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Abstract—With the rapid improvement of various techniques
in graph-based semi-supervised learning, the call for higher-
quality graphs becomes more intensive. However, such affinity
graphs are not naturally existing in most semi-supervised learn-
ing tasks. In this paper, we propose a learning-based approach,
GraphEBM, for the graph construction problem. GraphEBM is
designed to address three main requirements in graph construc-
tion: 1) supporting dynamic update; 2) providing interpretable
metrics; 3) tailoring to tasks. Specifically, in GraphEBM, we
adopt a probabilistic view, Edge Probability Space, to model
a graph construction process as constituted of events from the
space. Our objective is thus to learn, by our Energy-Based
Model (EBM), the latent sampling distribution. Experimental
results show that our proposed GraphEBM outperforms the
existing graph construction methods in improving the semi-
supervised learning tasks on various datasets and it can learn
global properties of a target graph only with direct local
guidance.

Keywords-graph construction; energy-based model; proba-
bility space; graph semi-supervised learning;

I. INTRODUCTION

Graph-based semi-supervised learning (Graph SSL) has
been proven effective in various scenarios where data points
can be related for collective prediction, such as image clas-
sification [1], natural language understanding [2] and fake
information detection [3]. In these applications, it has shown
an outstanding capability by leveraging limited labeled data
and a large amount of unlabeled data [4]. However, a key
limitation in Graph SSL is that it highly depends on the
quality of a given affinity graph that connects data points.
Such a graph must satisfy the expected smoothness, so that
close nodes have similar labels, to guarantee Graph SSL’s
performance.

In most cases, affinity graphs are not ready-made for raw
data or hard to extract from the real world. They must first
be constructed manually and this process is ineffective. In
other cases, only part of the whole graph can be observed
and the residual part should be deduced from the observable
subgraphs. In this paper, we focus on this problem of graph
inference, which aims to predict the presence or absence of
edges between a set of points (as vertices of a graph).
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For example, in a social network like Twitter, identifying
the connections among users is time-costing and sometimes
infeasible— since latent relationship are often unobservable
or not revealed to the public. The follower relationship is
also not always reliable if we are dealing with different tasks
on the network. These facts make observing the ground-truth
graph directly not realistic. However, if we have access to
the profile of each user, it is possible to restore the graph of
interest using this side information.

We develop a scheme which, for a set of data points
sampled from a latent data manifold, will construct a graph
over these points as nodes with edges determined by the
similarities of pairwise points, i.e., to satisfy the smooth-
ness requirement. The scheme should satisfy the following
requirements:

1) Supporting dynamic update. Most networks are
changing over time, due to dynamic update, such as in-
crease/decrease of nodes and modification of node attributes.
E.g., in the Twitter network, new users are constantly added.
Many users are changing their profiles and posting new
tweets from time to time. Existing works do not consider
these scalability issues and build the graph from scratch
for updates [S]. The proposed scheme should support such
dynamic updates to easily generalize to new nodes.
Insight: The scheme should be inductive, to process new
nodes without retraining with existing nodes, in contrast to a
transductive approach. We devise the Edge Probability Space
as an inductive model (Sec. III-A) to support this property.

2) Providing interpretable metrics. To support downstream
applications, a constructed graph should be interpretable.
However, existing works only focus on what the inferred
graph is. They choose the neighborhood for each node based
on existing metrics [6]. In comparison, we care more about
why an edge exists. It should provide the probability for
how much likelihood of this edge, so that an application
can determine how to use it.

Insight: To achieve interpretability, we develop a gener-
ative model (Sec. III-B), which defines a joint distribution
on an edge and its label. This distribution can be used to
measure the validity of edges.
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3) Tailoring to tasks. Most existing approaches [7] assume
a fixed neighbourhood for a node, e.g., by connecting it with
k nearest neighbors in terms of features. Such one-size-fits-
all scheme cannot be customized for different tasks, e.g., a
social-network often follows the well-know power law distri-
bution instead of uniform degrees. Different semi-supervised
methods are based on different prior knowledge on graph to
take advantage of the data manifold [8]. Depending on tasks,
the scheme should generate graphs of different shapes, or
more specifically, with different global properties.

Insight: To customize for different tasks, the scheme
should be a supervised process, guided but not only the
features but also labels of nodes. We introduce the train-
ing phase (Sec III-C) which exploits supervision and we
show how the global properties of graphs (Sec. III-D) are
considered with direct local guidance.

Addressing these requirements, we propose a novel per-
spective to the graph construction problem: Based on a
probabilistic view, we suggest that the edges in a graph
form a distribution with unknown parameters (to be learned).
Our goal is to quantify the parameters and specify the edge
distribution. This paper makes the following contributions:

1) In our probabilistic view, we construct a measure space,
the Edge Probability Space, of all edges in a graph, where
each edge is assigned a measure to indicate the distribution
of edges. The graph construction process is thus converted
to sampling from the edge distribution. To our knowledge,
we are the first to introduce this probabilistic view to the
graph construction problem.

2) We propose a parametric model called Energy-Based
Model (EBM) to learn the distribution of edges. The energy
values work as a measure to indicate the validity of an edge.
To tackle the sparsity and discreteness problem in an edge
probability space, we propose a generator to sample edges
from the EBM. We use gumbel-softmax to approximate a
differentiable random walk process to induce stochasticity
and facilitate back propagation. The problem is formulated
as to maximize the likelihood of edges from a given graph.

3) We investigate how different settings will influence
the learning process and the result of our proposed model.
Extensive experiments show that using our scheme to learn
the affinity graph can boost the performance on Graph SSL.
We also show that it can learn different global properties of
a latent graph including edge and degree distributions with
only local guidance.

II. RELATED WORKS
A. Energy-Based Model

Energy-based models have a long history in machine
learning [9]. They are probabilistic models that assign a
scalar energy value to the random variables with energy
function U. These random variables can be a composition
of latent and observable variables [10]-[12] or can be input
data x [13], [14]. With the assigned energy values, EBMs
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can be used to build probability density functions. A density
function for input € R? is in the form of Boltzmann
distribution:

e~ U (x30)

p(x;0) = NAOR

6]
where 6 is the model parameters to be learned. This model
ensures that the data points with higher probability have
lower energy values. Z(0) = [ e~V is known as the
partition function. Training EBM entails a negative sampling
phase from the model distribution itself. However, obtaining
samples from py is of huge challenge due to the intractability
of the partition function. One solution is to use Markov
Chain Monte Carlo (MCMC) estimator or use Langevin
function. However, these approaches are not satisfying when
the data distribution is complex. Recently, neural sampler is
proposed to perform fast approximate sampling. This paper
also follows this route to generate negative samples.
Another trend in the development of EBM is that many
deep energy models are proposed. Different from Deep
Belief Nets (DBN) [15] and Deep Boltzmann Machine
(DBM) [12] which involve difficult inference and learning, a
deep energy model, proposed by [16], uses a deep neural net-
work (as opposed to stacked boltzman machines in previous
works) to define its energy function. In this case, the layers
of the network are deterministic transformations of input
data, which help check the validity of input configuration
(low energy) [17]. Another advantage of using deep energy
model is to enable parameterizing the energy function, which
gives the model more flexibility and expressive power.

B. Graph Inference and Affinity Learning

Generally speaking, inferring graph topology from ob-
servations is a problem lacking universally-acknowledged
definitions, and there are many ways to associate a topology
with the observed data samples. A straight-forward but
widely-used method is to compute sample correlation using
a similarity function e.g. a Gaussian RBF kernel function to
quantify the similarity between data samples. Historically,
there have been two general approaches to learning graphs
from data, one based on statistical models and the other
based on physically-motivated models. The statistical per-
spective deems the graph structure as a generative process.
Learning the graph structure is equivalent to learning a fac-
torization of the random variables. Markov Random Fields
are often applied in such perspective.

For the physically motivated models, the observation of
variables is deemed as a result of an underlying physical
phenomenon or process on the graph. A typical process is
network diffusion, e.g. information flowing over a network
or epidemic spreading between human interactions.

Readers are referred to the comprehensive work in [18]
to have a closer look at the state-of-the-art approaches in
graph inference. Generally speaking, our work follows the
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statistical route but treats the formulation of a graph as a
generative process defined on a parametric distribution.

III. PROPOSED APPROACH
A. Distribution in Edge Probability Space

We will start from defining the Edge Probability Space,
the base we set our work on and we will link the graph
construction problem with events in the probability space.

Suppose we have a set of nodes N = {ny,ng,....,ny},
the pairwise connectivity can be denoted as E;; for node
n; and n;. An edge probability space (EPS) can be denoted
as § = {Q,F, P}, where Q is called the sample space,
consisting of the possible edges, i.e. @ = {E;j|n;,n; € N'}.
The sample space (2 represents the set of possible outcomes
we can sample from. F is called the set of events, an
o-algebra defined over 2. Take = as the set of counting
measures on S with C as the smallest oc—algebra on it.
A graph on S is a measurable map £ : Q@ — = from
the probability space {2, F,P} to the measurable space
(Z,C). Every realization of a graph ¢ can be defined as
the combination of multiple independently sampled edges
from €2, ak.a an event from the EPS. We denote the
event as £ = {Ey, Ea, ..., Epr}. It can also be written as
E = Zf\il dp,, where ¢ is the Dirac measure, F;’s are
random elements of S. We will use E; in the following
sections to denote a general-purpose atomic event from the
probability space. Notice that a graph can also be treated
as nodes with an edge list, where duplicates of samples can
be seen as the weights of the corresponding edges. So it
is natural to associate an event £ in the EPS with a graph
G = {N,&}. The likelihood of the constructed G is then
equal to the probability measure P of the event £, which
can be described as follows:

M
L(G) =P(€) o< [ [ ro(E:) ©)
i=1
where py(-) describes the probability of an atomic event E;
(an edge) with parameter §. Our goal is to maximize the
likelihood of the observed graph. Here, we derive the log
likelihood of G
M
log £(G) = C+ Y logpo(E;)
i=1

= C + MEg,,, [logpe(E;)] &)

where C is a constant associated with a combinatorial
number and E is the estimation function. pp is the observed
distribution of the edges.

B. Energy-based Edge Density Estimation

As described above, an energy model is capable of esti-
mating the density of a random variable from an unnormal-
ized data distribution. We follow the classic route to define
the distribution of EPS by assigning a proper energy value to

64

each edge connection. Therefore, the edge distribution can
be expressed as pg(E;;) = e_UZ(g)j;e). Then how to define
the energy function U (E;;;6) is of high importance.

We suppose edge F;; to be composed of vertex i and j,
whose features can be denoted as f; and f; € R? respectively.
To guarantee the symmetry of learned affinities, we employ
a siamese-structured network to extract features. It has two
branches which are both multi-layer perceptrons (MLP) and
share weight parameters 6.

By using the above encoding model, nodes in the feature
space are projected to the embedding space, where the data
points are denoted as h; € R™ and the pairwise affinities

can be calculated :
A;j = fa(h, hy), 5

where the affinity matrix A € R+"" contains the energy
values. There are several options for implementing the
affinity function f,, e.g.

A;; = |h; —hj2
T A
. <_ hT Mh, )

i,jEeEN

(6)
(7

i

Eq. 6 expresses the Euclidean distance between node i
and node j in the embedding space. Eq. 7 is an exponential
function which gives a more general metric on affinity
learning. M € R™*"™ is a symmetric and trainable weight
matrix of the affinity function and 7 is a hyper-parameter.
With the above settings, the two kinds of affinity function
can both ensure all elements to be positive and lower-
bounded. In the experiments, we adopt Eq. 6 since it exhibits
more stability in the training process.

C. Contrastive Graph Likelihood Learning

Our training objective is to maximize the log likelihood
of the observed graph, as defined in Eq. 3. Using Bolztmann
Distribution latently defined by the edge density estimator,
we can now derive the gradient for the objective function,

—U(Ei;0) _

Vologqy(E;) = eloge Ve log Zg

1
= Vo U(Bi0) = -~ o Zo
0
- Ve U(Ei; 0) +EE~q [VQU(E;Q)]
3

For parameter update in epoch ¢, we have the following
rule to do gradient descent:

00— 00 (B, ~pp, [VoU (Ei; 0)]—Ep, g, [VoU(Ei;0)])

©)
where € is the learning step. If we take a closer look
at the update equation, we can find there are two terms
describing the gradient of energy function over different
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sample distributions, i.e. pp and gy, standing for the true
distribution and the edge density estimator distribution re-
spectively. Minimizing the difference of these two terms is
equivalent to approximating gy to pp by updating 6.

However, due to the sparsity of the edge probability
space and uncertainty in the data modes, sampling from the
edge density estimator using MCMC methods may take too
much time. Hence, we employ a neural generator G4 to
approximate the model distribution py.

One measure for the distance between two probability
distributions is Kullback—Leibler divergence. Denote the
distribution defined by the neural generator G as gy, then
the KL divergence between g, and gy can be expressed as:

- 1 4o(E)
KL(d4lq0) = EZS 45 (Ei)los "

The training objective of the neural generator Gy is to
minimize the KL divergence by updating ¢. Under an ideal
circumstance, py and gy have the same distribution. Hence,
we can substitute py for gg in Eq. 9:

00 0O —e(Ep,mpp [VoU (Ei; 0)]~Eping, [VoU (Ei; 0)))

an

And the parameter ¢ of neural generator can be updated
according to the rule:

60V ¢\ — (= vy H(E) + VoEp,~a, [U(E:;0)))
(12)
where « is the learning step. Notice that the third term in
Eq. 10, i.e. the logarithm of the normalization term is a
constant with respect to the model parameter ¢. Its gradient
is zero and thus omitted in the gradient update in Eq. 12.

D. Wasserstein Distance for Graph Construction

Eq. 11 shows that the optimization function is set as
a kind of distance between the distribution of the energy
model and the generator. Here we give a proof that the
adopted measure is mathematically the Wasserstein distance.
For two graphs generated from energy model and generator,
we denote the probability space as (Qg, Fg, Ps) — (Z,C)
and (g, Fg,Py) — (E,C) respectively. The Wasserstein
distance between two distributions is written as:

W (Pg,Py) = (13)

inf

B ¢ o _
WEU(Pe,Py) 5050 wlll €0 — &4 1]

where ¥ (Py, P,) denotes the set of all joint distributions
(&g, &p) whose marginals are Py and P.

To complete the definition of Eq. 13, we need to further
clarify the term characterizing the distance of two graphs
| &6 — & |- For simplicity, here we only consider the
circumstance where the two graphs have the same num-
ber of edges. Suppose &y {z1,22, ..., 2} and &4
{y1,Y2, .-, Yn }. Then the two graphs are deemed as discrete
distributions pf = "7 15, and p® = Y | L5, We

i=1n i=1n
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take Cij; =| ; — y; ||+, where |||, is the norm in
S. The optimal transport is a permutation of the index:
i —y;ll« = ming 37" || — Yo(s) || +» Where the minimum
is taken among all n! permutations.

Eq. 13 is computationally highly intractable and its dual
form is usually utilized [19]:

W(Py,Py) = sup Euup, [f(z)] = Eyup, [f(y)] (14)

Iflle<1

where f is called the Lipschitz functions. An alternative way
widely used is to change the problem into an optimization
problem:

Eonpy [f(2)] = Eyap, [f(y)] (15)

max
<1

This is the Wasserstein distance of graph construction and it
conforms with our optimization function denoted by Eq. 11.
One insight the Wasserstein distance gives us is that the
choice of Lipschitz function should obey the norm con-
straint. Hence, we add a regularization term called gradient
penalty to Eq. 11. We update Eq. 11 by:

9(t+1) “ e(t) _ E(EEinD [VQU(E“ 0)] (16)
— Epnq, [VoU(Ei;0)] + XEg,~pp, [Vl V£, Us(Ei)[%])

where A is a weight for the gradient penalty term.

E. Neural Edge Sampling via Gumbel Softmax

To solve the intractability of the normalization constant,
we adopt a neural generator to generate distribution approx-
imate to that of the energy model. Here we specify the
architecture and techniques used in the neural generator.

We use random walk process as the backbone of the
neural generator to sample fake edges. At the beginning of
random walk, we sample a random variable n; ~ Uniform
(0, N,), which works as the noise index for the starting
point. In each walking step, the generator will output a
normalized weight vector W, for the current node ¢, i.e.
22]21 w;n, = 1 where w;; is set to zero manually to avoid
self loop. A conventional way to pick the next index from
the index pool is to sample from the categorical distribution
parameterized by W;. However, this sampling process is
intrinsically non-differentiable, and hence is not appropriate
to be incorporated in the gradient-based optimization meth-
ods. A common alternative approach is to use softmax and
ensure the output vector is concentrated around the positions
of the largest input values. Then the generator can select
the index that has the maximum value as the next step’s
start. This approach is plagued with another problem. With
a given input index, it will almost definitely outputs the same
index. It deviates from the goal that we want to model the
distribution of edge sampling and will ultimately lead to
mode collapse.

Therefore, the design of edge sampling process should
consider two main aspects: 1) a differentiable module, 2)
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Algorithm 1 Training Process of GraphEBM

Algorithm 2 Neural Sampling Process

Input: Feature matrix F, Partly Observed Graph G, =
{Vs, E,}, Energy-based edge density estimator Ey, Neural
sampler G .

Output: Model parameters 6, ¢.

1: Initialize the model parameters 6(°), ¢(°) randomly;

2: for training epoch ¢ in 1 to 7" do

3: /I Energy model training phase.

4; Sample true edges from G,, {E((,t)} ~ pa(FE);

5 Sample fake edges from Gy, {E](f)} ~ py(E)

according to Alg. 2;
6: Compute the energy value A;; of each edge using
Eq. 4, 5;
Update ) according to Eq. 11;
//Neural sampler training phase.
: Sample fake edges from Gy, {Ej(f)} ~ pe(E)
according to Alg. 2;
10: Update ¢ according to Eq. 12;
11: return 07, ¢7;

a stochastic process. Motivated by these requirement, we
adopt gumbel-softmax reparameterization [20] to sample
from the model-defined distribution. Consider the weight
vector generated by the neural sampler is W;, which is a
RN vector. And we sample a set of gumbel noise G from a
standard Gumbel distribution. In practice, it can be generated
by:

G = —log(—1log(U)), s.t. U ~ Uniform(0,1) (17)

And the gumbel noises are added to the weight vector in an
element-wise manner, i.e.

W, = |w;1 + G(l),wig =+ G(2), —eoy WiN, =+ G(NO) (18)

?

Then a softmax function is applied to the noised weight
’ . .

vector W, and gets a one-hot designation vector D for the

next step:

N,
Dij = e(wij+G(’))/V/ Z e(wim+G(m))/’Y (19)

m=0

The next index can be retrieved by j = arg max;(D;;). In
practice, we use the Straight Through Estimator (STE) [21]
trick to retain the gradient for the training process. The gum-
bel softmax is intuitively effective here because it satisfies
a rounding property, P(W,,, > W, ¥ k # 1) = wir/wy.

FE. Property Analysis

As we have discussed in Section I, our desired model
should be accommodated to the scenario having frequent
updates to the dataset. Here we explicate how the design
in our model can meet these requirements and show these
designs are non-trivial.

Input: Feature matrix F, Neural sampler G.

Output: Set of sampled fake edges {E;}.

s By ={}

: Sample the starting point index 7 of random walk;

: Lookup F' to retrieve the feature embedding f;,;

: for random walk step s in 1 to S do
Calculate the weight vector W;_ from G by:
Wi, = Gs(fi.);
Sample an auxiliary variable U ~ Uniform(0, 1);
Generate gumbel noise G according to Eq. 17;
Calculate the noised weight vector W according to

Eq. 18;

10: Calculate a one-hot designation vector D);  accord-
ing to Eq. 19;

11: Append the selected E;, to Ey;

12: return Ey;

D A s

The existing works that are based on first learning an affin-
ity matrix and then do node-wise sampling cannot accom-
plish this since they are intrinsically transductive models.
When a new node arrives, the selection of neighborhood for
each node is rerun, and thus the graph construction process
takes at least an O(n?) complexity where n is the number
of data points. By comparison, the energy model is learning
the edge distribution and our graph construction procedure
is based on sampling edges from an edge pool. First, the
model can generalize to unseen data points and doesn’t need
to be retrained. And for the graph construction, we can easily
come up with a hierarchical sampling algorithm for linear
complexity by a quasi-dynamic programming approach. The
idea is that we retain the edge samples from the original
dataset, and maintain a numeric for the overall probability
(a.k.a the normalization constant Z). When we have an
unseen data point, we can easily derive the pairwise energy
values by applying the pre-trained GraphEBM. The number
of new possible edges involving this unseen data point is n.
These n energy values also form a distribution where we
can sample the newly-introduced edges. Here we generate
a new graph by leveraging the previous sampling results
and merely adding these new edges. Suppose the cumulative
probability of the original graph is Z; and the sum of
probabilities for the new edges are Z», then two edge pools
are formed, one consisting of the previous edges, and the
other consisting of the new edges. We only sample from
Z5 and the sampling time should correspond to a certain
ratio to guarantee the relative number of previous and new
edges. The whole sampling process can be seen as we first
sample a binary variable, deciding which edge pool we are
going to sample from. The ratio is decided by the cumulative
probability values Z; and Zs. This method is different from
the per-node selection methods since it utilizes the previous
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Figure 1.

The mean absolute error change in semi-supervised learning with regard to the change in feature threshold ~yy, with different fixed label

threshold ~; = {5, 10, 20, 25}. Each bar plot shows the error on training set and testing set.

sampling results effectively. The update of dataset entails
O(n) complexity in graph reconstruction. Linear complexity
algorithms for decrease in node number and modification of
node features can also be trivially deduced using the above
ideas.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of
GraphEBM on a series of real-world datasets.

A. Dataset and Sample Graph Generation

The datasets we use are authentic public datasets collected
from different domains, including 1) Student-Perf. [22],
using student’s information to predict student achievement in
secondary education, especially in math subject; 2) Energy-
Efc. [23], using different features of building shapes to
predict heating load of the building; 3) Parkinsons. [24],
using biomedical voice measurements from 42 people to pre-
dict early-stage Parkinson’s disease; 4) Bike-Sharing. [25],
using most of important events in the city to predict data
on bike renting. This dataset is divided into two sub-
tasks, one for predicting the activity of casual bike renting,
denoted as Bike-Casual, and the other for predicting the
registered users’ bike renting, denoted by Bike-Registered.
The statistics of these datasets are shown in Table. I,

Generally, these datasets have numeric or categorical
features and labels defined on a continuous domain. We try
to find the underlying graph from these separate data points.
One advantage of our model is that we can customize a
graph as a handbook to provide a priori for GraphEBM
to learn. The positive edges we feed into GraphEBM is
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Table 1
DATASET STATISTICS

Methods  # of Instances  # of Attributes = Mean of Labels
Student-Perf. 649 33 10.899
Energy-Efc. 768 8 22.307
Parkinsons 1024 26 21.296
Bike-Casual 378 16 8.482
Bike-Registered 378 16 36.562

generated from a sample graph. However, in most cases,
the geometry of the structured data is often not revealed
explicitly, especially when we only have access to individual
data points. So first we adopt an empirical approach to
construct the graph purely on the labeled points. To simulate
the realistic scenarios, the generation of the sample graph
should consider the following factors:

Limited Number of Labeled Data Points. In semi-
supervised learning, the number of labeled points is highly
limited. Here we follow this constraint. Denote N; as the
number of observable data points. The ratio of observable
data points with regard to the whole dataset should be lower
than 50%. The labeled data points are where we generate
true edges to feed GraphEBM. They also provide the fixed
labels in the inference stages, such as label propagation.

Label-level Smoothness. It is a consensual assumption for
general-purpose graph-based semi-supervised learning that
the closeness of nodes over a certain graph means the
similarity of two data points in the label metric. Our work
is built for such downstream applications and should follow
this assumption. Hence we set a label-level threshold ~; to
restrict the choice of neighborhood. For node ¢, the logits
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(unnormalized probability) of transition can be described as:
Pi = lyy,—v,|<y © (Y = Y)) (20)

where 1) means a mask vector containing 1 at the entry
where the condition is satisfied and O otherwise. © is a
Hadamard product operator between two vectors.
Feature-level Smoothness. Only guaranteeing the label-
level smoothness in the recovered graph might incur redun-
dant edges. Notice that the label of a node may be formulated
by many factors in its features. For instance, a movie might
be highly rated either because of its dramatic plots or due
to the elegant costumes and stage settings. Such nodes with
discrepant features and identical labels should not form an
edge. We prune the p; in Eq. 20 as follows:

Pi = 1ix,—x;1<v; © Ly, —vjl<y © Y -Yi) 21

where vy is the predefined feature-level threshold.

B. Parameter Selection and Model Sensitivity

With the factors stated above, we have three hyper-
parameters to decide how to generate the sample graph. Here
we investigate how the difference of inputs can interfere
with the model performance. The range of three parameters
are listed as: N; € {128,256}, v, € {5,10,15,20,25},
vy € {10%,20%, 30%, 40%, 50%, 60%, 70%, 80%}. And
we evaluate the model performance by mean absolute error
between prediction and ground truth. The predicted value
is derived from label propagation on the generated graph.
The classic label propagation algorithm can be abbreviated
as follows: we fix the labels of labeled data points, and
update those unlabeled with the weighted average of its
direct neighbors (labeled or unlabeled) till convergence for
all the inferred labels. In this subsection, we conduct the
following experiments on the Energy-Efc. dataset.

Fig. 1 shows the relation between the error and the feature
threshold, with /NV; = 256 and results under different ; are
displayed separately. The left bar of each column means the
error on training set and the right for testing set. We can
observe that for almost any label threshold ~;, the optimal
choice of feature threshold should be as low as possible.
And the error only changes slightly when ~; is greater than
30%. It means that the edge selection for a node should
be inclined to its direct neighborhood in the feature space.
And the decrease in redundant edges is beneficial to the
semi-supervised learning process. Also, it is observed that
the improvement brought by lower feature threshold decays
when the label threshold increases. This is because the worst
case is not interfered greatly by the different settings.

Similarly, Fig. 2 shows the relation between the label
threshold and the mean absolute errors. In each bar-plot,
with the feature threshold fixed, we can observe that the
performance is better when we feed a graph with lower
label threshold. This effect is more significant for lower
feature threshold. However, the above two experiments do
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not suggest that the feature threshold and label threshold
should be as low as possible. They show a general trend
for the error when modifying the threshold value. They also
provide information on the importance of both guaranteeing
the label-level smoothness and feature-level smoothness on
graphs. In these experiments, we manage to generate a graph
with almost all the nodes connected with a certain path. With
the extreme settings, i.e. 7y = 0 or ; = 0, the generated
graph is deprecated to separate data points, which is not
suitable for downstream applications on graph. The exact
choice should be task-specific with regard to the intervals
of data points in the feature and label space.

Fig. 3 shows the change of mean absolute error on the
testing set with the number of labeled data points. We can
observe that with more labeled data points used to generate
the sample graph, the performance of our model can usually
be slightly improved.

C. Performance on Semi-supervised Prediction Tasks

One of the ways to validate the effectiveness of our
model is to deploy it in the downstream graph-based learning
tasks and see if it can improve the performance by only
replacing the input graph. We compare our GraphEBM with
the following works:

e KNN (K Nearest Neighbours). kNN is the standard
paradigm for current works on graph construction. This
method calculates the distance for each node pair, and
selects k nearest nodes in the feature space to form
the edges for each node. In the experiment, we choose
k = {3,7} for each node.

e TPG (Tensor Product Graph) [5]. Tensor Product
Graph is representative for the physically motivated
models for graph construction. It associates each node
with a set of data points and do diffusion on this set
to obtain more reliable similarities with higher-order
information by the TPG.

« RGCLI [6]. RGCLI is an enhanced version of the
classic GBILI [27] model. In this work, the label
information is first utilized in the graph construction
process. These methods take into account the position
of the labeled points and integrate the evaluation on
the distance with labeled points into neighborhood
selection.

« RGC [26]. RGC (Robust Graph Construction) is pro-
posed for dealing with noisy data. This method obeys
the low-rank recovery and graph-smoothness assump-
tion.

For the above methods, we generate graphs for different
datasets, and feed them into a label propagation algorithm.
We adopt a metric called normalized mean absolute error
(NMAE). It calculates the relative deviation of the prediction
results to the mean label values, so that this metric is
comparable across datasets. The lower the metric is means
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Figure 2. The mean absolute error change in semi-supervised learning with regard to the change in label threshold ~;, with different fixed feature threshold
~vf = {10, 20,40, 50, 70,80}. Each bar plot shows the error on training set and testing set.
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Figure 3. The comparison of the mean absolute error under different number of labeled data points N; € {128, 256}.

Table II
NORMALIZED MEAN ABSOLUTE ERROR (NMAE) OF SEMI-SUPERVISED PREDICTION OVER VARIOUS DATASETS (IN %).

Methods  Student-Perf. [22]  Energy-Efc. [23]  Parkinsons [24]  Bike-Casual [25]  Bike-Registered [25]
kNN(k=3) 23.80 10.22 23.01 34.23 24.67
kNN(k=7) 23.75 10.04 24.32 34.76 23.87

TPG [5] 23.62 8.63 22.85 35.66 21.22
RGCLI [6] 23.03 8.24 23.67 33.41 20.93
RGC [26] 23.20 8.55 22.63 34.47 22.68

GraphEBM(ours) 22.18 6.81 20.78 29.39 16.83

the better performance. NMAE is defined as below,

NMAE = Jifzi:”i - yil/% Zy

(22)

where [; and y; are inferred and true labels respectively.
Results are shown in Table. II. We can observe that our
model consistently outperforms the baseline models. The
improvement in NMAE ranges from 3.6% to 24.4%.

D. Learning Global Properties

Real-world graph datasets usually have latent global prop-
erties, which might be useful in representing the whole com-
munities. However, current literature using greedy per-node

neighborhood selection do not consider this rich information.
With our design of Edge Probability Space and Wasserstein
Learning, our proposed GraphEBM can to some extent learn
the global property, although the guidance we provide is
local pairwise connectivity. Here we choose two datasets on
the same feature space but with different tasks, Bike-Casual
and Bike-Registered, for analysis. The inferred graphs are
shown in Fig. 4(a). We can observe some of the nodes
are deemed as the peripheral nodes, since they have fewer
connections. In kNN, when the hyper-parameter k is set,
each node will select at least k& neighbors, which is more
likely to introduce noisy data points. This is one of the
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Figure 4. Global properties tested on two datasets, Bike-Casual (top) and Bike-Registered (bottom). Fig.a) shows the inferred graph underlying these two
datasets. Fig.b) shows the QQ-plots. The x-axis is the learned edge distribution on the test set and the y-axis is the edge distribution in the sample graph.
Each point indicates the quantile of two distributions. Fig.c) shows the degree distributions for two datasets.

reasons our model can outperform other models in Graph
Semi-supervised Learning.

Although our guidance in supervised learning settings
only consists of separate local connections of nodes, the
deduction of Wasserstein distance in the objective func-
tion helps the model capture some graph-level, or the so-
called global properties from the training set. Here we
use Quantile-quantile plot (QQ-plot) to show the difference
between edge distribution of the training set and the learned
distribution. QQ-plot compares two distributions by plotting
the quantiles against each other. The x-coordinate and y-
coordinate of each point in the plot figure correspond to
one specific quantile on two distributions. Fig. 4(b) shows
the QQ-plot for the two datasets respectively. Since we
do not care about the absolute values of energy but the
relativeness of these values, the information of distribution
can be preserved using QQ-plot. In Fig. 4(b), we observe
that the points in the figure generally follow a certain line.
It means the quantiles of the two distributions are increasing
accordingly. The two distributions can agree after linearly
transforming the values in either one of the distributions.
The identity of two distributions endows our proposed
GraphEBM with the capability of integrating more domain
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knowledge in learning the graph construction process. For
some tasks with specific requirements on edge distribution,
we can hand-craft a sample sub-graph with lower cost and
let the model adaptively learn its useful edge information.
Other than the edge distribution, we also care about the
degree distribution as a key indicator for the graph global
property. In Fig. 4(c), we show the degree distribution for
the two tasks. The two distributions are slightly different
but share the same property that most of the nodes have
few connections. This phenomenon can be compared with
the uniform degree distribution by kNN. For different tasks
on the same dataset, the graphs we learned are in different
shapes, which can be seen as a verification for our task-
specific learning purpose on the graph scale. Intuitively,
the fixed edge distribution and flexible degree distribution
are two regularizers for the whole graph, under which the
model is learning the graph construction process, making
the process both expressive and constrained. How the factors
are interfering with the global graph construction is a very
interesting problem. We leave it as the future work.

V. CONCLUSION

In this paper, we work on the graph construction problem,
which is a fundamental and critical problem in graph-based
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semi-supervised learning. We propose a probabilistic per-
spective to the problem, where the graph edges conform with
a parametric distribution. The graph construction process is
then converted to sampling from the Edge Probability Space.
To capture the distribution, we propose a learning-based
method called GraphEBM with the contrastive graph likeli-
hood as the objective function. We also do comprehensive
experiments to investigate different settings of the model and
give guidance on choosing hyper-parameters. Comparing
to the existing works on graph construction, our proposed
GraphEBM can boost the performance of semi-supervised
learning on various datasets. Also, we have shown that the
model can capture global properties on the whole graph
scale.
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