
GraphEBM: Energy-based Graph Construction for Semi-Supervised Learning

Zhijie Chen1

Dept. of Computer Science and Engineering
Shanghai Jiao Tong University

Shanghai, China
chen-zhijie@sjtu.edu.cn

Hongtai Cao

Dept. of Computer Science
University of Illinois (UIUC)

Champaign IL, USA
hongtai2@illinois.edu

Kevin Chen-Chuan Chang

Dept. of Computer Science
University of Illinois (UIUC)

Champaign IL, USA
kcchang@illinois.edu

Abstract—With the rapid improvement of various techniques
in graph-based semi-supervised learning, the call for higher-
quality graphs becomes more intensive. However, such affinity
graphs are not naturally existing in most semi-supervised learn-
ing tasks. In this paper, we propose a learning-based approach,
GraphEBM, for the graph construction problem. GraphEBM is
designed to address three main requirements in graph construc-
tion: 1) supporting dynamic update; 2) providing interpretable
metrics; 3) tailoring to tasks. Specifically, in GraphEBM, we
adopt a probabilistic view, Edge Probability Space, to model
a graph construction process as constituted of events from the
space. Our objective is thus to learn, by our Energy-Based
Model (EBM), the latent sampling distribution. Experimental
results show that our proposed GraphEBM outperforms the
existing graph construction methods in improving the semi-
supervised learning tasks on various datasets and it can learn
global properties of a target graph only with direct local
guidance.

Keywords-graph construction; energy-based model; proba-
bility space; graph semi-supervised learning;

I. INTRODUCTION

Graph-based semi-supervised learning (Graph SSL) has

been proven effective in various scenarios where data points

can be related for collective prediction, such as image clas-

sification [1], natural language understanding [2] and fake

information detection [3]. In these applications, it has shown

an outstanding capability by leveraging limited labeled data

and a large amount of unlabeled data [4]. However, a key

limitation in Graph SSL is that it highly depends on the

quality of a given affinity graph that connects data points.

Such a graph must satisfy the expected smoothness, so that

close nodes have similar labels, to guarantee Graph SSL’s

performance.

In most cases, affinity graphs are not ready-made for raw

data or hard to extract from the real world. They must first

be constructed manually and this process is ineffective. In

other cases, only part of the whole graph can be observed

and the residual part should be deduced from the observable

subgraphs. In this paper, we focus on this problem of graph

inference, which aims to predict the presence or absence of

edges between a set of points (as vertices of a graph).

1Work done in part while visiting the University of Illinois at Urbana-
Champaign.

For example, in a social network like Twitter, identifying

the connections among users is time-costing and sometimes

infeasible– since latent relationship are often unobservable

or not revealed to the public. The follower relationship is

also not always reliable if we are dealing with different tasks

on the network. These facts make observing the ground-truth

graph directly not realistic. However, if we have access to

the profile of each user, it is possible to restore the graph of

interest using this side information.

We develop a scheme which, for a set of data points

sampled from a latent data manifold, will construct a graph

over these points as nodes with edges determined by the

similarities of pairwise points, i.e., to satisfy the smooth-

ness requirement. The scheme should satisfy the following

requirements:

1) Supporting dynamic update. Most networks are

changing over time, due to dynamic update, such as in-

crease/decrease of nodes and modification of node attributes.

E.g., in the Twitter network, new users are constantly added.

Many users are changing their profiles and posting new

tweets from time to time. Existing works do not consider

these scalability issues and build the graph from scratch

for updates [5]. The proposed scheme should support such

dynamic updates to easily generalize to new nodes.

Insight: The scheme should be inductive, to process new

nodes without retraining with existing nodes, in contrast to a

transductive approach. We devise the Edge Probability Space

as an inductive model (Sec. III-A) to support this property.

2) Providing interpretable metrics. To support downstream

applications, a constructed graph should be interpretable.

However, existing works only focus on what the inferred

graph is. They choose the neighborhood for each node based

on existing metrics [6]. In comparison, we care more about

why an edge exists. It should provide the probability for

how much likelihood of this edge, so that an application

can determine how to use it.

Insight: To achieve interpretability, we develop a gener-

ative model (Sec. III-B), which defines a joint distribution

on an edge and its label. This distribution can be used to

measure the validity of edges.

62

2020 IEEE International Conference on Data Mining (ICDM)

2374-8486/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDM50108.2020.00015

Authorized licensed use limited to: University of Illinois. Downloaded on September 01,2022 at 03:26:25 UTC from IEEE Xplore. Restrictions apply.

3) Tailoring to tasks. Most existing approaches [7] assume

a fixed neighbourhood for a node, e.g., by connecting it with

k nearest neighbors in terms of features. Such one-size-fits-

all scheme cannot be customized for different tasks, e.g., a

social-network often follows the well-know power law distri-

bution instead of uniform degrees. Different semi-supervised

methods are based on different prior knowledge on graph to

take advantage of the data manifold [8]. Depending on tasks,

the scheme should generate graphs of different shapes, or

more specifically, with different global properties.

Insight: To customize for different tasks, the scheme

should be a supervised process, guided but not only the

features but also labels of nodes. We introduce the train-

ing phase (Sec III-C) which exploits supervision and we

show how the global properties of graphs (Sec. III-D) are

considered with direct local guidance.

Addressing these requirements, we propose a novel per-

spective to the graph construction problem: Based on a

probabilistic view, we suggest that the edges in a graph

form a distribution with unknown parameters (to be learned).

Our goal is to quantify the parameters and specify the edge

distribution. This paper makes the following contributions:

1) In our probabilistic view, we construct a measure space,

the Edge Probability Space, of all edges in a graph, where

each edge is assigned a measure to indicate the distribution

of edges. The graph construction process is thus converted

to sampling from the edge distribution. To our knowledge,

we are the first to introduce this probabilistic view to the

graph construction problem.

2) We propose a parametric model called Energy-Based
Model (EBM) to learn the distribution of edges. The energy

values work as a measure to indicate the validity of an edge.

To tackle the sparsity and discreteness problem in an edge

probability space, we propose a generator to sample edges

from the EBM. We use gumbel-softmax to approximate a

differentiable random walk process to induce stochasticity

and facilitate back propagation. The problem is formulated

as to maximize the likelihood of edges from a given graph.

3) We investigate how different settings will influence

the learning process and the result of our proposed model.

Extensive experiments show that using our scheme to learn

the affinity graph can boost the performance on Graph SSL.

We also show that it can learn different global properties of

a latent graph including edge and degree distributions with

only local guidance.

II. RELATED WORKS

A. Energy-Based Model

Energy-based models have a long history in machine

learning [9]. They are probabilistic models that assign a

scalar energy value to the random variables with energy

function U . These random variables can be a composition

of latent and observable variables [10]–[12] or can be input

data x [13], [14]. With the assigned energy values, EBMs

can be used to build probability density functions. A density

function for input x ∈ Rd is in the form of Boltzmann

distribution:

p(x; θ) =
e−U(x;θ)

Z(θ)
(1)

where θ is the model parameters to be learned. This model

ensures that the data points with higher probability have

lower energy values. Z(θ) =
∫
x
e−U(x;θ) is known as the

partition function. Training EBM entails a negative sampling

phase from the model distribution itself. However, obtaining

samples from pθ is of huge challenge due to the intractability

of the partition function. One solution is to use Markov

Chain Monte Carlo (MCMC) estimator or use Langevin

function. However, these approaches are not satisfying when

the data distribution is complex. Recently, neural sampler is

proposed to perform fast approximate sampling. This paper

also follows this route to generate negative samples.

Another trend in the development of EBM is that many

deep energy models are proposed. Different from Deep

Belief Nets (DBN) [15] and Deep Boltzmann Machine

(DBM) [12] which involve difficult inference and learning, a

deep energy model, proposed by [16], uses a deep neural net-

work (as opposed to stacked boltzman machines in previous

works) to define its energy function. In this case, the layers

of the network are deterministic transformations of input

data, which help check the validity of input configuration

(low energy) [17]. Another advantage of using deep energy

model is to enable parameterizing the energy function, which

gives the model more flexibility and expressive power.

B. Graph Inference and Affinity Learning

Generally speaking, inferring graph topology from ob-

servations is a problem lacking universally-acknowledged

definitions, and there are many ways to associate a topology

with the observed data samples. A straight-forward but

widely-used method is to compute sample correlation using

a similarity function e.g. a Gaussian RBF kernel function to

quantify the similarity between data samples. Historically,

there have been two general approaches to learning graphs

from data, one based on statistical models and the other

based on physically-motivated models. The statistical per-

spective deems the graph structure as a generative process.

Learning the graph structure is equivalent to learning a fac-

torization of the random variables. Markov Random Fields

are often applied in such perspective.

For the physically motivated models, the observation of

variables is deemed as a result of an underlying physical

phenomenon or process on the graph. A typical process is

network diffusion, e.g. information flowing over a network

or epidemic spreading between human interactions.

Readers are referred to the comprehensive work in [18]

to have a closer look at the state-of-the-art approaches in

graph inference. Generally speaking, our work follows the

63

Authorized licensed use limited to: University of Illinois. Downloaded on September 01,2022 at 03:26:25 UTC from IEEE Xplore. Restrictions apply.

statistical route but treats the formulation of a graph as a

generative process defined on a parametric distribution.

III. PROPOSED APPROACH

A. Distribution in Edge Probability Space

We will start from defining the Edge Probability Space,

the base we set our work on and we will link the graph

construction problem with events in the probability space.

Suppose we have a set of nodes N = {n1, n2, ..., nN},
the pairwise connectivity can be denoted as Eij for node

ni and nj . An edge probability space (EPS) can be denoted

as S = {Ω,F ,P}, where Ω is called the sample space,

consisting of the possible edges, i.e. Ω = {Eij |ni, nj ∈ N}.
The sample space Ω represents the set of possible outcomes

we can sample from. F is called the set of events, an

σ-algebra defined over Ω. Take Ξ as the set of counting

measures on S with C as the smallest σ−algebra on it.

A graph on S is a measurable map ξ : Ω → Ξ from

the probability space {Ω,F ,P} to the measurable space

(Ξ, C). Every realization of a graph ξ can be defined as

the combination of multiple independently sampled edges

from Ω, a.k.a an event from the EPS. We denote the

event as E = {E1, E2, ..., EM}. It can also be written as

E =
∑M
i=1 δEi

, where δ is the Dirac measure, Ei’s are

random elements of S. We will use Ei in the following

sections to denote a general-purpose atomic event from the

probability space. Notice that a graph can also be treated

as nodes with an edge list, where duplicates of samples can

be seen as the weights of the corresponding edges. So it

is natural to associate an event E in the EPS with a graph

G = {N , E}. The likelihood of the constructed G is then

equal to the probability measure P of the event E , which

can be described as follows:

L(G) = P(E) ∝
M∏
i=1

pθ(Ei) (2)

where pθ(·) describes the probability of an atomic event Ei
(an edge) with parameter θ. Our goal is to maximize the

likelihood of the observed graph. Here, we derive the log

likelihood of G:

logL(G) = C +

M∑
i=1

log pθ(Ei)

= C +MEEi∼pD [log pθ(Ei)] (3)

where C is a constant associated with a combinatorial

number and E is the estimation function. pD is the observed

distribution of the edges.

B. Energy-based Edge Density Estimation

As described above, an energy model is capable of esti-

mating the density of a random variable from an unnormal-

ized data distribution. We follow the classic route to define

the distribution of EPS by assigning a proper energy value to

each edge connection. Therefore, the edge distribution can

be expressed as pθ(Eij) = e−U(Eij ;θ)

Z(θ) . Then how to define

the energy function U(Eij ; θ) is of high importance.

We suppose edge Eij to be composed of vertex i and j,
whose features can be denoted as fi and fj ∈ R

d respectively.

To guarantee the symmetry of learned affinities, we employ

a siamese-structured network to extract features. It has two

branches which are both multi-layer perceptrons (MLP) and

share weight parameters θ.

hi = MLPθ(fi), i ∈ N (4)

By using the above encoding model, nodes in the feature

space are projected to the embedding space, where the data

points are denoted as hi ∈ R
m and the pairwise affinities

can be calculated :

Ai,j = fa(hi,hj), i, j ∈ N (5)

where the affinity matrix A ∈ R
+N×N

contains the energy

values. There are several options for implementing the

affinity function fa, e.g.

Ai,j = ‖hi − hj‖2 (6)

Ai,j = exp

(
−hTi Mhj

τ

)
(7)

Eq. 6 expresses the Euclidean distance between node i
and node j in the embedding space. Eq. 7 is an exponential

function which gives a more general metric on affinity

learning. M ∈ R
m×m is a symmetric and trainable weight

matrix of the affinity function and τ is a hyper-parameter.

With the above settings, the two kinds of affinity function

can both ensure all elements to be positive and lower-

bounded. In the experiments, we adopt Eq. 6 since it exhibits

more stability in the training process.

C. Contrastive Graph Likelihood Learning

Our training objective is to maximize the log likelihood

of the observed graph, as defined in Eq. 3. Using Bolztmann

Distribution latently defined by the edge density estimator,

we can now derive the gradient for the objective function,

�θ log qθ(Ei) = �θ log e
−U(Ei;θ) −�θ logZθ

= −�θ U(Ei; θ)− 1

Zθ
�θ Zθ

= −�θ U(Ei; θ) + EE∼qθ [�θU(E; θ)]
(8)

For parameter update in epoch t, we have the following

rule to do gradient descent:

θ(t+1) ← θ(t)−ε(EEi∼pD [�θU(Ei; θ)]−EEi∼qθ [�θU(Ei; θ)])
(9)

where ε is the learning step. If we take a closer look

at the update equation, we can find there are two terms

describing the gradient of energy function over different

64

Authorized licensed use limited to: University of Illinois. Downloaded on September 01,2022 at 03:26:25 UTC from IEEE Xplore. Restrictions apply.

sample distributions, i.e. pD and qθ, standing for the true

distribution and the edge density estimator distribution re-

spectively. Minimizing the difference of these two terms is

equivalent to approximating qθ to pD by updating θ.

However, due to the sparsity of the edge probability

space and uncertainty in the data modes, sampling from the

edge density estimator using MCMC methods may take too

much time. Hence, we employ a neural generator Gφ to

approximate the model distribution pθ.

One measure for the distance between two probability

distributions is Kullback–Leibler divergence. Denote the

distribution defined by the neural generator Gφ as qφ, then

the KL divergence between qφ and qθ can be expressed as:

KL(qφ‖qθ) =
∑
Ei∈E

qφ(Ei) log
qφ(Ei)

qθ(Ei)

= −H(E) + EEi∼qφ [U(Ei; θ)] + logZθ (10)

The training objective of the neural generator Gφ is to

minimize the KL divergence by updating φ. Under an ideal

circumstance, pφ and qθ have the same distribution. Hence,

we can substitute pφ for qθ in Eq. 9:

θ(t+1) ← θ(t)−ε(EEi∼pD [�θU(Ei; θ)]−EEi∼qφ [�θU(Ei; θ)])

(11)

And the parameter φ of neural generator can be updated

according to the rule:

φ(t+1) ← φ(t) − γ(−�φ H(E) +�φEEi∼qφ [U(Ei; θ)])
(12)

where γ is the learning step. Notice that the third term in

Eq. 10, i.e. the logarithm of the normalization term is a

constant with respect to the model parameter φ. Its gradient

is zero and thus omitted in the gradient update in Eq. 12.

D. Wasserstein Distance for Graph Construction

Eq. 11 shows that the optimization function is set as

a kind of distance between the distribution of the energy

model and the generator. Here we give a proof that the

adopted measure is mathematically the Wasserstein distance.

For two graphs generated from energy model and generator,

we denote the probability space as (Ωθ,Fθ,Pθ) → (Ξ, C)
and (Ωφ,Fφ,Pφ) → (Ξ, C) respectively. The Wasserstein

distance between two distributions is written as:

W (Pθ,Pφ) = inf
ψ∈Ψ(Pθ,Pφ)

E(ξθ,ξφ)∼ψ [‖ ξθ − ξφ ‖] (13)

where Ψ(Pθ,Pφ) denotes the set of all joint distributions

ψ(ξθ, ξφ) whose marginals are Pθ and Pφ.

To complete the definition of Eq. 13, we need to further

clarify the term characterizing the distance of two graphs

‖ ξθ − ξφ ‖. For simplicity, here we only consider the

circumstance where the two graphs have the same num-

ber of edges. Suppose ξθ = {x1, x2, ..., xn} and ξφ =
{y1, y2, ..., yn}. Then the two graphs are deemed as discrete

distributions μθ =
∑n
i=1

1
nδxi

and μφ =
∑n
i=1

1
nδyi . We

take Cij =‖ xi − yj ‖∗, where ‖·‖∗ is the norm in

S . The optimal transport is a permutation of the index:

‖xi−yj‖∗ = minσ
∑n
i=1‖xi−yσ(i)‖∗, where the minimum

is taken among all n! permutations.

Eq. 13 is computationally highly intractable and its dual

form is usually utilized [19]:

W (Pθ,Pφ) = sup
‖f‖L≤1

Ex∼Pθ
[f(x)]− Ey∼Pφ

[f(y)] (14)

where f is called the Lipschitz functions. An alternative way

widely used is to change the problem into an optimization

problem:

max
‖f‖L≤1

Ex∼Pθ
[f(x)]− Ey∼Pφ

[f(y)] (15)

This is the Wasserstein distance of graph construction and it

conforms with our optimization function denoted by Eq. 11.

One insight the Wasserstein distance gives us is that the

choice of Lipschitz function should obey the norm con-

straint. Hence, we add a regularization term called gradient

penalty to Eq. 11. We update Eq. 11 by:

θ(t+1) ← θ(t) − ε(EEi∼pD [�θU(Ei; θ)] (16)

− EEi∼qφ [�θU(Ei; θ)] + λEEi∼pD
[�θ‖�Ei

Uθ(Ei)‖2
]
)

where λ is a weight for the gradient penalty term.

E. Neural Edge Sampling via Gumbel Softmax

To solve the intractability of the normalization constant,

we adopt a neural generator to generate distribution approx-

imate to that of the energy model. Here we specify the

architecture and techniques used in the neural generator.

We use random walk process as the backbone of the

neural generator to sample fake edges. At the beginning of

random walk, we sample a random variable n1 ∼ Uniform

(0, No), which works as the noise index for the starting

point. In each walking step, the generator will output a

normalized weight vector Wi for the current node i, i.e.∑No

n=1 win = 1 where wii is set to zero manually to avoid

self loop. A conventional way to pick the next index from

the index pool is to sample from the categorical distribution

parameterized by Wi. However, this sampling process is

intrinsically non-differentiable, and hence is not appropriate

to be incorporated in the gradient-based optimization meth-

ods. A common alternative approach is to use softmax and

ensure the output vector is concentrated around the positions

of the largest input values. Then the generator can select

the index that has the maximum value as the next step’s

start. This approach is plagued with another problem. With

a given input index, it will almost definitely outputs the same

index. It deviates from the goal that we want to model the

distribution of edge sampling and will ultimately lead to

mode collapse.

Therefore, the design of edge sampling process should

consider two main aspects: 1) a differentiable module, 2)

65

Authorized licensed use limited to: University of Illinois. Downloaded on September 01,2022 at 03:26:25 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Training Process of GraphEBM

Input: Feature matrix F , Partly Observed Graph Go =
{Vo, Eo}, Energy-based edge density estimator Eθ, Neural

sampler Gφ.

Output: Model parameters θ, φ.

1: Initialize the model parameters θ(0), φ(0) randomly;

2: for training epoch t in 1 to T do
3: // Energy model training phase.

4: Sample true edges from Go, {E(t)
o } ∼ pd(E);

5: Sample fake edges from Gφ, {E(t)
f } ∼ pφ(E)

according to Alg. 2;

6: Compute the energy value Aij of each edge using

Eq. 4, 5;

7: Update θ(t) according to Eq. 11;

8: //Neural sampler training phase.

9: Sample fake edges from Gφ, {E(t)
f } ∼ pφ(E)

according to Alg. 2;

10: Update φ(t) according to Eq. 12;

11: return θT , φT ;

a stochastic process. Motivated by these requirement, we

adopt gumbel-softmax reparameterization [20] to sample

from the model-defined distribution. Consider the weight

vector generated by the neural sampler is Wi, which is a

R
No vector. And we sample a set of gumbel noise G from a

standard Gumbel distribution. In practice, it can be generated

by:

G = − log(− log(U)), s.t. U ∼ Uniform(0, 1) (17)

And the gumbel noises are added to the weight vector in an

element-wise manner, i.e.

W
′
i =

[
wi1 +G(1), wi2 +G(2), ..., wiNo

+G(No)
]

(18)

Then a softmax function is applied to the noised weight

vector W
′
i and gets a one-hot designation vector D for the

next step:

Dij = e(wij+G
(j))/γ/

No∑
m=0

e(wim+G(m))/γ (19)

The next index can be retrieved by j = argmaxj(Dij). In

practice, we use the Straight Through Estimator (STE) [21]

trick to retain the gradient for the training process. The gum-

bel softmax is intuitively effective here because it satisfies

a rounding property, P (W
′
ik > W

′
il, ∀ k
= l) = wik/wil.

F. Property Analysis

As we have discussed in Section I, our desired model

should be accommodated to the scenario having frequent

updates to the dataset. Here we explicate how the design

in our model can meet these requirements and show these

designs are non-trivial.

Algorithm 2 Neural Sampling Process

Input: Feature matrix F , Neural sampler Gφ.

Output: Set of sampled fake edges {Ef}.
1: Ef = {};
2: Sample the starting point index i0 of random walk;

3: Lookup F to retrieve the feature embedding fi0 ;

4: for random walk step s in 1 to S do
5: Calculate the weight vector Wis from Gφ by:

6: Wis = Gφ(fis);
7: Sample an auxiliary variable U ∼ Uniform(0, 1);
8: Generate gumbel noise G according to Eq. 17;

9: Calculate the noised weight vector W according to

Eq. 18;

10: Calculate a one-hot designation vector Dis accord-

ing to Eq. 19;

11: Append the selected Eis to Ef ;

12: return Ef ;

The existing works that are based on first learning an affin-

ity matrix and then do node-wise sampling cannot accom-

plish this since they are intrinsically transductive models.

When a new node arrives, the selection of neighborhood for

each node is rerun, and thus the graph construction process

takes at least an O(n2) complexity where n is the number

of data points. By comparison, the energy model is learning

the edge distribution and our graph construction procedure

is based on sampling edges from an edge pool. First, the

model can generalize to unseen data points and doesn’t need

to be retrained. And for the graph construction, we can easily

come up with a hierarchical sampling algorithm for linear

complexity by a quasi-dynamic programming approach. The

idea is that we retain the edge samples from the original

dataset, and maintain a numeric for the overall probability

(a.k.a the normalization constant Z). When we have an

unseen data point, we can easily derive the pairwise energy

values by applying the pre-trained GraphEBM. The number

of new possible edges involving this unseen data point is n.

These n energy values also form a distribution where we

can sample the newly-introduced edges. Here we generate

a new graph by leveraging the previous sampling results

and merely adding these new edges. Suppose the cumulative

probability of the original graph is Z1 and the sum of

probabilities for the new edges are Z2, then two edge pools

are formed, one consisting of the previous edges, and the

other consisting of the new edges. We only sample from

Z2 and the sampling time should correspond to a certain

ratio to guarantee the relative number of previous and new

edges. The whole sampling process can be seen as we first

sample a binary variable, deciding which edge pool we are

going to sample from. The ratio is decided by the cumulative

probability values Z1 and Z2. This method is different from

the per-node selection methods since it utilizes the previous

66

Authorized licensed use limited to: University of Illinois. Downloaded on September 01,2022 at 03:26:25 UTC from IEEE Xplore. Restrictions apply.

Figure 1. The mean absolute error change in semi-supervised learning with regard to the change in feature threshold γf , with different fixed label
threshold γl = {5, 10, 20, 25}. Each bar plot shows the error on training set and testing set.

sampling results effectively. The update of dataset entails

O(n) complexity in graph reconstruction. Linear complexity

algorithms for decrease in node number and modification of

node features can also be trivially deduced using the above

ideas.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of

GraphEBM on a series of real-world datasets.

A. Dataset and Sample Graph Generation

The datasets we use are authentic public datasets collected

from different domains, including 1) Student-Perf. [22],

using student’s information to predict student achievement in

secondary education, especially in math subject; 2) Energy-

Efc. [23], using different features of building shapes to

predict heating load of the building; 3) Parkinsons. [24],

using biomedical voice measurements from 42 people to pre-

dict early-stage Parkinson’s disease; 4) Bike-Sharing. [25],

using most of important events in the city to predict data

on bike renting. This dataset is divided into two sub-

tasks, one for predicting the activity of casual bike renting,

denoted as Bike-Casual, and the other for predicting the

registered users’ bike renting, denoted by Bike-Registered.

The statistics of these datasets are shown in Table. I,

Generally, these datasets have numeric or categorical

features and labels defined on a continuous domain. We try

to find the underlying graph from these separate data points.

One advantage of our model is that we can customize a

graph as a handbook to provide a priori for GraphEBM

to learn. The positive edges we feed into GraphEBM is

Table I
DATASET STATISTICS

Methods # of Instances # of Attributes Mean of Labels

Student-Perf. 649 33 10.899
Energy-Efc. 768 8 22.307
Parkinsons 1024 26 21.296

Bike-Casual 378 16 8.482
Bike-Registered 378 16 36.562

generated from a sample graph. However, in most cases,

the geometry of the structured data is often not revealed

explicitly, especially when we only have access to individual

data points. So first we adopt an empirical approach to

construct the graph purely on the labeled points. To simulate

the realistic scenarios, the generation of the sample graph

should consider the following factors:

Limited Number of Labeled Data Points. In semi-

supervised learning, the number of labeled points is highly

limited. Here we follow this constraint. Denote Nl as the

number of observable data points. The ratio of observable

data points with regard to the whole dataset should be lower

than 50%. The labeled data points are where we generate

true edges to feed GraphEBM. They also provide the fixed

labels in the inference stages, such as label propagation.

Label-level Smoothness. It is a consensual assumption for

general-purpose graph-based semi-supervised learning that

the closeness of nodes over a certain graph means the

similarity of two data points in the label metric. Our work

is built for such downstream applications and should follow

this assumption. Hence we set a label-level threshold γl to

restrict the choice of neighborhood. For node i, the logits

67

Authorized licensed use limited to: University of Illinois. Downloaded on September 01,2022 at 03:26:25 UTC from IEEE Xplore. Restrictions apply.

(unnormalized probability) of transition can be described as:

pi = 1|Yi−Yj |<γl � (Y − Yi) (20)

where 1[·] means a mask vector containing 1 at the entry

where the condition is satisfied and 0 otherwise. � is a

Hadamard product operator between two vectors.

Feature-level Smoothness. Only guaranteeing the label-

level smoothness in the recovered graph might incur redun-

dant edges. Notice that the label of a node may be formulated

by many factors in its features. For instance, a movie might

be highly rated either because of its dramatic plots or due

to the elegant costumes and stage settings. Such nodes with

discrepant features and identical labels should not form an

edge. We prune the pi in Eq. 20 as follows:

pi = 1|Xi−Xj |<γf � 1|Yi−Yj |<γl � (Y − Yi) (21)

where γf is the predefined feature-level threshold.

B. Parameter Selection and Model Sensitivity

With the factors stated above, we have three hyper-

parameters to decide how to generate the sample graph. Here

we investigate how the difference of inputs can interfere

with the model performance. The range of three parameters

are listed as: Nl ∈ {128, 256}, γl ∈ {5, 10, 15, 20, 25},
γf ∈ {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%}. And

we evaluate the model performance by mean absolute error

between prediction and ground truth. The predicted value

is derived from label propagation on the generated graph.

The classic label propagation algorithm can be abbreviated

as follows: we fix the labels of labeled data points, and

update those unlabeled with the weighted average of its

direct neighbors (labeled or unlabeled) till convergence for

all the inferred labels. In this subsection, we conduct the

following experiments on the Energy-Efc. dataset.

Fig. 1 shows the relation between the error and the feature

threshold, with Nl = 256 and results under different γl are

displayed separately. The left bar of each column means the

error on training set and the right for testing set. We can

observe that for almost any label threshold γl, the optimal

choice of feature threshold should be as low as possible.

And the error only changes slightly when γf is greater than

30%. It means that the edge selection for a node should

be inclined to its direct neighborhood in the feature space.

And the decrease in redundant edges is beneficial to the

semi-supervised learning process. Also, it is observed that

the improvement brought by lower feature threshold decays

when the label threshold increases. This is because the worst

case is not interfered greatly by the different settings.

Similarly, Fig. 2 shows the relation between the label

threshold and the mean absolute errors. In each bar-plot,

with the feature threshold fixed, we can observe that the

performance is better when we feed a graph with lower

label threshold. This effect is more significant for lower

feature threshold. However, the above two experiments do

not suggest that the feature threshold and label threshold

should be as low as possible. They show a general trend

for the error when modifying the threshold value. They also

provide information on the importance of both guaranteeing

the label-level smoothness and feature-level smoothness on

graphs. In these experiments, we manage to generate a graph

with almost all the nodes connected with a certain path. With

the extreme settings, i.e. γf = 0 or γl = 0, the generated

graph is deprecated to separate data points, which is not

suitable for downstream applications on graph. The exact

choice should be task-specific with regard to the intervals

of data points in the feature and label space.

Fig. 3 shows the change of mean absolute error on the

testing set with the number of labeled data points. We can

observe that with more labeled data points used to generate

the sample graph, the performance of our model can usually

be slightly improved.

C. Performance on Semi-supervised Prediction Tasks

One of the ways to validate the effectiveness of our

model is to deploy it in the downstream graph-based learning

tasks and see if it can improve the performance by only

replacing the input graph. We compare our GraphEBM with

the following works:

• kNN (K Nearest Neighbours). kNN is the standard

paradigm for current works on graph construction. This

method calculates the distance for each node pair, and

selects k nearest nodes in the feature space to form

the edges for each node. In the experiment, we choose

k = {3, 7} for each node.

• TPG (Tensor Product Graph) [5]. Tensor Product

Graph is representative for the physically motivated

models for graph construction. It associates each node

with a set of data points and do diffusion on this set

to obtain more reliable similarities with higher-order

information by the TPG.

• RGCLI [6]. RGCLI is an enhanced version of the

classic GBILI [27] model. In this work, the label

information is first utilized in the graph construction

process. These methods take into account the position

of the labeled points and integrate the evaluation on

the distance with labeled points into neighborhood

selection.

• RGC [26]. RGC (Robust Graph Construction) is pro-

posed for dealing with noisy data. This method obeys

the low-rank recovery and graph-smoothness assump-

tion.

For the above methods, we generate graphs for different

datasets, and feed them into a label propagation algorithm.

We adopt a metric called normalized mean absolute error

(NMAE). It calculates the relative deviation of the prediction

results to the mean label values, so that this metric is

comparable across datasets. The lower the metric is means

68

Authorized licensed use limited to: University of Illinois. Downloaded on September 01,2022 at 03:26:25 UTC from IEEE Xplore. Restrictions apply.

Figure 2. The mean absolute error change in semi-supervised learning with regard to the change in label threshold γl, with different fixed feature threshold
γf = {10, 20, 40, 50, 70, 80}. Each bar plot shows the error on training set and testing set.

Figure 3. The comparison of the mean absolute error under different number of labeled data points Nl ∈ {128, 256}.

Table II
NORMALIZED MEAN ABSOLUTE ERROR (NMAE) OF SEMI-SUPERVISED PREDICTION OVER VARIOUS DATASETS (IN %).

Methods Student-Perf. [22] Energy-Efc. [23] Parkinsons [24] Bike-Casual [25] Bike-Registered [25]

kNN(k=3) 23.80 10.22 23.01 34.23 24.67
kNN(k=7) 23.75 10.04 24.32 34.76 23.87

TPG [5] 23.62 8.63 22.85 35.66 21.22
RGCLI [6] 23.03 8.24 23.67 33.41 20.93
RGC [26] 23.20 8.55 22.63 34.47 22.68

GraphEBM(ours) 22.18 6.81 20.78 29.39 16.83

the better performance. NMAE is defined as below,

NMAE =
1

N

∑
i

|li − yi|/ 1

N

∑
i

yi (22)

where li and yi are inferred and true labels respectively.

Results are shown in Table. II. We can observe that our

model consistently outperforms the baseline models. The

improvement in NMAE ranges from 3.6% to 24.4%.

D. Learning Global Properties
Real-world graph datasets usually have latent global prop-

erties, which might be useful in representing the whole com-

munities. However, current literature using greedy per-node

neighborhood selection do not consider this rich information.

With our design of Edge Probability Space and Wasserstein

Learning, our proposed GraphEBM can to some extent learn

the global property, although the guidance we provide is

local pairwise connectivity. Here we choose two datasets on

the same feature space but with different tasks, Bike-Casual

and Bike-Registered, for analysis. The inferred graphs are

shown in Fig. 4(a). We can observe some of the nodes

are deemed as the peripheral nodes, since they have fewer

connections. In kNN, when the hyper-parameter k is set,

each node will select at least k neighbors, which is more

likely to introduce noisy data points. This is one of the

69

Authorized licensed use limited to: University of Illinois. Downloaded on September 01,2022 at 03:26:25 UTC from IEEE Xplore. Restrictions apply.

(a) inferred network

(b) QQ-plot (c) Degree Distribution

Figure 4. Global properties tested on two datasets, Bike-Casual (top) and Bike-Registered (bottom). Fig.a) shows the inferred graph underlying these two
datasets. Fig.b) shows the QQ-plots. The x-axis is the learned edge distribution on the test set and the y-axis is the edge distribution in the sample graph.
Each point indicates the quantile of two distributions. Fig.c) shows the degree distributions for two datasets.

reasons our model can outperform other models in Graph

Semi-supervised Learning.

Although our guidance in supervised learning settings

only consists of separate local connections of nodes, the

deduction of Wasserstein distance in the objective func-

tion helps the model capture some graph-level, or the so-

called global properties from the training set. Here we

use Quantile-quantile plot (QQ-plot) to show the difference

between edge distribution of the training set and the learned

distribution. QQ-plot compares two distributions by plotting

the quantiles against each other. The x-coordinate and y-

coordinate of each point in the plot figure correspond to

one specific quantile on two distributions. Fig. 4(b) shows

the QQ-plot for the two datasets respectively. Since we

do not care about the absolute values of energy but the

relativeness of these values, the information of distribution

can be preserved using QQ-plot. In Fig. 4(b), we observe

that the points in the figure generally follow a certain line.

It means the quantiles of the two distributions are increasing

accordingly. The two distributions can agree after linearly

transforming the values in either one of the distributions.

The identity of two distributions endows our proposed

GraphEBM with the capability of integrating more domain

knowledge in learning the graph construction process. For

some tasks with specific requirements on edge distribution,

we can hand-craft a sample sub-graph with lower cost and

let the model adaptively learn its useful edge information.

Other than the edge distribution, we also care about the

degree distribution as a key indicator for the graph global

property. In Fig. 4(c), we show the degree distribution for

the two tasks. The two distributions are slightly different

but share the same property that most of the nodes have

few connections. This phenomenon can be compared with

the uniform degree distribution by kNN. For different tasks

on the same dataset, the graphs we learned are in different

shapes, which can be seen as a verification for our task-

specific learning purpose on the graph scale. Intuitively,

the fixed edge distribution and flexible degree distribution

are two regularizers for the whole graph, under which the

model is learning the graph construction process, making

the process both expressive and constrained. How the factors

are interfering with the global graph construction is a very

interesting problem. We leave it as the future work.

V. CONCLUSION

In this paper, we work on the graph construction problem,

which is a fundamental and critical problem in graph-based

70

Authorized licensed use limited to: University of Illinois. Downloaded on September 01,2022 at 03:26:25 UTC from IEEE Xplore. Restrictions apply.

semi-supervised learning. We propose a probabilistic per-

spective to the problem, where the graph edges conform with

a parametric distribution. The graph construction process is

then converted to sampling from the Edge Probability Space.

To capture the distribution, we propose a learning-based

method called GraphEBM with the contrastive graph likeli-

hood as the objective function. We also do comprehensive

experiments to investigate different settings of the model and

give guidance on choosing hyper-parameters. Comparing

to the existing works on graph construction, our proposed

GraphEBM can boost the performance of semi-supervised

learning on various datasets. Also, we have shown that the

model can capture global properties on the whole graph

scale.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-

tional Science Foundation IIS 16-19302 and IIS 16-33755,

Zhejiang University ZJU Research 083650, Futurewei Tech-

nologies HF2017060011 and 094013, UIUC OVCR CCIL

Planning Grant 434S34, UIUC CSBS Small Grant 434C8U,

and Advanced Digital Sciences Center Faculty Grant. Any

opinions, findings, and conclusions or recommendations

expressed in this publication are those of the author(s) and

do not necessarily reflect the views of the funding agencies.

REFERENCES

[1] H. Bi, J. Sun, and Z. Xu, “A graph-based semisupervised
deep learning model for polsar image classification,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 57,
no. 4, pp. 2116–2132, 2018.

[2] Z. Qiu, E. Cho, X. Ma, and W. Campbell, “Graph-based
semi-supervised learning for natural language understanding,”
in Proceedings of the Thirteenth Workshop on Graph-Based
Methods for Natural Language Processing (TextGraphs-13),
2019, pp. 151–158.

[3] A. Benamira, B. Devillers, E. Lesot, A. K. Ray, M. Saadi, and
F. D. Malliaros, “Semi-supervised learning and graph neural
networks for fake news detection,” in Proceedings of the 2019
IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, 2019, pp. 568–569.

[4] O. Chapelle, B. Scholkopf, and A. Zien, “Semi-supervised
learning (chapelle, o. et al., eds.; 2006)[book reviews],” IEEE
Transactions on Neural Networks, vol. 20, no. 3, pp. 542–542,
2009.

[5] X. Yang, L. Prasad, and L. J. Latecki, “Affinity learning
with diffusion on tensor product graph,” IEEE transactions
on pattern analysis and machine intelligence, vol. 35, no. 1,
pp. 28–38, 2012.

[6] L. Berton, T. de Paulo Faleiros, A. Valejo, J. Valverde-
Rebaza, and A. de Andrade Lopes, “Rgcli: Robust graph
that considers labeled instances for semi-supervised learning,”
Neurocomputing, vol. 226, pp. 238–248, 2017.

[7] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric
learning for large margin nearest neighbor classification,” in
Advances in neural information processing systems, 2006, pp.
1473–1480.

[8] M. H. Rohban and H. R. Rabiee, “Supervised neighborhood
graph construction for semi-supervised classification,” Pattern
Recognition, vol. 45, no. 4, pp. 1363–1372, 2012.

[9] Y. Du and I. Mordatch, “Implicit generation and modeling
with energy based models,” in Advances in Neural Informa-
tion Processing Systems, 2019, pp. 3603–3613.

[10] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning
algorithm for boltzmann machines,” Cognitive science, vol. 9,
no. 1, pp. 147–169, 1985.

[11] G. E. Hinton, “Training products of experts by minimizing
contrastive divergence,” Neural computation, vol. 14, no. 8,
pp. 1771–1800, 2002.

[12] R. Salakhutdinov and G. Hinton, “Deep boltzmann ma-
chines,” in Artificial intelligence and statistics, 2009, pp. 448–
455.

[13] A. Mnih and G. Hinton, “Learning nonlinear constraints with
contrastive backpropagation,” in Proceedings. 2005 IEEE
International Joint Conference on Neural Networks, 2005.,
vol. 2. IEEE, 2005, pp. 1302–1307.

[14] G. Hinton, S. Osindero, M. Welling, and Y.-W. Teh, “Un-
supervised discovery of nonlinear structure using contrastive
backpropagation,” Cognitive science, vol. 30, no. 4, pp. 725–
731, 2006.

[15] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,” Neural computation, vol. 18,
no. 7, pp. 1527–1554, 2006.

[16] J. Ngiam, Z. Chen, P. W. Koh, and A. Y. Ng, “Learning deep
energy models,” 2011.

[17] T. Kim and Y. Bengio, “Deep directed generative models
with energy-based probability estimation,” arXiv preprint
arXiv:1606.03439, 2016.

[18] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning
graphs from data: A signal representation perspective,” IEEE
Signal Processing Magazine, vol. 36, no. 3, pp. 44–63, 2019.

[19] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,”
arXiv preprint arXiv:1701.07875, 2017.

[20] E. Jang, S. Gu, and B. Poole, “Categorical reparameteriza-
tion with gumbel-softmax,” arXiv preprint arXiv:1611.01144,
2016.

[21] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect:
Training deep neural networks with binary weights during
propagations,” in Advances in neural information processing
systems, 2015, pp. 3123–3131.

[22] P. Cortez and A. M. G. Silva, “Using data mining to predict
secondary school student performance,” 2008.

[23] A. Tsanas and A. Xifara, “Accurate quantitative estimation of
energy performance of residential buildings using statistical
machine learning tools,” Energy and Buildings, vol. 49, pp.
560–567, 2012.

[24] A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig,
“Accurate telemonitoring of parkinson’s disease progression
by noninvasive speech tests,” IEEE transactions on Biomed-
ical Engineering, vol. 57, no. 4, pp. 884–893, 2009.

[25] H. Fanaee-T and J. Gama, “Event labeling combining en-
semble detectors and background knowledge,” Progress in
Artificial Intelligence, vol. 2, no. 2-3, pp. 113–127, 2014.

[26] Z. Kang, H. Pan, S. C. Hoi, and Z. Xu, “Robust graph learning
from noisy data,” IEEE transactions on cybernetics, vol. 50,
no. 5, pp. 1833–1843, 2019.

[27] L. Berton and A. de Andrade Lopes, “Graph construction
based on labeled instances for semi-supervised learning,” in
2014 22nd International Conference on Pattern Recognition.
IEEE, 2014, pp. 2477–2482.

71

Authorized licensed use limited to: University of Illinois. Downloaded on September 01,2022 at 03:26:25 UTC from IEEE Xplore. Restrictions apply.

