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A hyperelastic shell with spherical cap geometry is compressed to a rigid planar substrate. Using Maugis’
graphical method and a numerical approach, the quasi-static adhesion-detachment trajectory, the interrelation
between applied load, approach distance and contact radius, and the critical pull-off parameters are determined
for ranges of materials stiffness, shell thickness, shell depth and interfacial adhesion energy.

1. Introduction

Adhesion is ubiquitous in a wide spectrum of manmade and natural
systems, for instances, robotic grippers (Swift et al., 2020; Mohammadi
Nasab et al., 2020; Tatari et al., 2018; Carlson et al., 2012; Croll et al.,
2019), stiction in nano-/micro-electromechanical systems (N/MEMS)
and nano-structures (Grierson et al., 2005; Joulaei et al., 2020; Wong
et al., 2007), biomedical devices such as drug-eluting stents (Meng et al.,
2010; Du et al., 2012), bio-inspired adhesives for robotic locomotion
(Kern et al., 2017; Sharifi et al., 2021), bacterial strains adhering on
filters (Sun et al., 2020; Shi et al., 2013; Shi et al., 2012; Shi et al., 2011),
and contact lenses (Wang et al., 2018). Despite the voluminous literature
in thin film and high post adhesion/delamination (e.g. Luo et al., 2020;
Freund and Suresh, 2009), adhesion mechanics of shells is compara-
tively rare due to geometrical incompatibility and involved mathemat-
ical formulation (Hutchinson, 2016).

The Johnson-Kendall-Roberts (JKR) theory has been the standard
model for solid—solid adhesion and meets many successes for decades
(Johnson et al., 1971; Ciavarella et al., 2019). Modifications and reex-
amination of the basic model have been extended to include surfaces
with corrugation, undulation and roughness (Kern et al., 2017; Guduru
and Bull, 2007; Davis and Crosby, 2011), long-range intersurface at-
tractions (Grierson et al., 2005) etc. for a range of materials using
analytical and computational techniques (Sauer, 2016). In this paper,
we focus on adhesion of shells prone to deformation and conformation to
substrate topology which is essential in designing robotic grippers, for
instance. Although mechanics of thin shells has been investigated for
decades especially for elastic materials, small deformation and buckling
(Timoshenko and Woinowsky-Krieger, 1959; Fliigge, 1973; Reddy,
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2007; Hutchinson, 2020), and adhesion of cylinders (Shi et al., 2013; Shi
et al., 2012; Majidi and Wan, 2010; Tang et al., 2005).

The JKR model is constructed based on the classical Hertz theory
where two elastic spheres come into intimate adhesion contact (Johnson
et al.,, 1971; Maugis, 2000). External compression results in elastic
deformation and a small planar interface due to geometrical in-
compatibility. In case of shells, a relatively small compression results in
large contact area conforming to the substrate geometry. Shell thickness
plays a crucial role in the adhesion mechanics. Our earlier spherical shell
adhesion model is limited to linear elastic materials and small contact
radius compared to shell radius (Shi et al., 2011). In this paper, we
attempt to construct a model for large deformation in a hyperelastic
shell. Rather than a convoluted analytical model which is difficult to
apply to real situations, we will resort to a numerical approach for shells
with specific dimension. We will adopt Maugis’ graphical method
(Maugis, 2000) to investigate the behavior of a thin shell of finite
thickness under large deformation. The shell taking the shape of a
spherical cap is pressed against a rigid planar substrate in the presence of
a strong intersurface attractive force with negligible range. The shell is
deformed by a combined applied load and adhesion and is then allowed
to relax while the contact area remains constant. The adhesion-
detachment behavior and trajectory is numerically determined by
minimization of the total energy comprising the potential energy due to
the external load, the elastic energy stored in the shell, and the surface
energy due to expanding or shrinking of the contact area. Unlike the
classical Hertz contact, the elastic energy is derived from a nonlinear
constitutive relation. We will demonstrate the working principle for a
neo-Hookean solid shell. The interrelation between the measurable
quantities of external compressive load, P, approach distance, §, and
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contact radius, a, will be numerically determined for a range of materials
compliance. The critical parameters of (P*, 6 *, a*) at pull-off or spon-
taneous detachment will also be computed.

2. Theory

Fig. 1 shows a hemispherical shell with radius of curvature, R, and
thickness, t, pressing against a rigid planar substrate. The shell is made
of an incompressible hyperelastic material governed by the neo-
Hookean limit of the Mooney-Rivilin model given by the strain energy

potential, U = Cyo (71 - 3>, with Cpo the material parameters, I; =

72 475 +72 the first deviatoric strain invariant, % = J-}J; the deviatoric
stretches, J the total volume ratio, and 4; the principal stretches.

An external load is applied at the rim of the base with fixed radius, b.
Similar to JKR, the constitutive relation is first established in the absence
of adhesion with y = 0. The mechanical response P(8) is found using the
finite element analysis software ABAQUS. Details of the mesh is given in
Appendix. Initial loading with & « tleads to a small contact area where
the compressive stress field in the shell is confined. The mechanical
response P(3) is in essence uninfluenced by t or R, and approaches the
Hertz limit. As 3 reaches or exceeds t, a becomes comparable with R,
resulting in large strain close to the contact and large global geometrical
deformation. The stress field grows beyond the contact region and ex-
tends quickly to the entire thin shell. The global deformation leads to a
bending dominant stress in both meridional and azimuthal directions.
Fig. 2 shows the deformed profile and the von Mises stresses at excessive
loading under compression and tension. In the absence of interfacial
adhesion (y = 0), compression (P > 0) leads to bulging at a ring below
the rim where the diameter exceeds the rim dimension, a distinct feature
of shells absent in solid spheres, as shown in Fig. 3. Stress field is
axisymmetric about the shell axis and reaches a maximum close to the
contact edge where maximum deformation is present. Within the con-
tact circle, stress is a maximum at the contact interface, but vanishes
close to the center. When the shell is sufficiently compressed, a large
differential stress can cause buckling. At the contact edge, the shell
surface form a sharp cusp in reminiscence of the Hertz contact. Now,
say, a specific adhesion is introduced at the shell-substrate interface that
maintains a independent of P and §. A tensile load (P < 0) deforms the
shell geometry. The contact edge turns into the classical Griffith-JKR
parabola, contrasting the Hertzian cusp (Maugis, 2000). The contact
circle now resembles a crack front in mode I fracture in an elastic solid,
and its stress becomes singular where a non-zero stress intensity factor
can be defined.

Fig. 4 shows the mechanical response, P(5). In the absence of adhe-
sion, an external compressive load of Py = P + Pggq is first applied to give
rise to a deformed geometry with § ; and a. Contrasting the Hertz contact
theory for an elastic sphere with P  §*/2, a significant deviation occurs
in P(8) for a hyperelastic shell with bulging close to the base rim where
external loading is acting. To account for a zero-range intersurface
attractive force or adhesion (y > 0) at the shell-substrate interface, the
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circular contact area is in intimate contact with the substrate and a is
forced to remain constant hereafter. The external load now reduces from
P; to P and the approach distance from § ; to §, following a path of
Pri(8). In JKR model, P(8) is strictly linear. Here P,,(8) is nonlinear
and found by FEA and numerical integration. Elastic energy stored in the
shell is thus given by

"5 81
UE = / Pd&* / P”,[‘d(s
0 )

The first integral corresponds to initial loading from P = 0 to P; and
6 = 0to 6 with a varying a. The second integral is the energy recovered
from relaxation from P; to P and § 1 to § with a constant a. The total
energy Uy of the system can now be written as

@

a

Ur = Up+ Ur + Us (2

where Up = - P-3 is the potential energy of the applied load and dUp = -
P.ds, and Ug = -A-y is the surface energy to expand the contact area
A = nd® and dUs = —2na-y-da. Thus, Ur is determined as a function of A.
The strain energy release rate is defined as G = d(Up + Ug)/dA. There are
two possible loading configurations. Under a fixed load (P = constant) or
the shell being loaded by a dead weight, U(A) is defined for specific
values of P. Minimization of Ur, or, dUr/dA = 0, yields the quasi-static
thermodynamic balance with G = y. Stable equilibrium further requires
alocal minimum in Ur(A), or, d>Ur/dA% > 0 or dG/dA > 0. As load turns
more negative (tension), the local minimum turns into a point of
inflexion with d*Ur/dA% = 0, “pull-off” occurs when the contact circle
spontaneously vanishes, and the shell detaches from the substrate.
Under a fixed-grips configuration (ds = 0), U7(A) is defined for specific
value of 8. Here dUp = -P-d § = 0 and Ut = U + Us. Though equilibrium
occurs also at G = y similar to the fixed-load counterpart, the nature of
stability is quite different. We will demonstrate the equilibrium condi-
tions and stability using a graphical method outlined below.

Fig. 4 shows schematic P(8) under loading and relaxation. Fig. 4a
shows P > 0 and § > 0. In the absence of adhesion (y = 0), initial loading
to P; follows OA. Elastic energy stored in the elastic shell is given by
Area(OAC’0). Relaxation to P proceeds along AB such that an energy of
Area(AC’CBA) is recovered. The net elastic energy is thus Ug = Area
(OABCO) = Area(OAC”0) + Area(C’BCC”). Potential energy loss due to
the applied load is Up = —Area(OB”BCO). Therefore, Uy = Area
(—OB”BCO + OABCO) —ma® y. Fig. 4b shows P < 0 and & > 0 with
Ugr = Area(OABCO) = Area(OAC”0O) + Area(C”BCC”) and Up = Area
(OCBB”0). Fig. 4c shows P < 0 and 6 < 0 with Ug = Area
(OABCO) = Area(OAC”0) + Area(C”BCC”) and Up = —Area(OB”BCO).
Minimization of Uy thus allows the adhesion-detachment mechanics to
be determined for a constant y.

3. Results
The graphical-numerical scheme is applied to the nonlinear shell

deformation. We will first trace the adhesion-detachment trajectory
before delving into the effects due to changing shell materials and

Fig. 1. Schematic of a shell under an external vertical load at the rim pressing against a rigid planar substrate.
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(a)

Fig. 2. Deformed geometry and von Mises stress of a
shell with R = h = 20 mm and t = 3 mm. (a) A shell

s 0 under compressive load (P = 14.67 N, § = 5 mm,
behe a = 10 mm) in the absence of interfacial adhesion
e (y = 0). A magnified contact edge is shown on the
i%ﬁééi right, showing a cusp geometry. (b) A shell under
igise tensile load (P = —35.49 N, § = 0 mm, a = 10 mm).
mente The contact circle is a constant and does not vary with

external load. The contact edge shows the classical
Griffith-JKR parabola. Within the contact circle, stress
b is close to zero around the shell axis though the top
( ) and bottom surface are under large stress. In an
— extreme condition, the shell buckles inwards turning
3000 into a dome and detaching from the substrate.
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Fig. 3. Typical deformed profiles of a shell with R = h = 20 mm, t = 3 mm and C;, = 0.30 MPa. (a) Loading under increasing compression with P > 0 and a changing
contact radius a to maintain equilibrium. (b) Unloading with external load turning from compressive (P > 0) to tensile (P < 0) and contact radius maintained at
a = 10 mm. Bulging occurs below the rim when P > 0 as in curves (i)-(ix), but disappears when P vanishes and turns negative as in curve (x).
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Fig. 4. Ideal mechanical response of loading (compression) to unloading (tension) of a hyperelastic hemispherical shell: (a) External compression: both P and & are
positive, (b) External compression: P is positive while § is negative, (c) External tension: both P and & are negative. Shaded areas represent energy involved.
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geometry as well as interfacial properties.

3.1. Adhesion-detachment trajectory

Fig. 5 shows the detachment trajectories of fixed-load and fixed-grips
for a constant y. Under a fixed-load, Ut is found numerically as a function
of A such that a family of U(A) curves can be generated for a range of
fixed P. All curves with P < P* possess a local minimum corresponding to
a stable equilibrium with G = y. The contact circle shrinks along path
ABCDE as P turns gradually from compressive (P > 0) to tensile (P < 0).
At E, P = P* and the local minimum turns into an inflexion. Small
disturbance forces the contact circle to shrink spontaneously to zero to
minimize U, and the shell detaches from the substrate at pull-off. The
critical parameters (P*, 8 *, a*) are determined numerically. Under
fixed-grips, detachment proceeds along ABCDE passing the minima of
Ut(A) with fixed 8. The interrelation of (P, 8, a) is identical to that of
fixed-load equilibrium but not in terms of stability. Loading remains
stable at (P*, § *, a*) and continues further to (P‘L, 5 T, a‘L) at E where pull-
off occurs under fixed-grips.

3.2. Varying geometry and materials properties

Fig. 6a shows shrinkage of the contact circle as the external tensile
load increases for ranges of materials stiffness (Cy¢), shell thickness (t/
R), shell depth (h/R) and adhesion strength (y). Pull-off under fixed load
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Fig. 5. Energetics of a shell with R = h = 20 mm, t = 3 mm, C;o = 0.30 MPa
and y = 30 J m~2. Above: Total energy of systems as a function of contact area
under fixed-load conditions. Each curve corresponds to a specific load P as
indicated, and the minima are marked by O. The dashed curve ABCDE shows
the locus of stable equilibrium (G = y). At P* = —1.70 N (tension),
8* = —0.563 mm, and a* = 2.13 mm, Ur(A) possesses only one inflexion at E
where pull-off occurs. Below: U(A) under fixed-grips with constant § indicated
on each curve. The dashed curve is the locus of stable equilibrium similar to
fixed-load in (a). At 8’ = —0.685 mm, P' = —1.640 N (tension), and
a' = 1.598 mm, “pull-off” occurs.
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at P* occurs when dP/da = 0 or da/dP — . Fig. 6b shows P* as a
function of the listed variables.

(i) Varying materials stiffness. Compared to stiff shells, a compliant
shell with small Cy¢ under the same compressive load deforms
more significantly in terms of a and 8. Increasing C; in the range
considered leads to larger P*. Contrasting JKR, here P* depends
on the mechanical properties of the shell.

(ii) Varying shell thickness. In case of a solid hemisphere with t = R,
the JKR limit of P* = (3/2) © R y is expected. The same behavior is
expected in a very thick shell with t = 0.5R as shown, since
deformation and stress remain localized at the contact area.
Transition from thick to thin shell is demonstrated for
t = 4.5 mm = 0.225R. Pull-off occurs at P* significantly lower
than JKR, and a* ~ 2.265 mm is comparable with ¢, implying that
the stress field is no longer confined but spreads extensively to
volume beyond the contact area. As t reduces to 0.175 R, P* di-
minishes further and a(P) significantly deviates from JKR.

(iii) Varying shell depth. Deep shells with h ~ R have similar behavior.
The shell appears stiff due to the inevitable bulging at large P.
Shallow shells with h < 0.75R are compliant. P* falls in roughly
the same range rather independent of h.

(iv) Varying adhesion. Increasing adhesion shifts P*(y) to a higher |P*|
and a(P = 0). The linear relation of P(y) from our results has a
slope of dP*/d y ~ 0.050 m. JKR also predicts a linear P(y) with a
slope of (dP*/d y);xr = (3/2) 7R =~ 0.094 m for R = 20 mm,
comparable to that of a shell.

Note that these trends are valid only in the specified ranges as
indicated. Once the basic assumptions break down as in case of buckling
of the contact area, modification is necessary to accommodate other
deformation mode and adhesion-detachment trajectory.

4. Discussion

The numerical routine to determine adhesion-detachment of a shell
is demonstrated. A few other shell characteristics are not addressed. For
instance, one major assumption is the conformation of shell to the
substrate topology and the contact circle remains planar and in intimate
contact. A very large deformation of a thin shell leads to inward buckling
of the contact area in order to minimize the stored elastic energy. In fact,
Fig. 2 shows an intense von Mises stress at the contact interface, but the
stress reduces to virtually zero close to the contact area center. As the
difference in stresses on the top and bottom surface of the shell increases
upon external loading, buckling occurs and the central plate detaches
from the substrate while the contact edge remains in intimate contact. In
case of strong adhesion, the contact area remains planar. However, if
adhesion is too weak to reinforce contact planarity, buckling becomes
inevitable and the contact becomes a ring with an area (dout® — Ain?)
with and outer and inner radii, aoy¢ and aj,, respectively. Minimization
of Uy remains valid to determine equilibrium, but the new intriguing
geometry posts extensive revision of the adhesion-detachment trajectory
compared to the present work.

It is worthwhile to compare the present model with our previous
work in shell adhesion (Shi et al., 2011). The earlier model is based on a
linear elastic hemispherical shell which is relatively stiff, and the shell is
thus under bending dominant deformation. The planar contact circle is
therefore small compared to the radius of curvature and approach dis-
tance. The stress is in essence confined to the small contact area and the
vicinity. Thermodynamic energy balance yields a pull-off force of

apdr1 2\ 1/3
IR

Ef? 3)

with E and v the elastic modulus and Poisson’s ratio of the shell material
and n = 13.2 £ 0.6 from curve-fitting. It is therefore expected that
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Fig. 6. (a) Contact area as a function of external load for ranges of shell materials stiffness, shell thickness, shell depth, and adhesion energy. “Pull-off” occurs at P*
when the external load reaches the maximum tension. (b) Pull-off force under fixed load obtained from part (a).

P* x y4/ 3 P* x E'/3, and P* « t %/%. In terms of materials stiffness and

shell thickness, it is remarkable to find the opposite trend of both P*(C1¢)
and P*(t) being monotonically increasing in the present model (c.f.
Fig. 6b), though P* increases with y as expected. The nonlinear prop-
erties, large deformation, and bulging profile not captured in the earlier
model are the main reasons for differences in trends. Nevertheless, based
on the numbers shown in Fig. 6, the constant n spans the range of
roughly 7 to 11, which is reasonably close to our earlier result.

When a shell is under a very compressive load leading to very large
deformation, buckling within the contact circle becomes inevitable to
reduce the elastic energy density, especially when the shell-substrate
interface is not strong enough to pull the opposing surfaces into inti-
mate contact. Buckling is ignored in the present work. One possible
justification is the assumed JKR-limit where the intersurface force has an
infinite magnitude but zero range giving rise to a finite adhesion energy
(Maugis, 2000; Wan and Julien, 2009). More sophisticated mathemat-
ical treatment is necessary to establish the buckling criteria in the
presence of adhesion, for instance, a dimensionless number involving R,
h, t, b, 8, y and Cj9, which is apparently beyond the scope of this short
paper.

A related geometry of interest is the pressurized blister (Zhu et al.,
2017; Plaut, 2021). A film detaches from a substrate when the internal
gas pressure exceeds the external atmosphere. The delamination

trajectory is tracked by a mechanical energy balance depending on the
nature of the thermal process. In case of a fixed applied pressure pushing
on the membrane in an isobaric manner, the governing equation can be
found in standard fracture mechanics textbook. Alternatively, if the
membrane traps a fixed amount of working gas, either heating or
exposing the sample to a vacuum causes the gas to expand to drive a
delamination. Here the thermal processes can be either isothermal
where simple gas law is applicable or isentropic where the gas cools
down upon expansion (Wan, 2000; Wan and Breach, 1998). The
analytical method can be applied to shell adhesion where pressure can
be applied in addition to mechanical compression. Gas can also be
trapped in the hemispherical void, while external compressive leads to
increase in internal pressure. An energy balance can be derived but is
beyond the scope of the present paper.

It is remarkable that the present work has a wide range of potential
applications. For instance, in case of robotic grippers, the present work
can help to identify the right materials for best performance, to design
the optimal shell thickness and radius of curvature, and to assess the
device performance in the presence of environmental species such as
water and the resulting intersurface forces.
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5. Conclusion

We have demonstrated how the adhesion-detachment of a shell from
a planar rigid substrate can be derived using a JKR-based graphical-
numerical method combined with finite element analysis. Interrelation
between applied load, approach distance and contact radius, and its
dependence on the shell geometry, materials and intersurface proper-
ties, are derived for specific shells. The trends contrast expectations in
the literature of JKR-type solid-solid adhesion. The approach is partic-
ularly useful when the shell is made of nonlinear materials with several
parameters and subject to large deformation where an analytical solu-
tion is unlikely achievable.

Appendix: Finite element mesh

International Journal of Solids and Structures 236-237 (2022) 111351
Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

The authors acknowledge the financial support by Syracuse Uni-
versity through startup fund for Wanliang Shan, and National Science
Foundation awards CMMI #2006430 and CBET #1705757. Any opin-
ions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views
of NSF.

A numerical scheme using FEA-ABAQUS is developed based on Static, General and an Axisymmetric Deformable model with element CAX4RH.
Figure A1 shows the FE mesh and the axis of symmetry. The outer convex surface of the shell is uniformly discretized with fine mesh of 0.01mm, while
the inner concave surface comprises mesh up to 0.27mm. A Cohesive Behavior without Damage criterion is implemented to ensure full contact within the

contact circle. The substrate is fixed by ENCASTRE.
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Fig. S1. The mesh of the axisymmetric shell model.
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