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Abstract

Let A(m) denote the maximal absolute projection constant over real m-dimensional
subspaces. This quantity is extremely hard to determine exactly, as testified by the
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numerical evidence indicating that \(3) = (1 ++/5)/2. In this paper, relying on a
new construction of certain mutually unbiased equiangular tight frames, we show
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1. Introduction

Let X be a real Banach space and Y C X be a finite-dimensional subspace.
Let P(X,Y) denote the set of all linear and continuous projections from X onto Y,
recalling that an operator P: X — Y is called a projection onto Y if P|y = Idy.
We define the relative projection constant of Y by

AY, X) :=inf{||P||: PeP(X,Y)}
and the absolute projection constant of Y by
AY) :=sup{\Y,X): Y C X}. (1)

The literature also deals with the maximal absolute projection constant, which is
defined by
A(m) = sup{A(Y) : dim(Y) = m}.

By the Kadec—Snobar theorem (see [17]), we have A(m) < y/m. Moreover, it has
been shown in [18] that this estimate is asymptotically the best possible. However,
the determination of the constant A(m) seems to be difficult: apart from A(1) = 1,
the only known value of A\(m) is A\(2) = 4/3 — this is Griinbaum conjecture,
formulated in [14] and proved in [6]. Numerical computations presented in [13]
indicate that \(3) should equal (1 + v/5)/2 — this was stated, with an erroneous
proof, in [19]. Other numerical experiments conducted by B. L. Chalmers (and
unfortunately unpublished) suggest that A(5) ~ 2.06919. In this article, we show
that
A(5) > 5(11 + 6v/5)/59 ~ 2.06919.

Viewed in isolation, this could seem anecdotal. However, several sources of
evidence hint that this is the actual value of A\(5). This comes as a surprise,
because it was growingly believed that obtaining exact formulas for A(m) was an
unreasonable quest. Now there is hope that this quest could be realized after all.

To establish the announced lower bound, we make a detour via maximal relative
projection constants. Recent results concerning maximal relative and absolute
projection constants can be found in [1, 2, 4, 13, 21]. Here, we only give the
definition of the maximal relative projection constant for n > m as

Am,n) = sup{\(Y,I") : dim(Y)=mand Y c IV}

This is motivated by the fact that, in the expression (1) of A(m), it suffices to take
the supremum over finite-dimensional /., superspaces (see e.g. [22, III.B.5]), so
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that the nondecreasing sequence (A(m, n)),>, converges to A(m). Inreality, there
evenisan N € N such that A(m,n) = A\(m) forall n > N (see [1, Theorem 1.4]).
Our estimation of A(m, n) will rely on the following result proved in [5].

Theorem 1.1. For integers n > m, one has

A(m,n) = max{ > it |UTUL; ct €RY, [t =1,U e R™", UUT = Im}.

1,7=1

Although this theorem provides an essential tool for estimating the maximal relative
projection constants, computing their exact values remains a challenging problem,
carried out in just a few cases (see e.g. [1, 5, 13]). One particular situation
where an explicit formula is available involves equiangular tight frames. Let us
recall that a system of unit (i.e., ly-normalized) vectors (vy, . .., v,) in R™ is called
equiangular if there is a constant ¢ > 0 such that

|(vi,v;)| = ¢ foralli,j € {1,...,n}, i # j.

It is called a tight frame if
vvT =21,
m

where V' is the matrix with columns vy, ..., v,. The system (vy, ..., v,) of unit
vectors is called an equiangular tight frame if it is both equiangular and a tight
frame. For an equiangular tight frame of n unit vectors in R, it is well known
(see e.g. [12, Theorem 5.7]) that

n—m

m forallz,je{l,,n},z#j

[ (v, 03)| =

The above-mentioned explicit formula is presented as part of the result below.
Built from Theorems 1 and 2 of [20], it appeared in a slightly different form as
Theorem 5 in [13]. A new self-contained proof is included later as an appendix.

Theorem 1.2. For integers n > m, the maximal relative projection constant
A(m,n) is upper bounded by

YW = =]

Moreover, the equality \(m,n) = d,,., occurs if and only if there is an equiangular
tight frame for R™ consisting of n unit vectors.
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Remark 1.1. We note in passing that d,,,, < y/m for n > m > 1 (thus providing
another justification for Kadec—Snobar estimate). Thisis seen by applying Cauchy—
Schwarz inequality for the noncolinear vectors [1,v/n — 1] and [1, y/(n — m)/m]
in

n m n m

In the rest of this paper, we present new explicit lower bounds for A(m, n) under
the condition that certain mutually unbiased equiangular tight frames for R™ exist
(see Theorem 2.1). We then provide a construction of an infinite family of such
mutually unbiased equiangular tight frames (see Theorem 3.1). Finally, combining
these two ingredients, we highlight the resulting estimation of \(5, 16) to arrive at
the promised lower bound for A(5), conjectured to be its true value.

2. The Lower Bound

Before stating the main result, we start with an observation about mutually
unbiased equiangular tight frames, formally defined below.

Definition 2.1. Two equiangular tight frames (v1, . . ., vg) and (w1, . . ., w;) for R™
are mutually unbiased if there exists c € R such that

[(vi,w;)| =¢  forallie{l,....,k}andj e {1,... 1}

This definition generalizes a concept introduced in [9] so as to permit the case
k # . We point out that the scalar ¢ is uniquely determined, as also noted in [3].

Lemma 2.1. The constant ¢ appearing in the definition of mutually unbiased
equiangular tight frames for R" necessarily satisfies

Proor. Let (vy,...,v;) and (wy, ..., w;) be mutually unbiased equiangular tight
frames for R™ and let V' € R™** be the matrix with columns v1, . .., vj. For any
j € {1,...,l}, because the two frames are mutually unbiased, we have

k
||Vij||§ = Z |<Ui7wj>|2 = ZCZ = ke
i=1 ;
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Since (vy, ..., v) is a tight frame for R™, we also have VV'T = (k/m)I,,, and so

k k k
IV w13 = (Vw;, VViwg) = (wy, VV Twy) = <wj= ij> = —[lwillz = —.

It follows that k¢ = k/m, and hence ¢ = 1/,/m, as claimed. O

We now present the main theorem of this section, whose statement involves
the quantity o, , introduced in Theorem 1.2.

Theorem 2.1. If mutually unbiased equiangular tight frames (vy,...,v;) and
(w1, ..., w;) for R™ exist, then the maximal relative projection constant \(m, k+1)
is bounded below as

m — 5m k(sm l
Am,k+1) > e
( ) o 2\/77_7' - 5m,k - 6m,l
Proor. Let V € R™** be the matrix with columns vy, . .., v, and W € R™*! the
matrix with columns wy, ..., w;. Forany 6 € [0, 7/2], let us consider the vector

ty € RF*! and the matrix Uy € R™*(*+) defined, in block notation, by
tg ;=
sin0—1 l

and Uy = [cos@,/%‘/ ‘ sin@,/?W}, (2)
Vi

where 1,, denotes the n-dimensional vector with all entries equal to 1. We observe
that [|tg]|o = 1, that

UpUy T = cos? 9%va + sin? H%WWT — cos? 01, +sin2 01, = I,

and that
[ cos2 0Ly Ty ‘ cos@sin@ﬂVTW-|
Uy Up = b kL B
[cos@sin O—W TV ‘ sin?9—Ww'Tw
VEkl l

Therefore, according to the expression of A(m, n) from Theorem 1.1, we can make
use of the tight frame and unbiasedness properties of U and V' to obtain, with the
shorthand notation ¢, ,, := \/(n — m)/(m(n — 1)),




k+1

Am, k+1) > > (t)ilte);|Us Ul

ij=1

1 1
= cos? GE X cos® 9% X k + cos® GE X cos® 9%¢m,k X k(k—1)

1 1
+ sin? 97 X sin? 9? x [ + sin? «97 x sin? 9T¢m,l xI(l—1)

1
+ 2 X cos@sin — x cosfsinf _—xk‘l

Vil
—costo( ™ LM mymg
= cos 9(1{: + k(k‘ 1)¢m,k) + sin Q(Z l (I—1)¢ )
+ 2cos® fsin® 6v/m
2 2
— (H#S(%)) Sk + (%ﬁ(%)) O + (Sm(29)) £

Since this is valid for any 6 € [0, 7/2], after setting x := cos(26), we arrive at

2 _ 2
M.k +10) > max (5m7k(1+2:c+x)+5m7l(1 2x+x)+\/ﬁ(1_x2))

z€[—1,1] 4 4 2
1 2
= - 2

1 mg[l_aicl] (ax + 2bx + c) ,
where a = 5m,k + 5m71 — 2%, b= 5m,k — 6m,l’ and c := 5m,k + 5m,l + 2\/%.
Taking momentarily for granted that ¢ < 0 and that x, := —b/a € [—1,1], we
deduce that

Aokt D) > S aa? b2, 1) = E (D) = e
’ 40T . 4 a 4 —a
_ 1(5771,1@ _5m,l)2+ ( \/7 5mk - ml)(2m+6m,k+5m,l)
4 2\/7 5m k— ml
. 1 4m — 45m k5m1
B 4 2\/7 5m k= 5ml

which is the announced lower bound. It now remains to notice that a < 0 and that
—b/a € [—1, 1], but both follow from the general observation that ¢,, , < /m for
n > m > 1, see Remark 1.1. O



Before uncovering a family of mutually unbiased equiangular tight frames in
the next section, we emphasize here two noteworthy properties relating the vector ¢y
and the matrix Uy that appeared in the above proof.

Proposition 2.1. Let vy, i, be the lower bound for \(m, k + 1) from Theorem 2.1
and let § € [0, /2] be the angle used in its proof, i.e.,

M — O kOm.i Ome — 5ml
m d 20
Ykl = D — O — O an cos(20) = > — s —
Then, with ty € R Uy € R™* D defined as in (2) and with Ty := diag|ty),
one has

\U, Ul to = Ymii to, 4)
Tysen(U, Up)Ty U = 150y ] (5)

Proor. When establishing both (4) and (5), it will be useful to keep in mind that
O 18 tied t0 @y, = \/(n —m)/(m(n — 1)) via

5m,n:T(1+(n—1)¢m,n):T<1+”_m ! )
n n m  Qmn

Starting with the justification of (4), we notice that, since the matrix VTV has
diagonal entries equal to 1 and off-diagonal entries equal to ¢,, ;, in absolute value,
we have

VTV = (1 = i)k + Gk,

where 1,, ,,» denotes the n x n’ matrix with all entries equal to 1. It follows that

k
VTV = (1 = bms) Ly + kbpmsly = (14 (b — 1)pi)ly = Eém,kllk.

Likewise, we can obtain

I
WTw|1, = - ml.

Moreover, since the matrices V"W and W 'V have entries all equal to 1//m in
absolute value, we have |V W| = (1/y/m)1;, and |[W V| = (1/y/m)1;;, so
that

k
VW], = —=1;,  and |WTV\1;€:\/—H]1I.

b
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Therefore, according to the block-forms of ¢, and U(,T Uy (see (2) and (3)), we
observe that

[ 1 k 1 1
cos? 02 cos — - —Om kllk+cos€sm6’ M sin— —]lk-l
m

03 Ul = | VI i/

m m 1
cos 0 sin §——— cos §— ——1; + sin? 0 — sin —

e VT
(cos? 06, 1, + sin® 0/m) ﬂk-‘

(cos? 0y/m + sin® 06,,,) 1, J .

— Oy J

cos 0

|
=ks

(6)

sin 6

S

Next, in view of

1 +cos(20) NG TR

2 C2ym = Oy — Oy
1 —cos(20) N Y

2 2y = Gk — Ot

cos? 6 =

sin?f =

we easily derive that
c08? 06, 5 + sin? 0y/m = cos? Ov/m + sin® 06,1 = Vo i- (7)

When substituting the latter into (6), the identity (4) immediately follows.

Turning now to the justification of (5), recalling that the matrix V'V has
diagonal entries equal to 1 and off-diagonal entries equal to ¢, in absolute
value, the diagonal entries of the matrix sgn(V V) are equal to 1 and its off-
diagonal entries are equal to those of V'V divided by ¢, ;. In short, we see
that sgn(V'V) = (1 — 1/¢pm 1)l + (1/bmi)V "V holds, and a similar identity
holds for sgn(W TIW). Moreover, we also have sgn(V'W) = /m VW and
sen(WTV) = /mW TV, as a consequence of all the entries of W'V and W TV
being equal to 1/y/m in absolute value. All in all, according to the block-form (3)
of Ue—r Uy, we obtain

1 LT T
(st | g

Sgn(UGTUG) = n 1 n
\‘ \/EWV ‘ (1—W>Il+ﬂw WJ




In turn, using the block-form of Ty = diag[ty], we derive that Tpsgn (U, Uy)Ty
takes the form

1 1 1
cos? 0= (<1 > Ip + —VTV> ‘ cosfsin—/mV'IW -I
[ k ¢mk i Pk Vkl
1 1 :
cosfsin——/mW'TV sin? 6= (<1 - —)1 + —WTW>
\/_ l Omi) | b

Multiplying on the right by the transpose of Uy = [ cos 0, / ‘ sinf, | — W }

and making use of the facts that VV'" = (k/m)l,, and T/VI/VT = (I/m)],,, the
matrix Tpsgn(U, Up)Ty U, becomes

1 m 1 k1
cos? 0—cosf, | — (<1 — > + — > VT —|—cos€sm9— Vmsind, [ — —VT-l

T e T (s Ty

cosfsin 0——

;H

(bml

m [ cos® 0 E—m 1 o 1 T
- cos@ E( < — ¢m7k) + sin Qﬁ) %4 -I
— - —
sin 6 m cos 9— sin” 0 1+ ZJL WTJ
l l m ¢m,l
2
COSH m (cos 9 sm 0 VT-‘
- k m
o m [cos®@ sin’é -
_sm@ T ( Jm + - 5m7l) %% J

Similarly to (4), the identity (5) now simply follows by exploiting (7) again. O

3. Construction of Mutually Unbiased Equiangular Tight Frames

To apply the result of Theorem 2.1 in practical situations, we evidently need
to uncover specific integers k, [, and m allowing mutually unbiased equiangular
tight frames to exist. As a simple example, one can take £ = [ = m and
consider (vy,...,v;) to be the canonical basis for R™ and (ws,...,w;) to be
the columns of an m x m Hadamard matrix — recall that m x m Hadamard
matrices are conjectured to exist when and only when m is a multiple of 4 (the
‘only when’ part being acquired, of course). This would yield the lower bound
A(m) > (1 ++/m)/2, m € 4N, which is inferior to the lower bounds reported in
[13] for m = 4 and m = 8. As a slightly more elaborate example, one can take



k =m and (vy, ..., v;) to be the canonical basis of R™, together with [ > m and
(w1, ..., w) to be areal equiangular tight frame for R™ that is flat, in the sense that
every entry of each vector wj is either 1/y/m or —1/1/m. Real flat equiangular
tight frames are equivalent to binary codes achieving equality in the Grey—Rankin
bound and infinite families are known (see [16, 8]). This would yield the lower
bound A(m, m+1) > (m—"m,1)/(2v/m—1—~p,). Withm = 6 and [ = 16, this
provides the lower bound A\(6) = 2.2741, which is superior to the lower bounds
reported in [13] but inferior to the numerical evaluation \(6) ~ 2.2857 performed
by B. L. Chalmers and corroborated by our own computations. In order to apply
Theorem 2.1 more effectively, we need further examples of mutually unbiased
equiangular tight frames. To this end, we now relate such frames to a type of
generalized Hadamard matrices.

Proposition 3.1. Given integers k,l > m > 1, there are mutually unbiased
equiangular tight frames (vy, . .., vy) and (w1, . .., w;) for R™ if and only if there
is a k x | matrix X with the following five properties:

(i) X;j € {=1,41} foralli € {1,... k}andj e {1,... 1},
(ii) XXX = aX for some a € R;

(iii) X has equiangular rows, i.e., | X X |; i is constant over all i # 7';
(iv) X has equiangular columns, i.e., | X ' X|; j is constant over all j # j';
(v) X has rank m.

When this occurs, the following three quantities are necessarily integers:

kl l—m k—m
m’ k\/m(z—n’ l\/m(k—n' ®)

Proor. Firstly, let us assume that there are mutually unbiased equiangular tight
frames (vq,...,v;) and (wy, ..., w;) for R™. With V € R™* and W € R™*
denoting the matrices with columns vy, . .., v, and wy, . . . , w;, respectively, we set

X =mV'W e R

By Lemma 2.1, we have [V W|,; = |(v;,w;)| = 1/y/m foralli € {1,...,k}
and j € {1,...,1}, so Property (i) is immediate. In view of VV T = (k/m)I,,
and of WWT = (1/m)1,,, it is also straightforward to see that

XXT=1v'v and X'X =kWTW. 9)
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From here, using the fact that VV'" = (k/m)1,, one more time, we obtain that
XXX = VTV (/mVIW) = (kl/m)y/mV W, ie, XXTX = aX with
a = kl/m, so Property (ii) is satisfied. Properties (iii) and (iv), too, are conse-
quences of (9), since e.g. the off-diagonal entries of X X " are constant in absolute
value because those of VTV are. Finally, Property (v) is also implied by (9)
viarank(X) = rank(X X ") = rank(V V) = rank(VV'") = rank(l,,,) = m.

Conversely, let us assume that Properties (i)—(ii) are fulfilled by some matrix
X € R¥*!. Consider the singular value decomposition of this matrix written as
X = PXQT, where the diagonal matrix ¥ € R™*™ has positive entries (by (v))
and where the matrices P € R**™ and Q € R”*™ have orthonormal columns,
ie, PTP =1, and Q"Q = I,,. Property (ii) easily yields ¥* = a ¥ and hence
¥ = y/al,,. Then, looking at the squared Frobenius norm of X = \/a PQT, we
derive from (i) that kl = am, i.e., that a = kl/m. We now set

V= \/EPT eR™* and W= \/LQT e R™!
m m

and we claim that the columns vy, ..., v, of V and wy, ..., w; of W are mutually
unbiased equiangular tight frames for R™. Indeed, using V'V = (k/m)PP" and
XXT = aPPT, wesee that V'V = (1/I)X X7, so that the equiangularity of
the system (vy, ..., v) is clear from (iii). Note that each v; is a unit vector, since
vil|3 = (VTV)i = (1/)(XX T = (1/1) Zé.zl ij = 1 by (i). The fact that
these vectors form a tight frame is seen from VV'' = (k/m) P"P = (k/m)1,,.
Similar arguments (using (iv)) would reveal that the system (wy, . .., w;) is also an
equiangular tight frame. At last, to see that these systems are mutually unbiased,
it suffices to notice that V' W = (vVkI/m) PQ" = (1/4/m) X and to invoke (i)
once again.

It finally remains to establish that the three quantities in (8) are integers. For
the first one, we have seen (in the proofs of both implications) that a = kl/m and
(i)-(ii) show that a is an integer: any entry of XX ' X = aX is on the one hand
an integer and on the other hand equal to £=a. For the third one, say, looking e.g.
at (9), any off-diagonal entry of X X" = [V "V is on the one hand an integer and
on the other hand equal to [ times the common absolute inner product in a k-vector
equiangular tight frame for R™, i.e., to [\/(k —m)/(m(k — 1)). O

Although conditions (i)—(v) are restrictive, there are matrices X satisfying

11



them with m < k < [. For instance, the 6 x 10 matrix

is one such matrix*: it has +1 entries, the identity XX TX = aX is easily
verified (at least computationally), and it was already observed in [11] that both its
rows and its columns form equiangular tight frames for their 5-dimensional spans.
Therefore, since X fulfills the conditions of Proposition 3.1 with m = 5, k = 6,
and [ = 10, we are guaranteed the existence of mutually unbiased equiangular
tight frames (vy, ..., vg) and (wy, ..., wyo) for R®. Remarkably, this example is
but the first member of the infinite family presented below.

Theorem 3.1. For any integer s > 2, there are mutually unbiased equiangular
tight frames (vq, . . ., vy) and (wy, . .., w;) for R™, where

_223_1

k=25"1(25 — 1), [ =25"1(2° + 1), m 3

Proor. For any such s, k, [ and m, the requisite matrix X of Proposition 3.1 is
produced in the recent paper [7], albeit nonobviously so. In brief, let () and B
be the canonical hyperbolic-quadratic and symplectic forms on the binary vector
space [F2%, respectively:

Qz) = Qa1,. .., 225) 1= me—ﬂzr,
r=1

s

B(ZIZ’, y) - B((xb cee 7:1:25)7 (yla s 7?/28)) = Z(x2r—ly2r + x27’y27’—1)-

r=1

Let I' be the corresponding character table of F2°, defined by I'(z,y) = (—1)5@v)
for all 2,y € F2°. Any submatrix of I" obviously satisfies (i) from Proposition 3.1.
Let X be the specific submatrix of I' whose rows and columns are indexed by

“As pointed out to us by Josiah Park, this same 6 x 10 matrix appeared in a recent investigation
of spherical half-designs (see [15]).
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{z € F2* : Q(z) = 1} and {z € F%* : Q(z) = 0}, respectively. By Lemma 4.2
of [7], these two subsets of F2* are difference sets for F3° of cardinality k and I,
respectively. As detailed in [7], this means that the rows and columns of X are
equiangular, namely that (iii) and (iv) hold. Theorem 4.4 of [7] moreover gives
that these two difference sets are paired, meaning that the columns of X form a
tight frame for their span, so that (ii) holds. Theorem 3.3 of [7] then implies that
the rank of X is indeed m, so that (v) holds. O

We close this section by highlighting that real mutually unbiased equiangular
tight frames are rare objects. Precisely, we have obtained rather stringent necessary
conditions for their existence (not included here because too detached from our
main focus). For instance, these conditions imply that mutually unbiased k-vector
and [-vector equiangular tight frames for R™ can only exist for at most thirteen
triples of integers (m, k, 1) with [ > k > m + 1 when m < 1000, and that they
cannot exist when [ = k£ > m, in contrast with the complex setting.

4. Epilogue: the fifth maximal projection constant

By combining the main results derived in the two previous sections, namely
Theorems 2.1 and 3.1, and after some tedious algebraic manipulation, we can state
that the maximal relative projection constant at any m of the form m = (2% —1)/3
for some integer s > 2 is bounded below as

A(m, 4%) >
(m4) 2 S g1

223 -1 <22s—1 + 25 _ 1

3 + 28—1\%) . (10)

If this was to be an equality, then the vector ¢y € R}, n = 47, and the matrix
Ug € R™", m = (22° — 1)/3, appearing in the proof of Theorem 2.1 should
be maximizers of the expression for A(m,n) from Theorem 1.1. For genuine
maximizers ¢ € R’} and U € R™*", we emphasize the following two necessary
conditions:

(a) is a maximizer of )=, #;t;|UTUl;; subject to [|t]|2 = 1, so is characterized
by the fact that  is an eigenvector (in fact, the leading eigenvector) of |U " U|
— this is indeed satisfied by t4 and Uy, according to (4);

(b) Uisamaximizerof -, . #it;sen(UTU); j(UT V), ; = t(Tsgn(U'U) TUTU),
T := diag[ﬂ, subject to UU T =1, so is characterized by the fact that the

rows of U are eigenvectors corresponding to the m largest eigenvalues of
Tsgn(UTU)T — this is indeed satisfied by ¢, and Uy, according to (5).
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Remark 4.1. The necessary conditions (a)-(b) combine to show that the genuine
maximizers t and U obey the noteworthy relation

(UTDU)”:)\(m,n)ff forallie {1,...,n},
| is the diagonal matrix with the m leading eignevalues

where D = diag|fiy, . . . istl
U)T on its diagonal. Indeed, by (a), we have

7/“_1777,
fiy > -+ > [y of Tsgn(UT

(1)

Now, by (b), we have Tsgn(U'UT)U" = U D, or UTsgn(U"U)T = DU by
taking the transpose. Making use of the latter in (11) gives the expected relation.

The observation that ¢y and Uy do satisfy conditions (a)-(b) supports the belief
that (10) could be an equality. To the question of whether the right-hand side of
(10) also coincides with the value of the maximal absolute projection constant
A(m), m = (2%% — 1)/3, the answer is in general no. Indeed, for s = 3, hence
for m = 21, k = 28, and [ = 36, we have 7912836 ~ 3.9397, while a real
equiangular tight frame for R?! made of 126 vectors is known to exist (see e.g.
[10]), so Theorem 1.2 yields A(21) > A(21,126) 2> 4.3333. However, for s = 2,
hence for m = 5, k = 6, and [ = 10, there are convincing reasons to believe
that 75610 ~ 2.06919 coincide with the value of A(5). These reasons are the
extensive numerical investigations carried out B. L. Chalmers, as well as our own
computations (some of which can be found in a MmATLAB reproducible available on
the authors” webpages). All these clues prompt us to conclude with the following
assertion.

Theorem 4.1 (and Conjecture). The fifth absolute projection constant satisfies
5
A(5) > A(5,16) > @(11 +6v/5) ~ 2.06919,

and it is expected that the latter is indeed the true value of \(5).

14



Appendix

As bonus material, we present here a new proof of Theorem 1.2 as a immediate
consequence of the technical result below coupled with Theorem 1.1.

Proposition 4.1. For integers n > m > 1, one has

max{ > titJUTU| it €RY, |t =1,U e R™", UUT = Im}

1,7=1

s%(u\/(”‘lg“m)), (12)

with equality if and only if there exists a matrix U € R™ " with UU"T = 1,,,
(UTU)ii =m/nforalli € {1,...,n}, and |UU|;; = \/(n —m)m/(n —1)/n
foralli #je€{1,...,n}

Proor. For t € R" satisfying ||t| = 1 and U € R™*" satisfying UU" = I,,,,
we use the nonnegativity of (U U); ; (as the inner product of the ith column of U
with itself) and Cauchy—Schwarz inequality to write

2= tt,[UT ULy =Y EUTUL+ Y 6t |UTU,
i=1

i,j=1 i,j=1
i#£j
<SR | ee | STy,
=1 ’L;j#:]l Z;Zl
S BT \ See oS S eree, - S ot
i=1 ij=1 i=1 ij=1 i=1

Y abi A Y el B3
=1 =1 =1

where we have set oy, = t2, 3, = (U U); ;. A= (X, tf)(zy t?) =||t|l3 =1, and
B=Y, (UTU), = |UTU|% = e(UTUUTU) = a(UUTUUT) = m. Setting
alsoa = [[t|2=1,b=tr(UTU) = w(UUT) = m, as well as

VB —b/n’

a; —a/n
T, = — and Y =

VA—a?/n
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we notice that ) ", z; = 0 and > " | y; = 0. We exploit these identities a few
times to derive

The latter term in square brackets is nothing but the inner product of the unit
vectors Z := [x,1/1 — [[2[3] and § := [y, /1 — [|y|]3]. so it is bounded by one.
Thus, keeping the values of a = 1, b = m, A = 1, and B = m in mind, we arrive
at

Taking the supremum over ¢ and U leads to the desired inequality (12) after
some algebraic manipulation. This inequality turns into an equality if the matrix
U € R™" with UU" = 1, satisfies (U'U);; = m/n for all i € {1,...,n}
and |UTU|;; = \/(n—m)m/(n—1)/nforalli #j € {1,...,n}, simply by
choosing t € R" with entries t; = 1/y/nforalli € {1,...,n}.

Conversely, let us assume that (12) is an equality. Our goal is now to prove that
(UTU)is =m/nforalli € {1,...,n}and [UTU|;; = \/(n —m)m/(n—1)/n
foralli # j € {1,...,n}, where U € R™" satisfying UU" = I, achieves the
maximum, together with t € R" satisfying ||t|[, = 1. We start by taking into
account that equality must hold throughout the first part of the argument. Equality
in Cauchy—Schwarz inequality implies the existence of ¢ € R such that

titj:C|UTU|i7j foralli%je{l,...,n}
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and equality in (z,7) < 1yields x = y, i.e.,

U0, - Yo m/n <t2 1) foralli € {1,...,n}. (13)

[

n V1=1/n

Since the matrix T'sgn(U " U)T has diagonal entries (T'sgn(UTU)T);; = t? and
off-diagonal entries

(TSgH(UTU)T)Z‘J' = tithgIl(UTU)iJ' =C |UTU|Z‘7ngI1(UTU)Z‘7j =C (UTU)Z‘J',

the necessary condition (b), written forall 7 € {1,... ,n}andh € {1,...,m} as

n

Z(TSgH(UTU)T)zJUJTh = MhUi—,rhv

j=1
where ji; > -+ > pu,, are the m leading eigenvalues of T'(sgn(U " U)T, becomes
t?Ui—,l—h + Zn: c (UTU)i,jU;h = ,UhUi,Th-
7
In other words, foralli € {1,...,n} and h € {1,...,m}, we have
U, +c(UTUUT )i — ¢ (UTU) U, = U,
or equivalently, in view of UU " =1,,,,
(& +c—c(UTU)i) U, = pnUy,. (14)

This actually shows that y, is independent of & € {1,...,m} and — thanks to
the alternate expression \(m,n) = py + ...+ i, (see e.g. [13, Theorem 1]) —
one must have p, = A\(m, n)/m. Now (14) reduces (say, by multiplying by UZTh,
summing over h, and simplifying) to ¢? +c—c (UTU);; = A(m, n)/m. Summing
overi € {1,...,n}) yields

1+c(n—m):%)\(m,n):1+\/(n_l);n_m),

which shows that
n—1
c=4]——m-—.
m(n —m)

17



Invoking Remark 4.1, we notice that (UTU),; = mt? for all i € {1,...,n},
and therefore (13) becomes m(t? — 1/n) = /m(n—m)/(n —1)(t? — 1/n).
Given that m # +/m(n —m)/(n — 1) when m > 1, we consequently obtain
t? = 1/nforall i € {1,...,n}. In turn, we deduce from (U'U);; = mt?
that (UTU);; = m/n for all i € {1,...,n} and from c|U"U|;; = t;t, that
\UTU;; = /m(n—m)/(n—1)/nforalli # j € {1,...,n}. The proof is now
complete. a
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