IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

Metagraph-Based Learning on
Heterogeneous Graphs

, Vincent W. Zheng
Kevin Chen-Chuan Chang, and Xiao-Li Li

, Min Wu*™, Jiaqi Shi*,

Abstract—Data in the form of graphs are prevalent, ranging from biological and social networks to citation graphs and the Web. In
particular, most real-world graphs are heterogeneous, containing objects of multiple types, which present new opportunities for many
problems on graphs. Consider a typical proximity search problem on graphs, which boils down to measuring the proximity between two
given nodes. Most earlier studies on homogeneous or bipartite graphs only measure a generic form of proximity, without accounting for
different “semantic classes”—for instance, on a social network two users can be close for different reasons, such as being classmates
or family members, which represent two distinct semantic classes. Learning these semantic classes are made possible on
heterogeneous graphs through the concept of metagraphs. In this study, we identify metagraphs as a novel and effective means to
characterize the common structures for a desired class of proximity. Subsequently, we propose a family of metagraph-based proximity,
and employ a learning-to-rank technique that automatically learns the right parameters to suit the desired semantic class. In terms of
efficiency, we develop a symmetry-based matching algorithm to speed up the computation of metagraph instances. Empirically,
extensive experiments reveal that our metagraph-based proximity substantially outperforms the best competitor by more than 10
percent, and our matching algorithm can reduce matching time by more than half. As a further generalization, we aim to derive a
general node and edge representation for heterogeneous graphs, in order to support arbitrary machine learning tasks beyond proximity
search. In particular, we propose the finer-grained anchored metagraph, which is capable of discriminating the roles of nodes within the
same metagraph. Finally, further experiments on the general representation show that we can outperform the state of the art

<+

154
Yuan Fang™, Wenqing Lin
significantly and consistently across various machine learning tasks.
Index Terms—Semantic proximity search, meta-structures, graph mining, heterogeneous graph representation
1 INTRODUCTION

THE proliferation of the Internet has availed an increas-
ingly rich collection of data objects. Typically these
objects can be organized into a graph G = (V,), where the
nodes V' model the objects and the edges E model their
interactions. These graphs are often heterogeneous [1] con-
taining different types of objects. Consider the graph in
Fig. 1 based on a toy social network, which interconnects
various users and their attributes. We treat each user and
attribute value as a node, and each node is further associ-
ated with a type like user and school. More generally, the
edges may also belong to different types. In our toy graph,
the edge types can be understood as a bijection from the
pairs of node types.

o Y. Fang and]. Shi are with the Singapore Management University,
Singapore 188065. E-mail: {yfang, jqshi}@smu.edu.sg.

e W. Lin is with Tencent, Shenzhen 518000, China.
E-mail: edwlin@tencent.com.

o V.W. Zheng is with WeBank, Shenzhen 518057, China.
E-mail: vincent.zheng@adsc-create.edu.sg.

o M. Wuand X.-L. Li are with the Institute for Infocomm Research, Singapore
138632. E-mail: {wumin, xIli}@i2r.a-star.edu.sg.

o K.C-C. Chang is with the University of Illinois at Urbana-Champaign,
Champaign, IL 61801 USA. E-mail: kcchang@illinois.edu.

Manuscript received 20 Aug. 2018; revised 30 Apr. 2019; accepted 10 June
2019. Date of publication 24 June 2019; date of current version 7 Dec. 2020.
(Corresponding author: Vincent W. Zheng.)

Recommended for acceptance by S. Cohen.

Digital Object Identifier no. 10.1109/TKDE.2019.2922956

Unlike traditional homogeneous graphs which only carry
inter-node structural information, heterogeneous graphs fur-
ther encompass semantic information that explains the nodes
and their interactions. Such semantic information presents
new opportunities to many data-driven problems on graphs.
In particular, we introduce a motivating problem next, as the
main subject to address in this paper.

1.1 Motivating Problem: Semantic Proximity Search
One important problem on graphs is proximity search. Given a
query node g € V, how do we measure the proximity of other
nodes to ¢, so that we can return the nodes closest to ¢? Most
earlier studies, including Personalized PageRank [2] and
SimRank [3], fail to capitalize on the rich semantics carried by
a heterogeneous graph. Specifically, with various types of
interconnected objects, different semantic classes of proximity
arise from different underlying reasons, as illustrated in
Table 1. For the same query node (e.g., Bob), there could be
multiple classes of proximity with different result nodes (e.g.,
Alice as family, and Tom as classmate). Thus, it falls short to
only measure a “generic” form of proximity without differen-
tiating the various semantic classes.

We call the task of searching for a desired semantic class of
proximity w.r.t. a query node as semantic proximity search [4].
It is a new problem in the sense that previous studies on prox-
imity search [2], [3], [5], [6], [7] neither intend to explicitly dif-
ferentiate the semantic classes, nor can effectively accomplish
so. Beyond proximity search, the closest problems to ours are

1041-4347 © 2019 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

FANG ET AL.: METAGRAPH-BASED LEARNING ON HETEROGENEOUS GRAPHS

Microsoft Kate 456 White St
(employer) (user) (address)

Physics
(major)

Bob

(user)

Harvard
(school)

Clinton
(surname)

123 Green St
(address)

Fig. 1. Toy heterogeneous graph (node type in parenthesis).

Stanford
(school)

Tom Economics
(user) (major)

social circle learning [8] and relationship profiling [9] on
graphs. In terms of semantic proximity, their circles or relations-
hips are also semantic-oriented, but they only find latent clus-
ters and thus do not target specific classes of interest. In terms
of search, they need to optimize for the best global configura-
tion, and thus cannot process ad-hoc queries in real time.

1.2 Insights and Challenges

To differentiate various semantic classes, it comes to us a
natural question: what kinds of representation or structure
can characterize a class. Ideally, we require one that is not
only universal in capturing different semantics, but also sys-
tematically enumerable for efficient processing.

We hinge on the novel insight that different semantic clas-
ses can often be characterized by different tell-tale common
structures. For instance, in Fig. 1 and Table 1, the proximity
between Kate and Jay (classmate) can be attributed to their
common school and major, as illustrated by the structure
(M,) in Fig. 2a. Likewise, Figs. 2b and 2c showcase some pos-
sible structures which can characterize, to different extents,
close friend (/> and M3) and family (My), respectively. We
call such common structures metagraphs as they abstract
objects into types. That is, each node in a metagraph (denoted
by a rounded rectangle) describes the type of an object, rather
than an object itself. Intuitively, two nodes “sharing” more
characteristic metagraphs of a class are more likely to satisfy
that class of proximity. Apart from capturing the semantic
classes, metagraphs also enable online proximity search. By
computing and indexing metagraphs offline, we can effi-
ciently support any query on-the-fly by looking up the pre-
computed metagraphs.

Note that a less general concept known as metapath has
been proposed [6], which only considers common path struc-
tures between two nodes. In fact, metagraph M; in Fig. 2b is
also a metapath, which only captures the common address
between two users. In contrast, metagraphs can jointly model
multiple common attributes. Consider two metapaths user—
employer—-user and user-hobby—user. Each of them can-
not characterize the proximity of close friends on their own.
However, by taking them jointly we obtain metagraph M,,

TABLE 1

Toy Semantic Classes of Proximity
Query Semantic class Answer(s) Reason
Kate close friends Alice same employer and hobby

Jay same address

Kate classmates Jay same school and major
Bob family Alice same surname and address
Bob classmates Tom same school and major

155

(a) Classmate (b) Close friend (c) Family

user address user

Fig. 2. Possible toy structures for each class of proximity.

which can better characterize close friends. In other words,
each metagraph is a nonlinear combination of metapaths, and
is thus more expressive. Given the increased complexity of
metagraphs compared to metapaths, it is also more challeng-
ing to utilize and process metagraphs, as we will discuss next.
Utilizing Metagraphs. The characteristic metagraphs for an
arbitrary class of proximity are often unknown. Furthermore,
a class may be characterized by multiple metagraphs to vary-
ing extents. For instance, close friends could be colleagues
with the same hobby or simply roommates, corresponding to
M, and M3 in Fig. 2b, respectively. One may also say that M»
is more likely to indicate close friends than M3. While domain
experts can lend some guidance on certain special classes, it is
impractical to rely on them alone for the general case. To bet-
ter cope with different graphs and semantic classes in prox-
imity search, we propose a machine learning approach that
can automatically identify the characteristic metagraphs (e.g.,
My and M3) based on some example query and answer nodes
(e.g., Kate as query, Alice and Jay as answers). In practice, we
learn a weight for each metagraph to quantify how well it can
characterize the desired class. These weights can be applied
to answer future queries for the same class of proximity.
Processing Metagraphs. It is necessary to compute the
instances of each metagraph in order to know what meta-
graphs are “shared” by any two given nodes. However, com-
puting the instances of a metagraph (also called matching a
metagraph) is highly costly. It is equivalent to solving the
NP-hard subgraph matching problem [10]. Furthermore, the
number of instances of a metagraph on an input graph does
not follow the property of downward closure, which excludes
the techniques for frequent subgraph mining [11], [12], [13].
To compute the instances of a metagraph more efficiently, we
observe that many useful metagraphs are symmetric, such as
M,;—M, in Fig. 2 where two objects sharing one or more com-
mon attributes. However, existing methods spend a large
amount of redundant computation on symmetric substruc-
tures within a metagraph. Thus, we propose a novel symime-
try-based matching algorithm which re-uses “symmetric”
computation. As a result, we can avoid redundancy and sub-
stantially improve the efficiency of metagraph matching.

1.3 Generalization

Given that metagraphs are able to capture rich semantics on
heterogeneous graphs, they can be leveraged to address
many other machine learning tasks on graphs beyond seman-
tic proximity search.

However, there is a major drawback with metagraphs of
the form shown in Fig. 2. While they can effectively model
the interactions between nodes, they lack the granularity to
discriminate the role of individual nodes within the interac-
tion. Although this is not an issue for many metagraphs, such
as M; where the two user nodes play balanced roles as

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

156 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

classmates of each other, in general a relationship may
involve imbalanced or distinct roles, such as the roles of advi-
sor and advisee, physician and patient, or vendor and client.
To differentiate these roles within the same metagraph, we
propose the more granular anchored metagraphs—the nodes in
a metagraph are “anchored” (i.e., differentiated) as the head
or tail nodes. The differentiation enables us to better capture
the semantics of individual nodes and their interactions.
Based on anchored metagraphs, we build general node
and edge representations to support arbitrary machine learn-
ing tasks on heterogeneous graphs. The tasks can be node-
centric like node classification and clustering, or edge-centric
like link prediction and proximity search. Anchored meta-
graph-based representations are generally more effective due
to the extra granule, and could become particularly advanta-
geous when nodes have distinct roles or edges are directed.

1.4 Contributions
To summarize, we make the following contributions.

e Concept. We propose the novel concept of meta-
graphs to capture rich semantics on heterogeneous
graphs. In particular, metagraphs are well suited to
address our motivating problem of semantic proxim-
ity search. (Section 2)

e Learning. Towards semantic proximity search, we
design a family of metagraph-based proximity meas-
ures, whose parameters are learnable to model dif-
ferent semantic classes. (Section 3)

e Matching. We devise an efficient metagraph matching
algorithm, which exploits the symmetric components
in a metagraph to avoid redundant computation.
(Section 4)

o Generalization. We generalize metagraphs to ancho-
red metagraphs in order to model nodes of distinct
roles. Based on anchored metagraphs, we develop
universal node and edge representations to support
arbitrary machine learning tasks. (Section 5)

e Experiments. Our extensive experiments demonstrate
the superiority of our metagraph-based approach for
semantic proximity search. Further experiments show
that the general representation based on anchored
metagraphs perform consistently well across various
machine learning tasks. (Sections 6 and 7)

2 PRELIMINARIES

In this section, we first formalize the problem, and present
the metagraph concept as well as the overall framework.

2.1 Problem Statement
We formalize the notion of object graph, and introduce the
task of semantic proximity search on such graphs.

Object Graph. An object graph can be represented as
G = (V,E,1), where V denotes the set of objects and E
denotes the set of edges between objects. Given objects of het-
erogeneous types 7', there is a type function for objects,
7:V — T. On the toy graph in Fig. 1, we would have types
T = {user, school, hobby, ...}, and for instance, t(“Alice”) =
user and 7(“123 Green St”) = address. Furthermore, a graph
S = (Vs, Eg, 7)isasubgraph of G iff Vs C V and Es C E.

Semantic Proximity Search. On a graph G = (V, E, 1), given
a query node g € V and a desired class of proximity, the task
is to produce a ranking over V' in descending proximity to ¢
w.r.t. the desired class. We cast this as a machine learning
problem, where a set of training examples () are available for
learning the desired class of proximity. In particular, we
adopt a learning-to-rank framework [14], where each training
example is a triple (¢, v,u) such that node v is ranked before
node u for the query node ¢. That is, vs proximity to ¢ should
be greater than u’s. Thus, the task boils down to defining
a family of proximity measures between nodes that can
abstract arbitrary classes of proximity, with a set of parame-
ters that can be optimized by learning to rank.

2.2 Metagraph and Related Concepts
We propose the notion of metagraph to measure the prox-
imity between nodes.

Metagraph. There are many distinct objects of the same
type, e.g., both “123 Green St” and “456 White St” are
addresses. In order to identify and summarize common
structures on the object graph, it becomes necessary to con-
sider a type-level description, which we call a metagraph. For-
mally, a metagraph can be represented as M = (Viy, Ear, Ti),
where V) is the set of nodes to denote the types, and E); is
the set of edges between Vj;. That is, Vv € Vj;, we have
Ty(v) € T where)/ is a type function for the metagraph.
Note that a node on the object graph has both an intrinsic
value (e.g., “Alice” or “Microsoft”) and a type, whereas the
value of a node on the metagraph is immaterial and only the
type matters.

Metagraph Instances. In order to know whether two nodes
on the object graph “share” a characteristic metagraph for
the desired class of proximity, it is crucial to identify sub-
graphs on G that are instances of any given metagraph M.
Informally, a subgraph S is an instance of M if they have
the same structure and their nodes have matching types.
For instance, in Fig. 1 the following subgraphs

e S;:”Alice”-"“123 Green St”—“Bob” and

o S5 “Kate”—"456 White St”"—"Jay”

both match metagraph Ms; in Fig. 2, and thus they are the
instances of M3. We present a formal definition next.

Definition 1 (Metagraph instance). Consider a subgraph
S = (Vs,Eg) and a metagraph M = (Vyy, Ey,Tag). S is an
instance of M if there exists a bijection between the node sets
of Sand M, ¢ : Vs — Vi, such that

o Yve Vs t(v) =tm(p(v)), and
o VYu,uc Vg, (v,u) € Egiff (p(v),p(u)) € Ey.

Metagraph Indices. Subsequently, we can quantify how
two nodes v and u share any given metagraph, i.e., how v
and v occur in the instances of the metagraph. Let M =
{Mi, M, ...} be a set of metagraphs, and Z(M;) be the set of
instances of M;. The co-occurrences of v and u can be
encoded by a vector m,,, with | M| elements. Its ith element,
m,,[i], is the number of instances of M; containing both v
and u. Likewise, let m,[i] be the number of instances of M;
containing v. That is

m,,[i] 2 |{S € Z(M,) : (v,u) € V3}|. €]

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

FANG ET AL.: METAGRAPH-BASED LEARNING ON HETEROGENEOUS GRAPHS

Matching every M;,
i.e., computing
instances

Metagraphs M
={My, My, ..}

Mining the set
of metagraphs
Training .

Optimal model
Offline/Training

Proximity evaluation

Fig. 3. Overall framework for metagraph-based learning, using semantic
proximity search as an example task.

Metagraph

indices

ranking over V

m,[i] 2 [{S € Z(M;) : v e Vi}]|. ©)

More generally, we can further transform these vectors,
such as applying logarithm to the raw counts.

We call m,,, and m,, metagraph indices, which form the basis
of our proximity measure as we shall discuss in Section 3.
They can be precomputed offline by scanning through the
metagraph instances, and can be loaded on-demand during
training and testing.

2.3 Overall Framework
To summarize our approach, we present the overall frame-
work in Fig. 3. It consists of online and offline phases.

Offline Phase. It consists of three main subproblems.

Initially, given a graph G, we enumerate the set of meta-
graphs M = {M;, Ms,...}. Abundant literature [12], [13]
exists on this subproblem, and its time cost typically
accounts for only a few percent of the entire offline phase.
Therefore, we directly apply an existing state-of-the-art
approach GRAMI [13].

Next, for each metagraph M; € M from the output of the
previous subproblem, we compute the set of instances
Z(M;). We also call the process of computing the instances
of M; as matching M;. We study the subproblem of efficient
metagraph matching in Section 4. Subsequently, we further
compute the metagraph indices, which form part of the
input to learning and evaluating the proximity.

Lastly, with a set of training examples for the desired
semantic class, we need to learn the optimal model. We
address this subproblem in Section 3. In particular, we need
to develop a family of metagraph-based proximity measures
to accommodate arbitrary classes, and a supervised method
to learn the best parameters.

Online Phase. Given a query node ¢ € V, the precomputed
metagraph indices, as well as the optimal model for the
desired class, we can evaluate the proximity between ¢ and
other nodes v € V. Subsequently, we rank the nodes in V' in
descending order of their proximity to g.

3 LEARNING SEMANTIC PROXIMITY

We propose to learn the optimal proximity based on meta-
graphs. We start with defining a family of proximity meas-
ures which can flexibly cater to different semantic classes.
Next, given some training examples, we develop a learning-
to-rank approach to optimize the parameters within the
proximity family.

157

3.1 Metagraph-Based Proximity

Given a class with certain characteristic metagraphs, a good
proximity measure must account for two aspects. First, if v
and v share many characteristic metagraphs, v and u are
more likely to satisfy the desired class. Second, if v (or w)
indiscriminately occurs with many metagraphs, v and « may
simply appear by chance to share many characteristic meta-
graphs. Incorporating both aspects, we propose a metagraph-
based measure below.

Definition 2 (Semantic proximity). The semantic proxim-
ity between any two nodes v and w is

2m' w

vy (3)

A
T(v,u;w) L ————
mwrmw’

v U

for some non-negative vector w of | M| elements.

The measure 7 entails a family of proximity with
parameters w. We interpret w as the characteristic weights
(or simply weights) of the metagraphs, which can be var-
ied to fit different classes of proximity. The weights shall
be non-negative, indicating the importance of the meta-
graphs towards the desired semantic class. Consider the
toy example in Fig. 2 with M = {M,..., M,}. A reason-
able w could be (0.9,0,0,0)T for classmate, (0,0.6,0.1,0)T
for close friends, and (0,0, 0, O.S)T for family, where the ith
dimension of w encodes the importance of metagraph M;.
Thus, within the family of proximity, the optimal model
for a class is completely specified by its optimal weights
w*, which we aim to learn automatically.

Interestingly, the proposed measure exhibits a few desir-
able properties, as described in Theorem 1. In particular, par-
tial transitivity implies that if a node v is close to both nodes u
and z, v and z tends to be close to each other too. This is a com-
mon phenomenon on social networks, where friends of
friends are more likely to be friends than a random person.

Theorem 1 (Properties). Given any three nodes x,y,z and
weights w, the following hold.

Symmetry. (v, u; w) = 7(u, v; W).
Boundedness. 0 < (v, u;w) < 1.
Scale-invariance. 7(v,u; W) = (v, u;cw) for any
c > 0.

e Partial transitivity. There exists some 8§ > 0, such
that for any e€[0,1], if n(v,u;w)>2L and

s
(v, z, W) > 2D, then w(u, z;w) > €.

3.2 Learning to Rank

For a desired class of proximity, we assume some training
examples () as supervision. Each example is a triple (g, v, u),
where node v is ranked before node u for the query node ¢,
i.e., v's proximity to ¢ should be greater than u’s. These
examples can often be gathered by user studies [8], [9],
while some platforms like Facebook also allow users to label
their connections directly.

Given the training data (), we can find the optimal
weights w* by maximizing the log-likelihood. Intuitively, it
becomes more likely to observe an example (¢, v,u) when
v's proximity to ¢ is increasingly larger than u’s. In other
words, the probability of the example, P(g, v, u; w), tends to

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

158 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

increase with the difference in v and w’s proximity to g,
7(q,v; W) — (g, u; w). In particular, we define the probabil-
ity using a sigmoid function in Eq. (4). Here p € (0,00) is a
scaling variable to control the shape of the distribution; we
set © = 5, which is found to be robust in our experiments

1
1+ e—m(m(quw)—n(guw)) *

P(q,v,u; W) & (4)

Subsequently, given all the examples, we aim to maxi-
mize the following log-likelihood function L, to ultimately
find the optimal weights w* = arg max,, L(w|{}). Since L is
differentiable, it can be optimized by employing the gradi-
ent descent algorithm

Lw|Q) = vmea log Pg, v, u; W). (%)

3.3 Dual-Stage Training

As illustrated in Section 1, there exist a huge number of
metagraphs even with just a few types of object. To reduce
the overall matching time, we propose a novel process of
dual-stage training. As the key insight, while there are
many metagraphs in M, the vast majority of them are irrele-
vant. Only a small number of metagraphs among M can
characterize the desired class of proximity. In other words,
the optimal weights w* are sparse with many zero or nearly
zero entries. Therefore, it is ideal to only focus on a small
subset of candidate metagraphs, K C M, which show prom-
ise to characterize the desired class. Subsequently, we only
match the candidates and compute the proximity based on
the instances of these candidates.

Seed Metagraphs. Note that, without computing the
instances of any metagraph, there is no clue at all to locate
the promising candidates. Instead, we first identify a small
number of seed metagraphs K as the initial candidates and
compute their instances Z(M),VM € K,, which can lead us
to more candidates. The seeds must meet the following cri-
teria. First, easy identification: we can easily recognize the
seeds without computing any instance. Second, fast match-
ing: the seeds can be matched very fast. Third, candidate heu-
ristic: the seeds must enable some heuristic for selecting
more candidates without computing more instance.

To select the seeds, we observe that metapaths (i.e., meta-
graphs that are paths such as M3 in Fig. 2) are less complex
than general metagraphs. As a result, there are far fewer
metapaths than metagraphs. Matching a metapath also
tends to be much faster due to the simpler structure.

Candidate Heuristic. We need to further develop a heuris-
tic using the seeds in order to identify additional meta-
graphs from M \ K, without computing more instances.
Again, we can only rely on the structural information of the
metagraphs. On the one hand, two metagraphs are structur-
ally similar if they share some common pattern, such as
their maximum common subgraph (MCS) [15]. The larger
MCS shared by two metagraphs, the more structurally simi-
lar they are. Letting M be the MCS of M, and M, their struc-
tural similarity can be defined as

(Var [+ Ep) (6)

SSim(Mi, Mj) = {1y, < (Vay, FIEw,D -

On the other hand, the function of a metagraph refers to its
contribution to (or its weight in) the proximity measure.
That is, two metagraphs are functionally similar if their cor-
responding weights are also similar.

Intuitively, metagraphs that are structurally similar tend
to be functionally similar too. Given the seeds Ky and their
instances, we can learn the function of the seeds, i.e., their
corresponding weights in wy. Supposing that a metagraph
M; € M\ K, is structurally similar to a seed M; € Ky, M;
and M, will also be functionally similar. That is, if M, has a
large weight (i.e., wy[i] is large), M; is also likely to have a
large weight (i.e., M; is a promising candidate). Thus, we
select candidates with the largest candidate heuristic score H,
which maximizes their structural similarity to any seed
metagraph with a large weight

H(Afj) £ max {W() [Z] . SS]II’I(M“ M])} (7)
M; ey

Dual-Stage Algorithm. We outline the above heuristic in
Algorithm 1, consisting of two stages. In the seed stage, we
compute the instances of the seeds /Cy, and train their
weights wy. In the candidate stage, based on Ky and wy, we
further identify candidates C using the candidate heuristic,
and train new weights w* for Ky U KC.

Algorithm 1. Dual-Stage Training

Input: graph G set of metagraphs M; number of candidates
|KC|; training examples)
Output: optimal weights w*
// seed stage
: Ky — {M € M|M is a path}
Ty — {I(Z\/Z[)UV[S K:()}
1 wy < Train (Q, Ko, Z)
// candidate stage
: K — Top |K| metagraphs by H scores based on /Cy, wy
: T — {T(M)|M € K}
: W' Train(Q, Ko UK, ZgUT)
: return w*.

W N~

IR NEC TN

4 EFFICIENT METAGRAPH MATCHING

In this section, we address the subproblem of metagraph
matching, which dominates the offline phase. We first sum-
marize existing algorithms, and further present a new solu-
tion to address their drawback.

4.1 Subgraph Matching Revisited

Consider a metagraph M = (Vi;, Ejy,ta) on a graph
G = (V, E, 7). To compute the instances of M on G, there are
a number of existing approaches [16], [17], [18], [19] based
on the backtracking method, summarized as follows.

Given an ordering of nodes in V), let u; € Vi be the ith
node in the ordering where 1 < i < |Vj|. Denote D, as the
set of k£ nodes in V that match {uy,us,...,u;}, and
C(ugy1|Dy) as the set of nodes each of which can match w4
given the existing matching D,.

Initially, we have D, = (. The backtracking method first
identifies the set C'(u1|Dy) of nodes in V such that the type of
each node v € C(u1|Dy) equals the type of the first node u; in
Vi, ie., 7(v) = ty(ur). For eachnode v € C(uy|Dy), we match

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

FANG ET AL.: METAGRAPH-BASED LEARNING ON HETEROGENEOUS GRAPHS

(a) Metagraph Ms. (b) Simplified metagraph M.

u u
Uy 2

[s

Fig. 4. A metagraph M; and its simplified metagraph M.

v to uy, ie.,, D1 = {v}. Given D, we further identify the set
C(ug|Dy) for us such that each node v/ € C(uy|D;) can match
uy and the graph induced on D; U {v'} is an instance of the
metagraph induced on u; and wy (Definition 1). In other
words, v’ # v, T(v') = ta(u2), and (u2,w1) € Vi if and only if
(v',v) € V. If C(ug|Dy) is empty, we stop searching further
and immediately backtrack to another node in C'(u;|Dy). Oth-
erwise, C(uy|D;) is not empty, and for each node in
v € C(uz|D;1) we have Dy = Dy U {v'}, from which we can
recursively compute Dj, Dy, ..., Dy, - We then report the
subgraph induced by Dy, as an instance of M on G, and
backtrack to compute other instances.

4.2 Metagraph Symmetry

The above approaches all deal with general metagraphs.
However, we observe that symmetric metagraphs like
M;—-M, in Fig. 2 are very common, forming the vast majority
of all metagraphs containing two user nodes. Thus, how to
efficiently handle symmetric metagraphs become crucial.
To begin with, we present a formal definition of metagraph
symmetry below.

Definition 3 (Metagraph Symmetry). Consider a metagraph
M = (Var, Ear, tar). M is a symmetric metagraph if there
exists a non-empty set Wy containing pairs of distinct nodes of
the same type in Vi, such that the edge set Ey; remains
unchanged even if, for each pair (u,u') € Wy, we exchange u
and v’ in all edges incident to u or u'. We also say that such u
and v’ are symmetric to each other in M.

For example, the metagraph M5 in Fig. 4 is symmetric,
since there exists a set {(u1,us), (u2,ug)}, such that if we
exchange u; and u; (resp. up and ug) in all edges incident to u;
or us (resp. ug or ug), the set of edges in M5 remain the same.

Previous approaches [16], [17], [18], [19] often incur a large
amount of redundant computation on symmetric meta-
graphs. To illustrate, after matching u,, us, ..., us in Mj, pre-
vious approaches need to compute the matchings C(us|Dy)
and C(ug|Ds) from scratch, even though us (resp. ug) is sym-
metric to u; (resp. ug). Take ug as an example, they have to
examine every node in V' if its type is the same as ug, and if it
appropriately connects to the graph induced by Ds. Since us
is symmetric to ug, potentially we do not need to examine
every node in V, but rather only those matched by ws.

4.3 Symmetry-Based Matching

To leverage the symmetry of metagraphs, we propose a novel
approach to compute the matchings of a node u from its sym-
metric node «’ in M. For example, in Fig. 4, the instances of us
and ug can be computed from the instances of «; and uy, since
us (resp. ug) is symmetric to u; (resp. uz). However, we cannot

159

treat each pair of symmetric nodes independently. For exam-
ple, in Fig. 4, the matchings of us cannot be re-used by wug
without considering «; and us in conjunction, since u, is adja-
cent to u; but not us (which w; is adjacent to).

To cope with the above issue, we decompose the node set
Vir into disjoint connected components, so that each compo-
nent can be handled independently. In particular, if a node u
is not symmetric to any other node on M, u forms a singleton
component S, i.e., S = {u}. Otherwise, we partition the sym-
metric nodes into several connected components, such that
for each component .S, we have (i) each node u € S has the
same number of symmetric nodes on M, (ii) each node v € S
is not symmetric to any other node v’ € S, and (iii) S is the
largest such set. For example, we can decompose M5 in Fig. 4
into 4 components, namely S; = {us}, So = {u1,us}, S3 =
{us} and Sy = {us, us}. We say thata component S is symmet-
ric to another component ', if for each node u in S, there
exists a node ' in " such that v is symmetric to «’ on M. For
instance, the components S and S; described above are sym-
metric to each other.

The above decomposition ensures that each component is
independently symmetric to some other component. Thus, if
a component S is matched prior to its symmetric component
S’, we can save the cost for " by re-using the instances of S.
Algorithm 2 outlines our proposed approach by utilizing
symmetric components. We still follow the backtracking
framework, but instead of trying one node at time, we match
one component at a time. Thus, we first need to decompose a
metagraph M into several components. Next, we simplify M
into a smaller graph M ™, to avoid redundant computation on
symmetric components. Finally, we design a matching order-
ing over the components in M. In what follows, we elabo-
rate on each step.

Algorithm 2. Compute Instances of Metagraph

Input: a graph G; a metagraph M
Output: the set Z(M) of instances of M
1: decompose M into a set 5 of components based on symmetry
2: simplify M as M using B
3: compute a matching order o for components of M™*
4: (M) «— MatchingByComponent(G, M, o, 1,)
5: return Z(M).

Metagraph Decomposition. To decompose M into compo-
nents, we first construct a component for each node v which
is not symmetric to any node in M, and remove u from M.
Then, in the residual graph M’, we construct the symmetric
components. In particular, we process the nodes in A itera-
tively. In each iteration, we randomly choose a node u and
construct a component S initially containing only u, as well
as a component S’ for each v’ that is symmetric to u. Then,
we iteratively add more nodes into S (resp. each S’) such
that the rules of components specified earlier are not vio-
lated. When no more nodes can be added into S, we remove
S from M’ and continue to construct components in the
residual graph M"” until M" is empty.

Metagraph Simplification. Now we simplify the metagraph
by representing it with its components. Specifically, we
replace the nodes in M by the components containing them,
and add an edge between components S and S’ if there
exists nodes v € Sand v’ € S’ such that u and v’ are adjacent

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

160 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

(a) Object graph

result x

(paper)

result y (author)
(paper)

project z
(grant)

(b) Metagraph

(author)

admission
(service)

Fig. 5. Object graph and metagraph for co-authors.

to each other on M. To further simplify, among each set of
symmetric components, we only retain one of them and
remove the rest. Denote M™' as the resulting simplified
metagraph. In Fig. 4, M5 is converted into M; with three
components S;—S;, where S, (retained) is symmetric to
Sy = {us, ug} (removed).

Matching Order. To reduce the search space, the matching
order of nodes is important. Previous approaches [16], [20]
select the next node such that the number of intermediate
instances can be minimized. For example, starting from a
metagraph M) containing only one edge (u;,us) from M,
we can extend M) by adding an edge (us, u3) from M, result-
ing in a larger intermediate metagraph M®*). We can thus
estimate the number of instances of M® as f(M?) =

|Z(MW)] % In general, M(*Y can be obtained by

adding an edge (u, u') from M to M), and the number of its
instances can be estimated as f(MU)) = f(M®) . ‘I‘(élé;j;/‘))‘.
Thus, in each step, we pick the next node to minimize the
number of estimated instances of the intermediate meta-
graph. We can generalize this approach to order the compo-
nents of M*: when a node of a component is chosen, we
select that component as the next to match.

Matching Simplified Metagraphs. The matching algorithm
for a simplified metagraph follows the backtracking frame-
work in Algorithm 3. Compared with previous methods
that match a node at a time, our approach matches one com-
ponent at a time. Given the set D of already matched nodes,
the matchings of a component S are the matchings of its
constituent nodes, denoted as C'(S|D). We can save signifi-
cant computation when S is a symmetric component. Let B
be the set containing S and the symmetric components of S.
Subsequently, we can compute the matchings for all compo-
nents in B, denoted by C(B|D), based on C(S|D). That is,
we do not need to compute C(S'|D) for any S’ # S and
S" € B. We simply choose |B| number of distinct matchings
from C(S|D). For each choice of |B| matchings, we inspect
whether the connectivity between components satisfies
Definition 1. If so, we add the choice to C'(B|D).

Complexity Analysis. Consider a metagraph M = (Vjy,
Ey,ty) and a graph G = (V,E, 7). In Algorithm 2, the
decomposition and computation of matching order (lines 1-
3) require at most one scan of Vj; for each node, leading to
the time complexity of O(W]\,[|2), where |Vy| is often very
small. Next, we consider the cost of matching (line 4).
Assuming a general M without symmetry, Algorithm 3
starts from the instance set Z(M), and then repeatedly
inspects the neighbors of a chosen node for a depth of at
most |Vy| — 2. Since Z(MY) < |E|, the time complexity of
matching is upper bounded by O(|E| - d"¥!=2), where d is

the maximal node degree in G. Again, |V),| is typically very
small. Furthermore, for a symmetric M, the depth of inspec-
tion is even smaller given a smaller simplified metagraph.

Adaptation to Dynamic Graphs. Real-world graphs often
evolve over time. When a large graph changes, it is infeasible
to re-compute the instances from scratch. Instead, the instan-
ces can be updated incrementally by refining the affected
ones [21], which are often of a small number in practice. In
particular, when edges are deleted from the graph, we only
need to remove the instances that contain those edges. On the
other hand, when adding edges to the graph, for each new
edge we enumerate the instances containing the new edge,
within a distance of not more than the maximum size of
metagraphs.

Algorithm 3. MatchingByComponent

Input: a graph G; a metagraph A; a matching order o; the
index of matching component k; the set D of
matched nodes;

Output: the set Z'(M) of instances with D

. if |D‘ = |Vu| then
return the instance induced by D.
end
S «— kth component in the matching order o
B « the setincluding S and its symmetric components, if any
: compute the set C(B|D)
CII(M) — 0
: foreach S’ € Bdo
D’ — the merge of D and the matching of 5" from C(B|D)
1" — MatchingByComponent(G, M, o, k+ 1, D')
add Z* into Z'(M)
: end
: return Z'(M).

PN T RPN

—_ =
LN o0

5 GENERAL REPRESENTATION FOR LEARNING

While metagraphs are initially motivated by the problem of
semantic proximity search, in this section, we investigate
their generalization to other machine learning problems on
heterogeneous graphs. We first introduce the concept of
anchored metagraphs, a further differentiation of metagraphs
to better describe the nodes and their interactions. Next, we
examine a general node and edge representation based on
anchored metagraphs, towards solving various machine
learning problems including semantic proximity search.

5.1 Anchored Metagraphs

Metagraphs form the building blocks of our proximity mea-
sure. As discussed in Section 2, they can effectively relate
two nodes on a heterogeneous graph and work well for
many semantic classes of proximity. However, they are not
fine-grained enough to discriminate the role of individual
nodes within the same metagraph.

Consider a graph that connects Peter and Steven in Fig. 5a.
Although both of them are represented by author nodes,
Peter and Steven likely play two distinct (Iatent) roles. In par-
ticular, Peter is likely a professor, as he not only co-authors
papers with Steven, but also manages a grant and serves on
the admission committee. On the other hand, Steven is likely
a graduate student. Additionally, Peter and Steven possibly

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

FANG ET AL.: METAGRAPH-BASED LEARNING ON HETEROGENEOUS GRAPHS

(a) Who is Peter’s advisee? (b) Who is Steven’s advisor?

author
[head]

author
[tail]

author
[head]

author
[tail]

Fig. 6. Anchored metagraphs for co-authors.

form the advisor-advisee relationship. Unfortunately, if we
only know that both co-occur in the same metagraph as
shown in Fig. 5b, we cannot tell apart the professor and stu-
dent as there is no differentiation between the two author
nodes in the metagraph.

In other words, the metagraph definition in Section 2 is
unable to capture the semantics of two nodes of the same
type when their roles are not commensurate with each other.
Apart from advisor-advisee, many other examples with dis-
tinct roles exist, such as landlord—tenant, physician—patient,
and client-vendor. More generally, it is inadequate to
describe individual nodes or their interactions with the fre-
quency of occurring or co-occurring in a given metagraph.
The underlying weakness is the lack of granularity to differ-
entiate nodes within a metagraph.

Towards finer-granularity, we propose anchored meta-
graphs, where different nodes are explicitly “anchored”
within a metagraph. We use the problem of semantic proxim-
ity search as an example. As illustrated in Fig. 6, to search for
Peter’s advisees, the left author node specifies or “anchors”
the head node to abstract the query Peter, whereas the right
one anchors the tail node to abstract the answer Steven. In
contrast, to search for Steven’s advisor, the opposite happens
in Fig. 6b. Thus, the same metagraph can be anchored in
different ways to capture different semantics and directions
of the search. In particular, the head and tail anchors pro-
vide the necessary granularity to discriminate nodes within
a metagraph. Note that, for simplicity and practicality, we
only discuss the case with two anchors or roles. However,
we emphasize that it is also straightforward to anchor multi-
ple nodes with multiple latent roles. A formal definition is
presented below.

Definition 4 (Anchored metagraph). An anchored meta-
graph is represented as a triple A = (M, h,t), where M =
(Vs Ear, tar) is a metagraph, and h,t € Vi respectively define
the head and tail nodes in M for some h # t.

The above definition implies that the same metagraph
can generate more than one anchored metagraphs. For
instance, the metagraph in Fig. 5b corresponds to two differ-
ent anchored metagraphs A; and A,, shown in Figs. 6a and
6b. In other words, anchored metagraphs are more granular
and expressive than metagraphs.

We further note that anchored metagraphs can subsume
metagraphs as a special case, when two nodes play commen-
surate or balanced roles within a metagraph. Using the meta-
graph user-employer—user as an example, there is only
one corresponding anchored metagraph, because userie.q—
employer—-user .| and USEeT|,)—employer—user ., are
isomorphic, meaning that they are in fact identical to each

161

other. Therefore, anchored metagraphs can be adopted univer-
sally, regardless of whether there exist different latent roles.

5.2 Node and Edge Representations

The frequency of a node’s occurrences in an anchored meta-
graphs at a specific anchor can be treated as a feature for this
node. Likewise, the frequency of two nodes’ co-occurrences
in an anchored metagraph at specific anchors is a feature for
the (potential) edge between the two nodes.

Consider a collection A = {A;, A,, ...}, where each A4; =
(M;, hi, t;) is an anchored metagraph. Note that it is possible
to have M; = M, for some ¢ # j since the same metagraph
can generate multiple anchored metagraphs. We can subse-
quently encode any node and any pair of nodes using these
anchored metagraphs.

Node Representation. We can represent any node v on the
graph using two vectors a" and a, each with |A| elements.
The ith elements, a’[i] and al [z] record the number of
instances of)M; containing v at its head and tail anchors in
A;, respectively. That is

alfi| 2 |{S € Z(M;) : v € Vs, p(v) = hi}l, Q)

al[i|2|{S € T(M;) : v € Vs, p(v) = t;}].)

Recall that ¢ is the bijection between the nodes in an
instance and the nodes in a metagraph, as introduced in
Definition 1.

The two vectors are mirror images of each other: a’[i] =
al[j] if M; = M; and h; = t;, a result immediately follows
from their definitions. As an example, consider A = {A4;, A>}
shown in Fig. 6. Since they are derived from the same meta-
graph, M; = M, and hy = ts. Assummg the only matching
instance in Fig. 5a, we have al, = (1,0) and ab,., = (0,1).
The implication of the mirror image is that, if we only study
each node in isolation, such as a node classification task where
a label needs to be assigned to each node, without loss of gen-
erality, it is equivalent to use either a" or a! as long as we
adhere to the same form for all the nodes consistently. How-
ever, when we study two nodes in conjunction, such as a prox-
imity search task where there is a distinction of query and
answer nodes, both forms are necessary depending on the
node. We will further elaborate on this use case in Section 5.3.

Edge Representation. We can encode the edge representa-
tion between any two nodes v and u on the graph. Note that
it is irrelevant whether an actual edge exists between v and
u, as the goal here is to derive an effective representation for
differentiating various states between v and v, including the
absence and presence of edges, as well as different types of
edges if present. Consider a vector a,, of |A| elements. Its
ith elements, a,, [i], captures the number of instances of Af;
containing both v and u such that v is the head and u is the
tail anchor. That is

anli]2[{S € T(M) : (v,u) € V2,9(0) = hiy $(u) = £},
(10)

In general, a,, # a,,, due to the requirement to align the
head and tail anchors. Therefore, the proposed edge repre-
sentation based on anchored metagraphs is also able to
model the direction of the edges between nodes. In contrast,

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

162 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

metagraph-based representation can only model undirected
edges since m,, = m,,. In particular, a,, degenerates into
m,, if the head and tail anchors are symmetric to each other
in every metagraph.

Matching. As evident in Egs. (8), (9) and (10), the node and
edge representations can be derived from the instances of the
original metagraph Z(M;), as well as the head h; and tail ¢;
which can be understood as indices that point to the head
and tail nodes. Thus, for any matched instance, the head and
tail nodes can be easily located by indexing into the instance
with h; or t; in O(1) time, without requiring any additional
matching. In other words, the matching algorithm in Section 4
can still be applied as is.

Remark. Our node and edge representations are derived
solely based on matching instances on the graph, without
requiring any task-specific supervision. Essentially, the
same representations can be used universally in different
downstream tasks, including supervised tasks such as sem-
antic proximity search, node classification or relationship
prediction, as well as unsupervised tasks such as node
clustering.

5.3 Use Case: General Semantic Proximity

The proposed node representation can be immediately used
for node-centric machine learning tasks, such as node classi-
fication and clustering. Likewise, the edge representation
can be used for edge-centric tasks such as link prediction. In
either scenario, standard supervised and unsupervised
learning algorithms can be applied.

Apart from standard learning tasks, as one of the main
use case in this paper, we introduce a more general form of
semantic proximity based on the proposed node and edge
representations. Similar to Definition 2, two nodes are more
likely to satisfy the desired class of proximity if they “share”
or co-occur in many characteristic anchored metagraphs.
Furthermore, to ensure that such co-occurrences are not by
chance, each of the two nodes should appear in fewer
anchored metagraphs individually. However, in the general
case, we must also differentiate the head and tail anchors in
order to support potentially distinct roles played by query
and answer nodes.

Definition 5 (General Semantic Proximity). The general
semantic proximity between a query node q and a candidate
answer node v is

-
2a,w

(1>

(g, v;w) (11)

T)
al'w+ a'w
for some non-negative vector w of | A| elements.

This definition notably does not satisfy the symmetry
property in Theorem 1 in the general case, which is an
expected behavior when query and answer nodes play dif-
ferent roles. Nonetheless, as a special case, II subsumes &
and thus satisfy symmetry if the head and tail anchors are
symmetric to each other in every metagraph.

6 EXPERIMENTS

The goal of our experiments is twofold. First, the proposed
metagraph-based approach can effectively model semantic

TABLE 2
Summary of Datasets
Graph #Nodes #Edges #Types #Metagraphs
LinkedIn 65 925 220 812 4 153
Facebook 5025 100 356 10 934
DBLP 172136 968 822 5 74

proximity. Second, the proposed metagraph matching algo-
rithm is efficient.

6.1 Experimental Setup

Datasets. We conducted extensive experiments on two real-
world datasets collected by previous studies, namely Linke-
dIn [9] and Facebook [8], as summarized in Table 2 and
elaborated below.

e LinkedIn. The graph contains objects of four types:
user, employer, location and college. The
relationships between some user pairs are labeled
into different semantic classes. We chose two major
classes, namely, College friend and Coworker.'

e Facebook. The graph includes the following types:
user, concentration, degree, school, home-
town, last-name, location, employer, work-
location and work-project.? Given no explicit
labels, we generated the ground truth based on rules
mimicking natural classes of proximity. Specifically,
we considered two classes: (i) Family, two users shar-
ing the same last-name as well as the same loca-
tion or hometown; (ii) Classmate, two users sharing
the same school as well as same degree or con-
centration. Notwithstanding the rules, we dictated
a 5 percent chance to assign a random class as noises.

Training and Testing. A user ¢ can be used as a query node
if there exists at least another user v such that the relation-
ship between ¢ and v belongs to the desired class of proxim-
ity in our ground truth. We randomly split these queries
into two subsets: 20 percent reserved as training and the
rest as testing. We repeated such splitting for 10 times, and
report the results averaged over the 10 splits.

In each split, based on the training queries, we further gen-
erated training examples (g, z,y) such that ¢ and = belong to
the desired class while ¢ and y do not. For testing, we con-
structed an ideal ranking for each test query node and desired
class, which is compared against the ranking generated by
various proximity algorithms. In particular, we adopted
NDCG and MAP [14] to evaluate the quality of the rankings
at top 10 nodes.

Metagraphs. As discussed in Section 2, we applied GRAMI
[13] to mine the set of metagraphs. Preprocessing was done to
prune less viable metagraphs. First, a viable metagraph must
have at least two “core” nodes, which are user nodes in our
case, since our ground truth is designed for the proximity
between such node pairs. Additionally, the core nodes should
be symmetric to each other in their containing metagraph,
since our target proximity such as coworker and classmate
are symmetric. In general, the symmetry-based pruning is

1. Including those labeled as “colleague” and “excolleague”.
2. Other types are not used due to their sparsity or irrelevance.

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

FANG ET AL.: METAGRAPH-BASED LEARNING ON HETEROGENEOUS GRAPHS

163

(a) College (b) Coworker (c) Family (d) Classmate
0.9 — : : 0.9 J/l—/t MGP
ﬁ —»—MPP
o g 0T o | e
e g g o sRW
z Z 050 4 %05l 4
0.3 L \ \ 3L \ \ 0.3 L ! ! 0.3 L ! !
10 100 1000 10 100 1000 10 100 1000 10 100 1000
Training examples || # Training examples || # Training examples || # Training examples ||
Fig. 7. Evaluation of metagraph-based proximity and baselines with NDCG.
(a) College (b) Coworker (c) Family (d) Classmate
0.4 T 0.4 T T 0.8 7 T T 0.8 7 T T
—+—MGP
. |
L F 03— L 06 7/4//'7 0.6 —//77 —6—MGP-U
<§c F—— g § ﬁ % —&— MGP-B
02 2 02faA—2— A 0.4 = 0.4 o 7 SRW
0.1 ! ! 1 L ! ! 0.2 % 0.2 L ! !
10 100 1000 10 100 1000 10 100 1000 10 100 1000
Training examples || # Training examples || # Training examples || # Training examples ||
Fig. 8. Evaluation of metagraph-based proximity and baselines with MAP,
(a) College (b) Coworker (c) Family (d) Classmate
100% 100% 100% 100%
—+—NDCG
80% 80% 80% 80% MAP
60% 60% 60% 60% —©— Time

40%
20%
0%

40%
20%
0%

Percentage increase
Percentage increase
Percentage increase

0

20 40
Candidates | K|

0

20 40
Candidates |K|

40%
20%
0

40%
20%
0%

Percentage increase

%

0

60 120
Candidates ||

0

60 120
Candidates |K|

Fig. 9. Impact of dual-stage training (special values of |K|: 0 if only use seed metagraphs; “all” if use all metagraphs).

not always necessary, as we shall see in Section 7.1 where
asymmetric relationships are being dealt with. Second, a
metagraph must contain at least two different types in order
to capture the heterogeneity. Third, we removed metagraphs
with “dangling” nodes, which are non-core nodes with
degree one, as such nodes often do not explain the interac-
tions between core nodes. Finally, we restricted metagraphs
to have at most 5 nodes, which are found to be adequate in
expressing complex interactions.

We apply logarithms on the metagraph indices (Egs. (1)
and (2)). That is, a raw count f would transform into
log (f 4 1), as raw counts often generate sublinear returns.

6.2 Empirical Results on Semantic Proximity
Search

Comparison to Baselines. We first evaluate our proposed

method against baseline methods, as follows.

MGP: The proposed metagraph-based proximity.
MPP: Metapath-based proximity, by restricting the
set of metagraphs to paths only.

MGP-U: Metagraph-based proximity with uniform
weights. That is, we do not differentiate the impor-
tance of metagraphs to any semantic class.

MGP-B: Proximity based on the single best metagraph.
SRW: Supervised random walks [7], a supervised
variant of personalized PageRank [2]. The general
principle is to learn different weights for edges, so

that the transition matrix is biased to make certain
nodes more likely to be visited in accordance with
the training data.

In our experiments, we varied the number of training exa-
mples from 10 to 1000. Note that this has no effect on MGP-U,
as it simply uses a uniform weighting independent of the
training data. Moreover, for our methods, no dual-stage train-
ing is employed, which will be investigated separately next.

We report the NDCG and MAP of the rankings produced
by these algorithms in Figs. 7 and 8, respectively. The first
key finding is that, MGP performs consistently better than
all other algorithms, by more than 10 percent in many cases.
As our second finding, we observe a steady increase in the
performance of MGP when the number of training exam-
ples grows, indicating that our learning is effective.

Evaluation of Dual-Stage Training. We further investigate
the efficacy of dual-stage training. Treating the ranking accu-
racy (NDCG and MAP) and time of using only the seed meta-
graphs Ky as 0 percent, and those of using all metagraphs M
as 100 percent, we compute the relative percentage in accu-
racy and time when we vary the number of candidates ||.

We present the outcomes in Fig. 9. As we increase the num-
ber of candidates, we expect an increase in both accuracy and
time. In particular, the rate of increase in accuracy is much
faster than in time. Using only 50 and 150 candidates on
LinkedIn and Facebook, respectively, the increase in accuracy
is approaching 100 percent (ie., as good as using all
metagraphs). Meanwhile, the time cost is far from reaching

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

164 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

(a) LinkedIn (b) Facebook
10°

4 H SymISO
5 10 [SymISO-R
%) ym
£ B BoostISO
g 10 B TurboISO
= [0 QuickSI

3 4 5 3 4 5
metagraph nodes # metagraph nodes

Fig. 10. Average matching time per metagraph.

100 percent (i.e., requiring much less time than using all meta-
graphs). Comparing with using all the metagraphs, we sacri-
fice the ranking accuracy by only 1 percent in absolute values,
on average. In contrast, we can reduce the overall matching
time by an average of 83 percent. In summary, our dual-stage
training can significantly reduce overall matching time with
only a minuscule impact on the ranking accuracy.

6.3 Empirical Results on Metagraph Matching

We further examine the efficiency of metagraph matching.
In particular, we compare the proposed symmetry-based
algorithm, denoted by SymISO, with three state-of-the-art
baselines: BoostISO [19], TurboISO [18] and QuickSI [16]. To
further illustrate the importance of node matching orders in
SymlISO, we also compare to a weaker scheme of SymISO
that uses a random matching order, dubbed SymISO-R.

We illustrate the average running time per metagraph for
all the algorithms in Fig. 10, where the size of metagraphs
varies. Observe that SymISO consistently outperforms the
best baseline, namely BoostISO, by 52 percent on average
among metagraphs of all sizes. When the number of nodes
in a metagraph increases, the performance margins between
SymlISO and the baselines become larger, since more redun-
dant computation can be avoided due to larger symmetric
components. In particular, on metagraphs with merely three
nodes, SymISO is better by only about 10 percent. Further-
more, SymISQO is also faster than SymISO-R in all cases, sug-
gesting the usefulness of our matching order.

7 FURTHER EXPERIMENTS ON REPRESENTATION

We present additional empirical results on general repre-
sentations based on anchored metagraphs. Specifically, the
proposed representations perform consistently well across
common learning tasks and classifiers.

7.1 Experiment Setup
Dataset. We used DBLP [22], which naturally contains not
only balanced roles such as colleagues, but also imbalanced
roles such as advisors and advisees. The graph includes the
types of paper, author, year, venue and keyword.
Some of the author pairs are labeled as “adivsor-advisee”
or “colleague”. We leveraged these labels as the ground
truth for three learning tasks, to be further elaborated later.
We only retained paper nodes connected to at least one
author node appearing in the ground truth. A summary of
the graph is shown in Table 2.

Metagraphs. Metagraphs were filtered and processed in
the same way as in Section 6.1, except that we kept asym-
metric metagraphs and restricted the metagraph size to 6.

Generally, a metagraph of size 5 or 6 is complex enough to
capture rich semantics, as our experiments in Section 7.3
will further demonstrate. In total 74 metagraphs remained,
from which we enumerated all possible combinations of
head and tail anchors on each metagraph, and obtained 101
anchored metagraphs. Note that the number of combina-
tions of head and tail is relatively small since they can only
be assigned to core nodes, and some combinations result in
isomorphic anchored metagraphs.

Downstream Tasks. We considered four machine learning
tasks, as follows.

e Semantic proximity search. We search for the advisor(s)
of a given author query node. Note that this is an
asymmetric search given the imbalanced roles of
advisor and advisee. Training, testing and evalua-
tion followed the set up in Section 6.1, using 1,000
training examples.

e Binary node classification. We classify a given author
node as an advisor (Yes) or otherwise (No). An author
node belongs to the Yes class if and only if it has at least
one advisee. We split the nodes in the ground truth
into 80 percent training and 20 percent testing data,
repeated for 50 times, and report their average AUC
(under the ROC curve) and F-score on the test sets.

e Node clustering. Similar to the node classification task
above, we aim to separate advisors and non-advi-
sors. However, we assume an unsupervised setting,
where the nodes are clustered into two groups with-
out any training data. We repeat the clustering with
100 random initializations and report their average
results in terms of NMI and Rand index.

e Multi-class relationship prediction. We predict the relation-
ship between two given author nodes, among three
possibilities: IsAdvisor, IsAdvisee and IsColleague.
Note that the IsColleague relationships are undirected,
whereas the other two are directed. We split the node
pairs in the ground truth into 80 percent training and
20 percent testing data, repeated for 10 times, and report
their average micro and macro-averaged F-scores on the
test sets.

7.2 Empirical Comparisons with Baselines
Baselines. We compared the following representations on the
four tasks.

e MG+: The anchored metagraph-based representa-
tion, which is our proposed solution.

e DeepWalk [23]: an pioneering work on distributed
representations for (homogeneous) graphs.

e node2vec [24]: a more advanced variant of DeepWalk
that samples a mixture of depth and breadth-first
walks. The mixture can be adjusted with parameters p
and ¢, and we ran a grid search over p, ¢ € {0.5,1, 2}2
to choose the best setting. When p = ¢ = 1, it reduces
to DeepWalk.

o GraphSAGE [25]: A state-of-the-art, general graph
representation learning framework that supports
various neighborhood aggregators. While we tried
multiple aggregators including mean, LSTM, pool-
ing and GCN-based aggregation, we only report the

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

FANG ET AL.: METAGRAPH-BASED LEARNING ON HETEROGENEOUS GRAPHS

TABLE 3
Evaluation on the Four Tasks
(a) Semantic (b) Node
proximity search classification
NDCG MAP AUC F-score
DeepWalk 0.532 0.358 0.781 0.489
node2vec 0.535 0.352 0.788 0.494
GraphSAGE 0.902 0.766 0.858 0.636
metapath2vec 0.651 0.470 0.778 0.463
hin2vec 0.922 0.792 0.893 0.685
SRW 0.868 0.747 0.796 0.526
MG+ 0.949* 0.875* 0.909* 0.699'
() Node (d) Relationship
clustering prediction
Rand NMI Micro-F Macro-F
DeepWalk 0.031 0.006 0.540 0.420
node2vec 0.025 0.005 0.569 0.452
GraphSAGE 0.152 0.134 0.870 0.808
metapath2vec 0.002 0.001 0.836 0.694
hin2vec 0.020 0.124 0.547 0.447
SRW - - 0.367 0.306
MG+ 0.176* 0.145* 0.891* 0.864*

Best results are bolded and marked with */1 if significantly different from the
runner-up at the 0.01/0.05 level under t-test.

mean aggregator due to its superior performance on
most tasks. Finally, we adopted its unsupervised
variant to align with MG+.

o metapath2vec [26]: A state-of-the-art heterogeneous
graph embedding algorithm. Some domain knowl-
edge is required to select a metapath to guide ran-
dom walks. We tried two common metapaths used
on bibliographic graphs, author-paper-author
and author-paper-venue-paper-author, and
only report the results of the latter given its superior
performance.

e hin2vec [27]: A state-of-the-art heterogeneous graph
embedding algorithm, which does not require the
selection of a metapath.

Apart from various graph representations, we further
compared with a classic graph algorithm called supervised
random walk (SRW) [7], as already explained in Section 6.1.
Note that SRW is a supervised method and thus cannot be
applied to the unsupervised node clustering task.

For graph embedding baselines, we derive the edge
representation from the concatenation of the two nodes’
embeddings. Other common choices include taking their
sum or Hadamard product, which cannot model directed
edges and show inferior empirical results. For all represen-
tation-based methods including MG+, we applied the pro-
posed learning to rank approach (Section 3.2) for semantic
proximity search, k-means algorithm for node clustering,
and logistic regression with elastic net for node classifica-
tion and relationship prediction. We select hyperparameters
via five-fold cross validation on the training sets.

Empirical Results. We report the evaluation of MG+ and
various baselines on the four tasks in Table 3. We observe
that MG+ significantly outperforms all the baselines in all
four tasks. Among the baselines, on the one hand, DeepWalk
and node2vec tend to give weak results as they cannot lever-
age the rich semantics in heterogeneous graphs. On the other

165
(@) (b) (© (d)
1.0 1.0 0.20 1.0
0.8 0.8 0.15 0.8
0.6 0.6 0.10 0.6
0.4 0.4 0.05 0.4
0.2 0.2 C v 0.00 " 0.2 P P
ﬁOC/C’ N\PX P‘\S %39& g@ N\'\C‘O‘N\‘acto’

g MP I MG I MG+

Fig. 11. Performance comparison of various metagraph schemes. (a)
Semantic proximity search. (b) Node classification. (c) Node clustering.
(d) Relationshihp prediction.

hand, metapath2vec and hin2vec, which account for the het-
erogeneity, generally outperform DeepWalk and node2vec.
Moreover, the performances of GraphSAGE and SRW often
fall in-between of the aforementioned two groups. Note that
while MG+ is the consistent winner, no single baseline
emerges as the consistent runner-up.

7.3 Analysis of Metagraphs
We further investigate the impact of varying meta-
structures on the four tasks, in two aspects.

Nature of the Structures. We compare MG+ to two reduced
schemes: MG and MP, denoting non-anchored representa-
tions based on metagraphs and metapaths, respectively.
Without anchors, MG cannot distinguish different roles of
nodes, whereas MP is a further simplification that only uti-
lizes metapaths. Not surprisingly, MG+ consistently outper-
forms both MG and MP+, as reported in Fig. 11. Between
MG and MP, MG often works better as metagraphs are
more expressive and thus able to capture richer semantics.

We further examine a case study on the task of relationship
prediction through confusion matrices. In both Tables 4a and
4b, the majority of the classification errors happen between
IsAdvisor and IsAdvisee classes, which means both MP and
MG are unable to differentiate the two directed relationships.
While there is some improvement in MG over MP, the reduc-
tion of errors happens with the undirected IsColleague class,
due to the more expressive metagraphs compared to meta-
paths. Nevertheless, the increased expressive power of meta-
graphs does not help with modeling directed relationships.

Size of Structures. Next, we impose a size limit on the meta-
graphs to study the impact. In Fig. 12, we varied the size limit
of metagraphs from 4 to 6. In most tasks, the performance
becomes stable when we increase the size limit to 6, i.e., the
performance lift from 5 to 6 becomes much smaller than the
lift from 4 to 5. In semantic proximity search, although the lift
from size 5 to 6 is still substantial, the absolute performance is
approaching the ceiling of 1.0. Thus, further increasing the
size limit in this task would have marginal benefits too. There-
fore, metagraphs of up to size 5 or 6 are often expressive
enough to capture most complex semantics between nodes. It
is worth noting that an existing study [28] on meta-structures
also reaches a similar conclusion, where metagraphs of larger
size may bring in remotely connected nodes with weaker
semantic ties.

7.4 Empirical Results on Metagraph Matching

Finally, we compare our proposed matching algorithm
SymISO with two state-of-the-art baselines CFLMatch [29]

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

166 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

TABLE 4
Confusion Matrices of Relationship Prediction
Using MP, MG, MG+

(a) MP
Predicted
A E C
A 113 289 38
True E 126 288 33
C 22 30 128
(b) MG
Predicted
A E C
A 114 308 17
True E 134 297 15
C 14 17 149
(c) MG+
Predicted
A E C
A 398 30 11
True E 36 402 9
C 21 23 136

A =IsAdvisor, E = IsAdvisee, C = IsColleague.

and BoostISO [19]. Note that the experiments in Section 6.3
are focused on symmetric metagraphs only since the seman-
tic classes involved therein are all symmetric. In this section,
we aim to evaluate both symmetric and asymmetric meta-
graphs, since our tasks involve asymmetric semantics. We
illustrate the average running time per metagraph in
Fig. 13, where we examine the size of metagraphs in
Fig. 13a, and the symmetry in Fig. 13b. In all cases, our pro-
posed SymISO outperforms the baselines. In particular,
compared to CFLMatch, our performance edge on symmet-
ric metagraphs is indeed larger than asymmetric ones.

8 RELATED WORK

Meta-Structures. While the less general concept of metapath
has been proposed [6], metagraphs are more expressive and
effective than metapaths in capturing interactions between
nodes. Given the increased complexity and variety of meta-
graphs, we cannot handle metagraphs in the same way as

(@) (b) (9 (d)
1.0 1.0 0.20 1.0
0.8 0.8 0.15 0.8
0.6 0.6 0.10 0.6
0.4 0.4 0.05 0.4
0.2 0.2 C % 0.00 \ 0.2 P P
$OCG N\PX P‘O ‘La,ﬁ\é' @w ﬁ\C‘O‘N\?}C‘O’

[Up to size 4 [l Up to size 5 B Up to size 6

Fig. 12. Performance comparison of various metagraph sizes using MG+.
(a) Semantic proximity search. (b) Node classification. (c) Node cluster-
ing. (d) Relationshihp prediction.

(a) Size (b) Symmetry

107
"g 103 lSymISO
=z [CFLMatch
k) 10° Hl BoostISO
=

10! - -

<4 5 6 Symmetric Asymmetric

metagraph nodes Metagraph symmetry

Fig. 13. Average matching time per metagraph.

metapaths. First, the metapath-based PathSim [6] relies on
manually selecting the useful metapaths. It becomes difficult
given the much larger number of metagraphs and arbitrary
classes of proximity. Thus, we propose a supervised learning
approach. While another work [30] also employs learning for
metapaths, it is only designed for a different task of cluster-
ing. Second, metagraphs are much more difficult to match
than metapaths. Thus, we develop a symmetry-based match-
ing algorithm to improve efficiency. Finally, a recent work
[28] proposes a directed acyclic graph as a meta-structure.
However, they do not handle the general case where roles of
nodes need to be differentiated. Similar structures have also
been employed for other applications lately such as social
influence analysis [31].

Proximity Search. Most earlier research [2], [3], [5], [6] only
measures a “generic” form of proximity on graphs. Different
senses of proximity have also emerged, such as hub and
authority [32], probabilistic precision and recall [33], [34], as
well as importance and specificity [35], [36]. However, these
senses are only formed due to specific patterns in the link
structures (i.e., non-semantic). Although there exist semantic-
oriented studies on graphs, such as social circle learning [8]
and relationship profiling [9], they do not support online
query processing and thus cannot be easily adapted for prox-
imity search. There also exist several random walk
approaches [7], [37], [38], which learn from example ranking
preferences [14] to bias transition probabilities between nodes
of different types or features. However, they are equivalent to
adjusting a linear combination of path probabilities only [2].

Subgraph Matching. A plethora of techniques [10], [16],
[17], [18], [19], [29] have been proposed for subgraph match-
ing, which follow the backtracking framework as discussed
in Section 4. Their major issue is the extremely huge search
space on a large graph. To prune the search space, Shang
et al. [16] have proposed a special ordering of nodes for
matching instead of a random ordering. Subsequently, Han
etal. [18] and Ren et al. [19] have introduced more improve-
ments to further reduce and reuse redundant computation.
However, they do not account for graph symmetry, which
leads to substantial redundant computations.

Graph Representation. Inspired by the success of word
embedding approaches, advances in learning representations
in an unsupervised fashion have been extended to graph data
[39]. Earlier work such as DeepWalk [23], node2vec [24] and
LINE [40] only deal with homogeneous graphs, without
accounting for the complex semantics carried by a heteroge-
neous graph. A few studies on heterogeneous graphs exist,
including state-of-the-art metapath2vec [26] and hin2vec
[27]. Both works utilize the guidance of metapaths, which are

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

FANG ET AL.: METAGRAPH-BASED LEARNING ON HETEROGENEOUS GRAPHS

less expressive structures than metagraphs. More recently,
end-to-end graph neural networks, such as GCN [41],
GraphSAGE [25] and GAT [42], have emerged to learn graph
representations in a supervised fashion. Comparing to these
existing studies, our proposed representations have a few
advantages. First, anchored metagraphs are able to capture
direction-aware semantics through head and tail anchors that
can model different roles. Second, our method tends to be
more universal. Previous unsupervised methods [23], [24],
[26] depend on skip-gram models to optimize node co-occur-
rences, and end-to-end methods [25], [41], [42] optimize task-
specific goals. In contrast, anchored metagraphs capture a
wide variety of fine-grained semantics and interations
between nodes, instead of depending on only co-occurrences
or task-specific supervisions. Third, our method is often more
interpretable, since each dimension corresponds to one
anchored metagraph that carries semantics and can be easily
visualized.

9 CONCLUSION

In this paper, we proposed metagraph-based learning on het-
erogeneous graphs. Motivated by the problem of semantic
proximity search, we identified and employed metagraphs to
characterize arbitrary semantic classes, which can be learned
in a supervised manner. We further generalized metagraphs to
anchored metagraphs, in order to model nodes with distinct
roles within the same metagraph. In particular, anchored
metagraphs can be used to construct universal node and
edge representations, to support various machine learning
tasks such as semantic proximity search, node classification
and link prediction. Finally, we also improved the efficiency
of metagraph matching by eliminating redundant computa-
tions on symmetric components, which are present in the
majority of our metagraphs. Empirical results on three real-
world graphs consistently demonstrated the superior perfor-
mance of metagraph-based learning.

ACKNOWLEDGMENTS

This research was supported by the Singapore Ministry of
Education (MOE) Academic Research Fund (AcRF) Tier 1
grant (Approval No. 18-C220-SMU-006).

REFERENCES

[1] Y. Sun, “Mining heterogeneous information networks,” PhD dis-
sertation, Dept. Comput. Sci., Univ. lllinois at Urbana-Champaign,
Champaign, IL, USA, 2012.

[2] G.]Jeh and J. Widom, “Scaling personalized web search,” in Proc.
Int. Conf. World Wide Web, 2003, pp. 271-279.

[3] G.Jeh and J. Widom, “SimRank: A measure of structural-context
similarity,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2002, pp. 538-543.

[4] Y. Fang, W. Lin, V. W. Zheng, M. Wu, K. C. Chang, and X. Li,
“Semantic proximity search on graphs with metagraph-based
learning,” in Proc. IEEE Int. Conf. Data Eng., 2016, pp. 277-288.

[5] Y.Koren,S.C. North, and C. Volinsky, “Measuring and extracting
proximity in networks,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2006, pp. 245-255.

[6] Y.Sun,]. Han, X. Yan, P. S. Yu, and T. Wu, “PathSim: Meta path-
based top-k similarity search in heterogeneous information net-
works,” Proc. VLDB Endowment, vol. 4, no. 11, pp. 992-1003, 2011.

[7] L. Backstrom and J. Leskovec, “Supervised random walks: Pre-
dicting and recommending links in social networks,” in Proc.
ACM Int. Conf. Web Search Data Mining, 2011, pp. 635-644.

(8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

167

J.J. McAuley and J. Leskovec, “Learning to discover social circles
in ego networks,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2012,
pp- 548-556.

R. Li, C. Wang, and K. C. Chang, “User profiling in an ego net-
work: Co-profiling attributes and relationships,” in Proc. Int. Conf.
World Wide Web, 2014, pp. 819-830.

J. R. Ullmann, “An algorithm for subgraph isomorphism,” J.
ACM, vol. 23, no. 1, pp. 3142, 1976.

X. Yan and J. Han, “gSpan: Graph-based substructure pattern
mining,” in Proc. IEEE Int. Conf. Data Mining, 2002, pp. 721-724.
M. Kuramochi and G. Karypis, “Finding frequent patterns in a
large sparse graph,” in Proc. IEEE Int. Conf. Data Mining, 2004,
pp- 345-356.

M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis,
“GRAMLI: Frequent subgraph and pattern mining in a single large
graph,” Proc. VLDB Endowment, vol. 7, no. 7, pp. 517-528, 2014.
T.-Y. Liu, Learning to Rank for Information Retrieval. Berlin, Germany:
Springer, 2011.

R. J. P. van Berlo, W. Winterbach, M. J. L. de Groot, A. Bender,
P.]J. T. Verheijen, M. J. T. Reinders, and D. de Ridder, “Efficient
calculation of compound similarity based on maximum common
subgraphs and its application to prediction of gene transcript lev-
els,” Int. |. Bioinf. Res. Appl., vol. 9, no. 4, pp. 407432, 2013.

H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hard-
ness: An efficient algorithm for testing subgraph isomorphism,”
Proc. VLDB Endowment, vol. 1,no. 1, pp. 364-375, 2008.

J. Lee, W. Han, R. Kasperovics, and J. Lee, “An in-depth compari-
son of subgraph isomorphism algorithms in graph databases,”
Proc. VLDB Endowment, vol. 6, no. 2, pp. 133-144, 2012.

W. Han, J. Lee, and J. Lee, “Turbo;y,: Towards ultrafast and
robust subgraph isomorphism search in large graph data-
bases,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013,
pp- 337-348.

X. Ren and]. Wang, “Exploiting vertex relationships in speeding
up subgraph isomorphism over large graphs,” Proc. VLDB Endow-
ment, vol. 8, no. 5, pp. 617628, 2015.

W. Lin, X. Xiao, J. Cheng, and S. S. Bhowmick, “Efficient algo-
rithms for generalized subgraph query processing,” in Proc. ACM
Int. Conf. Inf. Knowl. Manage., 2012, pp. 325-334.

W. Fan, J. Li, J. Luo, Z. Tan, X. Wang, and Y. Wu, “Incremental
graph pattern matching,” in Proc. ACM SIGMOD Int. Conf. Man-
age. Data, 2011, pp. 925-936.

C. Wang, J. Han, Y. Jia,]J. Tang, D. Zhang, Y. Yu, and]. Guo,
“Mining advisor-advisee relationships from research publication
networks,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2010, pp. 203-212.

B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning
of social representations,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2014, pp. 701-710.

A. Grover and]. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2016, pp. 855-864.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2017, pp. 1024-1034.

Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in Proc.
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2017,
pp- 135-144.

T. Fu, W. Lee, and Z. Lei, “HIN2Vec: Explore meta-paths in het-
erogeneous information networks for representation learning,” in
Proc. ACM Int. Conf. Inf. Knowl. Manage., 2017, pp. 1797-1806.

Z. Huang, Y. Zheng, R. Cheng, Y. Sun, N. Mamoulis, and X. Li,
“Meta structure: Computing relevance in large heterogeneous
information networks,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2016, pp. 1595-1604.

F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph
matching by postponing cartesian products,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2016, pp. 1199-1214.

Y. Sun, B. Norick, J. Han, X. Yan, P. S. Yu, and X. Yu, “Integrating
meta-path selection with user-guided object clustering in hetero-
geneous information networks,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2012, pp. 1348-1356.

J. Zhang, J. Tang, Y. Zhong, Y. Mo, J. Li, G. Song, W. Hall,
and J. Sun, “StructInf: Mining structural influence from social
streams,” in Proc. AAAI Conf. Artif. Intell., 2017, pp. 73-80.

J. M. Kleinberg, “Authoritative sources in a hyperlinked environ-
ment,” |. ACM, vol. 46, no. 5, pp. 604-632, 1999.

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

168

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

G. Agarwal, G. Kabra, and K. C. Chang, “Towards rich query
interpretation: Walking back and forth for mining query temp-
lates,” in Proc. Int. Conf. World Wide Web, 2010, pp. 1-10.

Y. Fang and K. C. Chang, “Searching patterns for relation extrac-
tion over the Web: Rediscovering the pattern-relation duality,” in
Proc. ACM Int. Conf. Web Search Data Mining, 2011, pp. 825-834.

V. Hristidis, H. Hwang, and Y. Papakonstantinou, “Authority-
based keyword search in databases,” ACM Trans. Database Syst.,
vol. 33, no. 1,2008, Art. no. 1.

Y. Fang, K. C. Chang, and H. W. Lauw, “RoundTripRank: Graph-
based proximity with importance and specificity,” in Proc. IEEE
Int. Conf. Data Eng., 2013, pp. 613-624.

S. Chakrabarti and A. Agarwal, “Learning parameters in entity
relationship graphs from ranking preferences,” in Proc. Eur. Conf.
Principles Data Mining Knowl. Discovery, 2006, pp. 91-102.

A. Agarwal, S. Chakrabarti, and S. Aggarwal, “Learning to rank
networked entities,” in Proc. ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining, 2006, pp. 14-23.

H. Cai, V. W. Zheng, and K. C. Chang, “A comprehensive survey
of graph embedding: Problems, techniques, and applications,”
IEEE Trans. Knowl. Data Eng., vol. 30, no. 9, pp. 1616-1637, Sep.
2018.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
Large-scale information network embedding,” in Proc. Int. Conf.
World Wide Web, 2015, pp. 1067-1077.

T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proc. Int. Conf. Learn. Represen-
tations, 2017.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proc. Int. Conf. Learn.
Representations, 2018.

Yuan Fang received the PhD degree in computer
science from the University of Illinois at Urbana-
Champaign, in 2014. He is currently an assistant
professor with the School of Information Sys-
tems, Singapore Management University. His
research focuses on graph-based machine learn-
ing and data mining, as well as their applications
for the Web and social media.

Wenging Lin received the PhD degree in com-
puter science from Nanyang Technological Uni-
versity, in 2015. Currently, he is a senior
researcher with Tencent in Shenzhen, China. His
research interests include graph databases and
data mining.

Vincent W. Zheng received his PhD degree in
computer science from the Hong Kong University
of Science and Technology, in 2011. He is a
senior tech lead with WeBank in Shenzhen,
China. Previously, he was a senior research
scientist with Advanced Digital Sciences Center,
Singapore, and a research affiliate with the
University of lllinois at Urbana-Champaign. His
research interests include graph mining, informa-
tion extraction, ubiquitous computing, and
machine learning.

Min Wu received the PhD degree in computer sci-
ence from Nanyang Technological University, in
2011. He is currently a senior scientist with Data
Analytics Department, Institute for Infocomm
Research, Singapore. His research interests
include graph mining, machine learning, as well as
bioinformatics.

Jiaqgi Shi received the master's degree in data
sciences from ESSEC Business School, in 2019.
He is currently a research engineer with the
School of Information Systems, Singapore Man-
agement University. His research interests
include graph mining, machine learning, and
information systems.

Kevin Chen-Chuan Chang is a professor with
the Department of Computer Science, University
of lllinois at Urbana-Champaign. His research
addresses large-scale information access, for
search, mining, and integration across structured
and unstructured big data including Web data
and social media. He also co-founded Cazoodle
for deepening vertical data-aware search over
the Web.

Xiao-Li Li is the department head and a principal
scientist with the Data Analytics Department,
Institute for InNfocomm Research, Singapore. He
also holds adjunct associate professorship with
Nanyang Technological University. His research
interests include data mining, machine learning,
bioinformatics, and information retrieval.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of lllinois. Downloaded on September 01,2022 at 03:35:04 UTC from IEEE Xplore. Restrictions apply.

