. We will demonstrate the equilibrium condi
tions and stability using a graphical method outlined below. 

Fig. 4 shows schematic P(δ) under loading and relaxation. Fig. 4a 
shows P > 0 and δ > 0. In the absence of adhesion (γ = 0), initial loading 
to P1 follows OA. Elastic energy stored in the elastic shell is given by 
Area(OAC’O). Relaxation to P proceeds along AB such that an energy of 
Area(AC’CBA) is recovered. The net elastic energy is thus UE = Area 
(OABCO) = Area(OAC”O) + Area(C”BCC”). Potential energy loss due to 
the applied load is UP = –Area(OB”BCO). Therefore, UT = Area 
(−OB”BCO + OABCO) −πa2 γ. Fig. 4b shows P < 0 and δ > 0 with 
UE = Area(OABCO) = Area(OAC”O) + Area(C”BCC”) and UP = Area 
(OCBB”O). Fig. 4c shows P < 0 and δ < 0 with UE = Area 
(OABCO) = Area(OAC”O) + Area(C”BCC”) and UP = −Area(OB”BCO). 
Minimization of UT thus allows the adhesion-detachment mechanics to 
be determined for a constant γ. 

3. Results 

The graphical-numerical scheme is applied to the nonlinear shell 
deformation. We will first trace the adhesion-detachment trajectory 
before delving into the effects due to changing shell materials and 

Fig. 1. Schematic of a shell under an external vertical load at the rim pressing against a rigid planar substrate.  
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Fig. 2. Deformed geometry and von Mises stress of a 
shell with R = h = 20 mm and t = 3 mm. (a) A shell 
under compressive load (P = 14.67 N, δ = 5 mm, 
a = 10 mm) in the absence of interfacial adhesion 
(γ = 0). A magnified contact edge is shown on the 
right, showing a cusp geometry. (b) A shell under 
tensile load (P = −35.49 N, δ = 0 mm, a = 10 mm). 
The contact circle is a constant and does not vary with 
external load. The contact edge shows the classical 
Griffith-JKR parabola. Within the contact circle, stress 
is close to zero around the shell axis though the top 
and bottom surface are under large stress. In an 
extreme condition, the shell buckles inwards turning 
into a dome and detaching from the substrate.   

Fig. 3. Typical deformed profiles of a shell with R = h = 20 mm, t = 3 mm and C10 = 0.30 MPa. (a) Loading under increasing compression with P > 0 and a changing 
contact radius a to maintain equilibrium. (b) Unloading with external load turning from compressive (P > 0) to tensile (P < 0) and contact radius maintained at 
a = 10 mm. Bulging occurs below the rim when P > 0 as in curves (i)-(ix), but disappears when P vanishes and turns negative as in curve (x). 

Fig. 4. Ideal mechanical response of loading (compression) to unloading (tension) of a hyperelastic hemispherical shell: (a) External compression: both P and δ are 
positive, (b) External compression: P is positive while δ is negative, (c) External tension: both P and δ are negative. Shaded areas represent energy involved. 
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geometry as well as interfacial properties. 

3.1. Adhesion-detachment trajectory 

Fig. 5 shows the detachment trajectories of fixed-load and fixed-grips 
for a constant γ. Under a fixed-load, UT is found numerically as a function 
of A such that a family of UT(A) curves can be generated for a range of 
fixed P. All curves with P < P* possess a local minimum corresponding to 
a stable equilibrium with G = γ. The contact circle shrinks along path 
ABCDE as P turns gradually from compressive (P > 0) to tensile (P < 0). 
At E, P = P* and the local minimum turns into an inflexion. Small 
disturbance forces the contact circle to shrink spontaneously to zero to 
minimize UT, and the shell detaches from the substrate at pull-off. The 
critical parameters (P*, δ *, a*) are determined numerically. Under 
fixed-grips, detachment proceeds along ABCDE passing the minima of 
UT(A) with fixed δ. The interrelation of (P, δ, a) is identical to that of 
fixed-load equilibrium but not in terms of stability. Loading remains 
stable at (P*, δ *, a*) and continues further to (P†, δ †, a†) at E where pull- 
off occurs under fixed-grips. 

3.2. Varying geometry and materials properties 

Fig. 6a shows shrinkage of the contact circle as the external tensile 
load increases for ranges of materials stiffness (C10), shell thickness (t/ 
R), shell depth (h/R) and adhesion strength (γ). Pull-off under fixed load 

at P* occurs when dP/da = 0 or da/dP → ∞. Fig. 6b shows P* as a 
function of the listed variables.  

(i) Varying materials stiffness. Compared to stiff shells, a compliant 
shell with small C10 under the same compressive load deforms 
more significantly in terms of a and δ. Increasing C10 in the range 
considered leads to larger P*. Contrasting JKR, here P* depends 
on the mechanical properties of the shell.  

(ii) Varying shell thickness. In case of a solid hemisphere with t = R, 
the JKR limit of P* = (3/2) π R γ is expected. The same behavior is 
expected in a very thick shell with t = 0.5R as shown, since 
deformation and stress remain localized at the contact area. 
Transition from thick to thin shell is demonstrated for 
t = 4.5 mm = 0.225R. Pull-off occurs at P* significantly lower 
than JKR, and a* ≈ 2.265 mm is comparable with t, implying that 
the stress field is no longer confined but spreads extensively to 
volume beyond the contact area. As t reduces to 0.175 R, P* di
minishes further and a(P) significantly deviates from JKR.  

(iii) Varying shell depth. Deep shells with h ≈ R have similar behavior. 
The shell appears stiff due to the inevitable bulging at large P. 
Shallow shells with h < 0.75R are compliant. P* falls in roughly 
the same range rather independent of h.  

(iv) Varying adhesion. Increasing adhesion shifts P*(γ) to a higher |P*| 
and a(P = 0). The linear relation of P(γ) from our results has a 
slope of dP*/d γ ≈ 0.050 m. JKR also predicts a linear P(γ) with a 
slope of (dP*/d γ)JKR = (3/2) πR ≈ 0.094 m for R = 20 mm, 
comparable to that of a shell. 

Note that these trends are valid only in the specified ranges as 
indicated. Once the basic assumptions break down as in case of buckling 
of the contact area, modification is necessary to accommodate other 
deformation mode and adhesion-detachment trajectory. 

4. Discussion 

The numerical routine to determine adhesion-detachment of a shell 
is demonstrated. A few other shell characteristics are not addressed. For 
instance, one major assumption is the conformation of shell to the 
substrate topology and the contact circle remains planar and in intimate 
contact. A very large deformation of a thin shell leads to inward buckling 
of the contact area in order to minimize the stored elastic energy. In fact, 
Fig. 2 shows an intense von Mises stress at the contact interface, but the 
stress reduces to virtually zero close to the contact area center. As the 
difference in stresses on the top and bottom surface of the shell increases 
upon external loading, buckling occurs and the central plate detaches 
from the substrate while the contact edge remains in intimate contact. In 
case of strong adhesion, the contact area remains planar. However, if 
adhesion is too weak to reinforce contact planarity, buckling becomes 
inevitable and the contact becomes a ring with an area π(aout

2 − ain
2) 

with and outer and inner radii, aout and ain, respectively. Minimization 
of UT remains valid to determine equilibrium, but the new intriguing 
geometry posts extensive revision of the adhesion-detachment trajectory 
compared to the present work. 

It is worthwhile to compare the present model with our previous 
work in shell adhesion (Shi et al., 2011). The earlier model is based on a 
linear elastic hemispherical shell which is relatively stiff, and the shell is 
thus under bending dominant deformation. The planar contact circle is 
therefore small compared to the radius of curvature and approach dis
tance. The stress is in essence confined to the small contact area and the 
vicinity. Thermodynamic energy balance yields a pull-off force of 

P* = η
[

γ4R4(1 − v2)

Et2

]1/3

(3)  

with E and v the elastic modulus and Poisson’s ratio of the shell material 
and η = 13.2 ± 0.6 from curve-fitting. It is therefore expected that 

Fig. 5. Energetics of a shell with R = h = 20 mm, t = 3 mm, C10 = 0.30 MPa 
and γ = 30 J m−2. Above: Total energy of systems as a function of contact area 
under fixed-load conditions. Each curve corresponds to a specific load P as 
indicated, and the minima are marked by O. The dashed curve ABCDE shows 
the locus of stable equilibrium (G = γ). At P* = −1.70 N (tension), 
δ* = −0.563 mm, and a*  = 2.13 mm, UT(A) possesses only one inflexion at E 
where pull-off occurs. Below: UT(A) under fixed-grips with constant δ indicated 
on each curve. The dashed curve is the locus of stable equilibrium similar to 
fixed-load in (a). At δ† = −0.685 mm, P† = −1.640 N (tension), and 
a† = 1.598 mm, “pull-off” occurs. 
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P* ∝ γ4/3, P* ∝ E−1/3, and P* ∝ t−2/3. In terms of materials stiffness and 
shell thickness, it is remarkable to find the opposite trend of both P*(C10) 
and P*(t) being monotonically increasing in the present model (c.f. 
Fig. 6b), though P* increases with γ as expected. The nonlinear prop
erties, large deformation, and bulging profile not captured in the earlier 
model are the main reasons for differences in trends. Nevertheless, based 
on the numbers shown in Fig. 6, the constant η spans the range of 
roughly 7 to 11, which is reasonably close to our earlier result. 

When a shell is under a very compressive load leading to very large 
deformation, buckling within the contact circle becomes inevitable to 
reduce the elastic energy density, especially when the shell-substrate 
interface is not strong enough to pull the opposing surfaces into inti
mate contact. Buckling is ignored in the present work. One possible 
justification is the assumed JKR-limit where the intersurface force has an 
infinite magnitude but zero range giving rise to a finite adhesion energy 
(Maugis, 2000; Wan and Julien, 2009). More sophisticated mathemat
ical treatment is necessary to establish the buckling criteria in the 
presence of adhesion, for instance, a dimensionless number involving R, 
h, t, b, δ, γ and C10, which is apparently beyond the scope of this short 
paper. 

A related geometry of interest is the pressurized blister (Zhu et al., 
2017; Plaut, 2021). A film detaches from a substrate when the internal 
gas pressure exceeds the external atmosphere. The delamination 

trajectory is tracked by a mechanical energy balance depending on the 
nature of the thermal process. In case of a fixed applied pressure pushing 
on the membrane in an isobaric manner, the governing equation can be 
found in standard fracture mechanics textbook. Alternatively, if the 
membrane traps a fixed amount of working gas, either heating or 
exposing the sample to a vacuum causes the gas to expand to drive a 
delamination. Here the thermal processes can be either isothermal 
where simple gas law is applicable or isentropic where the gas cools 
down upon expansion (Wan, 2000; Wan and Breach, 1998). The 
analytical method can be applied to shell adhesion where pressure can 
be applied in addition to mechanical compression. Gas can also be 
trapped in the hemispherical void, while external compressive leads to 
increase in internal pressure. An energy balance can be derived but is 
beyond the scope of the present paper. 

It is remarkable that the present work has a wide range of potential 
applications. For instance, in case of robotic grippers, the present work 
can help to identify the right materials for best performance, to design 
the optimal shell thickness and radius of curvature, and to assess the 
device performance in the presence of environmental species such as 
water and the resulting intersurface forces. 

Fig. 6. (a) Contact area as a function of external load for ranges of shell materials stiffness, shell thickness, shell depth, and adhesion energy. “Pull-off” occurs at P* 
when the external load reaches the maximum tension. (b) Pull-off force under fixed load obtained from part (a). 
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5. Conclusion 

We have demonstrated how the adhesion-detachment of a shell from 
a planar rigid substrate can be derived using a JKR-based graphical- 
numerical method combined with finite element analysis. Interrelation 
between applied load, approach distance and contact radius, and its 
dependence on the shell geometry, materials and intersurface proper
ties, are derived for specific shells. The trends contrast expectations in 
the literature of JKR-type solid–solid adhesion. The approach is partic
ularly useful when the shell is made of nonlinear materials with several 
parameters and subject to large deformation where an analytical solu
tion is unlikely achievable. 
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Appendix: Finite element mesh 

A numerical scheme using FEA-ABAQUS is developed based on Static, General and an Axisymmetric Deformable model with element CAX4RH. 
Figure A1 shows the FE mesh and the axis of symmetry. The outer convex surface of the shell is uniformly discretized with fine mesh of 0.01mm, while 
the inner concave surface comprises mesh up to 0.27mm. A Cohesive Behavior without Damage criterion is implemented to ensure full contact within the 
contact circle. The substrate is fixed by ENCASTRE.

Fig. S1. The mesh of the axisymmetric shell model.  
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