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Abstract

This paper is concerned with a nonparametric regression problem in which the input
variables and the errors are autocorrelated in time. The motivation for the research
stems from modeling wind power curves. Using existing model selection methods, like
cross validation, results in model overfitting in presence of temporal autocorrelation.
This phenomenon is referred to as temporal overfitting, which causes loss of performance
while predicting responses for a time domain different from the training time domain.
We propose a Gaussian process (GP)-based method to tackle the temporal overfitting
problem. Our model is partitioned into two parts—a time-invariant component and
a time-varying component, each of which is modeled through a GP. We modify the
inference method to a thinning-based strategy, an idea borrowed from Markov chain
Monte Carlo sampling, to overcome temporal overfitting and estimate the time-invariant
component. We extensively compare our proposed method with both existing power
curve models and available ideas for handling temporal overfitting on real wind turbine
datasets. Our approach yields significant improvement when predicting response for
a time period different from the training time period. Supplementary material and
computer code for this article is available online.
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1 Introduction

Wind energy is the forerunner among the renewable energy sources, and by the end of 2020,
wind energy accounted for roughly 8.4% of the total electricity used in the United States
(EIA, 2021). In various decision making tasks in wind energy, wind power curve plays an
important role. A power curve is a function that maps the relationship of wind speed and
other environmental variables to the wind power output. A quality estimation of power
curve has crucial practical implication for decision-making in many aspects, including wind
power prediction and turbine performance evaluation (Ding, 2019).

International Electrotechnical Commission (IEC, 2005) recommends a data-driven ap-

proach, known as the binning method, to construct the power curve. The binning method
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Figure 1: A nominal wind power curve. Dots (red) denote the data; piecewise constant

curve (blue) represents binning; smooth curve (black) is from smoothing on binning.

considers the single input of wind speed, partitions wind speed into small bins, say, 0.5
m/s, and uses the sample average of wind power data, whose corresponding wind speed
falls into a bin, as the estimate of power response for that bin. The power curve in Figure
1 is generated using the binning method (with some simple post smoothing).

Research reported in Bessa et al. (2012) and Lee et al. (2015) identifies that wind power
production is not limited to the effect of wind speed, but also depends on other factors such
as wind direction, air density, etc. Bessa et al. (2012) and Lee et al. (2015) both used the
kernel regression and kernel density estimation approaches. But Bessa et al. (2012) handle
up to three input variables, while Lee et al. (2015) use a new additive-multiplicative model
structure, referred to as AMK, that can in principle take in as many inputs as possible. The
actual number of inputs used in Lee et al. (2015) is up to seven. In Chapter 5 of Ding (2019)
and its companion DSWE R package (Kumar et al., 2021), more nonparametric regression
methods are provided, including those based on the smoothing splines (SSANOVA) (Gu,
2013, 2014), Bayesian trees (BART) (Chipman et al., 2010), k-nearest neighbors (kNN)
(Hastie et al., 2009), and support vector machines (SVM) (Vapnik, 2000). Thus, the nature
of power curve modeling falls squarely under the umbrella of nonparametric regression.

During our research, we encountered a problem in wind power curve modeling, which
we explain through the following real-life example. We were given (by a wind company) a
set of wind/weather inputs—wind speed, its standard deviation, wind direction, ambient

temperature—denoted by x, and the turbine power output data, denoted by y; all collected



in 2015. We were asked to train a model and then predict y using the x values collected
in 2016 (the first six months). The actual y values of 2016 were withheld by the company
for evaluation. The binning method is the company’s practice and used as the benchmark.
The company (in fact any company) would only consider adopting a new method, if the
new method outperforms their current benchmark in testing. We chose the AMK method
mentioned above, as it was then demonstrated as the most competitive method. We use
a five-fold randomized cross validation to train the AMK model, including both variable
selection and parameter estimation. Using a forward stepwise variable selection, all four
aforementioned inputs are selected as important. The resulting AMK model has a root mean
squared error (RMSE) 30% smaller than the binning RMSE, based on the same five-fold
randomized cross-validation using the 2015 data. However, when both models (binning
and AMK) are applied to the 2016 data, the AMK model produces an RMSE which is
5% higher than binning. This is not a unique problem to AMK. Should we use another
nonparametric regression method included in the DSWE R package, a similar phenomenon
will be observed, that is, all of them outperform binning, with a comfortable margin, when
tested using 2015 data through a randomized cross validation, but all of them either fails
to outperform binning or see their margin of improvement significantly diminished when
tested using the 2016 data.

Exploring the literature (Roberts et al., 2017; Meyer et al., 2018; Sheridan, 2013), we
found that we are not alone—the problem encountered is a case of a common issue in non-
parametric regression, known as temporal overfitting (Meyer et al., 2018). This overfitting
is caused due to the temporal autocorrelation in the data. In the wind application, both x
and y are autocorrelated. Temporal overfitting differs from the usual notion of overfitting;
the latter occurs when a model fits well to the training data, but performs worse on a ran-
dom holdout data. The usual overfitting can generally be avoided using cross-validation, as
cross-validation error tends to estimate the generalization error when the input and error
processes are independent and identically distributed (i.i.d.); see Hastie et al. (2009, Chap-
ter 7). For temporal overfitting, however, the model generalizes well for the test datasets
originating from the same time domain as the training dataset, that is, there is no temporal
extrapolation when moving from training to test inputs and the data points in training and

test sets are temporally close. But, the model’s performance seriously deteriorates when



the test dataset is from a different time domain (temporal extrapolation), precisely as we
observed in the wind power curve modeling.

We can classify test sets and their corresponding test errors into two categories. For
convenience, let us call the two test errors as in-temporal and out-of-temporal test errors,
respectively, based on whether the test datasets arise from the same or a different time
domain than that of the training dataset. In the earlier example, when a model is trained
and tested on the 2015 data through a randomized cross validation, the corresponding test
error is the in-temporal error, whereas when a model is trained using the 2015 data and
tested using the 2016 data, the corresponding test error is the out-of-temporal error. To be
clear, temporal overfitting is not concerned with the training error like the usual overfitting
problem. Rather, it is concerned with the aforementioned two types of test errors.

In this work, we establish a Gaussian process (GP)-based method to deal with temporal
overfitting. We split our functional model into two components: a time-invariant component
and a time-varying component, each of which is modeled as a GP. The GP model in and
of itself does not remove temporal overfitting; we make use of a subsampling scheme from
the Bayesian statistics literature, known as thinning, for model inference that reduces the
adverse impact of temporal overfitting. Thus, the main contributions of this work is to
highlight the temporal overfitting problem in power curve modeling and propose a GP-based
inference strategy to overcome the problem. Our numerical studies show that the proposed
method performs significantly better for out-of-temporal predictions, as compared to the
existing power curve models and other statistical approaches (those described in Section 2)
that can be used to deal with the temporal overfitting problem.

The rest of the paper is organized as follows. In Section 2, we describe the problem
statement and the major schools of thought in dealing with temporal overfitting. Section 3
presents our proposed method. Section 4 provides the empirical evidence on performance

of our method using wind turbine datasets. We conclude our research in Section 5.

2 Problem statement and relevant literature

We consider a nonparametric regression problem, where Y; € R, X; € R% and u; € R, and

Yi = f(X0) + ui, (1)



which has the following features:

1. The form of f(-) is unknown and differs in applications, making nonparametric ap-
proaches more appropriate. Furthermore, there are sufficient data pairs, {yi,wi}fil,

enabling the nonparametric treatment.

2. The input is multivariate, but the number of input variables that are causal for the

response is unknown.

3. The input X and the error v can be considered physically independent with each
other.

4. The data are observational, not experimentally designed or controlled. They are
sequentially collected from an ongoing physical process over time. The index, 1,
corresponds to time. Both the input variables in X and the error process, u, are

temporally autocorrelated over the time index 1.

Our focus here is on #4, because without the temporal autocorrelation, the problem
falls under standard nonparametric regression.

A natural question is how the temporal autocorrelation in the data causes the overfitting,
even though time is not explicitly considered in the model (only implicitly tagged with
X;) and the function of interest is the relationship between the input variables X and
the response Y. To address this question, we consider a closely related problem in the
statistics literature—when the error process is correlated with some input variables, namely
u = u(X). If one applies the standard statistical learning techniques without accounting
for the correlation between the error and the input variable, one may get an overfitted
functional estimate as shown in the left panel of Figure 2. The curve is fitted using a kernel
regression with a direct plug-in (DPI) bandwidth estimate (Ruppert et al., 1995). One can
find similar plots in Opsomer et al. (2001), De Brabanter et al. (2011).

The problem of temporal overfitting can be thought of a case when the errors are
correlated with the input variables. We know that when two random variables change
slowly over time, it could result in a spurious correlation among these two quantities even if
they are independent, as in the case under our consideration; see #3 and #4 in the problem

setup. This is to say, when the input variables and errors are autocorrelated in time, it



a) Correlated errors b) Independent errors

—— True Function 17 —— True Function
- - Estimated Function NyA - - Estimated Function

Figure 2: Effect of correlation between input variable and error on functional estimate:
a) correlated errors; b) independent errors. We use f(x) = 5z%. The correlated error
sequence is generated using a zero mean GP with input z and an exponential kernel with
a lengthscale of 0.05.

would create a correlation among them, and may consequently create the overfitting effect
as shown in Figure 2. The presence of the nuisance input variables, which are not causal
to the response, further aggravates the problem. An input variable could turn out to be
‘seemingly important,” owing to the temporal autocorrelation in both the response and the
nuisance variable, even when it is not a causal variable. The more input variables considered
for modeling, the more likely a non-causal variable to be selected because of the presence
of temporal autocorrelation, leading to poor generalization when the test data points are
from a different time domain (Roberts et al., 2017).

There are various methods studied in the literature to handle the problem of autocor-
relation in error and/or input; Opsomer et al. (2001) provides a survey of the methods up
to two decades ago. One class of methods, developed specifically for kernel regression, are
based on directly modifying the bandwidth estimation technique; see, for example, Altman
(1990) and De Brabanter et al. (2011, 2018). This is generally done by modifying the crite-
rion for computing the optimal bandwidth such as asymptotic squared error (ASE). One of
the criticisms for these kernel-based methods, as discussed by Opsomer et al. (2001), is their
inability to handle multivariate inputs. This limitation persists even in the recent literature
(De Brabanter et al., 2018), which still considers a univariate input while developing their
bandwidth estimation. De Brabanter et al. (2018) touch upon extensions to multivariate

inputs only in their discussions section. Thus, this class of method is not directly applicable



to our nonparametric regression problem where multiple input variables are dealt with.
There are two other schools of thought applicable to our problem setup. One is known
as pre-whitening (Xiao et al., 2003; Geller and Neumann, 2018) and the other is through
some modification of the cross-validation error (Chu and Marron, 1991; Burman et al.,
1994; Racine, 2000; Opsomer et al., 2001; Rabinowicz and Rosset, 2020).
The idea of pre-whitening is to preprocess the response itself such that the resulting
data has a white noise (Xiao et al., 2003; Geller and Neumann, 2018). More specifically,

pre-whitening is to model u; using an invertible linear process,
u; = Ejzoc]&?,_j,

where €’s are white noises. Then, one can map u;’s to €;’s using the inverse process. Prac-
tically, one would require to fit a regression model 7 (X) and then compute the residuals
t; = Y; —m(X;). An autoregressive model of a suitable order can be estimated for ;. Sub-
tracting the estimated autoregressive part of @; from Y;, so as to remove the autocorrelation
in Y due to u, produces a modified response Y;. Theoretically, this modified response Y;
would be free from temporal autocorrelation and can be used as the response for the final
model. One major challenge in this method is the presence of some nuisance variables in the
data. According to Roberts et al. (2017), these nuisance (non-causal) variables can mask
the autocorrelation in the residuals, that is, the temporal autocorrelation of the residuals
gets modeled through the autocorrelation in the nuisance variables. If that happens, one
would underestimate the autocorrelation in the residuals, resulting in minimal or even no
changes in the modified response Y;. As a result, one gets little or no improvement on the
estimate of the regressor.

The idea of modifying cross-validation is arguably a more general framework to deal
with correlated errors or temporal overfitting. This branch of methods is also known as h-
blocking or hr-blocking and, more recently, as leave-time-out or time-split cross-validation.
The idea is to do cross-validation on temporal blocks of data rather than random samples.
Chu and Marron (1991); Burman et al. (1994); Racine (2000) explore this idea under
different settings. The time-blocked cross-validation idea is advocated by Roberts et al.
(2017) and adopted in Meyer et al. (2018).

Related to the idea of modifying cross-validation but unlike the previous works, Rabi-

nowicz and Rosset (2020) proposed a modification for the cross-validation error by adding



a correction factor to account for the correlation. They motivate the problem using a linear
mixed effect model where some of the effects stay the same, whereas other effects change
from training to test datasets. The model formulation in Rabinowicz and Rosset (2020)
bears certain similarity to ours, as we split the regression function into a time-invariant
and time-dependent component (to be presented in the next section). A key difference is
that the inputs to the time-invariant component in our model are autocorrelated, while the
inputs to Rabinowicz and Rosset (2020)’s fixed effect term are i.i.d. The rest of the treat-
ment in our method also differs substantially from that in Rabinowicz and Rosset (2020).
For instance, our inference method does not require cross-validation.

In the case study, we compare our proposed method with the pre-whitening method,
the time-split cross-validation, and Rabinowicz and Rosset (2020)’s method. We find that
our method consistently outperforms these available approaches when testing on data that

are outside the time domain covered by the training data.

3 Proposed method

In this section, we describe our proposed method to mitigate the problem of temporal

overfitting while fitting a nonparametric regression model.

3.1 The model

Given a dataset D = {y;, x;, t;},, we consider the following model:

yi = f(zi) +g9(t:) + €, (2)

where for our target wind application, y is the power output of a wind turbine, x is the d-
dimensional vector of environmental input variables, ¢t denotes time, and € is i.i.d. Gaussian
noise with zero mean and variance o2 < co. We deem that f(-) is a time-invariant function of
the input variables  and g¢(-) is a temporally autocorrelated stationary stochastic process
that contains the autocorrelated part of the residual. We stress that while f(-) is time
invariant, x; is time varying and autocorrelated.

Recall that the motivation for this paper is to avoid temporal overfitting and improve
the prediction accuracy under temporal extrapolation, that is, for out-of-temporal test sets

as defined in Section 1. In Equation (2), f(-) can explain the variance in the data that is



carried over to a different time domain, as we assume that this function does not directly
depend on time but only through the input variables. The variance which does not carry
over to a different time horizon is modeled through the time-dependent term, g(-). The rest
is just i.i.d. noise. Thus, for out-of-temporal predictions, accurately identifying f(-) plays
a key role in improving the accuracy.

Before providing further modeling details, we would like to elaborate on this model
setup. Among the three main approaches reviewed in Section 2, the pre-whitening approach
and the time-split cross-validation do not invoke a model like in Equation (2); rather they
work directly with the model in Equation (1). This is especially obvious in the pre-whitening
approach, which is to whiten the autocorrelated u and use that as the main apparatus to
deal with temporal overfitting. But Rabinowicz and Rosset (2020)’s method does invoke
a model of certain similarity to Equation (2). Specifically, Rabinowicz and Rosset (2020)

consider a generalized linear mixed model (GLMM) of the form,
y=08+7Zs+e, (3)

where ® contains the fixed effect covariates, meaning that the input & would be included
through ®, and Z contains the random effect covariates. The realization of the random
effect s can change from training to test cases.

As we pointed out earlier, Rabinowicz and Rosset (2020) assume the input variables in
their fixed effect term, ®, to be i.i.d. samples. In our setting, the input variables in x;
are autocorrelated in time. In other words, the autocorrelation in y; in our process comes
from two sources—the autocorrelation in both x; and g(¢;). We believe this difference is
important and helps explain the difference in the outcome of applying both methods. We
revisit this point in Section 4.7 after presenting the numerical results.

Continuing with our modeling process, we model both f(-) and g(-) as realizations
of stationary Gaussian processes (GPs) (Rasmussen and Williams, 2006). For f(.), it is
assumed to be a sample from a GP with a mean function u(-) and a covariance function
k(-,-). Specifically, we use a constant mean function and a Matérn covariance function with

a smoothness parameter of v = 1.5 as follows:
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where (8 is an unknown constant, O’J% is the variance of f(-), and (-); denotes ¢** component

0th covariate. We come to

of a vector; for instance, (), is the lengthscale parameter for the
this specific choice by experimenting with four covariance functions—squared exponential,
two Matérn kernels (smoothness of 1.5 and 2.5), and exponential kernel—and chose the
best performing one, which is Matérn with v = 1.5. While there are some difference in
performance, the differences are not that striking; see Supplementary Material S1.

The temporal part g(-) is assumed to be zero mean with a covariance function denoted

by q(-,-). We again use a Matérn covariance function with v = 1.5 for g(-) given as follows:

q(t,t’)za?(l—i—\/g“;f,’)exp(—\/§|t;t/|>, (5)

where 03 is the variance of g(-) and ¢ is the lengthscale for time.

3.2 Inference procedure

The key is how to effectively estimate the two components in Equation (2). Recall that
our data are observational, not from designed experiments in which the confounding effects
can be distinguished through a careful selection of factor settings. Using the observa-
tional data, if one conducts the maximum likelihood estimation of the hyperparameters,
(B,0¢,0,04,¢,0c), in Equation (2), one would run into an identifiability issue—while at-
tempting to learn the hyperparameters for both f(-) and g(-) together, it is difficult to tell
whether the variance in the data is due to some input variables or due to time. We provide
numerical evidence on worse performance of joint (direct) estimation in Section 4.6.
Another possible explanation for the inferior performance of direct estimation comes
from an intrinsic problem of GP regression. For simplicity, consider the model y; = g +
fo(xs) + go(t;) + €, where pg stands for the global mean value, and fy and go are zero-
mean GPs. Then there is a known identifiability issue for estimating pg; see Tuo and Wu
(2016) and Theorem 3 of Wang et al. (2020). This issue in estimation does not affect
the prediction properties for applications in which people combine all additive terms for
making prediction, because this bias can be compensated by another bias in estimating fj
and go; see Tuo and Wu (2018) and Theorem 2 of Wang et al. (2020). However, in the
current context, the estimate of gg itself is critical for out-of-temporal predictions, because

an inaccurate estimate of go means that pg + fo is also inaccurate, resulting in worse out-
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of-temporal predictions.

In order to overcome this problem, we decompose the model in Equation (2) as follows:

yi = fl®@)+us,

up = g(t;) + €.

In the first step, we only focus on estimating f(-) such that the variation in y due to
temporal correlation of u does not get modeled. The residual left after subtracting the
estimate of f(-) would be used to estimate g(-) and o?2.

The first step is equivalent to learning a function with autocorrelated errors. To this
end, we adopt an idea frequently used to reduce the autocorrelation in Markov chain Monte
Carlo (MCMC) sampling schemes. The method is a subsampling scheme known as thinning.
The method retains one sample after every T time steps and discards all the samples in
between to reduce the autocorrelation; hence the name, thinning, as this results in a thinned
dataset. The number T is often referred as the thinning number.

Thinning retains only 1/7 fraction of the original dataset and discards the rest. We
would like to retain all the samples because each sample carries information about the
function, which may not be otherwise available in other data points. So, instead of dis-
carding the data, we put the training samples in 7" number of thinned data bins. Let us
denote a data point (y;, x;,t;) as D;. Then, the first bin will have following data points,
By := {D1,Dri1,Dars1, - - - ’DL%jTH}’ where |a| rounds a down to its nearest integer.

Generally, the j** bin has the following data points:

Bj :=A{Dj, Dr+j, Dorsjs - D\ 3 ypy 5}

If L%JT{j > N, then (L%J —1)T+ j would be last element for B;. We have T bins overall.
Thinning creates a temporal gap between two consecutive data points in a bin, and thus
reduces the intra-bin temporal autocorrelation among the training points in any given bin.
Hence, for the data points in the same bin, we could assume u to be independent Gaussian
noise with some variance o2 < co. Then, we can proceed to estimate f using a likelihood
function of the thinned data.
Let us denote the number of data points in B; by n; and let 7;(-) be the function

that maps the index of the elements in set B; to the index of the original dataset D.
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Denote the response vector for B; by yl) = (yﬂj(l), Yr;(2)s - ,y,,j(nj))T. Let K be the

th yow and s column is given by

covariance matrix for B; such that the element in r
(K0),, = k(T (r)s Trj(s)) | 7y8 = 1...nj, where k(-,-) is the same as defined in Equation
(4). Let I be an identity matrix of a proper size and 1 be a vector of ones of a compatible
size. Then, the likelihood function for the j** bin Bj is given as follows:
1
, ex
V@r) KO + o]

L;=

p (-2 (w9~ B)TKY + 2 ) 51) . (6)

One could use any individual bin and its likelihood function to estimate the hyperpa-
rameters for function f, but doing so makes use of only a fraction of the original data, which
is not ideal. Intending to make full use of all the data for estimating f, our approach is to
create a pseudo-likelihood function as the product of the likelihood functions of individual
bins, namely H;‘»le L;. As such, the hyperparameters of function f can be estimated by

maximizing this pseudo-likelihood function, as follows:

T
(B,&?,é,c}i) = argmaXHEj ) (7)
j=1
The temporal correlation between different bins, namely the inter-bin temporal correlation,
will still exist, because temporally neighboring data points are now in different bins. But
the construction of the pseudo-likelihood function ignores the inter-bin correlations. In
other words, from the lens of this pseudo-likelihood function, the bins are not related at all.
Optimizing this pseudo-likelihood function forces the estimation of f to the thinned data
and will not be affected by the temporal autocorrelation.
The hyperparameters in Equation (7) can be estimated using any optimization routine.
In practice, we work with the logarithm of the likelihood function, which changes the finite
product structure of the likelihood function to a finite sum. Finite sum functions can also be
optimized using parallel processing, that is, each of the summand function can be evaluated
independently on a different computing core, which could reduce the computation time.
The hyperparameters therefore estimated will not reflect or minimally reflect the tem-
poral correlation due to u. Omnce the hyperparameters are estimated, we combine the
bins back to create a single dataset and use the single dataset for predictions. We use
the following notation: K is the covariance matrix for all the training points with its

element in the i'" row and j column given as (K);; = k(z;,xz;) | i,j = 1...N,
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r(x) = (k(x,x1),...,k(x,zN))" is the correlation vector between any point x and all
the training points, and y = (y1,...,yn)' is the vector of response for all the training

points. The value of f () can be calculated at a given point @ as follows:
f@)=B+r"(x)K+ 6.1 (y - 51). (8)

3.3 Estimating ¢(t)

Let f = (f(z1),..., f(zn))T be the vector of the estimate of f(-) for all the training points.
The vector of residual é is calculated as: é = y — f Each of the residual is associated
with a time point. Denote by é; the residual for time point t. We use these residuals as the
response for estimating g(t) and o2.

Here we assume that the autocorrelation in time decays much faster as compared with
the overall time span of the training dataset. This is definitely reasonable for our target wind
applications, because the autocorrelation in wind speed or other environmental variables
only persists in the order of hours (Ding, 2019, Figure 2.3), while our training data spans
from a number of months to more than a whole year. For this reason, we do not need
all the training points to compute a global estimate for g(-). Instead, we compute a local
estimate of g(t*) at t*, based only on the training points in the neighborhood of ¢t*. Doing
this substantially reduces the computational burden for estimating g(-).

We use a neighborhood based on the thinning number 7', as temporal autocorrelation
would be small after a lag of T" time units. Thus, we only include the training points that
are within +7" time units from ¢*, while estimating g(¢*). Moreover, there is no need to
estimate g(t*) if there happens to be no training points in the T-neighborhood of ¢*.

Let us define an index set for training points close to point t* as J* = {j : [t* —¢;] <
T;5 = 1...N}. Denote by Q* the covariance matrix formed by the time points in J*
such that (Q*)i; = q(ti,tj);4,5 € J*. Here ¢(-,-) is the same as defined in Equation (5).
Also, denote by &* a vector of residuals with its j** component (e"); = er;;7 € J*. The

hyperparameters for q(-,-) and o2 is estimated based on the value of t*, and is given as

1 1. .7
[

——eé* * 211—1 5%
Jang o oP (¢ Qe e )

(63,,62) = argmax ;

Let s* denote a covariance vector such that its j** component is (s%); = q(t*,t5);5 € J*.
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Once the hyperparameters are estimated, §(t*) is given as follows:
gt ="' [Q 4671 e (10)

3.4 Predictions

Once f(-) and §(-) are estimated, they do not have to be used together in a prediction. If
one wants to predict at a time t*, which is in the far distant future and temporally far away
from any training data points, then one only needs f(a:*), as g(t*) is going to be zero. The
condition to decide whether ¢t* is temporally enough far away from the training data is to
check whether there exists a training data point, ¢;, such that |t* —¢;| < T. If no, then t*
is temporally far away. We refer to this type of prediction under temporal extrapolation
as out-of-temporal prediction. By contrast, the in-temporal prediction refers to predictions
over a time t* not temporally far away from the training data points.

Of course, a user does not have to check this condition. One can just use f(z*)+g(t*) to
predict at any test point (x*,t*), regardless of where t* is. The g(-) term takes the temporal
distance between t* and the training data points into consideration and will reduce to zero
when t* is temporally distant from the training data. Simply put, our model can adapt for

out-of-temporal versus in-temporal prediction without a user’s active involvement.

3.5 Choice of thinning number

The choice of thinning number 7" is important to reduce the temporal autocorrelation within
a data bin. If T is very small, we may still have overfitting problem. On the other hand, if T’
is very large, the number of data points in each bin may be too low to learn f(-) accurately.
The choice of T needs to provide a trade-off between these two aspects. Since, we want
to ensure that the temporal autocorrelation is sufficiently reduced, we choose the thinning
number as the smallest lag such that the absolute value of the partial autocorrelation
function (PACF) for each of the covariates is less than two standard errors of the PACF for
a sequence of IV i.i.d Gaussian noise, which is considered to be statistically insignificant at

the 95% significance level. In other words, the value of T is given as follows:

T = max min( | PACF(y),(h) | < 2/VN), (11)

14



where PACF (), (h) is the PACF for covariate £ = 1,...,d for lag h. We tested the choice

of thinning number in Section 4.5 through a sensitivity analysis on real datasets.

4 Case study: Application to wind turbine datasets

We present two case studies for modeling wind power curves to validate the performance
of the proposed method. Both datasets are publicly available. The first case study is based
on four datasets. We refer to the first case study as Case Study I. The second case study
is on a larger number of datasets (thirty turbines) but the data available are for a shorter

period of time. We refer to the second case study as Case Study II.

4.1 Datasets

Case Study I uses four datasets available on the book website of Ding (2019) (https://
aml.engr.tamu.edu/book-dswe/dswe-datasets/, Dataset 6). They are associated with
four turbines, denoted as WT1 to WT4. The first two datasets are from inland and the
remaining are from offshore wind turbines. Each turbine has four years of data collected at
a 10-minute frequency. The data for the inland turbines (WT1 and WT2) span from 2008
to 2011, and those for the offshore turbines (WT3 and WT4) extend from 2007 to 2010.
Each dataset has five environmental input variables along with the response (y) and time
stamp (t) for each data point. The inland turbines have the same input variables: wind
speed (V'), wind direction (D), air density (p), turbulence intensity (I), and wind shear
(S). The offshore turbine datasets contain humidity (H) instead of wind shear and have
the rest of the four variables same as the inland turbines. One can easily see that all these
variables are temporally autocorrelated by plotting their partial autocorrelation function
(PACF) plots. One such example for WT1 is provided in the Supplementary Material S2.

Each of the datasets has missing data points. The exact number of data points is given
in Table 1. The number of data points are about 50% when compared to the scenario where
turbines produce power at all the times (for every 10 minute interval, we have a positive
power), which is an ideal condition and not observed in practice. There are two major
causes of missing data points: 1) wind speed is either below cut-in speed or above cut-out

speed, so there is no power production; 2) wind conditions are favorable but the power
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Table 1: Description of the main study datasets.

Dataset WT1 WT2 WT3 WT4
Type of wind turbine Inland Inland Offshore Offshore
Time period 2008-2011 2008-2011 2007-2010 2007-2010
Covariates {V,D,p,1,S} {V,D,p,1,S} {V,D,p,I,H} {V,D,p,I,H}
Number of data points 96,824 89,730 113,378 110,556

output is either curtailed or zero because of grid commitments or operational issues.

Case Study II is based on thirty wind turbines. These datasets are available at https://
github.com/TAMU-AML/Datasets/tree/master/TemporalOverfitting. The input vari-
ables are the same as that of the inland turbines in Case Study I. These thirty datasets
can be further classified into groups of ten, as the ten turbines in the same group share
the same meteorological tower. The meteorological towers measure wind speed at multiple
heights, wind direction, ambient pressure and temperature. The multi-height wind speed
measurements are used to calculate the wind shear. Ambient pressure and temperature are
used to calculate the air density. Wind direction data are also taken from the meteorologi-
cal towers. Each of the turbines also measure the wind speed at their nacelle. The data for
wind speed and power are collected at individual turbines, and turbine’s wind speed data
is used to calculate the turbulence intensity. The first meteorological tower has a slightly
longer duration of data than the other two towers; see Table 2.

For both case studies, we divide the datasets into three temporally disjoint datasets:
Ti, 72, and T3. In Case Study I, 77 corresponds to the first two years, and 75 and 73 has the
data for the third and fourth year, respectively. For example, for the inland turbines (WT1
and WT2), 7; contains the data for the years 2008 and 2009, and 73 and 73 correspond
to the year 2010 and 2011, respectively. In Case Study II, the duration corresponding to
Ti, T2, and T3 are listed in Table 2. We select a few methods including our proposed method
to learn the power curve for each wind turbine using their corresponding 77 datasets. The

learned model is then used to do out-of-temporal predictions on 73 and 73.

Table 2: Duration of the datasets and temporal partitions for Case Study II.

Turbines Total duration T1 duration T5 duration T3 duration
1 to 10 Apr 29, 2010-Oct 31, 2011 | Apr 29, 2010-Nov 30, 2010 | Dec 1, 2010-May 31, 2011 | Jun 1, 2011-Oct 31, 2011
11 to 20 Jul 30, 2010-Oct 23, 2011 Jul 30, 2010-Dec 31, 2010 | Jan 1, 2010-May 31, 2011 | Jun 1, 2011-Oct 23, 2011
21 to 30 Jul 30, 2010-Oct 20, 2011 Jul 30, 2010-Jan 31, 2011 | Feb 1, 2011-May 31, 2011 | Jun 1, 2011-Oct 20, 2011
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Table 3: Thinning number, 7', for each of the four datasets.
Dataset WT1 WT2 WT3 WT4
Thinning Number 12 14 22 22

4.2 Implementation and comparison

For implementing our method, we use all the five input variables in the model as the starting
point but subset selection is part of the learning task; see Section 4.1 for description of the
input variables. Also, since wind direction is a circular variable, we embed it into a two-
dimensional Euclidean space by using its sine and cosine transformations. We standardized
all the input variables by subtracting their respective sample mean and dividing them by
their sample standard deviation. Standardization of the inputs ensure that the importance
of the variables would be clear from their respective lengthscale. A large lengthscale would
imply that the input variable is not important in predicting the response.

We proceed by computing the thinning number T for each of the datasets as per Equa-
tion (11). The computed value of T for the four datasets in Case Study I is shown in Table
3. Taking the thinning number for WT1 as an example, the value of 12 would be equivalent
to 2 hours, as the data points are collected every 10 minutes. This implies that two data
points with less than 2 hours of time gap would not be kept in the same bin. Since there
are missing data points in the dataset, the time of 2 hours serves as the minimum time
gap between two intra-bin points. The actual temporal gap for some of the consecutive
data points in a bin would be higher. We bin the datasets using their respective thinning
number given in Table 3, and use Equations (6) and (7) to estimate the hyperparameters
for the time-invariant function f(-), as described in the previous section. Once we have the
hyperparameter estimates for f(-), we compute the out-of-temporal predictions on 73 and
T3 using just f(-), as given in Equation (8).

We compare our proposed method with two categories of methods: the first category
is for the nonparametric power curve methods that do not consider the issues of temporal
overfitting, and the second category is for the approaches that address the serial autocor-
relation and temporal overfitting issues, which are reviewed in Section 2.

In the first category, we use the following three methods—the IEC binning method,
k-nearest neighbors (kNN), and additive multivariate kernel (AMK) by Lee et al. (2015),
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but with the focus on out-of-temporal predictions only. We include the binning method
because it is the industry baseline. If a proposed method cannot outperform this baseline,
the value of that method will be called into question. kNN and AMK are included because
the comparison presented in Chapter 5 of Ding (2019) shows that these two methods do a
better job than other nonparametric regression methods.

In the second category, we again consider three methods. The first is the time-split
cross-validation (Burman et al., 1994; Racine, 2000; Roberts et al., 2017), the second is
based on Rabinowicz and Rosset (2020)’s corrected cross-validation error, and third one is
based on pre-whitening of the response (Xiao et al., 2003; Geller and Neumann, 2018).

The implementation of the binning method is straightforward; we use a 0.5 m/s bin-
width (the IEC standard). For kNN and AMK, one would have to do variable selection. We
employ a forward stepwise subset selection using a five-fold cross validation to get the best
subset of input variables. The AMK method by Lee et al. (2015), which was specifically
developed to model the wind turbine power curves, uses a kernel regression method. In
their paper, Lee et al. (2015) consider additive combinations of trivariate kernels, keeping
the first two variables common in all the additive terms and varying the third variable.
They kept the common variables fixed as wind speed and wind direction. We modify their
method by only fixing the first variable as wind speed and let the data decide the second
common variable for the additive terms, while still using trivariate kernels. The analyses
for both kNN and AMK are done in R using the DSWE package (Kumar et al., 2021).

In order to do time-split cross-validation, we use kNN as the base method, but modify
the cross-validation scheme. We divide the temporally ordered data into small blocks of
size T—same as the thinning number used in our proposed method. Instead of randomly
sampling training and test datasets, we select training and test samples from the temporal
blocks in a way such that if a particular temporal block is in test set, its neighboring blocks
must not be in the training set. This splitting ensures that there is low temporal correlation
between training and test datasets. A schematic of time-split cross-validation is given in
Figure 3. We do a five-fold time-split validation by sampling different test datasets and
refer to the resulting method as TS-kNN, namely time-split KINN.

Time-split cross-validation can also be clubbed with any other base method such as

AMK; however, given the size of the datasets, doing so is computationally expensive. For
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example, it took more than 10 hours to find the best subset of variables and compute
the optimal bandwidths for WT1 when AMK method was clubbed with time-split cross-
validation whereas TS-kNN took less than 15 minutes to do the same. Also, the result
obtained using time-split validation on AMK did not show any significant improvement
over standard AMK which uses a direct plug-in (DPI) approach by Ruppert et al. (1995)

for estimating the bandwidths. So, we decide to proceed with only kNN as the base method.

Train Discard Test Discard Train Train Train Train

Figure 3: A schematic of time-split cross-validation. Each block represents a group of
temporally adjacent data points.

For Rabinowicz and Rosset (2020)’s method, we again use kNN as the base method for
the same reasons described for time-split validation; cross-validation with AMK is compu-
tationally prohibitive for the data size at hand. We refer to the resulting kNN method as
CVc-kNN. The CVc method relies on estimating the covariance matrix of the response,
Cov(y,y), conditioned on the input variables. Here we run into a problem. For our prob-
lem setting, we need to estimate the covariance in y due to g(t) but the covariance in the
response data are caused by the autocorrelation in both x and ¢(t). To apply the idea of
CVc, we come up with an an hoc procedure, which is to first fit a one-dimensional kNN
model to the response data and then use the residual to compute Cov(y,y). The thought
behind is that the single input of wind speed is the most important variable in power curve
models. Subtracting its effect would remove a major portion of the covariance in y due to
the temporal autocorrelation in . Once Cov(y,y) is estimated, we keep it fixed and do a
forward subset selection, based on CVc, to find the best variables subset and corresponding
hyperparameter (k). It is apparent that the lack of a quality estimate of Cov(y,y) under
our problem setting presents a major roadblock to the effective application of CVc (more
discussion in Section 4.7).

The last method is based on pre-whitening of the response (Xiao et al., 2003; Geller
and Neumann, 2018). We follow the steps in Xiao et al. (2003), but with AMK as our base
method. Here, we use AMK not only because AMK as the base method is a better choice

than kNN, but also because Xiao et al. (2003) uses a kernel-based local polynomial method,
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meaning that AMK is more compatible. We did not use AMK to be clubbed with time-split
cross-validation, due to heavy computation that would have otherwise resulted. But for
pre-whitening, as it does not require cross-validation to compute the optimal bandwidths,
this computational burden is not there. In other words, AMK can be used along with DPI
approach once the response is modified.

Specifically, we fit an AMK model to the datasets and estimate the residuals at the
training points. We use these residuals to fit an autoregressive (AR) model of order T—the
computed thinning number. We then modify the response by subtracting the estimated
autoregressive component of residuals from the response. The modified response is then
used to build a new AMK model, which would be used for predictions. Since we have
already obtained the best input variable subset using forward subset selection for AMK, we
use the same subset of input variables for the model and do not carry out subset selection

again. We refer to this pre-whitened AMK model as PW-AMK.

4.3 Results for Case Study I

We present the results in two parts, corresponding to the two categories of methods. The
first part compares our method with the power curve methods in Category 1, in which we
use the binning method as the benchmark and compute performance improvement over
binning for each method. The performance criteria is the root mean square error (RMSE)

on a test dataset. Our proposed method is referred to as tempGP in the comparison.

Table 4: A comparison table for out-of-temporal RMSE for dataset 72

Dataset | Binning = kNN AMK  tempGP (f(x))
WTL | 4.98 (éf;) (é'.?f%) (23'.2%%)
WI2 | 493 (é?(go) (ég?%) (235.609%)
WT3 | 395 (_L:l 11%) (1?12(%) (13'.;?%)
WT4 | 373 (—?5?56%) (g.;l;)) (221'.?;1%)

Tables 4 and 5 present the performance of binning, kNN, AMK, and tempGP for out-of-
temporal predictions on test dataset 72 and T3, respectively. Since T2 and T3 are temporally

disjoint from 77, we only use the estimate for the time-invariant function f(x) for predic-
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Table 5: A comparison table for out-of-temporal RMSE for dataset T3
Dataset | Binning kNN AMK  tempGP (f(x))
WIL | 508 ((jx.g;o) (éf);)) (14;'.?%)
WT2 ) 517 (5.5?%) (;1.24755) (1??%)
WIS 4B ok any %)
WT4 | 364 <_i‘i(.)z>5>%) (1?:;,'.171%) (22'.?);))

tions. We highlight in boldface font the best prediction performance, i.e., whichever has
the lowest RMSE. The values in parentheses denote the percentage improvement over the
binning method. A negative percentage implies a worse performance than binning. Ev-
idently, tempGP outperforms both the industry baseline (binning) and the data science
competitors (kNN and AMK). In other words, explicitly avoiding the temporal structure
in the learned function improves the performance of out-of-temporal predictions.

Next, we present the results for the second category of methods (TS-kNN, CVc-kNN,
and PW-AMK) in Tables 6 and 7. We also append the results for kNN and AMK from
Tables 4 and 5 for easier comparison. The last column of the tables (% Imp) shows the
percentage improvement for tempGP over the second best method; note that the second
best method differs for different datasets. For the cross-validation based methods, TS-
kNN and CVc-kNN, we notice some improvement in performance as compared to their
counterpart kNN, in most of the cases. However, our proposed method still outperforms
these methods. The pre-whitening method PW-AMK shows a small but sometimes no
improvement over its counterpart AMK. Pre-whitening relies on the autocorrelation in the
residuals to modify the response. Lee et al. (2015) show that the autocorrelation in the
residuals of the AMK model is still there but nonetheless weakened. As Roberts et al.
(2017) explained, the temporal structure in the residual can easily get modeled through
some input variables when multiple autocorrelated input variables are present, masking the
autocorrelation of the residual. Thus, this weakened autocorrelation in the residual may
not be strong enough to modify the response significantly in the pre-whitening step.

Overall, looking at the results of these four datasets, our proposed method is a clear

winner. However, the second best method varies from case to case. Interestingly, the
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Table 6: A comparison table for out-of-temporal RMSE for dataset 72 using methods that
account for serial autocorrelation.

Dataset | tempGP TS-kNN CVc-kNN PW-AMK | kNN  AMK | % Imp
WT1 3.52 4.06 4.10 4.38 496 4.35 | 13.3%
WT2 3.69 4.59 4.70 4.38 4.66 4.32 14.6%
WT3 3.19 3.98 3.73 3.39 4.11  3.50 5.8%
WT4 2.94 3.82 3.55 3.47 396 347 | 15.2%

Table 7: A comparison table for out-of-temporal RMSE for dataset 73 using methods that
account for serial autocorrelation.

Dataset | tempGP TS-kNN CVc-kNN PW-AMK | kNN  AMK | % Imp
WT1 4.11 4.26 4.25 4.49 4.98 447 3.3%
WT2 4.48 5.14 5.12 4.82 5.04 4.78 6.3%
WT3 3.83 4.32 4.11 3.97 4.68 4.12 3.6%
WT4 2.84 3.74 3.51 3.19 4.05 3.14 9.6%

standard version of AMK, which does not model the temporal structure, turn out to be
the second best in some of the cases. Rabinowicz and Rosset (2020) explain that if the
correlation structure in training and test datasets are the same, there is no need for a
special treatment of the correlation structure in the data, and the standard methods would
perform well. In practice, we do not know the temporal correlation structure in the training
and test datasets, and thus cannot guarantee if the correlation pattern would stay the same.
Thus, it is a good idea to assume different correlation structure for training and test sets
when one is not certain that the correlation structures are the same. This argument becomes
more convincing as we extend our case study to a larger set of datasets. There we notice

that not handling the temporal structure results in much worse predictions.

4.4 Results for Case Study II

We extend our case study on another thirty datasets. Since the datasets in Case Study
II are of smaller size, we also used a regular version of Gaussian process, that is, without
the g(t) term and thinning, and refer it as regGP. In order to present the results concisely,
we use plots instead of the tables. Figure 4 (left panels) presents the relative RMSEs of
regGP, tempGP, kNN and AMK with respect to binning. To obtain the relative RMSEs,
we divide all the RMSEs for different methods by the RMSE of the binning method for
each turbine, so that the relative RMSEs in the same scale. Thus, a value larger than

one implies performance deterioration over binning; for example, a relative RMSE of 1.1
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implies that the method performs 10% worse than binning. A relative RMSE smaller than
one implies performance improvement over binning. The dashed horizontal line at one is
for the binning method. The actual RMSEs are presented in Supplementary Material S4.
We also plot the prediction intervals for select turbines in Supplementary Material S5.

We notice that for the first out-of-temporal dataset 7 (Figure 4a), the performance of
kNN, AMK, and, regGP are much worse than that of the second out-of-temporal dataset
T3 (Figure 4c). As mentioned earlier, these datasets are for 15 to 18 months time periods.
Thus, equal division of these datasets into 71, 72, and T3 results in a half year time span
for each of 71, T2, and T3. What this means is that if 7; cover the first half of a year,
then 75 covers the second half and 73 covers the first half of the next year. Due to the
seasonal difference of environmental variables, principally that of wind and temperature,
it is commonly understood that using the first half year data to predict the second half of
the same year is harder than using the first half year data to predict the same first half
year of the next year. In another angle, 71 and 75 have rather different temporal structure
but 77 and 73 share a similar temporal structure. It does not therefore come as a surprise
that a model temporally-overfitted on 77 could perform much worse on 75 but reasonably
well on 73. We stress that tempGP performs uniformly better for both out-of-temporal test
datasets, although the performance gain is admittedly much more pronounced for 7s.

Figure 4 (right panels) presents the relative RMSEs (still relative to binning) for the sec-
ond category of methods—TS-kNN, CVc-kNN, and PW-AMK-—along with tempGP. When
the temporal overfitting causes a much worse performance for standard regression methods
(kNN, AMK, and regGP), which is the case for Ta, the second category of methods that
address temporal overfitting provides a significant improvement over their non-temporal
counterpart, except for PW-AMK. When temporal overfitting does not result in a worse
performance (for 73), we do not see much help from these temporal methods. It may be

fair to say that these temporal methods are not very sensitive to weak temporal overfitting.

4.5 Further experiments and simulations

The main parameter used in our method is the thinning number, as it regulates the temporal
autocorrelation in each of the data bins. Thus, in order to highlight the importance of

thinning and validate our choice of thinning number, we did a sensitivity analysis using
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Figure 4: Relative RMSEs as compared to binning RMSE for out-of-temporal datasets.
The top two plots are for dataset T with the top-left plot a) for kNN, AMK, tempGP,
and regGP and the top-right plot b) for TS-kNN, CVc-kNN, PW-AMK; and tempGP. The
bottom two plots are for dataset T3 with the bottom-left plot c¢) for kNN, AMK, tempGP,
and regGP and the bottom-right plot d) or TS-kNN, CVec-kNN, PW-AMK, and tempGP.
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Figure 5: Box plots for relative RMSE using different thinning numbers for all the turbines:
a) for test set Ta; b) for test set 73. “Adp” denotes the adaptive thinning number computed

using the proposed approach.

different thinning numbers on Case Study II datasets. We consider the following thinning
numbers: 1,2,22 = 4,...,25 = 64. The thinning number computed from our proposed
approach for these datasets vary between 14 and 17 with a majority of them being 15.
Using these thinning numbers, we re-estimate the function f and recompute the test errors
for 75 and 73. A thinning number of 1 implies no thinning at all, which is essentially a
regular version of GP model without the g(¢) term, same as regGP in Case Study II.

We present the box plots for relative RMSEs (defined in Section 4.4) for all the turbines
in Figure 5. The advantage of thinning is much more pronounced in 73 than 73. This
is consistent with our previous comments in Section 4.4 about 7; and 75 having different
temporal structure, and 77 and 73 having similar temporal structure because they are
approximately the same time period of two consecutive years. We see that when temporal
structure between the training and test datasets are different, thinning plays an important
role in improving the performance, and our proposed approach for computing the thinning
number, referred to as “Adp” in the figure, proves to be quite effective.

We also applied our method on a simulated function where the ground truth is known.

The details of the simulation study is available in Supplementary Material S6.

4.6 Direct inference of f(-) and g(-)

In the model inference section, we state that estimating the hyperparameters of f(-) and

g(+) jointly via a maximum likelihood estimation results in an identifiability problem, which
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can result in unreliable hyperparameter estimates and thereby leads to considerable deterio-
ration in prediction performance. We here provide the numerical evidence on the 30-turbine
T2 datasets used in Case Study II. Figure 6 presents the histograms of the ratios of the
out-of-temporal RMSEs obtained by using the jointly estimated hyperparameters over that
obtained by the thinning-based inference.

We find that under the best case scenario, the direct (joint) estimation results in an error
rate that is 6% worse than that of the thinning-based inference, and under the worst case
scenario, the direct estimation results in an error rate that is 80% worse, that is the ratio of
out-of-temporal RMSE for direct estimation vs thinning-based estimation is approximately

1.8. Out of the 30 turbines, 28 cases are at least 10% worse.

Frequency

NAT
o -
I T T T 1

1.0 1.2 1.4 1.6 1.8
RMSE ratio

Figure 6: Ratios of the out-of-temporal RMSEs for 75 obtained from jointly estimated
hyperparameters over those using hyperparameters from the thinning-based inference.

Another advantage of thinning-based approach over the direct estimation is the compu-
tation time. In general, the time complexity for fitting a GP model is of the order O(n?),
where n is the number of data points. However, since we bin the data into 7' bins such
that each bin has approximately n/T = m observations and use the pseudo-likelihood de-
fined in Section 3.2, the time complexity for fitting the proposed model is in the order of
O(Tm?) = O(nm?), which is lower than O(n?) for any T > 1.
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4.7 Further discussions on CVec

Looking at all methods that account for correlation in data, CVc looks like the most
promising alternative to tempGP. CVc, however, has its own limitations.

The main challenge that arises in our problem setting is the estimation of Cov(y,vy),
which plays a critical role in correcting the standard CV error estimation. As noted in
Section 3, Rabinowicz and Rosset (2020) assume the input variables to be i.i.d. Under
their assumption, Cov(y,y) can be directly estimated using sample covariance matrix of
y because no covariance in y is due to the input variables in @. For our problem setting,
however, x are autocorrelated. We need to estimate the covariance in y due to g(¢). This
dual autocorrelation makes it harder to estimate Cov(y,y) accurately. Strictly speaking,
CVec as presented in Rabinowicz and Rosset (2020) is not directly applicable to our model.

Our ad hoc procedure in Section 4.2 is an attempt to estimate Cov(y, y) in the presence
of the dual autocorrelation. We acknowledge that the ad hoc procedure may not be the
best approach, but it remains unknown how to estimate the covariance in y due to g(t)
under our problem setting. While devising the ad hoc procedure, we used the residuals
of a fixed one-dimensional kNN model to estimate Cov(y,y). One may ask if it would
be better to increase the number of input variables in the kNN model while estimating
Cov(y,y)? Using a multivariate model weakens the correlation in the residuals, leading to
a different estimate of Cov(y,y). As such, the issue of variable selection gets entangled
with the estimate of CVc. It is unclear to us which multivariate model should be used for
estimating Cov(y,y). Given these challenges with CVc, tempGP appears better suited for

the application at hand. The empirical evidence is rather strong in supporting this claim.

5 Conclusion

We explore a class of regression problems when the input variables and errors are serially
correlated over time. Classical regression, which works under the independence assump-
tion, results in overfitted models, known as temporal overfitting. We propose a method
to reduce temporal overfitting by explicitly modeling the temporal correlation in the data.
We split the variance in response into a time-independent function and a temporally au-

tocorrelated stochastic process. We take advantage of an idea frequently used in Bayesian
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statistics—thinning. Using the thinned data, the time-independent function can be sepa-
rately estimated from the temporally autocorrelated model term.

The thinning-based idea is one of the approaches that can be used to learn the time-
independent function. An alternative approach could be to regularize the time-independent
function f, or constrain it, following an idea first proposed in Ba and Joseph (2012). Ba
and Joseph (2012) also considers an additive model with two GP terms. They separate
the effect of the two terms by ensuring that one term is smoother than the other and then
constraining the lengthscale of the two kernels accordingly. Unlike in Ba and Joseph (2012)
where the two GP terms take the same input, f and g in our model take different inputs,
and as a result, it is not immediately clear how the lengthscales of the respective kernels
should be constrained, but this could be an interesting future work to pursue.

A final note is that while the paper highlights the problem of temporal overfitting in wind
power curves, we believe that the wind energy problem is just one of the many application
areas where one could encounter temporal overfitting. Many real datasets in engineering
and life sciences are collected over time and could be autocorrelated due to the inertia in the
underlying physical processes. We are confident that the resulting methodology is generic

and could benefit other nonparametric regressions of the same nature.
Supplementary Material

Supplementary Material: The PDF file contains: (S1) Results for Case Study II with
different covariance functions, (S2) PACF plots for WT1, (S3) Hyperparameter es-
timates, (S4) Actual RMSEs for Case Study II, (S5) Prediction intervals for select

turbines, and (S6) Experiments on a simulated function.

Computer Code: The computer code to reproduce all the results in this paper are avail-
able on GitHub at https://github.com/TAMU-AML/tempGP-Paper. A generic R func-
tion for applying the tempGP algorithm to any dataset is available in DSWE package
in R available through CRAN at https://CRAN.R-project.org/package=DSWE.
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