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Abstract—Data in the form of graphs are prevalent, ranging from biological and social networks to citation graphs and the Web. In

particular, most real-world graphs are heterogeneous, containing objects of multiple types, which present new opportunities for many

problems on graphs. Consider a typical proximity search problem on graphs, which boils down to measuring the proximity between two

given nodes. Most earlier studies on homogeneous or bipartite graphs only measure a generic form of proximity, without accounting for

different “semantic classes”—for instance, on a social network two users can be close for different reasons, such as being classmates

or family members, which represent two distinct semantic classes. Learning these semantic classes are made possible on

heterogeneous graphs through the concept ofmetagraphs. In this study, we identify metagraphs as a novel and effective means to

characterize the common structures for a desired class of proximity. Subsequently, we propose a family of metagraph-based proximity,

and employ a learning-to-rank technique that automatically learns the right parameters to suit the desired semantic class. In terms of

efficiency, we develop a symmetry-based matching algorithm to speed up the computation of metagraph instances. Empirically,

extensive experiments reveal that our metagraph-based proximity substantially outperforms the best competitor by more than 10

percent, and our matching algorithm can reduce matching time by more than half. As a further generalization, we aim to derive a

general node and edge representation for heterogeneous graphs, in order to support arbitrary machine learning tasks beyond proximity

search. In particular, we propose the finer-grained anchored metagraph, which is capable of discriminating the roles of nodes within the

same metagraph. Finally, further experiments on the general representation show that we can outperform the state of the art

significantly and consistently across various machine learning tasks.

Index Terms—Semantic proximity search, meta-structures, graph mining, heterogeneous graph representation

Ç

1 INTRODUCTION

THE proliferation of the Internet has availed an increas-
ingly rich collection of data objects. Typically these

objects can be organized into a graph G ¼ ðV;EÞ, where the
nodes V model the objects and the edges E model their
interactions. These graphs are often heterogeneous [1] con-
taining different types of objects. Consider the graph in
Fig. 1 based on a toy social network, which interconnects
various users and their attributes. We treat each user and
attribute value as a node, and each node is further associ-
ated with a type like user and school. More generally, the
edges may also belong to different types. In our toy graph,
the edge types can be understood as a bijection from the
pairs of node types.

Unlike traditional homogeneous graphs which only carry
inter-node structural information, heterogeneous graphs fur-
ther encompass semantic information that explains the nodes
and their interactions. Such semantic information presents
new opportunities to many data-driven problems on graphs.
In particular, we introduce a motivating problem next, as the
main subject to address in this paper.

1.1 Motivating Problem: Semantic Proximity Search

One important problem on graphs is proximity search. Given a
query node q 2 V , how dowemeasure the proximity of other
nodes to q, so that we can return the nodes closest to q? Most
earlier studies, including Personalized PageRank [2] and
SimRank [3], fail to capitalize on the rich semantics carried by
a heterogeneous graph. Specifically, with various types of
interconnected objects, different semantic classes of proximity
arise from different underlying reasons, as illustrated in
Table 1. For the same query node (e.g., Bob), there could be
multiple classes of proximitywith different result nodes (e.g.,
Alice as family, and Tom as classmate). Thus, it falls short to
onlymeasure a “generic” form of proximitywithout differen-
tiating the various semantic classes.

We call the task of searching for a desired semantic class of
proximity w.r.t. a query node as semantic proximity search [4].
It is a new problem in the sense that previous studies on prox-
imity search [2], [3], [5], [6], [7] neither intend to explicitly dif-
ferentiate the semantic classes, nor can effectively accomplish
so. Beyond proximity search, the closest problems to ours are
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social circle learning [8] and relationship profiling [9] on
graphs. In terms of semantic proximity, their circles or relations-
hips are also semantic-oriented, but they only find latent clus-
ters and thus do not target specific classes of interest. In terms
of search, they need to optimize for the best global configura-
tion, and thus cannot process ad-hoc queries in real time.

1.2 Insights and Challenges

To differentiate various semantic classes, it comes to us a
natural question: what kinds of representation or structure
can characterize a class. Ideally, we require one that is not
only universal in capturing different semantics, but also sys-
tematically enumerable for efficient processing.

We hinge on the novel insight that different semantic clas-
ses can often be characterized by different tell-tale common
structures. For instance, in Fig. 1 and Table 1, the proximity
between Kate and Jay (classmate) can be attributed to their
common school and major, as illustrated by the structure
(M1) in Fig. 2a. Likewise, Figs. 2b and 2c showcase some pos-
sible structures which can characterize, to different extents,
close friend (M2 and M3) and family (M4), respectively. We
call such common structures metagraphs as they abstract
objects into types. That is, each node in ametagraph (denoted
by a rounded rectangle) describes the type of an object, rather
than an object itself. Intuitively, two nodes “sharing” more
characteristic metagraphs of a class are more likely to satisfy
that class of proximity. Apart from capturing the semantic
classes, metagraphs also enable online proximity search. By
computing and indexing metagraphs offline, we can effi-
ciently support any query on-the-fly by looking up the pre-
computedmetagraphs.

Note that a less general concept known as metapath has
been proposed [6], which only considers common path struc-
tures between two nodes. In fact, metagraph M3 in Fig. 2b is
also a metapath, which only captures the common address
between two users. In contrast, metagraphs can jointlymodel
multiple common attributes. Consider two metapaths user–
employer–user and user–hobby–user. Each of them can-
not characterize the proximity of close friends on their own.
However, by taking them jointly we obtain metagraph M2,

which can better characterize close friends. In other words,
eachmetagraph is a nonlinear combination of metapaths, and
is thus more expressive. Given the increased complexity of
metagraphs compared to metapaths, it is also more challeng-
ing to utilize and processmetagraphs, aswewill discuss next.

Utilizing Metagraphs. The characteristic metagraphs for an
arbitrary class of proximity are often unknown. Furthermore,
a class may be characterized bymultiple metagraphs to vary-
ing extents. For instance, close friends could be colleagues
with the same hobby or simply roommates, corresponding to
M2 andM3 in Fig. 2b, respectively. One may also say thatM2

ismore likely to indicate close friends thanM3. While domain
experts can lend some guidance on certain special classes, it is
impractical to rely on them alone for the general case. To bet-
ter cope with different graphs and semantic classes in prox-
imity search, we propose a machine learning approach that
can automatically identify the characteristicmetagraphs (e.g.,
M2 andM3) based on some example query and answer nodes
(e.g., Kate as query, Alice and Jay as answers). In practice, we
learn a weight for eachmetagraph to quantify howwell it can
characterize the desired class. These weights can be applied
to answer future queries for the same class of proximity.

Processing Metagraphs. It is necessary to compute the
instances of each metagraph in order to know what meta-
graphs are “shared” by any two given nodes. However, com-
puting the instances of a metagraph (also called matching a
metagraph) is highly costly. It is equivalent to solving the
NP-hard subgraph matching problem [10]. Furthermore, the
number of instances of a metagraph on an input graph does
not follow the property of downward closure, which excludes
the techniques for frequent subgraph mining [11], [12], [13].
To compute the instances of a metagraphmore efficiently, we
observe that many useful metagraphs are symmetric, such as
M1–M4 in Fig. 2 where two objects sharing one or more com-
mon attributes. However, existing methods spend a large
amount of redundant computation on symmetric substruc-
tures within a metagraph. Thus, we propose a novel symme-
try-based matching algorithm which re-uses “symmetric”
computation. As a result, we can avoid redundancy and sub-
stantially improve the efficiency ofmetagraphmatching.

1.3 Generalization

Given that metagraphs are able to capture rich semantics on
heterogeneous graphs, they can be leveraged to address
many othermachine learning tasks on graphs beyond seman-
tic proximity search.

However, there is a major drawback with metagraphs of
the form shown in Fig. 2. While they can effectively model
the interactions between nodes, they lack the granularity to
discriminate the role of individual nodes within the interac-
tion. Although this is not an issue for manymetagraphs, such
as M1 where the two user nodes play balanced roles as

Fig. 1. Toy heterogeneous graph (node type in parenthesis).

TABLE 1
Toy Semantic Classes of Proximity

Query Semantic class Answer(s) Reason

Kate close friends Alice same employer and hobby

Jay same address
Kate classmates Jay same school and major

Bob family Alice same surname and address

Bob classmates Tom same school and major

Fig. 2. Possible toy structures for each class of proximity.
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classmates of each other, in general a relationship may
involve imbalanced or distinct roles, such as the roles of advi-
sor and advisee, physician and patient, or vendor and client.
To differentiate these roles within the same metagraph, we
propose the more granular anchored metagraphs—the nodes in
a metagraph are “anchored” (i.e., differentiated) as the head
or tail nodes. The differentiation enables us to better capture
the semantics of individual nodes and their interactions.

Based on anchored metagraphs, we build general node
and edge representations to support arbitrary machine learn-
ing tasks on heterogeneous graphs. The tasks can be node-
centric like node classification and clustering, or edge-centric
like link prediction and proximity search. Anchored meta-
graph-based representations are generallymore effective due
to the extra granule, and could become particularly advanta-
geouswhen nodes have distinct roles or edges are directed.

1.4 Contributions

To summarize, we make the following contributions.

� Concept. We propose the novel concept of meta-
graphs to capture rich semantics on heterogeneous
graphs. In particular, metagraphs are well suited to
address our motivating problem of semantic proxim-
ity search. (Section 2)

� Learning. Towards semantic proximity search, we
design a family of metagraph-based proximity meas-
ures, whose parameters are learnable to model dif-
ferent semantic classes. (Section 3)

� Matching.We devise an efficient metagraphmatching
algorithm, which exploits the symmetric components
in a metagraph to avoid redundant computation.
(Section 4)

� Generalization. We generalize metagraphs to ancho-
red metagraphs in order to model nodes of distinct
roles. Based on anchored metagraphs, we develop
universal node and edge representations to support
arbitrary machine learning tasks. (Section 5)

� Experiments. Our extensive experiments demonstrate
the superiority of our metagraph-based approach for
semantic proximity search. Further experiments show
that the general representation based on anchored
metagraphs perform consistently well across various
machine learning tasks. (Sections 6 and 7)

2 PRELIMINARIES

In this section, we first formalize the problem, and present
the metagraph concept as well as the overall framework.

2.1 Problem Statement

We formalize the notion of object graph, and introduce the
task of semantic proximity search on such graphs.

Object Graph. An object graph can be represented as
G ¼ ðV;E; tÞ, where V denotes the set of objects and E

denotes the set of edges between objects. Given objects of het-
erogeneous types T , there is a type function for objects,
t : V ! T . On the toy graph in Fig. 1, we would have types
T ¼ fuser; school; hobby; . . .g, and for instance, tð“Alice”Þ ¼
user and tð“123 Green St”Þ ¼ address. Furthermore, a graph
S ¼ ðVS; ES; tÞ is a subgraph ofG iff VS � V andES � E.

Semantic Proximity Search. On a graph G ¼ ðV;E; tÞ, given
a query node q 2 V and a desired class of proximity, the task
is to produce a ranking over V in descending proximity to q

w.r.t. the desired class. We cast this as a machine learning
problem, where a set of training examplesV are available for
learning the desired class of proximity. In particular, we
adopt a learning-to-rank framework [14], where each training
example is a triple ðq; v; uÞ such that node v is ranked before
node u for the query node q. That is, v’s proximity to q should
be greater than u’s. Thus, the task boils down to defining
a family of proximity measures between nodes that can
abstract arbitrary classes of proximity, with a set of parame-
ters that can be optimized by learning to rank.

2.2 Metagraph and Related Concepts

We propose the notion of metagraph to measure the prox-
imity between nodes.

Metagraph. There are many distinct objects of the same
type, e.g., both “123 Green St” and “456 White St” are
addresses. In order to identify and summarize common
structures on the object graph, it becomes necessary to con-
sider a type-level description, which we call ametagraph. For-
mally, a metagraph can be represented asM ¼ ðVM ; EM ; tMÞ,
where VM is the set of nodes to denote the types, and EM is
the set of edges between VM . That is, 8v 2 VM , we have
tMðvÞ 2 T where tM is a type function for the metagraph.
Note that a node on the object graph has both an intrinsic
value (e.g., “Alice” or “Microsoft”) and a type, whereas the
value of a node on the metagraph is immaterial and only the
type matters.

Metagraph Instances. In order to know whether two nodes
on the object graph “share” a characteristic metagraph for
the desired class of proximity, it is crucial to identify sub-
graphs on G that are instances of any given metagraph M.
Informally, a subgraph S is an instance of M if they have
the same structure and their nodes have matching types.
For instance, in Fig. 1 the following subgraphs

� S1: “Alice”–“123 Green St”–“Bob” and
� S2: “Kate”–“456 White St”–“Jay”
both match metagraph M3 in Fig. 2, and thus they are the

instances ofM3. We present a formal definition next.

Definition 1 (Metagraph instance). Consider a subgraph
S ¼ ðVS ; ESÞ and a metagraph M ¼ ðVM ; EM ; tMÞ. S is an
instance of M if there exists a bijection between the node sets
of S andM, f : VS ! VM , such that

� 8v 2 VS , tðvÞ ¼ tMðfðvÞÞ, and
� 8v; u 2 VS , hv; ui 2 ES iff hfðvÞ;fðuÞi 2 EM .

Metagraph Indices. Subsequently, we can quantify how
two nodes v and u share any given metagraph, i.e., how v

and u occur in the instances of the metagraph. Let M¼
fM1;M2; . . .g be a set of metagraphs, and IðMiÞ be the set of
instances of Mi. The co-occurrences of v and u can be
encoded by a vector mvu with jMj elements. Its ith element,
mvu½i�, is the number of instances of Mi containing both v

and u. Likewise, let mv½i� be the number of instances of Mi

containing v. That is

mvu½i� , jfS 2 IðMiÞ : ðv; uÞ 2 V 2
S gj: (1)
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mv½i� , jfS 2 IðMiÞ : v 2 Vsgj: (2)

More generally, we can further transform these vectors,
such as applying logarithm to the raw counts.

We callmvu andmv metagraph indices, which form the basis
of our proximity measure as we shall discuss in Section 3.
They can be precomputed offline by scanning through the
metagraph instances, and can be loaded on-demand during
training and testing.

2.3 Overall Framework

To summarize our approach, we present the overall frame-
work in Fig. 3. It consists of online and offline phases.

Offline Phase. It consists of three main subproblems.
Initially, given a graph G, we enumerate the set of meta-

graphs M¼ fM1;M2; . . .g. Abundant literature [12], [13]
exists on this subproblem, and its time cost typically
accounts for only a few percent of the entire offline phase.
Therefore, we directly apply an existing state-of-the-art
approach GRAMI [13].

Next, for each metagraph Mi 2 M from the output of the
previous subproblem, we compute the set of instances
IðMiÞ. We also call the process of computing the instances
of Mi as matching Mi. We study the subproblem of efficient
metagraph matching in Section 4. Subsequently, we further
compute the metagraph indices, which form part of the
input to learning and evaluating the proximity.

Lastly, with a set of training examples for the desired
semantic class, we need to learn the optimal model. We
address this subproblem in Section 3. In particular, we need
to develop a family of metagraph-based proximity measures
to accommodate arbitrary classes, and a supervised method
to learn the best parameters.

Online Phase. Given a query node q 2 V , the precomputed
metagraph indices, as well as the optimal model for the
desired class, we can evaluate the proximity between q and
other nodes v 2 V . Subsequently, we rank the nodes in V in
descending order of their proximity to q.

3 LEARNING SEMANTIC PROXIMITY

We propose to learn the optimal proximity based on meta-
graphs. We start with defining a family of proximity meas-
ures which can flexibly cater to different semantic classes.
Next, given some training examples, we develop a learning-
to-rank approach to optimize the parameters within the
proximity family.

3.1 Metagraph-Based Proximity

Given a class with certain characteristic metagraphs, a good
proximity measure must account for two aspects. First, if v
and u share many characteristic metagraphs, v and u are
more likely to satisfy the desired class. Second, if v (or u)
indiscriminately occurs with many metagraphs, v and u may
simply appear by chance to share many characteristic meta-
graphs. Incorporating both aspects, we propose ametagraph-
basedmeasure below.

Definition 2 (Semantic proximity). The semantic proxim-
ity between any two nodes v and u is

pðv; u;wÞ ,
2 m>vuw

m>v wþm>uw
; (3)

for some non-negative vectorw of jMj elements.

The measure p entails a family of proximity with
parameters w. We interpret w as the characteristic weights
(or simply weights) of the metagraphs, which can be var-
ied to fit different classes of proximity. The weights shall
be non-negative, indicating the importance of the meta-
graphs towards the desired semantic class. Consider the
toy example in Fig. 2 with M¼ fM1; . . . ;M4g. A reason-
able w could be ð0:9; 0; 0; 0ÞT for classmate, ð0; 0:6; 0:1; 0ÞT

for close friends, and ð0; 0; 0; 0:8ÞT for family, where the ith
dimension of w encodes the importance of metagraph Mi.
Thus, within the family of proximity, the optimal model
for a class is completely specified by its optimal weights
w�, which we aim to learn automatically.

Interestingly, the proposed measure exhibits a few desir-
able properties, as described in Theorem 1. In particular, par-
tial transitivity implies that if a node v is close to both nodes u
and z, u and z tends to be close to each other too. This is a com-
mon phenomenon on social networks, where friends of
friends aremore likely to be friends than a randomperson.

Theorem 1 (Properties). Given any three nodes x; y; z and
weightsw, the following hold.

� Symmetry. pðv; u;wÞ ¼ pðu; v;wÞ:
� Boundedness. 0 � pðv; u;wÞ � 1.
� Scale-invariance. pðv; u;wÞ ¼ pðv; u; cwÞ for any

c > 0.
� Partial transitivity. There exists some d > 0, such

that for any � 2 ½0; 1�, if pðv; u;wÞ � 1þ�d
1þd and

pðv; z;wÞ � 1þ�d
1þd , then pðu; z;wÞ � �.

3.2 Learning to Rank

For a desired class of proximity, we assume some training
examples V as supervision. Each example is a triple ðq; v; uÞ,
where node v is ranked before node u for the query node q,
i.e., v’s proximity to q should be greater than u’s. These
examples can often be gathered by user studies [8], [9],
while some platforms like Facebook also allow users to label
their connections directly.

Given the training data V, we can find the optimal
weights w� by maximizing the log-likelihood. Intuitively, it
becomes more likely to observe an example ðq; v; uÞ when
v’s proximity to q is increasingly larger than u’s. In other
words, the probability of the example, P ðq; v; u;wÞ, tends to

Fig. 3. Overall framework for metagraph-based learning, using semantic
proximity search as an example task.
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increase with the difference in v and u’s proximity to q,
pðq; v;wÞ � pðq; u;wÞ. In particular, we define the probabil-
ity using a sigmoid function in Eq. (4). Here m 2 ð0;1Þ is a
scaling variable to control the shape of the distribution; we
set m ¼ 5, which is found to be robust in our experiments

P ðq; v; u;wÞ ,
1

1þ e�mðpðq;v;wÞ�pðq;u;wÞÞ
: (4)

Subsequently, given all the examples, we aim to maxi-
mize the following log-likelihood function L, to ultimately
find the optimal weights w� ¼ argmaxw LðwjVÞ. Since L is
differentiable, it can be optimized by employing the gradi-
ent descent algorithm

LðwjVÞ ¼
P

ðq;v;uÞ2V logP ðq; v; u;wÞ: (5)

3.3 Dual-Stage Training

As illustrated in Section 1, there exist a huge number of
metagraphs even with just a few types of object. To reduce
the overall matching time, we propose a novel process of
dual-stage training. As the key insight, while there are
many metagraphs inM, the vast majority of them are irrele-
vant. Only a small number of metagraphs among M can
characterize the desired class of proximity. In other words,
the optimal weights w� are sparse with many zero or nearly
zero entries. Therefore, it is ideal to only focus on a small
subset of candidate metagraphs, K 	M, which show prom-
ise to characterize the desired class. Subsequently, we only
match the candidates and compute the proximity based on
the instances of these candidates.

Seed Metagraphs. Note that, without computing the
instances of any metagraph, there is no clue at all to locate
the promising candidates. Instead, we first identify a small
number of seed metagraphs K0 as the initial candidates and
compute their instances IðMÞ; 8M 2 K0, which can lead us
to more candidates. The seeds must meet the following cri-
teria. First, easy identification: we can easily recognize the
seeds without computing any instance. Second, fast match-
ing: the seeds can be matched very fast. Third, candidate heu-
ristic: the seeds must enable some heuristic for selecting
more candidates without computing more instance.

To select the seeds, we observe that metapaths (i.e., meta-
graphs that are paths such as M3 in Fig. 2) are less complex
than general metagraphs. As a result, there are far fewer
metapaths than metagraphs. Matching a metapath also
tends to be much faster due to the simpler structure.

Candidate Heuristic. We need to further develop a heuris-
tic using the seeds in order to identify additional meta-
graphs from M n K0, without computing more instances.
Again, we can only rely on the structural information of the
metagraphs. On the one hand, two metagraphs are structur-
ally similar if they share some common pattern, such as
their maximum common subgraph (MCS) [15]. The larger
MCS shared by two metagraphs, the more structurally simi-
lar they are. LettingM be the MCS ofMi andMj, their struc-
tural similarity can be defined as

SSimðMi;MjÞ ¼
ðjVM jþjEM jÞ

2

ðjVMi
jþjEMi

jÞ
ðjVMj
jþjEMj

jÞ : (6)

On the other hand, the function of a metagraph refers to its
contribution to (or its weight in) the proximity measure.
That is, two metagraphs are functionally similar if their cor-
responding weights are also similar.

Intuitively, metagraphs that are structurally similar tend
to be functionally similar too. Given the seeds K0 and their
instances, we can learn the function of the seeds, i.e., their
corresponding weights in w0. Supposing that a metagraph
Mj 2 M n K0 is structurally similar to a seed Mi 2 K0, Mj

and Mi will also be functionally similar. That is, if Mi has a
large weight (i.e., w0½i� is large), Mj is also likely to have a
large weight (i.e., Mj is a promising candidate). Thus, we
select candidates with the largest candidate heuristic score H,
which maximizes their structural similarity to any seed
metagraph with a large weight

HðMjÞ , max
Mi2K0

w0½i� � SSimðMi;MjÞ
� �

: (7)

Dual-Stage Algorithm. We outline the above heuristic in
Algorithm 1, consisting of two stages. In the seed stage, we
compute the instances of the seeds K0, and train their
weights w0. In the candidate stage, based on K0 and w0, we
further identify candidates K using the candidate heuristic,
and train new weightsw� for K0 [ K.

Algorithm 1. Dual-Stage Training

Input: graph G; set of metagraphsM; number of candidates
jKj; training examples V

Output: optimal weightsw�

// seed stage

1: K0  fM 2 MjM is a pathg
2: I0  fIðMÞjM 2 K0g
3: w0  Train (V;K0; I0)
// candidate stage

4: K  Top jKjmetagraphs byH scores based on K0;w0

5: I  fIðMÞjM 2 Kg
6: w�  Train(V;K0 [ K; I0 [ I )
7: return w�.

4 EFFICIENT METAGRAPH MATCHING

In this section, we address the subproblem of metagraph
matching, which dominates the offline phase. We first sum-
marize existing algorithms, and further present a new solu-
tion to address their drawback.

4.1 Subgraph Matching Revisited

Consider a metagraph M ¼ ðVM ; EM ; tMÞ on a graph
G ¼ ðV;E; tÞ. To compute the instances of M on G, there are
a number of existing approaches [16], [17], [18], [19] based
on the backtracking method, summarized as follows.

Given an ordering of nodes in VM , let ui 2 VM be the ith
node in the ordering where 1 � i � jVM j. Denote Dk as the
set of k nodes in V that match fu1; u2; . . . ; ukg, and
Cðukþ1jDkÞ as the set of nodes each of which can match ukþ1

given the existing matchingDk.
Initially, we have D0 ¼ ;. The backtracking method first

identifies the set Cðu1jD0Þ of nodes in V such that the type of
each node v 2 Cðu1jD0Þ equals the type of the first node u1 in
VM , i.e., tðvÞ ¼ tMðu1Þ. For each node v 2 Cðu1jD0Þ, wematch
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v to u1, i.e., D1 ¼ fvg. Given D1, we further identify the set
Cðu2jD1Þ for u2 such that each node v0 2 Cðu2jD1Þ can match
u2 and the graph induced on D1 [ fv

0g is an instance of the
metagraph induced on u1 and u2 (Definition 1). In other
words, v0 6¼ v, tðv0Þ ¼ tMðu2Þ, and hu2; u1i 2 VM if and only if
hv0; vi 2 V . If Cðu2jD1Þ is empty, we stop searching further
and immediately backtrack to another node inCðu1jD0Þ. Oth-
erwise, Cðu2jD1Þ is not empty, and for each node in
v0 2 Cðu2jD1Þ we have D2 ¼ D1 [ fv0g, from which we can
recursively compute D3;D4; . . . ;DjVM j. We then report the
subgraph induced by DjVM j as an instance of M on G, and
backtrack to compute other instances.

4.2 Metagraph Symmetry

The above approaches all deal with general metagraphs.
However, we observe that symmetric metagraphs like
M1–M4 in Fig. 2 are very common, forming the vast majority
of all metagraphs containing two user nodes. Thus, how to
efficiently handle symmetric metagraphs become crucial.
To begin with, we present a formal definition of metagraph
symmetry below.

Definition 3 (Metagraph Symmetry). Consider a metagraph
M ¼ ðVM ; EM ; tMÞ. M is a symmetric metagraph if there
exists a non-empty set CM containing pairs of distinct nodes of
the same type in VM , such that the edge set EM remains
unchanged even if, for each pair ðu; u0Þ 2 CM , we exchange u
and u0 in all edges incident to u or u0. We also say that such u

and u0 are symmetric to each other inM.

For example, the metagraph M5 in Fig. 4 is symmetric,
since there exists a set fðu1; u5Þ; ðu2; u6Þg, such that if we
exchange u1 and u5 (resp. u2 and u6) in all edges incident to u1

or u5 (resp. u2 or u6), the set of edges inM5 remain the same.
Previous approaches [16], [17], [18], [19] often incur a large

amount of redundant computation on symmetric meta-
graphs. To illustrate, after matching u1; u2; . . . ; u4 in M5, pre-
vious approaches need to compute the matchings Cðu5jD4Þ
and Cðu6jD5Þ from scratch, even though u5 (resp. u6) is sym-
metric to u1 (resp. u2). Take u6 as an example, they have to
examine every node in V if its type is the same as u6, and if it
appropriately connects to the graph induced by D5. Since u2
is symmetric to u6, potentially we do not need to examine
every node in V , but rather only thosematched by u2.

4.3 Symmetry-Based Matching

To leverage the symmetry ofmetagraphs, we propose a novel
approach to compute the matchings of a node u from its sym-
metric node u0 inM. For example, in Fig. 4, the instances of u5

and u6 can be computed from the instances of u1 and u2, since
u5 (resp. u6) is symmetric to u1 (resp. u2). However, we cannot

treat each pair of symmetric nodes independently. For exam-
ple, in Fig. 4, the matchings of u2 cannot be re-used by u6

without considering u1 and u5 in conjunction, since u2 is adja-
cent to u1 but not u5 (which u6 is adjacent to).

To cope with the above issue, we decompose the node set
VM into disjoint connected components, so that each compo-
nent can be handled independently. In particular, if a node u
is not symmetric to any other node onM, u forms a singleton
component S, i.e., S ¼ fug. Otherwise, we partition the sym-
metric nodes into several connected components, such that
for each component S, we have (i) each node u 2 S has the
same number of symmetric nodes onM, (ii) each node u 2 S

is not symmetric to any other node u0 2 S, and (iii) S is the
largest such set. For example, we can decomposeM5 in Fig. 4
into 4 components, namely S1 ¼ fu4g, S2 ¼ fu1; u2g, S3 ¼
fu3g and S4 ¼ fu5; u6g. We say that a component S is symmet-
ric to another component S0, if for each node u in S, there
exists a node u0 in S0 such that u is symmetric to u0 onM. For
instance, the components S2 and S4 described above are sym-
metric to each other.

The above decomposition ensures that each component is
independently symmetric to some other component. Thus, if
a component S is matched prior to its symmetric component
S0, we can save the cost for S0 by re-using the instances of S.
Algorithm 2 outlines our proposed approach by utilizing
symmetric components. We still follow the backtracking
framework, but instead of trying one node at time, we match
one component at a time. Thus, we first need to decompose a
metagraphM into several components. Next, we simplifyM

into a smaller graphMþ, to avoid redundant computation on
symmetric components. Finally, we design amatching order-
ing over the components in Mþ. In what follows, we elabo-
rate on each step.

Algorithm 2. Compute Instances of Metagraph

Input: a graph G; a metagraphM

Output: the set IðMÞ of instances ofM
1: decomposeM into a set B of components based on symmetry
2: simplifyM asMþ using B
3: compute a matching order o for components ofMþ

4: IðMÞ  MatchingByComponent(G,M , o, 1, ;)
5: return IðMÞ.

Metagraph Decomposition. To decompose M into compo-
nents, we first construct a component for each node uwhich
is not symmetric to any node in M, and remove u from M.
Then, in the residual graph M 0, we construct the symmetric
components. In particular, we process the nodes inM 0 itera-
tively. In each iteration, we randomly choose a node u and
construct a component S initially containing only u, as well
as a component S0 for each u0 that is symmetric to u. Then,
we iteratively add more nodes into S (resp. each S0) such
that the rules of components specified earlier are not vio-
lated. When no more nodes can be added into S, we remove
S from M 0 and continue to construct components in the
residual graphM 00 untilM 00 is empty.

Metagraph Simplification. Now we simplify the metagraph
by representing it with its components. Specifically, we
replace the nodes in M by the components containing them,
and add an edge between components S and S0 if there
exists nodes u 2 S and u0 2 S0 such that u and u0 are adjacent

Fig. 4. A metagraphM5 and its simplified metagraphMþ
5 .
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to each other on M. To further simplify, among each set of
symmetric components, we only retain one of them and
remove the rest. Denote Mþ as the resulting simplified
metagraph. In Fig. 4, M5 is converted into Mþ

5 with three
components S1–S3, where S2 (retained) is symmetric to
S4 ¼ fu5; u6g (removed).

Matching Order. To reduce the search space, the matching
order of nodes is important. Previous approaches [16], [20]
select the next node such that the number of intermediate
instances can be minimized. For example, starting from a
metagraph Mð1Þ containing only one edge hu1; u2i from M,
we can extendMð1Þ by adding an edge hu2; u3i fromM, result-
ing in a larger intermediate metagraph Mð2Þ. We can thus
estimate the number of instances of Mð2Þ as fðMð2ÞÞ ¼

jIðMð1ÞÞj � jIðhu2;u3iÞjjIðu2Þj
. In general, Mðiþ1Þ can be obtained by

adding an edge hu; u0i from M to MðiÞ, and the number of its

instances can be estimated as fðMðiþ1ÞÞ ¼ fðMðiÞÞ � jIðhu;u
0iÞj

jIðuÞj .

Thus, in each step, we pick the next node to minimize the
number of estimated instances of the intermediate meta-
graph. We can generalize this approach to order the compo-
nents of Mþ: when a node of a component is chosen, we
select that component as the next tomatch.

Matching Simplified Metagraphs. The matching algorithm
for a simplified metagraph follows the backtracking frame-
work in Algorithm 3. Compared with previous methods
that match a node at a time, our approach matches one com-
ponent at a time. Given the set D of already matched nodes,
the matchings of a component S are the matchings of its
constituent nodes, denoted as CðSjDÞ. We can save signifi-
cant computation when S is a symmetric component. Let B
be the set containing S and the symmetric components of S.
Subsequently, we can compute the matchings for all compo-
nents in B, denoted by CðBjDÞ, based on CðSjDÞ. That is,
we do not need to compute CðS0jDÞ for any S0 6¼ S and
S0 2 B. We simply choose jBj number of distinct matchings
from CðSjDÞ. For each choice of jBj matchings, we inspect
whether the connectivity between components satisfies
Definition 1. If so, we add the choice to CðBjDÞ.

Complexity Analysis. Consider a metagraph M ¼ ðVM ;

EM ; tMÞ and a graph G ¼ ðV;E; tÞ. In Algorithm 2, the
decomposition and computation of matching order (lines 1–
3) require at most one scan of VM for each node, leading to

the time complexity of OðjVM j
2Þ, where jVM j is often very

small. Next, we consider the cost of matching (line 4).
Assuming a general M without symmetry, Algorithm 3
starts from the instance set IðMð1ÞÞ, and then repeatedly
inspects the neighbors of a chosen node for a depth of at
most jVM j � 2. Since IðMð1ÞÞ � jEj, the time complexity of

matching is upper bounded by OðjEj � djVM j�2Þ, where d is

the maximal node degree in G. Again, jVM j is typically very
small. Furthermore, for a symmetricM, the depth of inspec-
tion is even smaller given a smaller simplified metagraph.

Adaptation to Dynamic Graphs. Real-world graphs often
evolve over time. When a large graph changes, it is infeasible
to re-compute the instances from scratch. Instead, the instan-
ces can be updated incrementally by refining the affected
ones [21], which are often of a small number in practice. In
particular, when edges are deleted from the graph, we only
need to remove the instances that contain those edges. On the
other hand, when adding edges to the graph, for each new
edge we enumerate the instances containing the new edge,
within a distance of not more than the maximum size of
metagraphs.

Algorithm 3.MatchingByComponent

Input: a graph G; a metagraph M; a matching order o; the
index of matching component k; the set D of
matched nodes;

Output: the set I 0ðMÞ of instances with D

1: if jDj ¼ jVM j then
2: return the instance induced byD.
3: end
4: S  kth component in the matching order o
5: B  the set includingS and its symmetric components, if any
6: compute the set CðBjDÞ
7: I 0ðMÞ  ;
8: for each S0 2 B do
9: D0  themerge ofD and thematching of S0 fromCðBjDÞ
10: I�  MatchingByComponent(G,M, o, kþ 1,D0)
11: add I� into I 0ðMÞ
12: end
13: return I 0ðMÞ.

5 GENERAL REPRESENTATION FOR LEARNING

While metagraphs are initially motivated by the problem of
semantic proximity search, in this section, we investigate
their generalization to other machine learning problems on
heterogeneous graphs. We first introduce the concept of
anchored metagraphs, a further differentiation of metagraphs
to better describe the nodes and their interactions. Next, we
examine a general node and edge representation based on
anchored metagraphs, towards solving various machine
learning problems including semantic proximity search.

5.1 Anchored Metagraphs

Metagraphs form the building blocks of our proximity mea-
sure. As discussed in Section 2, they can effectively relate
two nodes on a heterogeneous graph and work well for
many semantic classes of proximity. However, they are not
fine-grained enough to discriminate the role of individual
nodes within the same metagraph.

Consider a graph that connects Peter and Steven in Fig. 5a.
Although both of them are represented by author nodes,
Peter and Steven likely play two distinct (latent) roles. In par-
ticular, Peter is likely a professor, as he not only co-authors
papers with Steven, but also manages a grant and serves on
the admission committee. On the other hand, Steven is likely
a graduate student. Additionally, Peter and Steven possibly

Fig. 5. Object graph and metagraph for co-authors.
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form the advisor–advisee relationship. Unfortunately, if we
only know that both co-occur in the same metagraph as
shown in Fig. 5b, we cannot tell apart the professor and stu-
dent as there is no differentiation between the two author
nodes in themetagraph.

In other words, the metagraph definition in Section 2 is
unable to capture the semantics of two nodes of the same
type when their roles are not commensurate with each other.
Apart from advisor–advisee, many other examples with dis-
tinct roles exist, such as landlord–tenant, physician–patient,
and client–vendor. More generally, it is inadequate to
describe individual nodes or their interactions with the fre-
quency of occurring or co-occurring in a given metagraph.
The underlying weakness is the lack of granularity to differ-
entiate nodeswithin ametagraph.

Towards finer-granularity, we propose anchored meta-
graphs, where different nodes are explicitly “anchored”
within ametagraph.We use the problem of semantic proxim-
ity search as an example. As illustrated in Fig. 6, to search for
Peter’s advisees, the left author node specifies or “anchors”
the head node to abstract the query Peter, whereas the right
one anchors the tail node to abstract the answer Steven. In
contrast, to search for Steven’s advisor, the opposite happens
in Fig. 6b. Thus, the same metagraph can be anchored in
different ways to capture different semantics and directions
of the search. In particular, the head and tail anchors pro-
vide the necessary granularity to discriminate nodes within
a metagraph. Note that, for simplicity and practicality, we
only discuss the case with two anchors or roles. However,
we emphasize that it is also straightforward to anchor multi-
ple nodes with multiple latent roles. A formal definition is
presented below.

Definition 4 (Anchored metagraph). An anchored meta-
graph is represented as a triple A ¼ ðM;h; tÞ, where M ¼
ðVM ; EM ; tMÞ is a metagraph, and h; t 2 VM respectively define
the head and tail nodes inM for some h 6¼ t.

The above definition implies that the same metagraph
can generate more than one anchored metagraphs. For
instance, the metagraph in Fig. 5b corresponds to two differ-
ent anchored metagraphs A1 and A2, shown in Figs. 6a and
6b. In other words, anchored metagraphs are more granular
and expressive than metagraphs.

We further note that anchored metagraphs can subsume
metagraphs as a special case, when two nodes play commen-
surate or balanced roles within a metagraph. Using the meta-
graph user–employer–user as an example, there is only
one corresponding anchored metagraph, because user½head�–
employer–user½tail� and user½tail�–employer–user½head� are
isomorphic, meaning that they are in fact identical to each

other. Therefore, anchoredmetagraphs can be adopted univer-
sally, regardless ofwhether there exist different latent roles.

5.2 Node and Edge Representations

The frequency of a node’s occurrences in an anchored meta-
graphs at a specific anchor can be treated as a feature for this
node. Likewise, the frequency of two nodes’ co-occurrences
in an anchored metagraph at specific anchors is a feature for
the (potential) edge between the two nodes.

Consider a collection A ¼ fA1; A2; . . .g, where each Ai ¼
ðMi; hi; tiÞ is an anchored metagraph. Note that it is possible
to have Mi ¼Mj for some i 6¼ j since the same metagraph
can generate multiple anchored metagraphs. We can subse-
quently encode any node and any pair of nodes using these
anchored metagraphs.

Node Representation. We can represent any node v on the
graph using two vectors ahv and atv, each with jAj elements.
The ith elements, ahv ½i� and atv½i�, record the number of
instances of Mi containing v at its head and tail anchors in
Ai, respectively. That is

ahv ½i� , jfS 2 IðMiÞ : v 2 VS;fðvÞ ¼ higj; (8)

atv½i� , jfS 2 IðMiÞ : v 2 VS;fðvÞ ¼ tigj: (9)

Recall that f is the bijection between the nodes in an
instance and the nodes in a metagraph, as introduced in
Definition 1.

The two vectors are mirror images of each other: ahv ½i� ¼
atv½j� if Mi ¼Mj and hi ¼ tj, a result immediately follows
from their definitions. As an example, consider A ¼ fA1; A2g
shown in Fig. 6. Since they are derived from the same meta-
graph, M1 ¼M2 and h1 ¼ t2. Assuming the only matching
instance in Fig. 5a, we have ahPeter ¼ ð1; 0Þ and atPeter ¼ ð0; 1Þ.
The implication of the mirror image is that, if we only study
each node in isolation, such as a node classification taskwhere
a label needs to be assigned to each node, without loss of gen-
erality, it is equivalent to use either ahv or atv as long as we
adhere to the same form for all the nodes consistently. How-
ever,whenwe study twonodes in conjunction, such as a prox-
imity search task where there is a distinction of query and
answer nodes, both forms are necessary depending on the
node.Wewill further elaborate on this use case in Section 5.3.

Edge Representation. We can encode the edge representa-
tion between any two nodes v and u on the graph. Note that
it is irrelevant whether an actual edge exists between v and
u, as the goal here is to derive an effective representation for
differentiating various states between v and u, including the
absence and presence of edges, as well as different types of
edges if present. Consider a vector avu of jAj elements. Its
ith elements, avu½i�, captures the number of instances of Mi

containing both v and u such that v is the head and u is the
tail anchor. That is

avu½i� , jfS 2 IðMiÞ : ðv; uÞ 2 V 2
S ;fðvÞ ¼ hi;fðuÞ ¼ tigj:

(10)

In general, avu 6¼ auv, due to the requirement to align the
head and tail anchors. Therefore, the proposed edge repre-
sentation based on anchored metagraphs is also able to
model the direction of the edges between nodes. In contrast,

Fig. 6. Anchored metagraphs for co-authors.
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metagraph-based representation can only model undirected
edges since mvu � muv. In particular, avu degenerates into
mvu if the head and tail anchors are symmetric to each other
in every metagraph.

Matching.As evident in Eqs. (8), (9) and (10), the node and
edge representations can be derived from the instances of the
original metagraph IðMiÞ, as well as the head hi and tail ti
which can be understood as indices that point to the head
and tail nodes. Thus, for any matched instance, the head and
tail nodes can be easily located by indexing into the instance
with hi or ti in Oð1Þ time, without requiring any additional
matching. In otherwords, thematching algorithm in Section 4
can still be applied as is.

Remark. Our node and edge representations are derived
solely based on matching instances on the graph, without
requiring any task-specific supervision. Essentially, the
same representations can be used universally in different
downstream tasks, including supervised tasks such as sem-
antic proximity search, node classification or relationship
prediction, as well as unsupervised tasks such as node
clustering.

5.3 Use Case: General Semantic Proximity

The proposed node representation can be immediately used
for node-centric machine learning tasks, such as node classi-
fication and clustering. Likewise, the edge representation
can be used for edge-centric tasks such as link prediction. In
either scenario, standard supervised and unsupervised
learning algorithms can be applied.

Apart from standard learning tasks, as one of the main
use case in this paper, we introduce a more general form of
semantic proximity based on the proposed node and edge
representations. Similar to Definition 2, two nodes are more
likely to satisfy the desired class of proximity if they “share”
or co-occur in many characteristic anchored metagraphs.
Furthermore, to ensure that such co-occurrences are not by
chance, each of the two nodes should appear in fewer
anchored metagraphs individually. However, in the general
case, we must also differentiate the head and tail anchors in
order to support potentially distinct roles played by query
and answer nodes.

Definition 5 (General Semantic Proximity). The general
semantic proximity between a query node q and a candidate
answer node v is

Pðq; v;wÞ ,
2 a>qvw

ahq
>wþ atv

>w
; (11)

for some non-negative vectorw of jAj elements.

This definition notably does not satisfy the symmetry
property in Theorem 1 in the general case, which is an
expected behavior when query and answer nodes play dif-
ferent roles. Nonetheless, as a special case, P subsumes p

and thus satisfy symmetry if the head and tail anchors are
symmetric to each other in every metagraph.

6 EXPERIMENTS

The goal of our experiments is twofold. First, the proposed
metagraph-based approach can effectively model semantic

proximity. Second, the proposed metagraph matching algo-
rithm is efficient.

6.1 Experimental Setup

Datasets. We conducted extensive experiments on two real-
world datasets collected by previous studies, namely Linke-
dIn [9] and Facebook [8], as summarized in Table 2 and
elaborated below.

� LinkedIn. The graph contains objects of four types:
user, employer, location and college. The
relationships between some user pairs are labeled
into different semantic classes. We chose two major
classes, namely, College friend and Coworker.1

� Facebook. The graph includes the following types:
user, concentration, degree, school, home-

town, last-name, location, employer, work-

location and work-project.2 Given no explicit
labels, we generated the ground truth based on rules
mimicking natural classes of proximity. Specifically,
we considered two classes: (i) Family, two users shar-
ing the same last-name as well as the same loca-

tion or hometown; (ii) Classmate, two users sharing
the same school as well as same degree or con-

centration. Notwithstanding the rules, we dictated
a 5 percent chance to assign a random class as noises.

Training and Testing.A user q can be used as a query node
if there exists at least another user v such that the relation-
ship between q and v belongs to the desired class of proxim-
ity in our ground truth. We randomly split these queries
into two subsets: 20 percent reserved as training and the
rest as testing. We repeated such splitting for 10 times, and
report the results averaged over the 10 splits.

In each split, based on the training queries, we further gen-
erated training examples ðq; x; yÞ such that q and x belong to
the desired class while q and y do not. For testing, we con-
structed an ideal ranking for each test query node and desired
class, which is compared against the ranking generated by
various proximity algorithms. In particular, we adopted
NDCG and MAP [14] to evaluate the quality of the rankings
at top 10 nodes.

Metagraphs. As discussed in Section 2, we applied GRAMI
[13] tomine the set ofmetagraphs. Preprocessingwas done to
prune less viable metagraphs. First, a viable metagraph must
have at least two “core” nodes, which are user nodes in our
case, since our ground truth is designed for the proximity
between such node pairs. Additionally, the core nodes should
be symmetric to each other in their containing metagraph,
since our target proximity such as coworker and classmate

are symmetric. In general, the symmetry-based pruning is

TABLE 2
Summary of Datasets

Graph # Nodes # Edges # Types # Metagraphs

LinkedIn 65 925 220 812 4 153
Facebook 5 025 100 356 10 934
DBLP 172 136 968 822 5 74

1. Including those labeled as “colleague” and “excolleague”.
2. Other types are not used due to their sparsity or irrelevance.
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not always necessary, as we shall see in Section 7.1 where
asymmetric relationships are being dealt with. Second, a
metagraph must contain at least two different types in order
to capture the heterogeneity. Third, we removed metagraphs
with “dangling” nodes, which are non-core nodes with
degree one, as such nodes often do not explain the interac-
tions between core nodes. Finally, we restricted metagraphs
to have at most 5 nodes, which are found to be adequate in
expressing complex interactions.

We apply logarithms on the metagraph indices (Eqs. (1)
and (2)). That is, a raw count f would transform into
log ðf þ 1Þ, as raw counts often generate sublinear returns.

6.2 Empirical Results on Semantic Proximity
Search

Comparison to Baselines. We first evaluate our proposed
method against baseline methods, as follows.

� MGP: The proposed metagraph-based proximity.
� MPP: Metapath-based proximity, by restricting the

set of metagraphs to paths only.
� MGP-U: Metagraph-based proximity with uniform

weights. That is, we do not differentiate the impor-
tance of metagraphs to any semantic class.

� MGP-B: Proximity based on the single bestmetagraph.
� SRW: Supervised random walks [7], a supervised

variant of personalized PageRank [2]. The general
principle is to learn different weights for edges, so

that the transition matrix is biased to make certain
nodes more likely to be visited in accordance with
the training data.

In our experiments, we varied the number of training exa-
mples from 10 to 1000. Note that this has no effect onMGP-U,
as it simply uses a uniform weighting independent of the
training data.Moreover, for ourmethods, no dual-stage train-
ing is employed,whichwill be investigated separately next.

We report the NDCG andMAP of the rankings produced
by these algorithms in Figs. 7 and 8, respectively. The first
key finding is that, MGP performs consistently better than
all other algorithms, by more than 10 percent in many cases.
As our second finding, we observe a steady increase in the
performance of MGP when the number of training exam-
ples grows, indicating that our learning is effective.

Evaluation of Dual-Stage Training. We further investigate
the efficacy of dual-stage training. Treating the ranking accu-
racy (NDCG andMAP) and time of using only the seedmeta-
graphs K0 as 0 percent, and those of using all metagraphsM
as 100 percent, we compute the relative percentage in accu-
racy and timewhenwe vary the number of candidates jKj.

We present the outcomes in Fig. 9. Aswe increase the num-
ber of candidates, we expect an increase in both accuracy and
time. In particular, the rate of increase in accuracy is much
faster than in time. Using only 50 and 150 candidates on
LinkedIn and Facebook, respectively, the increase in accuracy
is approaching 100 percent (i.e., as good as using all
metagraphs). Meanwhile, the time cost is far from reaching

Fig. 7. Evaluation of metagraph-based proximity and baselines with NDCG.

Fig. 8. Evaluation of metagraph-based proximity and baselines with MAP.

Fig. 9. Impact of dual-stage training (special values of jKj: 0 if only use seed metagraphs; “all” if use all metagraphs).
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100 percent (i.e., requiringmuch less time than using all meta-
graphs). Comparing with using all the metagraphs, we sacri-
fice the ranking accuracy by only 1 percent in absolute values,
on average. In contrast, we can reduce the overall matching
time by an average of 83 percent. In summary, our dual-stage
training can significantly reduce overall matching time with
only aminuscule impact on the ranking accuracy.

6.3 Empirical Results on Metagraph Matching

We further examine the efficiency of metagraph matching.
In particular, we compare the proposed symmetry-based
algorithm, denoted by SymISO, with three state-of-the-art
baselines: BoostISO [19], TurboISO [18] and QuickSI [16]. To
further illustrate the importance of node matching orders in
SymISO, we also compare to a weaker scheme of SymISO
that uses a randommatching order, dubbed SymISO-R.

We illustrate the average running time per metagraph for
all the algorithms in Fig. 10, where the size of metagraphs
varies. Observe that SymISO consistently outperforms the
best baseline, namely BoostISO, by 52 percent on average
among metagraphs of all sizes. When the number of nodes
in a metagraph increases, the performance margins between
SymISO and the baselines become larger, since more redun-
dant computation can be avoided due to larger symmetric
components. In particular, on metagraphs with merely three
nodes, SymISO is better by only about 10 percent. Further-
more, SymISO is also faster than SymISO-R in all cases, sug-
gesting the usefulness of our matching order.

7 FURTHER EXPERIMENTS ON REPRESENTATION

We present additional empirical results on general repre-
sentations based on anchored metagraphs. Specifically, the
proposed representations perform consistently well across
common learning tasks and classifiers.

7.1 Experiment Setup

Dataset. We used DBLP [22], which naturally contains not
only balanced roles such as colleagues, but also imbalanced
roles such as advisors and advisees. The graph includes the
types of paper, author, year, venue and keyword.
Some of the author pairs are labeled as “adivsor–advisee”
or “colleague”. We leveraged these labels as the ground
truth for three learning tasks, to be further elaborated later.
We only retained paper nodes connected to at least one
author node appearing in the ground truth. A summary of
the graph is shown in Table 2.

Metagraphs. Metagraphs were filtered and processed in
the same way as in Section 6.1, except that we kept asym-
metric metagraphs and restricted the metagraph size to 6.

Generally, a metagraph of size 5 or 6 is complex enough to
capture rich semantics, as our experiments in Section 7.3
will further demonstrate. In total 74 metagraphs remained,
from which we enumerated all possible combinations of
head and tail anchors on each metagraph, and obtained 101
anchored metagraphs. Note that the number of combina-
tions of head and tail is relatively small since they can only
be assigned to core nodes, and some combinations result in
isomorphic anchored metagraphs.

Downstream Tasks. We considered four machine learning
tasks, as follows.

� Semantic proximity search.We search for the advisor(s)
of a given author query node. Note that this is an
asymmetric search given the imbalanced roles of
advisor and advisee. Training, testing and evalua-
tion followed the set up in Section 6.1, using 1,000
training examples.

� Binary node classification. We classify a given author

node as an advisor (Yes) or otherwise (No). Anauthor

node belongs to theYes class if and only if it has at least
one advisee. We split the nodes in the ground truth
into 80 percent training and 20 percent testing data,
repeated for 50 times, and report their average AUC
(under the ROC curve) and F-score on the test sets.

� Node clustering. Similar to the node classification task
above, we aim to separate advisors and non-advi-
sors. However, we assume an unsupervised setting,
where the nodes are clustered into two groups with-
out any training data. We repeat the clustering with
100 random initializations and report their average
results in terms of NMI and Rand index.

� Multi-class relationship prediction.Wepredict the relation-
ship between two given author nodes, among three
possibilities: IsAdvisor, IsAdvisee and IsColleague.
Note that the IsColleague relationships are undirected,
whereas the other two are directed. We split the node
pairs in the ground truth into 80 percent training and
20 percent testing data, repeated for 10 times, and report
their averagemicro andmacro-averaged F-scores on the
test sets.

7.2 Empirical Comparisons with Baselines

Baselines.We compared the following representations on the
four tasks.

� MG+: The anchored metagraph-based representa-
tion, which is our proposed solution.

� DeepWalk [23]: an pioneering work on distributed
representations for (homogeneous) graphs.

� node2vec [24]: a more advanced variant of DeepWalk
that samples a mixture of depth and breadth-first
walks. Themixture can be adjusted with parameters p

and q, and we ran a grid search over p; q 2 f0:5; 1; 2g2

to choose the best setting. When p ¼ q ¼ 1, it reduces
toDeepWalk.

� GraphSAGE [25]: A state-of-the-art, general graph
representation learning framework that supports
various neighborhood aggregators. While we tried
multiple aggregators including mean, LSTM, pool-
ing and GCN-based aggregation, we only report the

Fig. 10. Average matching time per metagraph.
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mean aggregator due to its superior performance on
most tasks. Finally, we adopted its unsupervised
variant to align with MG+.

� metapath2vec [26]: A state-of-the-art heterogeneous
graph embedding algorithm. Some domain knowl-
edge is required to select a metapath to guide ran-
dom walks. We tried two common metapaths used
on bibliographic graphs, author-paper-author
and author-paper-venue-paper-author, and
only report the results of the latter given its superior
performance.

� hin2vec [27]: A state-of-the-art heterogeneous graph
embedding algorithm, which does not require the
selection of a metapath.

Apart from various graph representations, we further
compared with a classic graph algorithm called supervised
random walk (SRW) [7], as already explained in Section 6.1.
Note that SRW is a supervised method and thus cannot be
applied to the unsupervised node clustering task.

For graph embedding baselines, we derive the edge
representation from the concatenation of the two nodes’
embeddings. Other common choices include taking their
sum or Hadamard product, which cannot model directed
edges and show inferior empirical results. For all represen-
tation-based methods including MG+, we applied the pro-
posed learning to rank approach (Section 3.2) for semantic
proximity search, k-means algorithm for node clustering,
and logistic regression with elastic net for node classifica-
tion and relationship prediction. We select hyperparameters
via five-fold cross validation on the training sets.

Empirical Results. We report the evaluation of MG+ and
various baselines on the four tasks in Table 3. We observe
that MG+ significantly outperforms all the baselines in all
four tasks. Among the baselines, on the one hand, DeepWalk
and node2vec tend to give weak results as they cannot lever-
age the rich semantics in heterogeneous graphs. On the other

hand, metapath2vec and hin2vec, which account for the het-
erogeneity, generally outperform DeepWalk and node2vec.
Moreover, the performances of GraphSAGE and SRW often
fall in-between of the aforementioned two groups. Note that
while MG+ is the consistent winner, no single baseline
emerges as the consistent runner-up.

7.3 Analysis of Metagraphs

We further investigate the impact of varying meta-
structures on the four tasks, in two aspects.

Nature of the Structures.We compare MG+ to two reduced
schemes: MG and MP, denoting non-anchored representa-
tions based on metagraphs and metapaths, respectively.
Without anchors, MG cannot distinguish different roles of
nodes, whereas MP is a further simplification that only uti-
lizes metapaths. Not surprisingly, MG+ consistently outper-
forms both MG and MP+, as reported in Fig. 11. Between
MG and MP, MG often works better as metagraphs are
more expressive and thus able to capture richer semantics.

We further examine a case study on the task of relationship
prediction through confusion matrices. In both Tables 4a and
4b, the majority of the classification errors happen between
IsAdvisor and IsAdvisee classes, which means both MP and
MG are unable to differentiate the two directed relationships.
While there is some improvement in MG over MP, the reduc-
tion of errors happens with the undirected IsColleague class,
due to the more expressive metagraphs compared to meta-
paths. Nevertheless, the increased expressive power of meta-
graphs does not helpwithmodeling directed relationships.

Size of Structures.Next, we impose a size limit on themeta-
graphs to study the impact. In Fig. 12, we varied the size limit
of metagraphs from 4 to 6. In most tasks, the performance
becomes stable when we increase the size limit to 6, i.e., the
performance lift from 5 to 6 becomes much smaller than the
lift from 4 to 5. In semantic proximity search, although the lift
from size 5 to 6 is still substantial, the absolute performance is
approaching the ceiling of 1.0. Thus, further increasing the
size limit in this taskwould havemarginal benefits too. There-
fore, metagraphs of up to size 5 or 6 are often expressive
enough to capture most complex semantics between nodes. It
is worth noting that an existing study [28] on meta-structures
also reaches a similar conclusion, where metagraphs of larger
size may bring in remotely connected nodes with weaker
semantic ties.

7.4 Empirical Results on Metagraph Matching

Finally, we compare our proposed matching algorithm
SymISO with two state-of-the-art baselines CFLMatch [29]

TABLE 3
Evaluation on the Four Tasks

(a) Semantic
proximity search

(b) Node
classification

NDCG MAP AUC F-score

DeepWalk 0.532 0.358 0.781 0.489
node2vec 0.535 0.352 0.788 0.494
GraphSAGE 0.902 0.766 0.858 0.636
metapath2vec 0.651 0.470 0.778 0.463
hin2vec 0.922 0.792 0.893 0.685
SRW 0.868 0.747 0.796 0.526
MG+ 0.949* 0.875* 0.909* 0.699y

(c) Node
clustering

(d) Relationship
prediction

Rand NMI Micro-F Macro-F

DeepWalk 0.031 0.006 0.540 0.420
node2vec 0.025 0.005 0.569 0.452
GraphSAGE 0.152 0.134 0.870 0.808
metapath2vec 0.002 0.001 0.836 0.694
hin2vec 0.020 0.124 0.547 0.447
SRW - - 0.367 0.306
MG+ 0.176* 0.145* 0.891* 0.864*

Best results are bolded and marked with */y if significantly different from the
runner-up at the 0.01/0.05 level under t-test.

Fig. 11. Performance comparison of various metagraph schemes. (a)
Semantic proximity search. (b) Node classification. (c) Node clustering.
(d) Relationshihp prediction.
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and BoostISO [19]. Note that the experiments in Section 6.3
are focused on symmetric metagraphs only since the seman-
tic classes involved therein are all symmetric. In this section,
we aim to evaluate both symmetric and asymmetric meta-
graphs, since our tasks involve asymmetric semantics. We
illustrate the average running time per metagraph in
Fig. 13, where we examine the size of metagraphs in
Fig. 13a, and the symmetry in Fig. 13b. In all cases, our pro-
posed SymISO outperforms the baselines. In particular,
compared to CFLMatch, our performance edge on symmet-
ric metagraphs is indeed larger than asymmetric ones.

8 RELATED WORK

Meta-Structures. While the less general concept of metapath
has been proposed [6], metagraphs are more expressive and
effective than metapaths in capturing interactions between
nodes. Given the increased complexity and variety of meta-
graphs, we cannot handle metagraphs in the same way as

metapaths. First, the metapath-based PathSim [6] relies on
manually selecting the useful metapaths. It becomes difficult
given the much larger number of metagraphs and arbitrary
classes of proximity. Thus, we propose a supervised learning
approach. While another work [30] also employs learning for
metapaths, it is only designed for a different task of cluster-
ing. Second, metagraphs are much more difficult to match
than metapaths. Thus, we develop a symmetry-based match-
ing algorithm to improve efficiency. Finally, a recent work
[28] proposes a directed acyclic graph as a meta-structure.
However, they do not handle the general case where roles of
nodes need to be differentiated. Similar structures have also
been employed for other applications lately such as social
influence analysis [31].

Proximity Search. Most earlier research [2], [3], [5], [6] only
measures a “generic” form of proximity on graphs. Different
senses of proximity have also emerged, such as hub and
authority [32], probabilistic precision and recall [33], [34], as
well as importance and specificity [35], [36]. However, these
senses are only formed due to specific patterns in the link
structures (i.e., non-semantic). Although there exist semantic-
oriented studies on graphs, such as social circle learning [8]
and relationship profiling [9], they do not support online
query processing and thus cannot be easily adapted for prox-
imity search. There also exist several random walk
approaches [7], [37], [38], which learn from example ranking
preferences [14] to bias transition probabilities between nodes
of different types or features. However, they are equivalent to
adjusting a linear combination of path probabilities only [2].

Subgraph Matching. A plethora of techniques [10], [16],
[17], [18], [19], [29] have been proposed for subgraph match-
ing, which follow the backtracking framework as discussed
in Section 4. Their major issue is the extremely huge search
space on a large graph. To prune the search space, Shang
et al. [16] have proposed a special ordering of nodes for
matching instead of a random ordering. Subsequently, Han
et al. [18] and Ren et al. [19] have introduced more improve-
ments to further reduce and reuse redundant computation.
However, they do not account for graph symmetry, which
leads to substantial redundant computations.

Graph Representation. Inspired by the success of word
embedding approaches, advances in learning representations
in an unsupervised fashion have been extended to graph data
[39]. Earlier work such as DeepWalk [23], node2vec [24] and
LINE [40] only deal with homogeneous graphs, without
accounting for the complex semantics carried by a heteroge-
neous graph. A few studies on heterogeneous graphs exist,
including state-of-the-art metapath2vec [26] and hin2vec
[27]. Both works utilize the guidance of metapaths, which are

Fig. 12. Performance comparison of variousmetagraph sizes usingMG+.
(a) Semantic proximity search. (b) Node classification. (c) Node cluster-
ing. (d) Relationshihp prediction.

Fig. 13. Average matching time per metagraph.

TABLE 4
Confusion Matrices of Relationship Prediction

Using MP, MG, MG+

(a) MP

Predicted

A E C

True
A 113 289 38
E 126 288 33
C 22 30 128

(b) MG

Predicted

A E C

True
A 114 308 17
E 134 297 15
C 14 17 149

(c) MG+

Predicted

A E C

True
A 398 30 11
E 36 402 9
C 21 23 136

A = IsAdvisor, E = IsAdvisee, C = IsColleague.
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less expressive structures than metagraphs. More recently,
end-to-end graph neural networks, such as GCN [41],
GraphSAGE [25] and GAT [42], have emerged to learn graph
representations in a supervised fashion. Comparing to these
existing studies, our proposed representations have a few
advantages. First, anchored metagraphs are able to capture
direction-aware semantics through head and tail anchors that
can model different roles. Second, our method tends to be
more universal. Previous unsupervised methods [23], [24],
[26] depend on skip-grammodels to optimize node co-occur-
rences, and end-to-end methods [25], [41], [42] optimize task-
specific goals. In contrast, anchored metagraphs capture a
wide variety of fine-grained semantics and interations
between nodes, instead of depending on only co-occurrences
or task-specific supervisions. Third, ourmethod is oftenmore
interpretable, since each dimension corresponds to one
anchored metagraph that carries semantics and can be easily
visualized.

9 CONCLUSION

In this paper, we proposedmetagraph-based learning on het-
erogeneous graphs. Motivated by the problem of semantic
proximity search, we identified and employed metagraphs to
characterize arbitrary semantic classes, which can be learned
in a supervisedmanner.We further generalizedmetagraphs to
anchored metagraphs, in order to model nodes with distinct
roles within the same metagraph. In particular, anchored
metagraphs can be used to construct universal node and
edge representations, to support various machine learning
tasks such as semantic proximity search, node classification
and link prediction. Finally, we also improved the efficiency
of metagraph matching by eliminating redundant computa-
tions on symmetric components, which are present in the
majority of our metagraphs. Empirical results on three real-
world graphs consistently demonstrated the superior perfor-
mance ofmetagraph-based learning.
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