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Beata Derȩgowska1a, Matthew Fickus2b, Simon Foucart3c,

Barbara Lewandowskad

aInstitute of Mathematics

Pedagogical University of Krakow, Podchorazych 2, Krakow, 30-084, Poland
bDepartment of Mathematics and Statistics

Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA
cDepartment of Mathematics, Texas A&M and Institute of Data Science

Texas A&M University, College Station, TX 77843, USA
dFaculty of Mathematics and Computer Science

Jagiellonian University, Lojasiewicza 6, Krakow, 30-048, Poland

Abstract

Letλ(m) denote the maximal absolute projection constant over realm-dimensional

subspaces. This quantity is extremely hard to determine exactly, as testified by the

fact that the only known value of λ(m) for m > 1 is λ(2) = 4/3. There is also

numerical evidence indicating that λ(3) = (1+
√
5)/2. In this paper, relying on a

new construction of certain mutually unbiased equiangular tight frames, we show

that λ(5) ≥ 5(11+ 6
√
5)/59 ≈ 2.06919. This value coincides with the numerical

estimation of λ(5) obtained by B. L. Chalmers, thus reinforcing the belief that this

is the exact value of λ(5).
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1. Introduction

Let X be a real Banach space and Y ⊂ X be a finite-dimensional subspace.

LetP(X, Y ) denote the set of all linear and continuous projections fromX onto Y ,

recalling that an operator P : X → Y is called a projection onto Y if P |Y = IdY .
We define the relative projection constant of Y by

λ(Y,X) := inf{‖P‖ : P ∈ P(X, Y )}

and the absolute projection constant of Y by

λ(Y ) := sup{λ(Y,X) : Y ⊂ X}. (1)

The literature also deals with the maximal absolute projection constant, which is

defined by

λ(m) := sup{λ(Y ) : dim(Y ) = m}.
By the Kadec–Snobar theorem (see [17]), we have λ(m) ≤ √

m. Moreover, it has

been shown in [18] that this estimate is asymptotically the best possible. However,

the determination of the constant λ(m) seems to be difficult: apart from λ(1) = 1,

the only known value of λ(m) is λ(2) = 4/3 — this is Grünbaum conjecture,

formulated in [14] and proved in [6]. Numerical computations presented in [13]

indicate that λ(3) should equal (1 +
√
5)/2 — this was stated, with an erroneous

proof, in [19]. Other numerical experiments conducted by B. L. Chalmers (and

unfortunately unpublished) suggest that λ(5) ≈ 2.06919. In this article, we show

that

λ(5) ≥ 5(11 + 6
√
5)/59 ≈ 2.06919.

Viewed in isolation, this could seem anecdotal. However, several sources of

evidence hint that this is the actual value of λ(5). This comes as a surprise,

because it was growingly believed that obtaining exact formulas for λ(m) was an

unreasonable quest. Now there is hope that this quest could be realized after all.

To establish the announced lower bound, we make a detour via maximal relative

projection constants. Recent results concerning maximal relative and absolute

projection constants can be found in [1, 2, 4, 13, 21]. Here, we only give the

definition of the maximal relative projection constant for n ≥ m as

λ(m,n) := sup{λ(Y, l(n)∞ ) : dim(Y ) = m and Y ⊂ l(n)∞ }.

This is motivated by the fact that, in the expression (1) of λ(m), it suffices to take

the supremum over finite-dimensional l∞ superspaces (see e.g. [22, III.B.5]), so
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that the nondecreasing sequence (λ(m,n))n≥m converges to λ(m). In reality, there

even is an N ∈ N such that λ(m,n) = λ(m) for all n ≥ N (see [1, Theorem 1.4]).

Our estimation of λ(m,n) will rely on the following result proved in [5].

Theorem 1.1. For integers n ≥ m, one has

λ(m,n) = max

{ n
∑

i,j=1

titj|U⊤U |ij : t ∈ R
n, ‖t‖2 = 1, U ∈ R

m×n, UU⊤ = Im

}

.

Although this theorem provides an essential tool for estimating the maximal relative

projection constants, computing their exact values remains a challenging problem,

carried out in just a few cases (see e.g. [1, 5, 13]). One particular situation

where an explicit formula is available involves equiangular tight frames. Let us

recall that a system of unit (i.e., l2-normalized) vectors (v1, . . . , vn) in R
m is called

equiangular if there is a constant c ≥ 0 such that

|〈vi, vj〉| = c for all i, j ∈ {1, . . . , n}, i 6= j.

It is called a tight frame if

V V ⊤ =
n

m
Im,

where V is the matrix with columns v1, . . . , vn. The system (v1, . . . , vn) of unit

vectors is called an equiangular tight frame if it is both equiangular and a tight

frame. For an equiangular tight frame of n unit vectors in R
m, it is well known

(see e.g. [12, Theorem 5.7]) that

|〈vi, vj〉| =
√

n−m

m(n− 1)
for all i, j ∈ {1, . . . , n}, i 6= j.

The above-mentioned explicit formula is presented as part of the result below.

Built from Theorems 1 and 2 of [20], it appeared in a slightly different form as

Theorem 5 in [13]. A new self-contained proof is included later as an appendix.

Theorem 1.2. For integers n ≥ m, the maximal relative projection constant

λ(m,n) is upper bounded by

δm,n :=
m

n

(

1 +

√

(n− 1)(n−m)

m

)

.

Moreover, the equality λ(m,n) = δm,n occurs if and only if there is an equiangular

tight frame for Rm consisting of n unit vectors.
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Remark 1.1. We note in passing that δm,n <
√
m for n ≥ m > 1 (thus providing

another justification for Kadec–Snobar estimate). This is seen by applying Cauchy–

Schwarz inequality for the noncolinear vectors [1,
√
n− 1] and [1,

√

(n−m)/m]
in

δm,n =
m

n

(

1 +
√
n− 1

√

n−m

m

)

<
m

n

√
1 + n− 1

√

1 +
n−m

m
=

√
m.

In the rest of this paper, we present new explicit lower bounds for λ(m,n) under

the condition that certain mutually unbiased equiangular tight frames for Rm exist

(see Theorem 2.1). We then provide a construction of an infinite family of such

mutually unbiased equiangular tight frames (see Theorem 3.1). Finally, combining

these two ingredients, we highlight the resulting estimation of λ(5, 16) to arrive at

the promised lower bound for λ(5), conjectured to be its true value.

2. The Lower Bound

Before stating the main result, we start with an observation about mutually

unbiased equiangular tight frames, formally defined below.

Definition 2.1. Two equiangular tight frames (v1, . . . , vk) and (w1, . . . , wl) forRm

are mutually unbiased if there exists c ∈ R such that

|〈vi, wj〉| = c for all i ∈ {1, . . . , k} and j ∈ {1, . . . , l}.

This definition generalizes a concept introduced in [9] so as to permit the case

k 6= l. We point out that the scalar c is uniquely determined, as also noted in [3].

Lemma 2.1. The constant c appearing in the definition of mutually unbiased

equiangular tight frames for Rn necessarily satisfies

c =
1√
m
.

Proof. Let (v1, . . . , vk) and (w1, . . . , wl) be mutually unbiased equiangular tight

frames for Rm and let V ∈ R
m×k be the matrix with columns v1, . . . , vk. For any

j ∈ {1, . . . , l}, because the two frames are mutually unbiased, we have

‖V ⊤wj‖22 =
k

∑

i=1

|〈vi, wj〉|2 =
k

∑

i=1

c2 = kc2.
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Since (v1, . . . , vk) is a tight frame for Rm, we also have V V ⊤ = (k/m)Im, and so

‖V ⊤wj‖22 = 〈V ⊤wj , V
⊤wj〉 = 〈wj, V V ⊤wj〉 =

〈

wj,
k

m
wj

〉

=
k

m
‖wj‖22 =

k

m
.

It follows that kc2 = k/m, and hence c = 1/
√
m, as claimed. ✷

We now present the main theorem of this section, whose statement involves

the quantity δm,n introduced in Theorem 1.2.

Theorem 2.1. If mutually unbiased equiangular tight frames (v1, . . . , vk) and

(w1, . . . , wl) forRm exist, then the maximal relative projection constantλ(m, k+l)
is bounded below as

λ(m, k + l) ≥ m− δm,kδm,l

2
√
m− δm,k − δm,l

.

Proof. Let V ∈ R
m×k be the matrix with columns v1, . . . , vk and W ∈ R

m×l the

matrix with columns w1, . . . , wl. For any θ ∈ [0, π/2], let us consider the vector

tθ ∈ R
k+l and the matrix Uθ ∈ R

m×(k+l) defined, in block notation, by

tθ :=







cos θ
1√
k
1k

sin θ
1√
l
1l






and Uθ :=

[

cos θ

√

m

k
V sin θ

√

m

l
W

]

, (2)

where 1n denotes the n-dimensional vector with all entries equal to 1. We observe

that ‖tθ‖2 = 1, that

UθUθ
⊤ = cos2 θ

m

k
V V ⊤ + sin2 θ

m

k
WW⊤ = cos2 θ Im + sin2 θ Im = Im,

and that

Uθ
⊤Uθ =







cos2 θ
m

k
V ⊤V cos θ sin θ

m√
kl
V ⊤W

cos θ sin θ
m√
kl
W⊤V sin2 θ

m

l
W⊤W






. (3)

Therefore, according to the expression of λ(m,n) from Theorem 1.1, we can make

use of the tight frame and unbiasedness properties of U and V to obtain, with the

shorthand notation φm,n :=
√

(n−m)/(m(n− 1)),
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λ(m, k + l) ≥
k+l
∑

i,j=1

(tθ)i(tθ)j|Uθ
⊤Uθ|i,j

= cos2 θ
1

k
× cos2 θ

m

k
× k + cos2 θ

1

k
× cos2 θ

m

k
φm,k × k(k − 1)

+ sin2 θ
1

l
× sin2 θ

m

l
× l + sin2 θ

1

l
× sin2 θ

m

l
φm,l × l(l − 1)

+ 2× cos θ sin θ
1√
kl

× cos θ sin θ
m√
kl

1√
m

× kl

= cos4 θ

(

m

k
+

m

k
(k − 1)φm,k

)

+ sin4 θ

(

m

l
+

m

l
(l − 1)φm,l

)

+ 2 cos2 θ sin2 θ
√
m

=

(

1 + cos(2θ)

2

)2

δm,k +

(

1− cos(2θ)

2

)2

δm,l +
(

sin(2θ)
)2
√
m

2
.

Since this is valid for any θ ∈ [0, π/2], after setting x := cos(2θ), we arrive at

λ(m, k + l) ≥ max
x∈[−1,1]

(

δm,k(1 + 2x+ x2)

4
+

δm,l(1− 2x+ x2)

4
+

√
m

2
(1− x2)

)

=
1

4
max

x∈[−1,1]

(

ax2 + 2bx+ c
)

,

where a := δm,k + δm,l − 2
√
m, b := δm,k − δm,l, and c := δm,k + δm,l + 2

√
m.

Taking momentarily for granted that a < 0 and that x∗ := −b/a ∈ [−1, 1], we

deduce that

λ(m, k + l) ≥ 1

4

(

ax2
∗ + 2bx∗ + c

)

=
1

4

(

−b2

a
+ c

)

=
1

4

b2 − ac

−a

=
1

4

(δm,k − δm,l)
2 + (2

√
m− δm,k − δm,l)(2

√
m+ δm,k + δm,l)

2
√
m− δm,k − δm,l

=
1

4

4m− 4δm,kδm,l

2
√
m− δm,k − δm,l

,

which is the announced lower bound. It now remains to notice that a < 0 and that

−b/a ∈ [−1, 1], but both follow from the general observation that δm,n <
√
m for

n ≥ m > 1, see Remark 1.1. ✷
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Before uncovering a family of mutually unbiased equiangular tight frames in

the next section, we emphasize here two noteworthy properties relating the vector tθ
and the matrix Uθ that appeared in the above proof.

Proposition 2.1. Let γm,k,l be the lower bound for λ(m, k + l) from Theorem 2.1

and let θ ∈ [0, π/2] be the angle used in its proof, i.e.,

γm,k,l =
m− δm,kδm,l

2
√
m− δm,k − δm,l

and cos(2θ) =
δm,k − δm,l

2
√
m− δm,k − δm,l

.

Then, with tθ ∈ R
k+l, Uθ ∈ R

m×(k+l) defined as in (2) and with Tθ := diag[tθ],
one has

|U⊤
θ Uθ| tθ = γm,k,l tθ, (4)

Tθsgn(U
⊤
θ Uθ)Tθ U

⊤
θ =

γm,k,l

m
U⊤
θ . (5)

Proof. When establishing both (4) and (5), it will be useful to keep in mind that

δm,n is tied to φm,n =
√

(n−m)/(m(n− 1)) via

δm,n =
m

n

(

1 + (n− 1)φm,n

)

=
m

n

(

1 +
n−m

m

1

φm,n

)

.

Starting with the justification of (4), we notice that, since the matrix V ⊤V has

diagonal entries equal to 1 and off-diagonal entries equal to φm,k in absolute value,

we have

|V ⊤V | = (1− φm,k)Ik + φm,k1k,k,

where 1n,n′ denotes the n× n′ matrix with all entries equal to 1. It follows that

|V ⊤V |1k = (1− φm,k)1k + kφm,k1k = (1 + (k − 1)φm,k)1k =
k

m
δm,k1k.

Likewise, we can obtain

|W⊤W |1l =
l

m
δm,l1l.

Moreover, since the matrices V ⊤W and W⊤V have entries all equal to 1/
√
m in

absolute value, we have |V ⊤W | = (1/
√
m)1k,l and |W⊤V | = (1/

√
m)1l,k, so

that

|V ⊤W |1l =
l√
m
1k and |W⊤V |1k =

k√
m
1l.
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Therefore, according to the block-forms of tθ and U⊤
θ Uθ (see (2) and (3)), we

observe that

|U⊤
θ Uθ| tθ =









cos2 θ
m

k
cos θ

1√
k

k

m
δm,k1k + cos θ sin θ

m√
kl

sin θ
1√
l

l√
m
1k

cos θ sin θ
m√
kl

cos θ
1√
k

k√
m
1l + sin2 θ

m

l
sin θ

1√
l

l

m
δm,l1l









=







cos θ
1√
k

(

cos2 θδm,k + sin2 θ
√
m
)

1k

sin θ
1√
l

(

cos2 θ
√
m+ sin2 θδm,l

)

1l






. (6)

Next, in view of

cos2 θ =
1 + cos(2θ)

2
=

√
m− δm,l

2
√
m− δm,k − δm,l

,

sin2 θ =
1− cos(2θ)

2
=

√
m− δm,k

2
√
m− δm,k − δm,l

,

we easily derive that

cos2 θδm,k + sin2 θ
√
m = cos2 θ

√
m+ sin2 θδm,l = γm,k,l. (7)

When substituting the latter into (6), the identity (4) immediately follows.

Turning now to the justification of (5), recalling that the matrix V ⊤V has

diagonal entries equal to 1 and off-diagonal entries equal to φm,k in absolute

value, the diagonal entries of the matrix sgn(V ⊤V ) are equal to 1 and its off-

diagonal entries are equal to those of V ⊤V divided by φm,k. In short, we see

that sgn(V ⊤V ) = (1 − 1/φm,k)Ik + (1/φm,k)V
⊤V holds, and a similar identity

holds for sgn(W⊤W ). Moreover, we also have sgn(V ⊤W ) =
√
mV ⊤W and

sgn(W⊤V ) =
√
mW⊤V , as a consequence of all the entries of W⊤V and W⊤V

being equal to 1/
√
m in absolute value. All in all, according to the block-form (3)

of U⊤
θ Uθ, we obtain

sgn(U⊤
θ Uθ) =







(

1− 1

φm,k

)

Ik +
1

φm,k

V ⊤V
√
mV ⊤W

√
mW⊤V

(

1− 1

φm,l

)

Il +
1

φm,l

W⊤W






.

8



In turn, using the block-form of Tθ = diag[tθ], we derive that Tθsgn(U
⊤
θ Uθ)Tθ

takes the form







cos2 θ
1

k

((

1− 1

φm,k

)

Ik +
1

φm,k

V ⊤V

)

cos θ sin θ
1√
kl

√
mV ⊤W

cos θ sin θ
1√
kl

√
mW⊤V sin

2 θ
1

l

((

1− 1

φm,l

)

Il +
1

φm,l

W⊤W

)






.

Multiplying on the right by the transpose of Uθ =

[

cos θ

√

m

k
V sin θ

√

m

l
W

]

and making use of the facts that V V ⊤ = (k/m)Im and WW⊤ = (l/m)Im, the

matrix Tθsgn(U
⊤
θ Uθ)Tθ U

⊤
θ becomes







cos2 θ
1

k
cos θ

√

m

k

((

1− 1

φm,k

)

+
k

m

1

φm,k

)

V ⊤ + cos θ sin θ
1√
kl

√
m sin θ

√

m

l

l

m
V ⊤

cos θ sin θ
1√
kl

√
m cos θ

√

m

k

k

m
W⊤ + sin

2 θ
1

l
sin θ

√

m

l

((

1− 1

φm,l

)

+
l

m

1

φm,l

)

W⊤







=









cos θ

√

m

k

(

cos2 θ

k

(

1 +
k −m

m

1

φm,k

)

+ sin2 θ
1√
m

)

V ⊤

sin θ

√

m

l

(

cos2 θ
1√
m

+
sin2 θ

l

(

1 +
l −m

m

1

φm,l

))

W⊤









=









cos θ

√

m

k

(

cos2 θ

m
δm,k +

sin2 θ√
m

)

V ⊤

sin θ

√

m

l

(

cos2 θ√
m

+
sin2 θ

m
δm,l

)

W⊤









.

Similarly to (4), the identity (5) now simply follows by exploiting (7) again. ✷

3. Construction of Mutually Unbiased Equiangular Tight Frames

To apply the result of Theorem 2.1 in practical situations, we evidently need

to uncover specific integers k, l, and m allowing mutually unbiased equiangular

tight frames to exist. As a simple example, one can take k = l = m and

consider (v1, . . . , vk) to be the canonical basis for R
m and (w1, . . . , wl) to be

the columns of an m × m Hadamard matrix — recall that m × m Hadamard

matrices are conjectured to exist when and only when m is a multiple of 4 (the

‘only when’ part being acquired, of course). This would yield the lower bound

λ(m) ≥ (1 +
√
m)/2, m ∈ 4N, which is inferior to the lower bounds reported in

[13] for m = 4 and m = 8. As a slightly more elaborate example, one can take
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k = m and (v1, . . . , vk) to be the canonical basis of Rm, together with l > m and

(w1, . . . , wl) to be a real equiangular tight frame for Rm that is flat, in the sense that

every entry of each vector wj is either 1/
√
m or −1/

√
m. Real flat equiangular

tight frames are equivalent to binary codes achieving equality in the Grey–Rankin

bound and infinite families are known (see [16, 8]). This would yield the lower

bound λ(m,m+ l) ≥ (m−γm,l)/(2
√
m−1−γm,l). With m = 6 and l = 16, this

provides the lower bound λ(6) & 2.2741, which is superior to the lower bounds

reported in [13] but inferior to the numerical evaluation λ(6) ≈ 2.2857 performed

by B. L. Chalmers and corroborated by our own computations. In order to apply

Theorem 2.1 more effectively, we need further examples of mutually unbiased

equiangular tight frames. To this end, we now relate such frames to a type of

generalized Hadamard matrices.

Proposition 3.1. Given integers k, l ≥ m > 1, there are mutually unbiased

equiangular tight frames (v1, . . . , vk) and (w1, . . . , wl) for Rm if and only if there

is a k × l matrix X with the following five properties:

(i) Xij ∈ {−1,+1} for all i ∈ {1, . . . , k} and j ∈ {1, . . . , l};

(ii) XX⊤X = aX for some a ∈ R;

(iii) X has equiangular rows, i.e., |XX⊤|i,i′ is constant over all i 6= i′;

(iv) X has equiangular columns, i.e., |X⊤X|j,j′ is constant over all j 6= j′;

(v) X has rank m.

When this occurs, the following three quantities are necessarily integers:

kl

m
, k

√

l −m

m(l − 1)
, l

√

k −m

m(k − 1)
. (8)

Proof. Firstly, let us assume that there are mutually unbiased equiangular tight

frames (v1, . . . , vk) and (w1, . . . , wl) for Rm. With V ∈ R
m×k and W ∈ R

m×l

denoting the matrices with columns v1, . . . , vk and w1, . . . , wl, respectively, we set

X =
√
mV ⊤W ∈ R

k×l.

By Lemma 2.1, we have |V ⊤W |i,j = |〈vi, wj〉| = 1/
√
m for all i ∈ {1, . . . , k}

and j ∈ {1, . . . , l}, so Property (i) is immediate. In view of V V ⊤ = (k/m) Im
and of WW⊤ = (l/m) Im, it is also straightforward to see that

XX⊤ = l V ⊤V and X⊤X = kW⊤W. (9)
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From here, using the fact that V V ⊤ = (k/m) Im one more time, we obtain that

XX⊤X = (l V ⊤V )(
√
mV ⊤W ) = (kl/m)

√
mV ⊤W , i.e., XX⊤X = aX with

a = kl/m, so Property (ii) is satisfied. Properties (iii) and (iv), too, are conse-

quences of (9), since e.g. the off-diagonal entries of XX⊤ are constant in absolute

value because those of V ⊤V are. Finally, Property (v) is also implied by (9)

via rank(X) = rank(XX⊤) = rank(V ⊤V ) = rank(V V ⊤) = rank(Im) = m.

Conversely, let us assume that Properties (i)–(ii) are fulfilled by some matrix

X ∈ R
k×l. Consider the singular value decomposition of this matrix written as

X = PΣQ⊤, where the diagonal matrix Σ ∈ R
m×m has positive entries (by (v))

and where the matrices P ∈ R
k×m and Q ∈ R

l×m have orthonormal columns,

i.e., P⊤P = Im and Q⊤Q = Im. Property (ii) easily yields Σ3 = aΣ and hence

Σ =
√
a Im. Then, looking at the squared Frobenius norm of X =

√
aPQ⊤, we

derive from (i) that kl = am, i.e., that a = kl/m. We now set

V =

√

k

m
P⊤ ∈ R

m×k and W =

√

l

m
Q⊤ ∈ R

m×l

and we claim that the columns v1, . . . , vk of V and w1, . . . , wl of W are mutually

unbiased equiangular tight frames for Rm. Indeed, using V ⊤V = (k/m)PP⊤ and

XX⊤ = aPP⊤, we see that V ⊤V = (1/l)XX⊤, so that the equiangularity of

the system (v1, . . . , vk) is clear from (iii). Note that each vi is a unit vector, since

‖vi‖22 = (V ⊤V )i,i = (1/l)(XX⊤)i,i = (1/l)
∑l

j=1X
2
i,j = 1 by (i). The fact that

these vectors form a tight frame is seen from V V ⊤ = (k/m)P⊤P = (k/m) Im.

Similar arguments (using (iv)) would reveal that the system (w1, . . . , wl) is also an

equiangular tight frame. At last, to see that these systems are mutually unbiased,

it suffices to notice that V ⊤W = (
√
kl/m)PQ⊤ = (1/

√
m)X and to invoke (i)

once again.

It finally remains to establish that the three quantities in (8) are integers. For

the first one, we have seen (in the proofs of both implications) that a = kl/m and

(i)-(ii) show that a is an integer: any entry of XX⊤X = aX is on the one hand

an integer and on the other hand equal to ±a. For the third one, say, looking e.g.

at (9), any off-diagonal entry of XX⊤ = l V ⊤V is on the one hand an integer and

on the other hand equal to l times the common absolute inner product in a k-vector

equiangular tight frame for Rm, i.e., to l
√

(k −m)/(m(k − 1)). ✷

Although conditions (i)–(v) are restrictive, there are matrices X satisfying

11



them with m < k < l. For instance, the 6× 10 matrix

X =















1 1 1 1 1 1 1 1 1 1

1 1−1 1−1−1 1−1−1−1

1−1 1−1 1−1−1 1−1−1

−1 1 1−1−1 1−1−1 1−1

−1−1−1 1 1 1−1−1−1 1

−1−1−1−1−1−1 1 1 1 1















is one such matrix4: it has ±1 entries, the identity XX⊤X = aX is easily

verified (at least computationally), and it was already observed in [11] that both its

rows and its columns form equiangular tight frames for their 5-dimensional spans.

Therefore, since X fulfills the conditions of Proposition 3.1 with m = 5, k = 6,

and l = 10, we are guaranteed the existence of mutually unbiased equiangular

tight frames (v1, . . . , v6) and (w1, . . . , w10) for R5. Remarkably, this example is

but the first member of the infinite family presented below.

Theorem 3.1. For any integer s ≥ 2, there are mutually unbiased equiangular

tight frames (v1, . . . , vk) and (w1, . . . , wl) for Rm, where

k = 2s−1(2s − 1), l = 2s−1(2s + 1), m =
22s − 1

3
.

Proof. For any such s, k, l and m, the requisite matrix X of Proposition 3.1 is

produced in the recent paper [7], albeit nonobviously so. In brief, let Q and B
be the canonical hyperbolic-quadratic and symplectic forms on the binary vector

space F2s
2 , respectively:

Q(x) = Q(x1, . . . , x2s) :=

s
∑

r=1

x2r−1x2r,

B(x, y) = B((x1, . . . , x2s), (y1, . . . , y2s)) :=

s
∑

r=1

(x2r−1y2r + x2ry2r−1).

Let Γ be the corresponding character table of F2s
2 , defined by Γ(x, y) = (−1)B(x,y)

for all x, y ∈ F
2s
2 . Any submatrix of Γ obviously satisfies (i) from Proposition 3.1.

Let X be the specific submatrix of Γ whose rows and columns are indexed by

4As pointed out to us by Josiah Park, this same 6× 10 matrix appeared in a recent investigation

of spherical half-designs (see [15]).
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{x ∈ F
2s
2 : Q(x) = 1} and {x ∈ F

2s
2 : Q(x) = 0}, respectively. By Lemma 4.2

of [7], these two subsets of F2s
2 are difference sets for F2s

2 of cardinality k and l,
respectively. As detailed in [7], this means that the rows and columns of X are

equiangular, namely that (iii) and (iv) hold. Theorem 4.4 of [7] moreover gives

that these two difference sets are paired, meaning that the columns of X form a

tight frame for their span, so that (ii) holds. Theorem 3.3 of [7] then implies that

the rank of X is indeed m, so that (v) holds. ✷

We close this section by highlighting that real mutually unbiased equiangular

tight frames are rare objects. Precisely, we have obtained rather stringent necessary

conditions for their existence (not included here because too detached from our

main focus). For instance, these conditions imply that mutually unbiased k-vector

and l-vector equiangular tight frames for Rm can only exist for at most thirteen

triples of integers (m, k, l) with l > k > m + 1 when m ≤ 1000, and that they

cannot exist when l = k > m, in contrast with the complex setting.

4. Epilogue: the fifth maximal projection constant

By combining the main results derived in the two previous sections, namely

Theorems 2.1 and 3.1, and after some tedious algebraic manipulation, we can state

that the maximal relative projection constant at anym of the form m = (22s−1)/3
for some integer s ≥ 2 is bounded below as

λ(m, 4s) ≥ 22s − 1

23s − 3 2s−1 + 1

(

22s−1 + 2s − 1

3
+ 2s−1

√
m

)

. (10)

If this was to be an equality, then the vector tθ ∈ R
n
+, n = 4s, and the matrix

Uθ ∈ R
m×n, m = (22s − 1)/3, appearing in the proof of Theorem 2.1 should

be maximizers of the expression for λ(m,n) from Theorem 1.1. For genuine

maximizers t̄ ∈ R
n
+ and Ū ∈ R

m×n, we emphasize the following two necessary

conditions:

(a) t̄ is a maximizer of
∑

i,j titj|Ū⊤Ū |i,j subject to ‖t‖2 = 1, so is characterized

by the fact that t̄ is an eigenvector (in fact, the leading eigenvector) of |U⊤U |
— this is indeed satisfied by tθ and Uθ, according to (4);

(b) Ū is a maximizer of
∑

i,j t̄it̄jsgn(Ū
⊤Ū)i,j(U

⊤U)i,j = tr(T̄ sgn(Ū⊤Ū) T̄U⊤U),

T̄ := diag[t̄], subject to UU⊤ = Im, so is characterized by the fact that the

rows of Ū are eigenvectors corresponding to the m largest eigenvalues of

T̄ sgn(Ū⊤Ū)T̄ — this is indeed satisfied by tθ and Uθ, according to (5).
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Remark 4.1. The necessary conditions (a)-(b) combine to show that the genuine

maximizers t̄ and Ū obey the noteworthy relation

(

Ū⊤D̄Ū
)

i,i
= λ(m,n) t̄2i for all i ∈ {1, . . . , n},

where D̄ = diag[µ̄1, . . . , µ̄m] is the diagonal matrix with them leading eignevalues

µ̄1 ≥ · · · ≥ µ̄m of T̄ sgn(Ū⊤Ū)T̄ on its diagonal. Indeed, by (a), we have

λ(m,n) t̄2i = t̄i

n
∑

j=1

|Ū⊤Ū |i,j t̄j =
n

∑

j=1

(Ū⊤Ū)i,j(T̄ sgn(Ū
⊤Ū)T̄ )i,j

=
(

(Ū⊤Ū)(T̄ sgn(Ū⊤Ū)T̄ )
)

i,i
. (11)

Now, by (b), we have T̄ sgn(Ū⊤Ū T̄ )Ū⊤ = Ū⊤D̄, or Ū T̄ sgn(Ū⊤Ū)T̄ = D̄Ū by

taking the transpose. Making use of the latter in (11) gives the expected relation.

The observation that tθ and Uθ do satisfy conditions (a)-(b) supports the belief

that (10) could be an equality. To the question of whether the right-hand side of

(10) also coincides with the value of the maximal absolute projection constant

λ(m), m = (22s − 1)/3, the answer is in general no. Indeed, for s = 3, hence

for m = 21, k = 28, and l = 36, we have γ21,28,36 ≈ 3.9397, while a real

equiangular tight frame for R21 made of 126 vectors is known to exist (see e.g.

[10]), so Theorem 1.2 yields λ(21) ≥ λ(21, 126) & 4.3333. However, for s = 2,

hence for m = 5, k = 6, and l = 10, there are convincing reasons to believe

that γ5,6,10 ≈ 2.06919 coincide with the value of λ(5). These reasons are the

extensive numerical investigations carried out B. L. Chalmers, as well as our own

computations (some of which can be found in a matlab reproducible available on

the authors’ webpages). All these clues prompt us to conclude with the following

assertion.

Theorem 4.1 (and Conjecture). The fifth absolute projection constant satisfies

λ(5) ≥ λ(5, 16) ≥ 5

59
(11 + 6

√
5) ≈ 2.06919,

and it is expected that the latter is indeed the true value of λ(5).

14



Appendix

As bonus material, we present here a new proof of Theorem 1.2 as a immediate

consequence of the technical result below coupled with Theorem 1.1.

Proposition 4.1. For integers n ≥ m > 1, one has

max

{ n
∑

i,j=1

titj |U⊤U |ij : t ∈ R
n, ‖t‖2 = 1, U ∈ R

m×n, UU⊤ = Im

}

≤ m

n

(

1 +

√

(n− 1)(n−m)

m

)

, (12)

with equality if and only if there exists a matrix U ∈ R
m×n with UU⊤ = Im,

(U⊤U)i,i = m/n for all i ∈ {1, . . . , n}, and |U⊤U |i,j =
√

(n−m)m/(n− 1)/n
for all i 6= j ∈ {1, . . . , n}.

Proof. For t ∈ R
n satisfying ‖t‖2 = 1 and U ∈ R

m×n satisfying UU⊤ = Im,

we use the nonnegativity of (U⊤U)i,i (as the inner product of the ith column of U
with itself) and Cauchy–Schwarz inequality to write

Σ :=
n

∑

i,j=1

titj |U⊤U |i,j =
n

∑

i=1

t2i |U⊤U |i,i +
n

∑

i,j=1
i6=j

titj |U⊤U |i,j

≤
n

∑

i=1

t2i (U
⊤U)i,i +

√

√

√

√

√

n
∑

i,j=1
i6=j

t2i t
2
j

√

√

√

√

√

n
∑

i,j=1
i6=j

(U⊤U)2i,j

=
n

∑

i=1

t2i (U
⊤U)i,i +

√

√

√

√

n
∑

i,j=1

t2i t
2
j −

n
∑

i=1

t4i

√

√

√

√

n
∑

i,j=1

(U⊤U)2i,j −
n

∑

i=1

(U⊤U)2i,i

=

n
∑

i=1

αiβi +

√

√

√

√A−
n

∑

i=1

α2
i

√

√

√

√B −
n

∑

i=1

β2
i ,

where we have set αi = t2i , βi = (U⊤U)i,i, A =
(
∑

i t
2
i

)(
∑

j t
2
j

)

= ‖t‖42 = 1, and

B =
∑

i,j(U
⊤U)2i,j = ‖U⊤U‖2F = tr(U⊤UU⊤U) = tr(UU⊤UU⊤) = m. Setting

also a = ‖t‖22 = 1, b = tr(U⊤U) = tr(UU⊤) = m, as well as

xi :=
αi − a/n

√

A− a2/n
and yi :=

βi − b/n
√

B − b2/n
,
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we notice that
∑n

i=1 xi = 0 and
∑n

i=1 yi = 0. We exploit these identities a few

times to derive

Σ ≤
n

∑

i=1

(

a

n
+

√

A− a2

n
xi

)(

b

n
+

√

B − b2

n
yi

)

+

√

√

√

√A−
n

∑

i=1

(

a

n
+

√

A− a2

n
xi

)2

√

√

√

√B −
n

∑

i=1

(

b

n
+

√

B − b2

n
yi

)2

=
ab

n
+

√

A− a2

n

√

B − b2

n

n
∑

i=1

xiyi

+

√

√

√

√A− a2

n
−

(

A− a2

n

)

n
∑

i=1

x2
i +

√

√

√

√B − b2

n
−

(

B − b2

n

)

n
∑

i=1

y2i

=
ab

n
+

√

A− a2

n

√

B − b2

n





n
∑

i=1

xiyi +

√

√

√

√1−
n

∑

i=1

x2
i

√

√

√

√1−
n

∑

i=1

y2i



 .

The latter term in square brackets is nothing but the inner product of the unit

vectors x̃ :=
[

x,
√

1− ‖x‖22
]

and ỹ :=
[

y,
√

1− ‖y‖22
]

, so it is bounded by one.

Thus, keeping the values of a = 1, b = m, A = 1, and B = m in mind, we arrive

at
n

∑

i,j=1

titj |U⊤U |i,j ≤
m

n
+

√

1− 1

n

√

m− m2

n
.

Taking the supremum over t and U leads to the desired inequality (12) after

some algebraic manipulation. This inequality turns into an equality if the matrix

U ∈ R
m×n with UU⊤ = Im satisfies (U⊤U)i,i = m/n for all i ∈ {1, . . . , n}

and |U⊤U |i,j =
√

(n−m)m/(n− 1)/n for all i 6= j ∈ {1, . . . , n}, simply by

choosing t ∈ R
n with entries ti = 1/

√
n for all i ∈ {1, . . . , n}.

Conversely, let us assume that (12) is an equality. Our goal is now to prove that

(U⊤U)i,i = m/n for all i ∈ {1, . . . , n} and |U⊤U |i,j =
√

(n−m)m/(n− 1)/n
for all i 6= j ∈ {1, . . . , n}, where U ∈ R

m×n satisfying UU⊤ = Im achieves the

maximum, together with t ∈ R
n satisfying ‖t‖2 = 1. We start by taking into

account that equality must hold throughout the first part of the argument. Equality

in Cauchy–Schwarz inequality implies the existence of c ∈ R such that

titj = c |U⊤U |i,j for all i 6= j ∈ {1, . . . , n}
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and equality in 〈x̃, ỹ〉 ≤ 1 yields x = y, i.e.,

(U⊤U)i,i −
m

n
=

√

m−m2/n
√

1− 1/n

(

t2i −
1

n

)

for all i ∈ {1, . . . , n}. (13)

Since the matrix T sgn(U⊤U)T has diagonal entries (T sgn(U⊤U)T )i,i = t2i and

off-diagonal entries

(T sgn(U⊤U)T )i,j = titjsgn(U
⊤U)i,j = c |U⊤U |i,jsgn(U⊤U)i,j = c (U⊤U)i,j ,

the necessary condition (b), written for all i ∈ {1, . . . , n} and h ∈ {1, . . . , m} as

n
∑

j=1

(T sgn(U⊤U)T )i,jU
⊤
j,h = µhU

⊤
i,h,

where µ1 ≥ · · · ≥ µm are the m leading eigenvalues of T (sgn(U⊤U)T , becomes

t2iU
⊤
i,h +

n
∑

j=1
j 6=i

c (U⊤U)i,jU
⊤
j,h = µhU

⊤
i,h.

In other words, for all i ∈ {1, . . . , n} and h ∈ {1, . . . , m}, we have

t2iU
⊤
i,h + c (U⊤UU⊤)i,h − c (U⊤U)i,iU

⊤
i,h = µhU

⊤
i,h,

or equivalently, in view of UU⊤ = Im,

(

t2i + c− c (U⊤U)i,i
)

U⊤
i,h = µhU

⊤
i,h. (14)

This actually shows that µh is independent of h ∈ {1, . . . , m} and — thanks to

the alternate expression λ(m,n) = µ1 + . . . + µm (see e.g. [13, Theorem 1]) —

one must have µh = λ(m,n)/m. Now (14) reduces (say, by multiplying by U⊤
i,h,

summing over h, and simplifying) to t2i + c− c (U⊤U)i,i = λ(m,n)/m. Summing

over i ∈ {1, . . . , n}) yields

1 + c (n−m) =
n

m
λ(m,n) = 1 +

√

(n− 1)(n−m)

m
,

which shows that

c =

√

n− 1

m(n−m)
.
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Invoking Remark 4.1, we notice that (U⊤U)i,i = mt2i for all i ∈ {1, . . . , n},

and therefore (13) becomes m(t2i − 1/n) =
√

m(n−m)/(n− 1)(t2i − 1/n).

Given that m 6=
√

m(n−m)/(n− 1) when m > 1, we consequently obtain

t2i = 1/n for all i ∈ {1, . . . , n}. In turn, we deduce from (U⊤U)i,i = mt2i
that (U⊤U)i,i = m/n for all i ∈ {1, . . . , n} and from c|U⊤U |i,j = titj that

|U⊤U |i,j =
√

m(n−m)/(n− 1)/n for all i 6= j ∈ {1, . . . , n}. The proof is now

complete. ✷
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