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Abstract

When attempting to recover functions from observational data, one naturally seeks to do
S0 in an optimal manner with respect to some modeling assumption. With a focus put on the
worst-case setting, this is the standard goal of Optimal Recovery. The distinctive twists here
are the consideration of inaccurate data through some boundedness models and the emphasis on
computational realizability. Several scenarios are unraveled through the efficient constructions
of optimal recovery maps: local optimality under linearly or semidefinitely describable models,
global optimality for the estimation of linear functionals under approximability models, and
global near-optimality under approximability models in the space of continuous functions.
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1 Introduction

The investigations conducted in this article fit in the classical setting of Optimal Recovery [10]:
given observational data and a priori information about a function, one attempts to approximate,
in a worst-case setting, the whole function or merely a dependant quantity. Our emphasis here is
put not only on inaccurate data, but also on computability of the approximation procedure.

Formally, functions f are viewed as elements of a normed space X. An educated belief about the
behavior of f translates into the statement that f belong to a model set X C X — this is the
a priori information. The observational data typically take the form of evaluations of f at certain
points x1,...,%m,, i.e., one has access to y1 = f(z1),...,Ym = f(xm). In a more general and
realistic situation, one has access to

(1) yi = Li(f) + e, i€[1:m],
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where £1,..., 4, € X* are (known) linear functionals and the observation process is corrupted by
(unknown) errors ey, ..., e, € R. The monograph [11] contains substantial information about this
framework under different models for the vector e € R™ of observation errors. Here, it is not
viewed as random noise, but rather assumed to belong to an uncertainty set £ C R™. We use the
terminology observation operator to denote the linear map L : f € X — [(1(f);...;m(f)] € R™.
This operator is considered a fixed entity, i.e., the user does not have the leisure to select favorable
observation functionals ¢1,..., ¢, € X*.

We assume throughout the article that @ : X — Z is a linear map (think of @ being a linear
functional, in which case Z = R, or @) being the identity, in which case Z = X). Our goal is to
approximate the quantity of interest Q(f) using only the data y € R™, i.e., to produce a recovery
map R : R"™ — Z yielding a small error ||Q(f) — R(y)||z. With the worst-case setting in mind, one
defines two types of error, namely

e the local error of R at y over K and & is

(2) e o(L,R(y)) == sup [|Q(f) — R(y)llz;
feK, ecE
L(f)te=y

e the (global) error of R over K and & is

(3) exeQ(L, R):= sup [|Q(f) — R(L(f) +e)llz.
feEK, ecE

One of the primary concerns in Optimal Recovery is to grasp how small these worst-case errors can
possibly be. This is quantified e.g. via the so-called intrinsic error

(4) ex.eo(l) = R:]ﬁgiz ex,e,Q(L, R).

In this article, we put an extra emphasis on the practical computation of optimal recovery maps
ROPt . R™ — 7 be they

e locally optimal at y € L(K) + &, in the sense that

loc opt : loc
L, R°P = f L. R :
(5) exe oL, (¥)) il Zelc,s,Q(  R(y));

e (globally) optimal, in the sense that

opt — :
(6) ex.e.0(L, R°P") R:ﬂégizen’g’Q(L’R)'

Obviously, if a recovery map is locally optimal at any y € L(K)+ &, then it is also globally optimal.
Given y € L(K) + &£, we introduce the set of f € K consistent with the data y and denote it as

(7) Ke(y) :={f € K:y=L(f)+ e for some e € £}.



M. ETTEHAD, S. FOUCART

As is well-known (and not difficult to observe), any locally optimal recovery map outputs a so-called
Chebyshev center! of Q(Kg(y)), i.e., a center of a ball of smallest radius containing Q(Kg(y)). This
almost tautological observation, however, is not enough to yield computable optimal recovery maps.
Their efficient construction constitutes one of the main points of this paper, which are listed below.

1. Examples of computable Chebyshev centers beyond the Hilbert case (which was solved by [3]
in the accurate setting under approximability models): the results are presented in Section 2
and seem to be new even in the absence of observation errors.

2. Description of globally optimal recovery maps when the quantity of interest () is a linear
functional: this extension to the inaccurate setting of a result from [5] appears in Section 4
and the computational procedure proposed there is new even in the absence of observation
errors when the observation functionals are not point evaluations.

3. Construction of globally near-optimal maps for full recovery in X = C(D): this again extends
a result from [5] to the inaccurate setting, with a notable difference concerning genuinely
optimal maps, see Section 5.

The remaining Section 3 serves as a reminder of known facts about globally optimal recovery
maps. All our theoretical results are computationally exemplified in the reproducible MATLAB file
accompanying this article, which is downloadable from the authors’ webpages.

2 Computation of Chebyshev centers

In this section, we uncover situations where, using techniques from Robust Optimization [2], it is
possible to exactly compute the Chebyshev center of the set Q(K¢(y)) defined by the observational
data y € R™. It is assumed here that the quantity of interest Q takes values in Z = (X and we
write

(8) Q:feX = [Qu(f);--;Qr(f)] € LX.

The case of linear functionals is included as the special instance K = 1. The starting point is the
observation that Chebyshev centers and radii are solutions to the formal optimization problem

9) minimize 7r subject to [|Q(f) — z|lec < for all f € Ke(y).
2€RK reR

We consider in this section an uncertainty set given by

(10) € =Expi={e €R™:lefloo < m},

!Note that the common definition of Chebyshev center of a set S used here (center of the smallest ball containing S)
differs from the one used in [4, p.148] (center of the largest ball contained in S).
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so that the condition f € Kg¢(y) translates into f € K and y — n < L(f) < y + n, where the
inequalities are understood componentwise. As for the model set K itself, the method presented
below essentially relies on a linear or semidefinite description for it. This point is clarified in the
following two subsections, which are illustrated in the reproducible file.

2.1 The model set is a polytope

We suppose here that the set K is a polytope in X = R" described in inequality form as
(11) K={feR": Af <b} forsome A€ RY*" and beR".

In order to state the result of this subsection, we define an auxiliary matrix A e RIN+2m)xn anq
an auxiliary vector b € RNVT2™ by

R R
(12) A= | L and b:=|+y+n
| —L ] |~y + 1]

We also introduce the vectors g € R™, k € [1 : K|, that satisfy

(13) (qr, f) = Qi(f) for all f € R™.

Theorem 1. For the model set K and the uncertainty € set given in (11) and (10), a locally optimal
recovery map over K and & for the quantity of interest (8) outputs, for any input y € L(K) + &, a
vector z € R® which is solution to the linear program

(14) minimize T subject to ATa™* = +q;,, 2TF >0, (2™ <r+z,.
2€RE reR
Tl B K cRN+2m

Proof. Fixing y € L(K)+ &, we first remark that the set Kg(y) is a polytope described in inequality
form as

(15) Ke(y) = {f e R": Af <b}.

It follows that the constraint in (9) reads maxysern{||Q(f) — 2| : Af < b} < r, which in fact
consists of the 2K linear constraints

(16) max{+((gr, f) = 20) s Af <D <v K E[L:K],
(17) ;gﬁﬁ—((qk,ﬁ—z;@):ﬁfég} <r, kell:K].



M. ETTEHAD, S. FOUCART

Invoking duality in linear programming (see e.g. [4, p.224] read from the bottom up) to transform all
these max-constraints into min-constraints, the constraint in (9) reduces to the 2K linear constraints

(18) min {(bx): Az =+q, 220} <r+z, ke[l:K],
{EGRN+2"”
(19) min {(b,z): Az = —q, 2 >0} <71 — 2, kell: K]
{EGRN+2"”
Thus, the constraint in (9) is equivalent to the existence of z !, ... o ™K =1 2=K ¢ RN+2m

such that ATz5F = +q, 25F > 0, and @, xTF) < r 4z for all k € [1 : K]. Incorporating
these variables into the minimization (9) leads to the announced optimization program. We note in
passing that this linear program features K (2N + 4m + 1) + 1 variables, 2K n equality constraints,
and 2K (N + 2m + 1) inequality constraints. It is therefore efficiently solvable in practice. O

2.2 The model set is the unit ball of a polynomial space

We suppose here that the set IC is the unit ball in the space X = P,, of algebraic polynomials of
degree < n equipped with the supremum norm on [—1,1]. In other words,

(20) K={fe€Pn:lflle-1, <1}

In order to state the result of this subsection, we introduce the notation Toep(z) for the symmetric
Toeplitz matrix built from a vector z € RY, i.e.,

xl $2 oo e xd
T2 T1 X2

(21) Toep(z) :=

T2 T1 X2

_xd .. .. x2 xl_

With T} denoting the jth degree Chebyshev polynomial of the first kind, we now introduce the
auxiliary matrices Cq,...,Cg € R™™ and A1,..., A, € R"*" defined by

(22)  Cp = Toep|Qr(T0); Qr(Th); ... ; Qr(Th—1)] and A; = Toep[l;(To); Li(T1); ... ; Li(Th—1)].

The proof of the theorem below makes use of the following semidefinite duality statement, which
is a somewhat tedious application of [2, p.452-454].

Lemma 2. Given symmetric matrices Aq,..., Am, Bi,..., By, and C, the dual to the semidefinite
program
(23) maﬁ%ize tr[C(P — M)] subject to tr[B;(P+ M)] = 3;, M,P =0,

)

and tr[A;(P — M)] < o
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is the semidefinite program

n m
GO ripimigs 5o+ e kete praty = O
n m
and Zﬂ?iji—<C—ZuiAi),

and u > 0.

With this lemma at hand, we can now state and prove the awaited main result of this subsection.

Theorem 3. For the model set K and the uncertainty set £ given in (20) and (10), a locally optimal
recovery map over K and £ for the quantity of interest (8) outputs, for any input y € L(K) + &, a
vector z € R® which is solution to the semidefinite program

(25)  minimize o sto o+ WPy ) — (0FF Yy — ) <r kg, 0B > 0,058 >0,
zeR® reR
{Ei'kGR",ui’k,Ui’kERm

and Toep(z %) = +( +Cr + Z(Ulik - u.lL’k)Ai>,

i=1
and Toep(z™*) = — ( +Cr + Z(Ulik - ulik)AZ>

i=1

Proof. It was observed in [6, Subsection 5.3], following ideas formulated in [9], that the unit ball in
P, admits the semidefinite description

n—1
(26) K= { Z tr[D;(P — M)]T; for some positive semidefinite matrices M, P € R™*"
§=0

that satisfy tr[D;(P + M)] = 5073'}7

where, for j € [0 : n — 1], the symmetric matrix

0 0 1
0 0
(27) Dj:=11 o . . . 0 1| €R”™
0 1 0
0 0
0 0 1 0 0]
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has 1’s on the jth subdiagonal and superdiagonal and 0’s elsewhere — in particular Dy is the n x n
identity matrix. Thus, fixing y € L(K) + £, the set Q(Kg(y)) admits the semidefinite description

(28) Q(Ke(y)) = {Ztr[Dj(P — M)|Q(Ty) : tr[Dj(P + M)] = 60,5, M, P = 0,

n—1
y—n <Y tr[D;(P— M)L(T)) < y+77}
§=0
Since the matrices Ci,...,Ck and Ay,..., A, are equivalently written as
n— n—1
(29) Ck = Z Qk(Tj)D] and Az = ZEZ(Tj)D],
— par

we see that the constraint in (9) can be reformulated as the 2K semidefinite constraints (indexed
by + and — for each k € [1 : K])

(30) M,Iggk}%xn { + tr[Cy(P — M)] : tr[D;(P + M)] = do,5, M, P > 0,

yi —n < tr[A;(P — M)] Syi—i—n} <74z

Relying on Lemma 2 to transform these max-constraints into min-constraints, the constraint in (9)
reduces to the 2K semidefinite constraints (indexed by + and — for each k € [1 : K])

(31) ;ﬂ;% {w1+<u,y+n> (v,y —mn) Z%D >+(i0k+z i — ;) z)
u,veR™
n—1
Zx]D]>—(iCk+Z(vz u)A,),
=0 i=1

For each of these constraints, we create extra variables z©* € R" u™* € R™ and v* € R™ to
be incorporated in the optimization program (9), which is then reformulated as

(32) minimize 1 sto 27 + (W y ) — (EF Yy —n) <r Lz, wEE > 0,05F >0,
zeRK reR
Z‘i’kERn,ui’k7’Ui’keRm
n—1 m
and :E;—t’ij - —1—( +Cr + Z(vzik - u;t k)AZ>,
7=0 i=1
n—1 m
and :E;—t’ij - — ( +C) + Z(vzik — u;tk)Al>
§=0 i=1
This is indeed the announced semidefinite program, which is solvable in practice. O
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3 Global optimality over approximability models

This section recollects some known ingredients that are needed later. As such, it does not contain
any new result.

3.1 Formal reduction to the accurate setting

Traditional Optimal Recovery often disregards observation errors and works in the setting e = 0.
This is because observation errors can be absorbed into the accurate setting, at least formally. Let us
recall the implicit argument (found e.g. in [10]), which is valid for arbitrary model and uncertainty
sets K and €. It consists of the remark that the global error of a recovery map R : R™ — Z over
K and £ can be written as

(33) sup |Q(f) — R(L(f) +e)lz= sup  [Q((f.e)) — R(L((f.¢e))llz,
églgc (f,e)ekxE

where the quantity of interest @ and observation operator L are defined on the augmented space
X =X xR™ by

(34) Q:(f,e) € X = Q(f) € Z,

(35) L:(fe)e X L(f)+ecR™

Thus, inaccurate optimal recovery over the model and uncertainty sets K and & becomes optimal
recovery over the model set K =K x&C X. This implies, for instance, that if @ is a linear
functional and if & and £ are both symmetric and convex sets, then there is an optimal recovery
map which is linear.

3.2 Approximability models

We concentrate for the rest of this article on a certain model set X introduced in [3]. It is given in
terms of approximability by a linear space V' C X with threshold € > 0 as

(36) K=Kye:={feX: distx(f,V) <e}.

The unit ball of X, which is often considered as a model set in traditional Optimal Recovery,
corresponds to the specific choice V' = {0} and ¢ = 1. In turn, any symmetric convex body can
be described through (36) with V' = {0} and ¢ = 1, since such a body can be viewed as the unit
ball relative to some norm (namely, to its Minkowski functional). In the case of a general space V/,
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the Optimal Recovery problem under the approximability set (36) does not make sense when its
dimension exceeds the amount of data, so one assumes that

(37) n:=dim(V) < m.
We now recall some results valid in the absence of observation errors, see [5, Theorems 2.1 and 3.1].

(i) if @ : X — Z is a linear map, then the intrinsic error over the approximability set (36) satisfies

(39) pro) x=< it sup|Q(f) = RIL(N)z <2 X pr(L) x
: — fex

where the indicator of compatibility between the model and the data is defined as

1QU)lz

39 pv,Q(L) == sup ——;

(39) o(L) feker(r) distx (f, V)

(i) if @ : X — R is a linear functional, then the intrinsic error over the approximability set (36)
decouples exactly as the product of the indicator of compatibility and the approximability
threshold, i.e.,

(40) R, 0R Q) — RIL(P)Iz = pra(k) x &

(iii) if @ : X — R is a linear functional, then a globally optimal recovery map over the approxima-
bility set (36) is provided by the linear functional R : y € R™ — S.™ a%%y; € R, where

i=1%
the optimal weights a®?' € R™ are precomputed (independently of € > 0) as a solution to

Q- i ail;
i=1

subject to Zai&-(v) =Q(v) for all v € V.
X i=1

(41) minimize
acR™

4 Estimation of linear functionals under approximability models

In this section, we assume that the quantity of interest @ is a linear functional. We place ourselves
under the approximability model (36) and continue to do so throughout the rest of the article.
From now on, we also assume boundedness of the observation error e € R™, and hence concentrate
on the uncertainty set

(42) E=&n={ecR" |ef, <n}

defined by an index p € [1,00] and parameter n > 0. It will be convenient to write p’ € [1,p] for
the conjugate exponent to p, i.e., for p’ = p/(p — 1) which satisfies 1/p+ 1/p’ = 1.



INSTANCES OF COMPUTATIONAL OPTIMAL RECOVERY: DEALING WITH OBSERVATION ERRORS

4.1 Description of an optimal recovery map

The result presented in this subsection is an extension of (iii) to the inaccurate setting. Although
a dependence on £ > 0 now appears, a pleasing feature persists: the costly computation (44) of
optimal weights is performed offline once and for all. Thus, when new data y € R™ comes in,
producing the associated estimate via (43) is almost immediate. This contrasts with procedures
(14) and (25), where producing a locally optimal estimate involved a costly minimization for every
new y € R™ coming in.

Theorem 4. If ) : X — R is a linear functional, then an optimal recovery map over the model
set (36) and the uncertainty set (42) is the linear map

(43) RP iy eR™ > a™y; €R,
=1

where the optimal weights a°* € R™ are precomputed as a solution to

Q- i”: ail;
i=1

(44) minimize
a€R™

+ gHaHp/ subject to Zai&-(v) =Q(v) for all v e V.
X i=1

Proof. The core explanation is that, given the approximability set (36) relative to a subspace V
of X and the uncertainty set (42) relative to an index p € [1,00], the model set K = IC x & itself

can be interpreted as an approximability set. For this purpose, we endow the augmented space
X = X x R™ with the norm

E ~
(45) (7o)l =max {I7llx. e}, (fre) € X.
From there, we notice that

(46) (fie) €K <= eV :|[f —v|x <eand [e], <n
< J(v,w) € Vx{0}:|f—v|x <eand %He—pr <e
— J(v,w) € Vx{0}:|(f,e) — (v,w)| g <e.

This means that K reduces to the approximability set

(47) K ={(fe) € X :distz((f,e),V) <&}, V =V x {0}.

From the known result (iii) about the accurate setting, we deduce that a globally optimal recovery
map is given by R :y € R™ —» 327 o

@ - zm: CLZE
i=1

y; € R, where a®?* € R™ is a solution to

- subject to Zaiz(’ﬁ) = Q(V) forall T e V.
X i=1

(48) minimize
acR™

10
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The constraint in (48) simply reads >~ a;¢;(v) = Q(v) for all v € V because any v € V takes the
form v = (v,0) for some v € V. As for the objective function, it transforms into

(49) Q((fre)) — G ((f, ‘Z — i(Gi(f) + e
S Q((f.€)) ;a ((f.e) S Q(f) ;a( (f) +e:)
llellp<n/e
= Qf) — i f ‘4— i€
b [QU) = 2t |2 e
= HQ - Zaz’& + gHaHp"
i=1 X

The result is now fully justified by substituting (49) as the objective function in (48) while taking
the simplified form of the constraint into account. O

Remark. When ) : X — Z is an arbitrary linear map, the interpretation of K=KxE& as an
approximability set also implies, by (i), that the intrinsic error over K and £ satisfies

(50) o) x << nt s QL) ~ R + el <2 g () <
ec&

where the indicator of compatibility now depends on € > 0 (unless 7 is proportional to €) via

(T — 1Q((f. e))llz _ 1Q(f)lz
(51) r.a(L) orer() diste(F,0). V) Liseco max{distx (f, V), Zlell,}
1Q()lz

= sup . :
rex max{distx (f, V), ZILf|lp}

This supremum over f € X is larger than or equal to the supremum over f € ker(L), which leads
to the intuitive fact that the ‘inaccurate’ indicator @(L) is larger than or equal to the ‘accurate’
indicator py,g(L). It is also worth pointing out the fact that

(52) MV,@(Z) <|Qllx=z x Mr/j@)-

Remark. By suitably modifying the approximability set, the result of Theorem 4 can be pushed
beyond the restriction (37) imposing some underparametrization. For details, we refer to the
companion article [7], which introduces and analyzes the model sets

(53) IC:{fGX: distx (f,V) < e and ||f||X§/{},
(54) K={feX: 3veV with [f —v|x <eand ||jv]x <r}.

4.2 Computational realization for X = C[—1, 1]

Unless the dual norm of X can be practically handled, the value of Theorem 4 would remain at the
theoretical level only. The task of solving the optimization program (44) is probably easiest when

11
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X is a reproducing kernel Hilbert space. We do not pursue this direction, which is really close to
[5, Subsection 5.2]. Instead, we consider in this subsection the important situation X = C[—1,1].
We shall reveal that solving (44) is computationally feasible in this situation, too. Notice first
that, in the typical case emphasized in [5] where the observation functionals ¢1,...,¢,, are point
evaluations at distinct x1,...,z,, € [—1,1], the task at hand is relatively easy, since the objective
function of (44) reduces for a generic @ to ||al|1+(n/¢)||all,, up to the additive constant ||Q||¢[—1 1]+
Our focus here is on observation functionals that take the general form

1
(55) 0(f) = / @ax(). [ ec-l

for some signed Borel measures \j,..., A, on [—1,1]. As a guiding example developed in our
MATLAB reproducible, and similarly to a scenario considered in [1], we can think of V' as the space
P9dd of odd algebraic polynomials of degree < 2n and of the observation functionals /1, ..., £, as

Fourier measurements with, say, d\;(x) = sin(imx)dz. Let us also write the linear functional @ as

1
(56) Q) = / f@dpla), feC11]

for some signed Borel measure p on [—1,1]. The main optimization problem (44) then turns into

m

1 m
(57) miniﬂr{pize / dip— Zai/\i + QHaHp/ subject to Zaifi(vj) =Q(v;), jel:n],
acR™ 1 i=1 € i=1
where (v1,...,v,) denotes a basis for V. The latter constraint reads Ma = b, where the matrix
M € R™"™ and the vector b € R have entries
(58) Mjﬂ' = fi(’Uj) and bj = Q(’Uj), 1€ [1 : m], j e [1 : ’I’L]

Let us introduce as slack variables the nonnegative Borel measures v and v~ involved in the
Jordan decomposition v = vt —v~ of v := p— 3" a;\;, so that the problem (57) is equivalent to

1 m
(59) minimize / dvt+v7)+ QHaHp/ subject to Ma =b, v —v~ =p— g ai;.
aERi -1 £ =1
vt =

Next, replacing the measures v and v~ by their infinite sequences 2t = M (v1) € RN and
27 = Moo(v™) € RY of moments defined by

1
(60) = /_ D@ @), k=1,

the problem (59) becomes equivalent? to the infinite semidefinite program

a€R™

m
(61) minimize 2" + 27 + QHaHpr subject to Ma="b, 2t — 27 = M (p - Zai)‘i>’
zt,z=eRN c i=1

and Toep_ (zF) = 0.

2the equivalence is based on the discrete trigonometric moment problem, see [8] for details.

12
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Instead of solving this infinite optimization program, we truncate it to a level N and solve instead
the resulting finite semidefinite program

m
(62) mialéi[g%bize 2+ + gHaHp/ subject to Ma="0b, 27 — 2z~ = My (p — Z a,-)\i),
2T,z RN i=1

and Toepy () = 0.

The rest of this subsection is devoted to justifying in a quantitative way that the minimal value
of this truncated problem converges to the minimal value of the original problem. We also justify,
although not quantitatively, that the vectors ™ € R™ obtained by solving (62) converge as
N — oo to a vector a®P' € R™ minimizing (44).

Theorem 5. If the optimization program (44) has a unique minimizer, then the latter is the limit of
any sequence (a(M)) ~N>1 obtained by solving (62) for each N > 1. Without uniqueness, it holds that
any subsequence of (a)) ~n>1 admits a subsequence converging to one of the minimizers of (44).

Proof. The first part of the theorem follows from the second part: it is indeed well-known that the
convergence of a sequence to a given point is guaranteed as soon as any of its subsequences admits
a subsequence converging to that point.

To establish the second part, let oN) € R and (a(N), 2H ) z_v(N)) e R™ x RY x RY denote, for
each N > 1, the minimum value and some minimizer of (62), respectively. We write ZE((N)) ¢ RN
for the infinite vectors obtained by padding the finite vectors @) ¢ RN with zeros. Let us
now consider a subsequence ((a(N’c),;:J“((N’c)),z_v((]\f’v))))%C>1 of the whole (/7 x (& x (X )-valued
sequence ((a(N),zJ“((N)),z_’((N))))N>1. Our objective is to show that there exist a subsequence

((a(N’“e), 25 (k) z_’((N’“e))))bl and a minimizer (@,z+,27) of (61) such that a™*) converges to @

as £ — oo. To this end, we start by observing that the sequence (a(N k)) k>1 is nondecreasing and
bounded by the minimal value aP! of (61): firstly, the inequality aNk) < (Ve+1) follows from the

feasibility of (a(Ve+1) z+’(Nk+1), z_’(Nk“)) for (62) specified to N = Ny, so that

? 71N [1:Np]
(63) a(Nk) < Z+7(Nk+1) +Z_7(Nk+1) + QHa(Nk+1)H L= a(Nk+1)-
=4 1 - p 3
secondly, the inequality a™+) < Pt similarly follows from the feasibility of (aPt, Z[J;:})\it]v z[_l?\%)

for (62) specified to N = Ny, where evidently (a®P?, 2Pt >7°Pt) represents some minimizer of (61).
We continue by remarking that the £7-valued sequence (a(N+)) k>1 is bounded: this is a consequence
of

(64) [a®8) || < Ha(Nk)Hp, < %(ZT(NM i z1_7(Nk) + g”a(Nk)Hp,) _ %Q(Nk) < %aopt‘

We also note that the positive semidefiniteness of Toep Nk(zi’(N #)) implies that, for any j € [1 : Ni],

(65) |Z;E7(Nk)‘ < zli(Nk) < Zih(Nk) + zl_v(Nk) + gHa(Nk)Hp, — oNK) < qoPt,

13
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Thus, the £ -valued sequences (25((M))); <, are also bounded. These last two facts guarantee
(in particular by the sequential compactness Banach—Alaoglu theorem) that (a(Nk))kzl admits a
convergent subsequence in the standard topology of ¢7} and that (zi’((Nk)))kzl admit convergent
subsequences in the weak-star topology of /Y. We denote the resulting convergent subsequence
and its limit by ((a(N’“l), z+’((N’“Z)), z_’((N’W))))bl and (a,27",z7), respectively. It remains to prove
that the triple (@,2%,27) is a minimizer of (61). Since the weak-star convergence implies that
sz’(Nkf) — E;t for all j > 1, writing the constraints of (62) specified to N = N}, and passing to the
limit as ¢ — oo shows that the triple is feasible for (61). It is also a minimizer for this program, by

virtue of

+7(Nke) _7(Nke)

~. My~ Ty (Ng,) _ (Ng,) opt
66 - - /—1m< ~||a' ke />—1m ko) < QOPt,
(66) A+ lally = Jim (2 + 2, + - la ey ) = lim o < a

Our objective is now established, so the second part of theorem is proved. O

Theorem 5 does not tell us how to choose N in order to reach a prescribed accuracy on ||a®?t —a(™)|,
not even on a®?t — o). The observation below provides such a quantitative estimate, although it
is an a prosteriori estimate, in the sense that a bound on a®®* — a(N) can be evaluated only after
solving (62) for a particular N — if the accuracy is not satisfactory, one would solve (62) again for
a higher N.

Theorem 6. For any N > 1, one has
(67) M) < Pt < o (V) 4 (V)
where 6(N) > 0 is a computable quantity clustering to zero defined by

(68) 5N = [HQ Sy,
i=1

n
R e M e
[-1,1] €

Proof. The leftmost inequality was already justified implicitly in the proof of Theorem 5. For the
rightmost inequality, we simply notice that a®) is feasible for (44), so that

(69) o < ||Q - S s,
=1

N ey = o) 460,
11 €

The fact that 6 clusters to zero follows from Theorem 5 and its proof: the term in square
brackets clusters to a®Pt (because a™V) clusters to a minimizer a®* of (44)) and the term a®¥) also
converges to a®?t (because the sequence (a(¥)) ~N>1 is nondecreasing and bounded above by a°P!,
hence convergent, and its limit cannot be smaller than a°P*, as a consequence of (66)). O

Remark. Even without an estimate of [|a®® — a()||, using a solution a¥) € R™ of (62) instead
of a solution a°P* € R™ of (61) yields a recovery map RWM) .y e R™ oy a(N)y,- € R which is

i
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almost optimal. Indeed, the worst-case error of R®Y) over K and & satisfies

™) = (@™ 4 6M) x e

fGIC C[_lvl]*

ec&

(70) sup |Q(f) = RN (L(f) +e)| < (E HQ - ZaEN)&
i=1

< (Pt 4 6Ny ¢,

which is only 6(N) x & above the minimal worst-case error.

5 Recovery of continuous functions under approximability models

In this section, we fix X = C(D) for some compact domain D and we consider the quantity of interest
Q = I¢(p), i-e., we target the full recovery of functions f € C(D). We will uncover a practical
construction of linear recovery maps that are near-optimal rather than genuinely optimal. The
construction will follow closely an idea from [5, Subsection 4.3]. However, we begin by highlighting
that the (unpractical) construction of a linear genuinely optimal recovery map which was presented
in [5, Subsection 4.2] does not carry over from the accurate setting to the inaccurate setting.

5.1 Discontinuity of optimal weights

An optimal recovery map R°P' : R — C(D) was constructed in [5] as follows: for each x € D,
solve the minimization problem (44) for the quantity of interest @, defined by Q.(f) = f(x),
thus producing a (carefully selected) minimizer a°?'(z); then, with a°P* denoting the function
z € D a®(z) € R™, consider the map R°P* defined for y € R™ by RP(y) = 7 ya™;
finally, establish the optimality of R°P* by relying on the critical fact that it takes values into C(D).
It is this fact that does not carry over to the inaccurate setting. Precisely, the function a°P! is not

continuous in general, as formalized below.

Proposition 7. Let p € (1,00), let n < ¢, and let ¢1,...,£,, be observation functionals that are
point evaluations at distinct points x1, ...,z € D. For k € [1:m], as z € D\ {x}} converges to
the evaluation point xy, it is not guaranteed that a®'(z) converges to a®P*(xy).

Proof. Firstly, when p € (1,00), we note that a®"*(z) is uniquely defined for any z € D due to the
strict convexity of the objective function in (44). Secondly, we point out that a°P'(xy) coincides

with ex = [0;...;0;1;0,...;0], i.e., that e, satisfies the appropriate constraint and minimizes the
quantity

m m
(71) |@ac =D aiti] .+ Thally =1 =il + 32 ladd + Zllaly.

i=1 i=1,i#k
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the latter being true because, when n < €, equality occurs for a = ey, in

m
(72) L—arl+ Y lail+ aly = 21— ap + 0+ Lay| = 2.
i Lk € € € €

3

Thirdly, we are going to prove by contradiction that in general a®®*(x) /4 ex as © — xy with z # xy,
keeping in mind that a°P*(x) minimizes the quantity

(73) HQ:c - i ail
i=1

n n
— 5 = 1 — ,
c(D)* + e Ha”p + ”aul + e ”CLHP

among all a € R™ satisfying Ma = b(xz) — here, b(z) € R™ denotes the vector defined in (58)
for the quantity of interest Q@ = Q.. Now let a € R™ satisfying Ma = b(z)) and let us consider
@ := a+ M(b(z) — b(xy)), where MT € R™*" is a pseudoinverse of M € R™™. In view of
Ma = b(z), we derive that

T U
(74) [l + 2@l = 1 @)lh + Zlla™* (@) -

Since b(x) — b(zy) as © — xp, if we had a°P*(x) — ey, then passing to the limit would give

n n
(75) lally + llally > 1+ .

€ €
Thus, it would hold that the minimum of |la|l; + (n/e)||al|,y subject to Ma = b(xy) is always
1+ (n/e). But this fact is easily invalidated numerically, see the reproducible file for the case

V=7, O

Remark. For p € {1,00}, the optimal weights may not be uniquely defined. Consequently, a
relevant question pertains to the possibility of selecting a minimizer a®®*(x) of (44) for Q = Q.

 is continuous. If we insist on the intuitive selection

in such a way that the resulting function a°?
a°P*(xy) = ey, then the existence of a continuous selection implies, as in the previous argument, the
fact that 1+ (n/e) is the minimum of ||a||; + (n/€)||all,y subject to Ma = b(xy). This fact can be
invalidated numerically for p = 1, i.e., for p’ = co. However, for p = oo, i.e., for p’ = 1, a continuous
selection does exist provided the space V' contains the constant functions. This was proved in [5,

Pt this continuous selection, we claim that it is also

Theorem 4.2] in the case n = 0. Denoting by a
a continuous selection of minimizers of (44) in the case n > 0 and p’ = 1. Notice indeed that a°?*(z)
minimizes ||alj; subject to Ma = b(z) for = & {x1,...,xm}, see (73) with n = 0, and that a°P*(zy)
minimizes [1—ay[+ >, |a;| subject to Ma = b(zy), see (71) with = 0, as well as [|a]|; subject to
Ma = b(wy,) by continuity. It then follows that a°*(z) minimizes ||Q, — Y, aiéiHC(D)* + (n/e)llally
subject to Ma = b(x) for * & {x1,...,2,}, by virtue of (73) with p’ = 1, and that a°P*(xy)
minimizes ||Qq, — >, ai&HC(D)* + (n/e)l|all, subject to Ma = b(xy), by virtue of (71) with p’ = 1.

In summary, the vector a®P*(z) is a minimizer of (44) for any x € D, as claimed.
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5.2 Practical construction of linear near-optimal maps

Even though the straightforward construction of a genuinely optimal recovery map cannot be
reproduced in the inaccurate setting, we reveal in this subsection that, if one settles for near-
optimal recovery maps, then efficient constructions are available. All is needed are linear functionals
Q1,...,Qn with [|Qjllep)- < 1 and functions us,...,uz € C(D) such that the linear operator
P :C(D) — C(D) defined by

(76) P(f) = Qi(flu,  feC(D),
j=1

obeys the reproducing condition
(77) P(v) =wv for all v € V,

as well as, for some v > 1, the boundedness condition

n
(78) I|Plle(py—c(p) < Z || <7.

j=1 C(D)
For D = [-1,1] and V = P,, such quasi-interpolant operators P exist with n = Cyn, with
Q1,...,Qz being point evaluations, and with uy, ..., us being polynomials, see [5, Subsection 4.3.1].

Theorem 8. For the model set K and the uncertainty set £ given in (36) and (42), a near-optimal
recovery map for the full approximation problem over I and £ is provided by the linear map

(79) R™ .y e R™ — Zym?oar € C(D), a;® = Zagj)uj € C(D),
i=1 j=1

where the vectors al/) € R™ are solutions to (44) with Q = Q;.

Proof. In view of (i), we aim at proving that there is a constant C,, > 1 such that

(80) Sup If = R (L(f) + €)llepy < Cy x pp 7(L) x e
€
ecf

Let us first remark that, for any j € [1 : 7], the defining property of the a) € R™ yields

(s1) o= a6 4 Dl = g B
i=1 c(D)*
as well as the identity
(82) Zagj)&-(v) = Q;(v) forall v e V.
i=1
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The latter implies that, for any v € V/,

(83)  R™™(L Zz (D) =3 (D b)) uy ZQJ v)u; = P(v) =

j=1 j=1 =1
Let now f € K and e € £ be fixed. Given v € V' such that h := f — v satisfies ||h[|¢c(p) < &, we have
84)  f=R"N(L(f) +e)=f—v— R (L(f —v) +€) = [h = R*(L(h))] — [R™"(e)].

The second term in square brackets applied to x € D is bounded as

n m

(85) |Rm<e><x>\=(ieia;ﬂw<x( ZrerZ\a s Z(Zrema )l (@)]

Jj=1 =
< lellplla® ()] < nz lat s ().
j=1 j=1

As for the first term in square brackets applied to « € D, it is bounded as

(86) |[h— R**(L()](@)] = |h(x) = P(R)(&) + P(R)(x) - gjexh) 223 auj(@)
= (1= P)(h)(@) + 2: (@im) - éa?)zi(h))uj(x)‘
< |- Py +§ (@- éa?”&) (1) @)
< |11 = PllepysecIbllec) + 2231 @i - éaﬁ”

< <1 +’Y+;HQJ'—;%@@ co) '(@\) X €.

Substituting (86) and (85) into (84) leads, for any x € D, to

J Mleco s (@)

7)1 - Rz + )] < (140 + Z (2 gaﬁ”& + 21y e ) x e

= <1+fy+§njuv,@;@)lw(w)l> xe< <1+'v+wv,f@>> X &,

Jj=1

where we have used (52) for QQ = Q; in the last step. In view of ug; T(E) > 1, taking the supremum
over x € D and then over f € K and e € £, we conclude that

(88) sup [|f = B (L(f) + e)llecp) < (1+29) x up (L) x =
€
tes
which is the required objective (80) with C, =14 2. O
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Remark. Solving the optimization problem (44) exactly to produce al) ¢ R™ may not be possible.
However, one can solve (62) instead and produce aN7) € R™ satisfying (82) and a substitute of (81)
taking the form

Qi -y a™
C(

i=1

(59) |

AT T (N.j)
+ EHa lp < 1y g (L) +6

)*

for some quantifiably small quantities §N:3) > 0, see Theorem 6. The linear map (79) with aV9)
in lieu of a¥) is still be a near-optimal recovery map for the full approximation problem over K
and €. The previous argument indeed still shows that (88) holds with C, = 14 27 loosely replaced
by Cy =1+ 2v + max; 6(V9).
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