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The circular maximal operator on Heisenberg radial functions

DAVID BELTRAN, SHAOMING GUO, JONATHAN HICKMAN

AND ANDREAS SEEGER

Abstract. Lebesgue space estimates are obtained for the circular maximal func-
tion on the Heisenberg group H

1 restricted to a class of Heisenberg radial func-
tions. Under this assumption, the problem reduces to studying a maximal opera-
tor on the Euclidean plane. This operator has a number of interesting features: it
is associated to a non-smooth curve distribution and, furthermore, fails both the
usual rotational curvature and cinematic curvature conditions.
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1. Introduction

Let Hn denote the Heisenberg group given by endowing R ⇥ R
2n with the non-

commutative group operation

.u; x/ � .v; y/ WD
�
uC v C x

>
By; x C y

�
for all .u; x/; .v; y/ 2 R ⇥ R

2n

where B D bJ with J WD

✓
0 �In

In 0

◆
the matrix associated to the standard sym-

plectic form on R
2n and b ¤ 0 (usually one takes b D 1=2).

Let � ⌘ �1 denote the normalised surface measure on the sphere

f0g ⇥ S2n�1 WD f.0; y/ 2 R ⇥ R
2n W jyj D 1g:

If Dilt .u; x/ WD .t
2
u; tx/ are the automorphic dilations on H

n, then the normalised
surface measure �t supported on tS2n�1 can be viewed as a dilate of �1 in the
sense that hf; �t i D hf .Dilt � /; �i.

Given a function f on H
n belonging to a suitable a priori class consider the

spherical means

f ⇤�t .u; x/ WD
Z

S2n�1

f .u� tx>
By; x� ty/ d�.y/ for .u; x/ 2 H

n and t > 0.

For smooth functions f one has f ⇤�t .u; x/ ! f .u; x/ pointwise as t ! 0. It is
of interest to extend this convergence result to an almost everywhere convergence
result for functions on Lp

.H
n
/, in a suitable range of p. Such a result follows from

L
p bounds for the associated spherical maximal function

Mf.u; x/ WD sup
t>0

jf ⇤ �t .u; x/j: (1.1)

The operator M can be understood as a Heisenberg analogue of the classical (Eu-
clidean) spherical maximal function of Stein [31] and Bourgain [5] (see also [19,
28, 29]). The maximal function (1.1) was introduced by Nevo and Thangavelu
in [23] where Lp estimates were proven in dimensions n � 2 for p belonging to a
non-sharp range. By choosing f to be the standard example

f .u; x/ WD
�
jxj log.1=jxj/

�1�2n
�.u; x/

for an appropriate choice of cutoff function �, it follows that Lp ! L
p estimates

can only hold for p >
2n

2n�1
. For n � 2 the sufficiency of this condition was

established independently by Müller and the fourth author [21] and by Narayanan
and Thangavelu [22]; the work in [21] also treats a wider class of operators defined
on Métivier groups. Results in a more general variable coefficient setting can be
found in a recent paper by Kim [15]. Related to these investigations the Lp results
of [21,22] were extended in [1] to deal with variants of the operator (1.1) where the
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original sphere, centred at the origin, does not lie in the subspace f0g ⇥ R
2n (that

is, the corresponding dilates of � are no longer supported in a fixed hyperplane).
The latter paper is closely related to [26, 27] which establish sharp Lp-Sobolev
bounds for certain Radon-type operators associated to curves in three-dimensional
manifolds; in particular [27] covers the averages f 7! f ⇤�t in H

1, and perturba-
tions of these operators, when acting on compactly supported functions. Mapping
properties and sparse domination for a lacunary version of M have been recently
studied in [2], also under the assumption n � 2. We note that for the proofs of the
positive results on the Heisenberg spherical maximal functions mentioned above
it was essential that a boundedness result holds for p D 2, which leads to the
restriction n � 2. Such an L2 result fails to hold on H

1, and it is currently not
known whether the circular maximal operator (1.1) on the Heisenberg group H

1 is
bounded on Lp

.H
1
/ for any p < 1.

In this paper we consider the problem of estimating the maximal function
(1.1) on the sub-algebra of Heisenberg-radial (or H-radial) functions on H

1. Here
a function f W H1 ! C is said to be H-radial if f .u;Rx/ D f .u; x/ for all R 2
SO.2/. Given the underlying symmetries of the maximal operator, this is a natural
condition to impose on the input function: indeed, if f is H-radial then, Mf is
also H-radial. Our main theorem characterises the Lp mapping properties of M
acting on H-radial functions.

Theorem 1.1. For 2 < p  1 the a priori estimate

kMf kLp.H1/  Cpkf kLp.H1/

holds for H-radial functions on H
1. Here Cp is a constant depending only on p.

We shall reduce Theorem 1.1 to bounding a maximal function supt>0 jAtf j where
the At are non-convolution averaging operators in two dimensions. We aim to fol-
low the strategy used in [19, 20] to study the Euclidean circular maximal function
and its relatives. However, in comparison with [20], substantial new difficulties
arise. First, we need to consider a distribution of curves which is not smooth.
Moreover, the rotational curvature and cinematic curvature conditions (as formu-
lated in [20,30]) fail to hold, and hence supt>0 jAtf j does not belong to the classes
of variable coefficient maximal functions considered in [20]. Significant technical
challenges are encountered when dealing with the various singularities of the oper-
ator, and our arguments are based on the analysis of a class of oscillatory integral
operators with 2-sided fold singularities which extends the work in [25] and [8]. A
more detailed discussion of the proof strategy can be found in Section 2 below.

Structure of the paper

Section 2 reviews the strategy for bounding the Euclidean circular maximal func-
tion based on local smoothing estimates. The difficulties encountered in our par-
ticular situation are also described. In Sections 3-8 we prove bounds for a local
variant of M , where the supremum is restricted to 1  t  2. In particular,
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Figure 1.1. The unit circle tilts and stretches as it is translated along the x2-axis under
the Heisenberg operation.

Section 3 reduces Theorem 1.1 to a bound for a maximal function in two dimen-
sions. Section 4 describes notions of curvature which feature in the analysis of
M . In Section 5 the maximal function is decomposed into different pieces accord-
ing to curvature considerations. In Section 6 we consider classes of oscillatory
integral operators depending on two parameters which are crucial for the relevant
L

2-theory, mainly based on a “fixed-time” analysis. In Section 7 we apply these
L

2 estimates to the problem on the Heisenberg group. In Section 8 we discuss
the Lp theory, based on Lp space-time (‘local smoothing’) estimates. Finally,
in Section 9 the bounds for the local maximal function are extended to bounds
for M . Two appendices are included for the reader’s convenience, providing use-
ful integration-by-parts lemmata and many explicit computations helpful to the
analysis.

Notational conventions

Given a (possibly empty) list of objectsL, for real numbers Ap; Bp � 0 depending
on some Lebesgue exponent p the notation Ap .L Bp , Ap D OL.Bp/ or Bp &L

Ap signifies that Ap  CBp for some constant C D CL;p � 0 depending on
the objects in the list and p. In addition, Ap ⇠L Bp is used to signify that both
Ap .L Bp and Ap &L Bp hold. Given a, b 2 R we write a ^ b WD minfa; bg
and a _ b WD maxfa; bg. Given x D .x1; x2; x3/ 2 R

3 we will often write
x D .x1; x

00
/ 2 R ⇥ R

2 or x D .x
0
; x3/ 2 R

2 ⇥ R. Given x 2 R
2 and t 2 R

we will also often write Ex D .x; t/ 2 R
2 ⇥ R. Throughout the article N denotes

some fixed large integer, chosen so as to satisfy the forthcoming requirements of
the proofs. The choice of N D 10

1000 is permissible (and in the d -dimensional
version of estimates in Sections 6 and 7, it never needs to exceed 10100d ). For a
phase function '.xI z/ the notation @2

xz
' refers to the matrix A with entries Aij D

@
2
xi zj

' while the notation @2
zx
' refers to its transpose. The length of a multiindex
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˛ 2 N
d

0
is given by j˛j D

P
d

iD1
˛i . The CN norm of .xI z/ 7! a.xI z/ is given by

maxj˛jCjˇ jN k@˛
x
@

ˇ

z ak1. We also use the notation kak
C

N
z

for supx ka.xI �/kC N .
For a linear operator T bounded from L

p to Lq we use both kT kLp!Lq , kT kp!q

as a notation for the operator norm. For a one-parameter family of linear operators
fTtgt2E , k supt2E jTt jkp!q denotes the Lp ! L

q operator norm of the sublinear
operator f 7! supt2E jTtf j.

ACKNOWLEDGEMENTS. The authors would like to thank the anonymous referee
for a careful reading and valuable suggestions.

2. Proof strategy

Theorem 1.1 easily reduces to bounding a maximal function supt>0 jAtf j where
the At are averaging operators on the Euclidean plane. We aim to follow the broad
strategy introduced in [19] to study the Euclidean circular maximal function, which
we now recall. Define Aeucl

t
f by taking Aeucl

t
f .x/ to be the average of f over the

circle †eucl
x;t

in the plane centred at x with radius t . Note that the associated curve
distribution is described by the defining function

ˆ
eucl
.x; t Iy/ WD jx � yj2 � t2 for .x; t Iy/ 2 R

2 ⇥ R ⇥ R
2I

in particular,†eucl
x;t

D fy 2 R
2 W ˆ.x; t Iy/ D 0g. The associated maximal function

M
eucl
f .x/ WD sup

t>0

jAeucl
t
f .x/j

is the classical circular maximal function studied by Bourgain [5] and also in [19].
A Littlewood–Paley argument reduces the problem of bounding M eucl

f to bound-
ing the local maximal function

sup
1t2

jAeucl
t
f .x/j:

Decompose the averaging operator Aeucl
t
f as a sum of pieces Aeucl;j

t f localised at
frequency scale 2j . The sum of the low frequency pieces .j  0/ can be bounded
in one go via comparison with the Hardy–Littlewood maximal operator and it re-
mains to bound the high frequency pieces. There are two steps in the argument:

(i) The first step is to show that the inequality
�� sup

1t2

jAeucl;j
t f j

��
L2.R2/

 Ckf kL2.R2/ (2.1)

holds uniformly in j . An elementary Sobolev embedding reduces (2.1) to
proving L2 estimates for certain oscillatory integral operators. A T

⇤
T argu-

ment further reduces (2.1) to bounding the corresponding kernels, which are
then amenable to stationary phase analysis;
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(ii) Interpolating (2.1) with the trivial L1 estimate,
���� sup

1t2

jAeucl;j
t f j

����
Lp.R2/

 Ckf kLp.R2/ for all 2  p  1. (2.2)

The problem here is that (2.2) does not sum in j . If, however, there exists
some 2 < pı < 1 and ".pı/ > 0 such that

���� sup
1t2

jAeucl;j
t f j

����
Lpı .R2/

 C2
�j".pı/kf kLpı .R2/; (2.3)

then one may interpolate (2.2) and (2.3) to obtain favourable j dependence
for all 2 < p < 1, concluding the proof. The strategy in [19] is to prove
a bound of the form (2.3) via local in time Lp space-time bounds (so-called
local smoothing estimates) for the wave equation.

There are two key properties of the circular maximal function which allow the
above analysis to be carried out, both of which can be expressed in terms of the
defining function ˆeucl. The first is the standard decay properties of the Fourier
transform of surface carried measure which correspond to nonvanishing of the
Phong-Stein rotational curvature (see, for instance, [32, Chapter IX,Section3.1]1).
This is used to prove the oscillatory integral estimates in (i). The second is that the
cinematic curvature (see [30]) is non-vanishing, which features in the proof of the
local smoothing estimates used in (ii). The analysis can be generalised to variable
coefficient maximal functions formed by averaging operators on the plane associ-
ated to defining functions ˆ which satisfy these two conditions [30].

Now suppose Atf denote the averaging operators on R
2 which arises in the

study of our maximal operator acting on H-radial functions. This family of oper-
ators has an associated defining function ˆ, which is described in (3.2) below. As
before, one may decompose Atf as a sum of pieces Aj

t f localised at a frequency
scale 2j . Significant issues arise, however, when it comes to implementing either
of the above steps to analyse the Aj

t f in this case:

(i0) The defining function ˆ has vanishing rotational curvature. Indeed, the oscil-
latory integral estimates in the above proof sketch of (2.1) do not hold in this
case;

(ii0) The defining function ˆ also has vanishing cinematic curvature. This pre-
cludes direct application of local smoothing estimates in the proof of (2.3).

In order to deal with these issues it is necessary decompose the operator At with
respect to the various curvatures and to prove bounds of the form (2.1), (2.2) and
(2.3) for each of the localised pieces.

1 The definitions of the rotational curvature and other concepts featured in this discussion are
also reviewed in Section 4 below.



THE CIRCULAR MAXIMAL OPERATOR ON HEISENBERG RADIAL FUNCTIONS 507

In bounding the localised pieces of At , the main difficulty is caused by the
vanishing of the rotational curvature. In particular, here the L2 theory relies on
certain two parameter variants of estimates for oscillatory integral operators with
two-sided fold singularities. Our arguments build on the techniques in [8,11]. This
is in contrast with the analysis of the Euclidean maximal function, where the clas-
sical estimates for non-degenerate oscillatory integral operators of Hörmander [13]
suffice. The presence of a two-sided fold incurs a (necessary) loss in the oscillatory
integral estimates (compared with the non-vanishing rotational curvature case), but
special properties of the Heisenberg maximal function allow one to compensate
for this. A similar phenomenon was previously observed in the analysis of the
spherical maximal function in H

n for n > 1 in [21].
The vanishing of the cinematic curvature presents less of a problem, essen-

tially because the desired bound (2.3) is non-quantitative: all that is required is
for (2.3) to hold for some pı and some ".pı/ > 0. Roughly speaking, the
strategy is to decompose the operator into two parts: one piece supported on the
ı-neighbourhood of the variety where the cinematic curvature vanishes and a com-
plementary piece. The former is dealt using a variant of (2.2) which includes a gain
in ı arising from the additional localisation. The latter piece has non-vanishing cin-
ematic curvature and can be dealt with using local smoothing estimates. Choosing ı
appropriately, one obtains the desired bound. Similar ideas were used by Kung [17]
to treat a family of Fourier integral operators with vanishing cinematic curvature.

3. Reduction to a maximal operator in the plane

3.1. Singular support of the Schwartz kernel and implicit definition

A computation shows that f ⇤ �t .u; x/ corresponds to an average of f over the
ellipse in R

3 given by

Su;x;t WD
˚
.v; z/ 2 R ⇥ R

2 W v � uC b.x1z2 � x2z1/ D 0; jx � zj2 � t2 D 0
 
:

Furthermore, using the identity .x1z1 C x2z2/
2 C .x1z2 � x2z1/

2 D jxj2jzj2, one
checks that .v; z/ 2 Su;x;t satisfies

ˆt .u; jxjI v; jzj/ D 0 (3.1)

where ˆt .u; r I v; ⇢/ WD ˆ.u; r; t I v; ⇢/ and

ˆ.u; r; t I v; ⇢/ WD .u � v/2 �

✓
b

2

◆2 �
4r

2
⇢

2 � .r2 C ⇢
2 � t2/2

�
: (3.2)

Below we relate explicitly f ⇤ �t to an operator acting on functions of the two
variables .v; ⇢/, with a Schwartz kernel ııˆwhich will define this integral operator
as a weakly singular Radon transform.

In the forthcoming sections it will be necessary to carry out many computa-
tions involving ˆ. For the reader’s convenience, a dictionary of derivatives of this
function is provided in Appendix B.1.
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3.2. Properties of H-radial functions

A function f W H1 ! C is H-radial if and only if there exists some function
f0 W R ⇥ Œ0;1/ ! C such that

f .u; x/ D f0.u; jxj/: (3.3)

Using the fact thatR>
BR D B forR 2 SO.2/, if f and g are H-radial, then f ⇤g

is H-radial, and we have

.f ⇤ g/0.u; r/

D
Z

2⇡

0

Z
R

Z 1

0

f0.v; ⇢/g0.u � v � br⇢ sin#;
p
r2 C ⇢2 � 2r⇢ cos#/ ⇢ d⇢dvd#:

This observation extends to H-radial measures and, in particular, if f is H-radial,
then f ⇤ �t is H-radial, and we get

.f ⇤ �t /0.u; r/D
1

2⇡

Z
⇡

�⇡

f0.u � btr sin#;
p
r2 C t2 � 2rt cos#/ d#

D
X
˙

1

2⇡

Z
⇡

0

f0.u˙ btr sin#;
p
r2 C t2 � 2rt cos#/ d#:

(3.4)

Applying polar coordinates in the planar slices fug ⇥ R
2, given p > 2 and f as in

(3.3), the goal is to establish the inequality

✓Z 1

�1

Z 1

0

ˇ̌
.Mf /0.u; r/

ˇ̌
p
r drdu

◆1=p

.
✓Z 1

�1

Z 1

0

ˇ̌
f0.v; ⇢/j

p
⇢ d⇢ dv

◆1=p

:

(3.5)

3.3. A weakly singular Radon-type operator on R
222

By the implicit definition of the circle Su;x;t from (3.1), the function .f ⇤ �t /0

corresponds to an integral operator associated with the curve

†u;r;t WD
˚
.v; ⇢/ 2 R ⇥ Œ0;1/ W ˆt .u; r I v; ⇢/ D 0

 
:

It is easy to see that †u;r;t is smooth whenever r ¤ t > 0. If r D t > 0, then there
is a unique singular point on the curve at the point where it touches the v axis. See
Figure 3.1. Furthermore, any .v; ⇢/ 2 †u;r;t satisfies

jr � t j  ⇢  r C t and ju � vj  jbj minfr⇢; rt; t⇢gI (3.6)
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⇢

v

⇢

v

⇢

v

Figure 3.1. The curves †0;r;t for t fixed and r < t (left), r D t (centre) and r > t

(right). When r D t the curve has a unique singular point on the v axis.

these bounds follow since for .v; ⇢/ 2 †u;r;t

0  .b=2/
�2
.u � v/2 D 4r

2
⇢

2 � .r2 C ⇢
2 � t2/2

D 4r
2
t
2 � .r2 C t

2 � ⇢2
/
2

D 4t
2
⇢

2 � .t2 C ⇢
2 � r2

/
2
:

(3.7)

Consider the integral operator in two dimensions defined on functions of the vari-
ables .v; ⇢/ by

Atf .u; r/ ⌘ Ap;tf .u; r/

WD
Z 1

�1

Z 1

0

f .v; ⇢/r
1=p
⇢

1�1=p
ı
�
ˆt .u; r I v; ⇢/

�
dvd⇢:

(3.8)

In view of (3.5), Theorem 1.1 will be a consequence of the following maximal
estimate in the Euclidean plane.

Theorem 3.1. For all p > 2,

✓Z 1

0

Z 1

�1

✓
sup
t>0

jAtf .u; r/j

◆p

du dr
◆1=p

.
✓Z 1

0

Z 1

�1

ˇ̌
f .v; ⇢/jp dv d⇢

◆1=p

:

Note that the r1=p
⇢

�1=p factor featured in the averaging operator in (3.8) arises
from the weights induced by the polar coordinates in (3.5). In order to relate The-
orem 1.1 to Theorem 3.1 we have to write for H-radial test functions the expres-
sion .f ⇤ �t /0.u; r/ in terms of the distribution ı ı ˆt which is understood as a
weak limit of �" ı ˆt as " ! 0. The calculation, which is given in the proof of
Lemma 3.2 below, is standard (cf. [32, page 498] which provides a proof for a lo-
cal version). For the sake of convenience we include below a direct proof for our
example.
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In what follows we shall use, for a continuous compactly supported function
g, the integral notation g.c/ D

R
g.v/ı.c � v/ dv for the pairing of g with the

Dirac measure at c. We also let �".s/ WD "
�1
�."

�1
s/ with � even and supported

in .�1=2; 1=2/ such that
R
�ds D 1. We shall prove the following.

Lemma 3.2. Let f 2 C
1
.H

1
/ be H-radial and compactly supported in f.v; ⇢/ 2

R
2 W ⇢ > 0g. Then, for any r > 0,

.f ⇤ �t /0.u; r/ D
jbj

⇡
lim
"!0

Z 1

0

Z
R

�".ˆt .u; r I v; ⇢//f0.v; ⇢/⇢ dv d⇢

DW
jbj

⇡

Z 1

0

Z
R

ı.ˆt .u; r I v; ⇢//f0.v; ⇢/⇢ dv d⇢:

With the above lemma in hand, Theorem 3.1 immediately implies Theorem 1.1.

Proof that Theorem 3:1 implies Theorem 1:1. We prove the a priori inequality for
smooth H-radial functions which are compactly supported in f.u; y/ 2 R

3 W jyj ¤
0g. By Lemma 3.2

r
1=p
.Mf /0.u; r/ D

jbj

⇡
sup
t>0

At Œ⇢
1=p
f0ç.u; r/;

and the assertion follows.

Proof of Lemma 3:2. We use (3.4) and make a change of variable by setting

⇢ D ⇢.#/ D
p
r2 C t2 � 2rt cos#; 0 < # < ⇡:

Observe that the condition 0 < # < ⇡ is equivalent with jr � t j < ⇢ < rC t . Then

u˙ btr sin# D u˙ btr

s
1 �

✓
r2 C t2 � ⇢2

2rt

◆2

D u˙
b

2
G.r; t; ⇢/

where
G.r; t; ⇢/ WD

p
4r2t2 � .r2 C t2 � ⇢2/2:

For the relevant range jr � t j < ⇢ < r C t the root is well defined (as sin# > 0),
and we have the factorisation

G.r; t; ⇢/ D
�
.r C t C ⇢/.r C t � ⇢/.r � t C ⇢/.t � r C ⇢/

�1=2
: (3.9)

We calculate
d⇢

d#
D ⇢

�1
rt sin.#/ D .2⇢/

�1
G.r; t; ⇢/
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and thus

⇡.f⇤�t /0.u; r/D
X
˙

Z
rCt

jr�t j

f0

⇣
u˙ b

2
G.r; t; ⇢/; ⇢

⌘
⇢

G.r; t; ⇢/
d⇢

D
X
˙

lim
"!0

Z
rCt

jr�t j

Z
R

⇢f0.v;⇢/�"

⇣
u˙ b

2
G.r;t;⇢/�v

⌘
dv

1

G.r;t;⇢/
d⇢:

Let U be an open interval with compact closure contained in .0;1/ such that
supp .f0.u; �// ⇢ U for all u 2 R. Let U.r; t/ D f⇢ 2 U W jr � t j < ⇢ < r C tg.
We observe from (3.9) that for fixed r; t with r ¤ t , the function ⇢ 7! jG.r; t; ⇢/j�1

satisfies
Z

U.r;t/

jG.r; t; ⇢/j�pd⇢  C.r; t/ < 1 for 1  p < 2, (3.10)

which we use for p > 1. Let E".r; t/ D f⇢ 2 U.r; t/ W G.r; t; ⇢/  "
1=2g and

F".r; t/ D U.r; t/ nE".r; t/. We use Hölder’s inequality to bound
Z

E".r;t/

Z
R

⇢ jf0.v; ⇢/j
ˇ̌
ˇ�"

⇣
u˙ b

2
G.r; t; ⇢/ � v

⌘ˇ̌
ˇ dv

1

G.r; t; ⇢/
d⇢

.r;t;f jE".r; t/j
1=p0

C.r; t/
1=p D O

�
"

.p�1/=2
�
;

noting that (3.10) implies jE"j .r;t "
p=2. For ⇢ 2 F".r; t; ⇢/ we use the change of

variable

w ! v˙.w/ D u˙
b

2
G.r; t; ⇢/ � .u � w/2 C

b
2

4
G.r; t; ⇢/

2

which is one-to-one on .u;1/ and on .�1; u/ and satisfies

u � v˙.w/˙
b

2
G.r; t; ⇢/ D .u � w/2 �

b
2

4
G.r; t; ⇢/

2
:

We have jv0
.w/j D 2ju � wj, and jv.w/ � wj D O."/ on the support of the

integrand, and therefore also ju � wj D G.r; t; ⇢/jbj=2CO."/. Hence, by Taylor
expansion of f .v; ⇢/ around .w; ⇢/,

Z
F".r;t/

Z
R

⇢f0.v; ⇢/�"

⇣
u˙ b

2
G.r; t; ⇢/ � v

⌘
dv

1

G.r; t; ⇢/
d⇢

D
1

2

Z
F".r;t/

Z
R

⇢f0.v.w/; ⇢/�"

✓
.u � w/2 �

⇣
b

2
G.r; t; ⇢/

⌘2
◆
2ju � wj

G.r; t; ⇢/
dw d⇢

D
jbj

2

Z
F".r;t/

Z
R

⇢f0.w; ⇢/�"

✓
.u � w/2 �

⇣
b

2
G.r; t; ⇢/

⌘2
◆

dw d⇢CO
�
"

1=2
�
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and by using the estimate jE".r; t/j .r;t "
p=2 the last displayed expression is equal

to

jbj

2

Z
rCt

jr�t j

Z
R

⇢f0.w; ⇢/�"

✓
.u � w/2 �

⇣
b

2
G.r; t; ⇢/

⌘2
◆

dw d⇢CO
�
"

1=2
�
;

for both choices of ˙. We sum in ˙ and, using (3.7), obtain, for r ¤ t ,

.f ⇤�t /0.u; r/ D
jbj

⇡

Z
rCt

jr�t j

Z
R

⇢f0.w; ⇢/�".ˆt .u; r Iw; ⇢//dw d⇢CO
�
"

.p�1/=2
�
:

Letting " ! 0 concludes the proof.

3.4. A local variant of the maximal operator

The main work in proving Theorem 3.1 will be to establish the following local
variant.

Theorem 3.3. For all p > 2,
�� sup

1t2

jAtf j
��

Lp.R⇥.0;1//
. kf kLp.R⇥.0;1//:

This will be established in Section 4-Section 8. The passage from Theorem 3.3 to
the global result in Theorem 3.1 is postponed until Section 9.

4. Curvature considerations

As indicated in the introduction and Section 2, various “curvatures”, which feature
extensively in the analysis of generalised Radon transforms, are fundamental to
the proof of Theorem 3.3. In this section these concepts are reviewed and some
calculations are carried out in relation to the operator At introduced above.

Definition 4.1. A smooth family of defining pairs ŒˆI aç consists of a pair of func-
tions a 2 C1

.R
2 ⇥ R ⇥ R

2
/ and ˆ 2 C1 defined on a neighbourhood of supp a

satisfying
r.x;z/ˆ.x; t I z/ ¤ 0 for .x; t I z/ 2 supp a:

The t variable will play a preferred rôle in the forthcoming analysis. For any fixed
t 2 R let ˆt .xI z/ WD ˆ.x; t I z/ and at .xI z/ WD a.x; t I z/; then Œˆt I at ç is referred
to as a defining pair . The Schwartz kernel a ı ıˆ is then well defined, and the cor-
responding integral operator AŒˆt I at çf .x/ mapping test functions to distributions
is given by the pairing

˝
AŒˆt I at çf; g

˛
WD
“

R2⇥R2

g.x/f .z/at .xI z/ı
�
ˆt .xI z/

�
dz dx: (4.1)
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Key example. For the defining function ˆt in (3.2), where t ⇠ 1, with the identi-
fication of coordinates .u; r/ D .x1; x2/, .v; ⇢/ D .z1; z2/, the distribution ı ıˆ is
defined when paired with g.u; r/f .v; ⇢/ where g and f are compactly supported
C

1 functions with support away from fr D 0g and f⇢ D 0g respectively. The cal-
culations in Lemma 3.2 show that in this case AŒˆt I at çf .x/ is pointwise defined
for x2 ¤ 0, as long as f 2 C1

0
.R

2
/ with supp f ⇢ fy 2 R

2 W y2 ¤ 0g.

4.1. Rotational curvature

Given a defining pair Œˆt I at ç the rotational curvature Rot.ˆt / is defined to be
the function of .xI z/ 2 R

2 ⇥ R
2 given by the determinant of the Monge-Ampère

matrix
M.ˆt / WD


ˆt .@zˆt /

>

@xˆt @
2
xz
ˆt

�
:

Note that M.ˆt / is the mixed Hessian D2

.✓;x/;.s;z/
‰t j✓DsD1 of the function

.✓; x; s; z/ 7! ‰t .✓; xI s; z/ WD ✓sˆt .xI z/

and, more generally,

D
2

.✓;x/;.s;z/
‰t D


ˆt s@zˆ

>
t

✓@xˆt ✓s@xzˆt :

�
:

It is well-known (see, for instance, [32, Chapter XI, Section 3]) that the behaviour
of Rot.ˆt / on the incidence relation fˆ D 0g plays an important rôle in determin-
ing the mapping properties of averaging operators AŒˆt I at ç on L2-Sobolev spaces
as well as the Lp theory of their maximal variants. It is of particular interest to
identify points where the rotational curvature vanishes together with the defining
function.

Key example. For the defining function ˆt in question, as introduced in (3.2), we
now have .x1; x2/ ⌘ .u; r/ and .z1; z2/ D .v; ⇢/ and

M.ˆt / D

2
4
ˆt @vˆt @⇢ˆt

@uˆt @
2
uv
ˆt @

2
u⇢
ˆt

@rˆt @
2
rv
ˆt @

2
r⇢
ˆt

3
5

D

2
4 ˆt �2.u � v/ �b2

⇢.r
2 � ⇢2 C t

2
/

2.u � v/ �2 0

�b2
r.⇢

2 � r2 C t
2
/ 0 �2b2

r⇢

3
5 :

Then, one computes that

detM.ˆt /

D 2b
2
r⇢

�
b

2
.⇢

2 � r2 C t
2
/.r

2 � ⇢2 C t
2
/ � 4.u � v/2 C 2ˆ

�
D 2b

4
r⇢

�
.⇢

2 � r2 C t
2
/.r

2 � ⇢2 C t
2
/ � 4r2

⇢
2 C .r

2 C ⇢
2 � t2/2

�
C 4b

2
r⇢ˆt :
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Setting ˆt D 0 one obtains after further computation

Rot.ˆt /.u; r I v; ⇢/ D 4b
4
rt

2
⇢.t

2 � r2 � ⇢2
/ for .v; ⇢/ 2 †u;r;t : (4.2)

Thus, Rot.ˆt / vanishes along the co-ordinate hyperplanes r D 0, t D 0 and ⇢ D 0

and also, more significantly, along the hypersurface t2 D r
2 C ⇢

2.
Continuing with ˆt as in (3.2), the rotational curvature and t -derivative of the

defining function are related via the identity

Rot.ˆt /.u; r I v; ⇢/ D 4b
2
rt⇢.@tˆt /.u; r I v; ⇢/: (4.3)

A relationship of this kind was previously noted in [21] in the context of the
spherical maximal operator on H

n for n � 2. Here, in close analogy with [21],
the identity (4.3) will be important in the analysis near the singular hypersurface
t
2 D r

2 C ⇢
2.

Rather than freezing t for the computation of the rotational curvature, it is
sometimes useful to freeze r and set

ˆ
?

r
.u; t I v; ⇢/ WD ˆt .u; r I v; ⇢/:

A similar computation to the one above yields in this case

Rot.ˆ?

r
/.u; t I v; ⇢/ D 4b

4
r

2
t⇢.r

2 � t2 � ⇢2
/ for .v; ⇢/ 2 †u;r;t . (4.4)

4.2. The fold conditions

For the defining function from (3.2), the vanishing of the rotational curvature along
the hypersurface t2 D r

2 C ⇢
2 corresponds to a two-sided fold singularity.

Definition 4.2. A defining function ˆt0
satisfies the two-sided fold condition at

.x0I z0/ 2 R
2 ⇥ R

2 if the following hold:

(i) ˆt0
.x0I z0/ D 0 and RankM.ˆt0

/.x0I z0/ D 2;
(ii) If U D .u1; u2; u3/ and V D .v1; v2; v3/ 2 R

3 span the cokernel and kernel
of M.ˆt0

/.x0I z0/, respectively, then

*
@

2

zz

⌧
U;


ˆt0

@xˆt0

�� ˇ̌
ˇ̌
.x0Iz0/

V
00
; V

00

+
¤ 0;

*
@

2

xx

⌧
V;


ˆt0

@zˆt0

�� ˇ̌
ˇ̌
.x0Iz0/

U
00
; U

00

+
¤ 0;

where U 00 D .u2; u3/ and V 00 D .v2; v3/.
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As a consequence of the fold condition, M.ˆt0
/.x0I z0/ may be transformed

into a “normal form”. In particular, there exist X;Z 2 GL.3;R/ satisfying

✏ Xe3 D U and Xe1, Xe2 are orthogonal to
 
0; @

2

xx

⌧
V;


ˆt0

@zˆt0

�� ˇ̌
ˇ̌
.x0Iz0/

U
00

!
I

✏ Ze3 D V and Ze1, Ze2 are orthogonal to
 
0; @

2

zz

⌧
U;


ˆt0

@xˆt0

�� ˇ̌
ˇ̌
.x0Iz0/

V
00

!

where ej denote the standard basis vectors in R
3, and therefore

X> ı M.ˆt0
/.x0I z0/ ı Z D


M.x0; t0I z0/ 0

0 0

�

for M.x0; t0I z0/ a non-singular 2 ⇥ 2 matrix.

Key example. For the defining function ˆt from (3.2), if ˆt0
and Rot.ˆt0

/ both
vanish at .x0I z0/ D .u0; r0I v0; ⇢0/ and r0t0⇢0 ¤ 0, then

U WD

2
4 1

�.u0 � v0/

�r0

3
5 and V WD

2
4 1

u0 � v0

�⇢0

3
5 (4.5)

span the cokernel and kernel of M.ˆt0
/.x0I z0/, respectively. Moreover,

*
@

2

zz

⌧
U;


ˆt0

@xˆt0

�� ˇ̌
ˇ̌
.x0Iz0/

V
00
; V

00

+
D 2b

2
⇢

2

0
.r

2

0
C ⇢

2

0
/ > 0;

*
@

2

xx

⌧
V;


ˆt0

@zˆt0

�� ˇ̌
ˇ̌
.x0Iz0/

U
00
; U

00

+
D 2b

2
r

2

0
.r

2

0
C ⇢

2

0
/ > 0

and the matrices X and Z can be taken to be

X WD

2
4
1 0 1

0 �b2
r

3

0
�.u0 � v0/

0 u0 � v0 �r0

3
5 ; Z WD

2
4
1 0 1

0 b
2
⇢

3

0
u0 � v0

0 u0 � v0 �⇢0

3
5 : (4.6)

Remark. For standard incidence relations M ⇢ R
2

L
⇥R

2

R
, where R2

L
⌘ R

2

R
⌘ R

2

and M D fˆ D 0g with rˆ bounded below, the two sided fold condition is
equivalent to the more common assumption [18, 25] that the projections ⇡L, ⇡R

mapping the conormal bundle N ⇤M to T ⇤
R

2

L
, T ⇤

R
2

R
have fold singularities.
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4.3. Individual curves

It is also useful to consider the curvatures of the individual curves in the curve
distribution induced by a defining family ˆ. In particular, for fixed .x; t/ the non-
vanishing of the curvature of †x;t WD fz 2 R

2 W ˆt .xI z/ D 0g is equivalent to the
non-vanishing (on †x;t ) of

.ˆt /.xI z/ WD det


0 .@zˆt /
>
.xI z/

@zˆt .xI z/ @
2
zz
ˆt .xI z/

�
: (4.7)

Example 4.3. For the defining family ˆ as introduced in (3.2), the curves have
non-vanishing curvature whenever r ¤ t . To see this, note that

.ˆt / D det

2
4
ˆt @vˆt @⇢ˆt

@vˆt @
2
vv
ˆt @

2
v⇢
ˆt

@⇢ˆt @
2
⇢v
ˆt @

2
⇢⇢
ˆt

3
5

D det

2
4 ˆt �2.u � v/ �b2

⇢.t
2 C r

2 � ⇢2
/

�2.u � v/ 2 0

�b2
⇢.t

2 C r
2 � ⇢2

/ 0 �b2
.t

2 C r
2 � 3⇢2

/

3
5 ;

which after a computation reduces, for .v; ⇢/ 2 †u;r;t , i.e. ˆt D 0, to

.ˆt /.u; r; t I v; ⇢/Db
4
�
⇢

6� 3.r2C t
2
/⇢

4C3.r2� t2/2⇢2� .r2� t2/2.r2C t
2
/
�
:

Thus, .ˆt /.u; r; t I v; ⇢/ D }r;t .⇢
2
/, where }r;t is a cubic polynomial with coeffi-

cients depending on r; t . We first calculate }..r � t /
2
/ D �8b4

r
2
t
2
.r � t /

2. One
may verify that }r;t is a decreasing function on the interval Œ.r � t /

2
; .r C t /

2
ç,

leading to the lower bound

j.ˆ/.u; r; t I v; ⇢/j � 8b
4
r

2
t
2
.r � t /2 for all .v; ⇢/ 2 †u;r;t . (4.8)

Thus, the curves have non-vanishing curvature if r ¤ t , as claimed.

4.4. Cinematic curvature

It is also necessary to analyse the averaging operator from the perspective of the
cinematic curvature condition of [30].

Definition 4.4. A smooth family of defining pairs ŒˆI aç is said to satisfy the pro-
jection condition if

Proj.ˆ/ WD det
⇥
@Ex ˆ @

2

Exz
ˆ
⇤

is non-vanishing on an open neighbourhood U of supp a. Here Ex D .x; t/ 2
R

2 ⇥ R.
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Fixing Ex 2 R
2 ⇥ R, the projection condition implies that the map

.U \†Ex/ ⇥ R ! R
3I .zI ✓/ 7! ✓@Exˆ.ExI z/

is a diffeomorphism and therefore its image ÄEx is an immersed submanifold of R3.
If ⇣ WD ✓@Exˆ.ExI z/ 2 ÄEx , then a basis for T⇣ÄEx is given by the vector fields

T1 WD @Exˆ; T2 WD .T2

1
;T2

2
;T2

3
/ where T2

j
WD det

⇥
@zˆ @z@xj

ˆ
⇤

(4.9)

evaluated at .ExI z/; this may be seen computing the tangent vectors of the parametri-
sation �Ex below. Note that ÄEx is clearly a cone and therefore has everywhere van-
ishing Gaussian curvature. If at every point on ÄEx there is a non-zero principal
curvature, then ŒˆI aç is said to satisfy the cinematic curvature condition (see [30]
or [20] for further details).

Definition 4.5. For any defining family ˆ let

Cin.ˆ/ WD det
⇥
S T1 T2

⇤

where S D S1 � S2 where Si D .Si

1
;Si

2
;Si

3
/ for

S1

j
WD det


0 .@zˆ/

>

@zˆ @
2
zz
@xj

ˆ

�
; S2

j
WD det


0 .@z@xj

ˆ/
>

@zˆ @
2
zz
ˆ

�
:

If ŒˆI aç satisfies the projection condition, then the cinematic curvature condi-
tion is equivalent to the non-vanishing of Cin.ˆ/.ExI z/ whenever z 2 †Ex . Indeed,
fix Ex and let �Ex W Œ0; 1ç ! †Ex denote a unit speed parametrisation of †Ex; this
induces a parametrisation �Ex W .✓; s/ 7! ✓@Exˆ.ExI �Ex.s// of the cone ÄEx . The cine-
matic curvature condition is then equivalent to the non-vanishing of

det
⇥
@ss�Ex.✓; s/ @✓�Ex.✓; s/ @s�Ex.✓; s/

⇤
(4.10)

and a computation shows that (4.10) is equal to �j✓ j2j@zˆj�3Cin.ˆ/.

Key example. For the defining family ˆ as introduced in (3.2) one has

Proj.ˆ/.u; r; t I v; ⇢/ D �8b4
rt⇢.r

2 � t2/; (4.11)

Cin.ˆ/.u; r; t I v; ⇢/ D 64b
8
r

3
t
3
⇢

3
.r

2 � t2/: (4.12)

Thus, ŒˆI aç satisfies the cinematic curvature condition whenever supp a avoids the
hyperplanes r D 0, t D 0 and r D t .2 For reference, Appendix B.1 contains the
formulæ for the various derivatives featured in these computations.

2 In this case, one may further deduce that Äu;r;t is the cone defined implicitly by the equation

⇣
2
1

�
⇣

2
2

b2.t2 � r2/
C

⇣
2
3

b2.t2 � r2/
D 0:
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5. The initial decomposition

Forˆ as defined in (3.2) both the rotational and cinematic curvature conditions fail.
In this section, the operator At is decomposed in order to isolate the singularities
corresponding to the failure of these curvature conditions.

5.1. Spatial decomposition

The operator At is first decomposed dyadically with respect to the r variable. To
this end, fix a nonnegative ⌘ 2 C1

c
.R/ such that

⌘.r/ D 1 if r 2 Œ�1; 1ç and supp ⌘ ✓ Œ�2; 2ç (5.1a)

and define ˇ 2 C1
c
.R/ and ⌘m

; ˇ
m 2 C1

c
.R/ by

ˇ.r/ WD .0;1/.r/.⌘.r/ � ⌘.2r// (5.1b)

and, for each m 2 Z,

⌘
m
.r/ WD ⌘.2

�m
r/ and ˇ

m
.r/ WD ˇ.2

�m
r/: (5.2)

One may then decompose

Atf .u; r/ D
X
m2Z

ˇ
m
.r/Atf .u; r/ for .u; r/ 2 R ⇥ .0;1/.

The r-localisation induces various spatial orthogonality relations via (3.6). In par-
ticular, if r 2 supp ˇm, then r ⇠ 2

m and it follows from (3.6) that

ju � vj . 2
m
; jr � ⇢j . 1 and jt � ⇢j . 2

m for .v; ⇢/ 2 †u;r;t . (5.3)

To exploit this, given m; � 2 Z define

⌘
m;�

.u; v/ WD ⌘.2
�m
u � �/⌘

�
C

�1
.2

�m
v � �/

�
;

where C � 1 is an absolute constant which is chosen to be sufficiently large for
the purposes of the forthcoming arguments. We define

a0
.u; r; t I v; ⇢/ WD ˇ.r/r

1=p
⇢

1�1=p
;

am;E�
.u; r; t I v; ⇢/ WD ˇ

m
.r/⌘

m;�1.u; v/⌘
0;�2.r; ⇢/; if m > 0; (5.4)

am;E�
.u; r; t I v; ⇢/ WD ˇ

m
.r/⌘

m;�1.u; v/⌘
m;�2.t; ⇢/; if m < 0;

so that for m > 0, am;E� is supported where

r ⇠ 2
m
; ju� 2m

�1j . 2
m
; jv � 2m

�1j . 2
m
; jr � �2j . 1; j⇢� �2j . 1:
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Moreover for m < 0, am;E� is supported where

r ⇠ 2
m
; ju � 2m

�1j . 2
m
; jv � 2m

�1j . 2
m
; jt � �2j . 2

m
; j⇢ � �2j . 2

m
:

In view of (5.3), one may bound (using the notation in (4.1))

Atf . A
⇥
ˆt I a

0

t

⇤
f C

X
E�2Z2

X
m>0

2
m
A

h
ˆt I a

m;E�

t

i
f

C
X
E�2Z2

X
m<0

2
m=p

A

h
ˆt I a

m;E�

t

i
f;

(5.5)

whenever f is a (say) continuous, non-negative function.
The unit scale piece a0

t
is supported where r ⇠ 1 and it is now further dyad-

ically decomposed with respect to both the ⇢ variable and jr � t j. The rationale
behind this decomposition is to quantify the value of Rot.ˆt /: in view of (4.2), the
function Rot.ˆt / can vanish on supp a0

t
. If r ⇠ 1 and ⇢ ⇠ 2

�k , then it follows
from (3.6) that ju� vj . 2

�k for .v; ⇢/ 2 †u;r;t . Thus, given a function k 7! `.k/

on Z to be defined momentarily we set

ak;`;E�
.u; r; t I v; ⇢/ WDˇ.r/ˇ�k

.⇢/⌘
�k;�1.u; v/ˇ

�`
.jr � t j/⌘�`;�2.r; t/; ` < `.k/;

ck;E�
.u; r; t I v; ⇢/ WDˇ.r/ˇ�k

.⇢/⌘
�k;�1.u; v/⌘

�`.k/
.jr � t j/⌘�`.k/;�2.r; t/;

so that on the support of ak;`;E� , ck;E� we have

r ⇠ 1; ⇢ ⇠ 2
�k
;

ˇ̌
ˇu � 2�k

�1

ˇ̌
ˇ . 2

�k and
ˇ̌
ˇv � 2�k

�1

ˇ̌
ˇ . 2

�kI

moreover

jr � t j ⇠ 2
�`
;

ˇ̌
ˇr � 2�`

�2

ˇ̌
ˇ . 2

�`
;

ˇ̌
ˇt � 2�`

�2

ˇ̌
ˇ . 2

�`

on supp ak;`;E� , and

jr � t j . 2
�`.k/

;

ˇ̌
ˇr � 2�`.k/

�2

ˇ̌
ˇ . 2

�`.k/
;

ˇ̌
ˇt � 2�`.k/

�2

ˇ̌
ˇ . 2

�`.k/

on supp ck;E� . One may bound

A
⇥
ˆt I a

0

t

⇤
f .

X
E�2Z2

X
.k;`/2Z2

`<`.k/

2
�k.1�1=p/

A

h
ˆt I a

k;`;E�

t

i
f (5.6)

C
X
E�2Z2

X
k2Z

2
�k.1�1=p/

A

h
ˆt I c

k;E�

t

i
f: (5.7)
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For the purposes of our proof, we let

`.k/ WD 2k C Crot

for some (absolute) constant Crot � 1, suitably chosen so as to satisfy the forth-
coming requirements. Furthermore, by the first inequality in (3.6), one may in fact
restrict the range of the k summation in the above expression to k � �4 and of the
.k; `/ summation to the parameter set

P WD
˚
.k; `/ 2 Z ⇥ Z W k � �4 and k � 3  ` < `.k/

 
:

We show presently that the following bounds imply Theorem 3.3.

Theorem 5.1. For all 2 < p < 1 there exists some "p > 0 such that

(i)
�� sup

1t2

jAŒˆt I a
k;`;E�

t çf j
��

p
. 2

�`=p�k"p2
k.1�1=p/kf kp for .k; `/2P;

(ii)
�� sup

1t2

jAŒˆt I c
k;E�

t çf j
��

p
. 2

�`.k/=p�k"p2
.1�1=p/kkf kp for all k��4;

(iii)
�� sup

1t2

jAŒˆt I a
m;E�

t çf j
��

p
. 2

�mkf kp for m > 0;

(iv)
�� sup

1t2

jAŒˆt I a
m;E�

t çf j
��

p
. 2

m"p2
�m=pkf kp for m < 0;

uniformly in E� 2 Z
2. The above a priori estimates hold for all f 2 C1

0
.R

2
/ with

support in fy 2 R
2 W y2 ¤ 0g.

Proof of Theorem 3:3 assuming Theorem 5:1 holds. Consider the second and third
terms on the right-hand side of (5.5).

When m > 0 there is spatial orthogonality among the pieces of the decompo-
sition in both E� and m. This observation combined with Theorem 5.1 (iii) above
yields ������

X
E�2Z2

X
m>0

2
m sup

1t2

ˇ̌
ˇA
h
ˆt I a

m;E�

t

i
f

ˇ̌
ˇ
������

p

.

0
@X

E�2Z2

X
m>0

2
mp

���� sup
1t2

ˇ̌
ˇA
h
ˆt I a

m;E�

t

i
f

ˇ̌
ˇ
����

p

p

1
A

1=p

. kf kp;

as desired.
When m < 0, note that by the support properties of am;E�

t ,

sup
1t2

X
�22Z

ˇ̌
ˇA
h
ˆt I a

m;E�

t

i
f

ˇ̌
ˇ . sup

�22Z

sup
1t2

jt�2m�2j.2m

ˇ̌
ˇA
h
ˆt I a

m;E�

t

i
f

ˇ̌
ˇ



0
B@
X
�22Z

sup
1t2

jt�2m�2j.2m

ˇ̌
ˇA
h
ˆt I a

m;E�

t

i
f

ˇ̌
ˇp
1
CA

1=p

:
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Furthermore, applying spatial orthogonality in the E� parameter, the triangle in-
equality to the sum in m and Theorem 5.1 (iv), one deduces that

������
X
m<0

2
m=p sup

1t2

X
E�2Z2

ˇ̌
ˇA
h
ˆt I a

m;E�

t

i
f

ˇ̌
ˇ
������

p

.
X
m<0

2
m=p

0
@X

E�2Z2

���� sup
1t2

ˇ̌
ˇA
h
ˆt I a

m;E�

t

i
f

ˇ̌
ˇ
����

p

p

1
A

1=p

.p kf kp;

where the last step uses the exponential decay 2m"p to sum in m.
Next, consider the sums in (5.6). Again, there is spatial orthogonality in the

�1 parameter. This fact and Theorem 5.1 (i) yield
������
X
�12Z

2
�k.1�1=p/ sup

1t2

ˇ̌
ˇA
h
ˆt I a

k;`;E�

t

i
f

ˇ̌
ˇ
������

p

. 2
�`=p

2
�k"p kf kp

uniformly in �2. As the parameter �2 corresponds to a decomposition of the r
spatial variable,

������
X
E�2Z2

2
�k.1�1=p/ sup

1t2

ˇ̌
ˇA
h
ˆt I a

k;`;E�

t

i
f

ˇ̌
ˇ
������

p

.

0
BBB@

X
�22Z

j�2j.2`

������
X
�12Z

2
�k.1�1=p/ sup

1t2

ˇ̌
ˇA
h
ˆt I a

k;`;E�

t

i
f

ˇ̌
ˇ
������

p

p

1
CCCA

1=p

. 2�k"p

0
BBB@

X
�22Z

j�2j.2`

2
�`kf kp

p

1
CCCA

1=p

. 2
�k"p kf kp:

The desired result then follows from the triangle inequality in .k; `/, using the
exponential decay 2�k"p to sum over k and `  `.k/. The sum in (5.7) is bounded
in a similar manner.

5.2. Rescaling

Each piece of the decomposition is appropriately rescaled in order to obtain, wher-
ever possible, favourable bounds on the various curvatures. For the reader’s conve-
nience, Appendix B.2 describes the behaviour of the functionsˆ, Rot.ˆ/, Cin.ˆ/,
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etc. under general rescalings. These rescalings lead to phase functions satisfy-
ing certain nonisotropic conditions which will require extensions of some classical
results on oscillatory integral operators (see Section 6 below).

5.2.1. The case m D 0

For .k; `/ 2 P we define the dilations

D
k;`
.u; r; t I v; ⇢/ WD

�
2

�k
u; 2

�`
r; 2

�`
t I 2�k

v; 2
�k
⇢
�
:

Let

e.k; `/ WD ` � 2k C ` ^ 2k D

(
` if ` � 2k

2` � 2k if `  2k;

and define

ˆ
k;` WD 2

2kCe.k;`/=3
ˆ ıDk;`

; Qak;`;E� WD ak;`;E� ıDk;`
;

ˆ
k WD ˆ

k;`.k/
; Qck;E� WD ck;E� ıDk;`.k/

:

(5.8)

Note that Qak;`;E� is supported where

⇢ ⇠ 1; r ⇠ 2
`
; jr � t j ⇠ 1; ju � �1j . 1;

jv � �1j . 1; jr � �2j . 1 jt � �2j . 1:

The support of Qck;E� has similar properties, with `.k/ in place of ` and jr � t j . 1.
The appearance of the factor 22kCe.k;`/=3 is motivated by the fact that

Rot
⇣
ˆ

k;`

t

⌘
⇠ 1 on supp Qak;`;E� if j` � 2kj � Crot; (5.9)

Rot
⇣
ˆ

k

t

⌘
⇠ 1 on supp Qck;E�

; (5.10)

Rot
✓⇣
ˆ

k

⌘?

r

◆
⇠ 1 on supp Qck;E� (5.11)

where .ˆk
/
?
r
.u; t I v; ⇢/ WD ˆ

k
t
.u; r I v; ⇢/. Note, however, that Rot.ˆk;`

t / may
vanish on supp Qak;`;E� if j` � 2kj  Crot.

Setting fk.v; ⇢/ D f .2
�k
v; 2

�k
⇢/, and using that ı is homogeneous of degree

�1 one has

A

h
ˆ2�`t I a

k;`;E�

2�`t

i
f

⇣
2

�k
u; 2

�`
r

⌘
D 2

e.k;`/=3
A

h
ˆ

k;`

t ; Qak;`;E�

t

i
fk.u; r/;

A

h
ˆ2�`.k/t I c

k;E�

2�`.k/t

i
f

⇣
2

�k
u; 2

�`
r

⌘
D 2

`.k/=3
A

h
ˆ

k;`

t ; Qck;E�

t

i
fk.u; r/:
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Thus, by rescaling to prove Theorem 5.1 (i) and (ii) it suffices to show that
����sup

t

ˇ̌
ˇA
h
ˆ

k;`

t I Qak;`;E�

t

iˇ̌
ˇ
����

Lp!Lp

. 2
�e.k;`/=3C.1�2=p/k�k"p ; (5.12)

����sup
t

ˇ̌
ˇA
h
ˆ

k

t
I Qck;E�

t

iˇ̌
ˇ
����

Lp!Lp

. 2
�`.k/=3C.1�2=p/k�k"p I (5.13)

where (by a slight abuse of notation) we indicate the operator norms of the maximal
operators on the left-hand side. We note that in view of the support properties of
Qak;`;E� , Qck;� the global supremum in the definition of the maximal operator reduces
to a supremum over an interval I of length jI j ⇠ 1 centered at �2.

It is helpful to isolate the key features of the rescaled averaging operators
used to prove the above inequality. As a first step in this direction, note that each
Œˆ

k;`

t I Qak;`;E�

t ç belongs to the class in the following definition. We use coordinates
.xI z/ for the rescaled phase functions where .x1; x2/ corresponds to a scaled ver-
sion of .u; r/ and .z1; z2/ to a scaled version of .v; ⇢/.

We define collections Ak;` of defining pairs ŒˆI aç involving inequalities and
support assumptions that are uniform in k; `.

Definition 5.2. Let Ak;` denote the set of all smooth families of defining pairs
ŒˆI aç for which the following conditions hold:

(a)k;` j@˛
x
@

ˇ

z @
�

t a.x; t; z/j . 1 and diam supp a . 1,

(ˆ1)k;` j@˛

x
@

ˇ

z
@

�

t ˆt .xI z/j.
⇢
2

�2e.k;`/=3 if ˛2 or �¤0
2

e.k;`/=3 otherwise
, j@zˆt .xIz/j⇠2e.k;`/=3,

(ˆ2)k;` @tˆt .xI z/ D 2
�2e.k;`/=3

c.x; t I z/Rot.ˆt /.xI z/ for some c 2 C1

depending on ŒˆI aç and with uniform C
1 bounds on supp a.

These estimates are understood to hold on supp a, with the constants only depend-
ing on the multiindices ˛; ˇ; � 2 N

2

0
. That is, if we fix a large N then we get

uniform estimates for j˛j, jˇj, j� j  N .

For Œˆk;`I Qak;`;E�
ç it is easy to see that (a)k;` and (ˆ1)k;` hold via a direct

computation (the lower bound in (ˆ1)k;` is a little trickier and uses (3.7)). The
remaining condition (ˆ2)k;` follows from an appropriately rescaled variant of the
key identity (4.3). Indeed, note that

@tˆ
k;`

t .u; r I v; ⇢/ D 2
�2e.k;`/=3

1

4b2.2�`r/.2�`t /⇢
Rot

⇣
ˆ

k;`

t

⌘
.u; r I v; ⇢/

where r ⇠ t ⇠ 2
` and ⇢ ⇠ 1 on supp Qak;`;E�

t . Similarly, each ŒˆkI Qck;E�
ç belongs to

Ak;`.k/ DW Ck .
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5.2.2. The cases m ¤ 0

For m 2 Z n f0g, define3 (recalling m ^ 0 D minfm; 0g)

D
m
.u; r; t I v; ⇢/ WD .2

m
u; r; 2

m^0
t I 2m

v; 2
m^0

⇢/;

ˆ
m WD 2

�2m
ˆ ıDm

; Qam;E� WD am;E� ıDm
;

(5.14)

and let .ˆm
/
?
r
.u; t I v; ⇢/ WD ˆ

m
.u; r; t I v; ⇢/. It follows from (4.2) and (4.4) that

Rot.ˆm

t
/ ⇠ 1 if m > 0 and Rot

�
.ˆ

m
/
?

r

�
⇠ 1 if m < 0 on supp Qam;E� ; (5.15)

this observation motivates the choice of normalising factor 2�2m.
Note that for m > 0 the new amplitude Qam;E� is supported where

r ⇠ 2
m
; ju � �1j . 1; jv � �1j . 1; jr � �2j . 1; j⇢ � �2j . 1;

and if m < 0 then Qam;E� is supported where

r ⇠ 2
m
; ju � �1j . 1; jv � �1j . 1; jt � �2j . 1; j⇢ � �2j . 1:

Setting f m
.v; ⇢/ D f .2

m
v; 2

m^0
⇢/ a computation shows

AŒˆ2m^0t I a
m;E�

2m^0t
çf .2

m
u; r/ D 2

�m
2

m^0
AŒˆ

m

t
; Qam;E�

t çf
m
.u; r/:

Thus by rescaling, to prove Theorem 5.1 (iii) and (iv) it suffices to show that

����sup
t

ˇ̌
ˇA
h
ˆ

m

t
I Qam;E�

t

iˇ̌
ˇ
����

Lp!Lp

. 2
.m^0/"p : (5.16)

Note that in view of the support properties of Qam;E�

t , the global supremum in the
definition of the maximal operator reduces to a supremum over an interval I which
equals Œ1; 2ç if m > 0 and has length jI j ⇠ 1 and it is centered at �2 if m < 0; in
the case m > 0 we abuse of notation and assume that Qam;E�

t is supported on t ⇠ 1,
adding a cut-off function if necessary.

If m > 0, then a simple computation shows that ŒˆmI Qam;E�
ç 2 A0;0 DW A0.

On the other hand, ifm < 0, then ŒˆmI Qam;E�
ç belongs to the following class classes

Am in the following definition where the implicit constants are uniform in m.

3 The ˆm notation in (5.14) conflicts with the ˆk notation introduced in (5.8). Nevertheless, it
shall always be clear from the context which definition is intended.
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Definition 5.3. For m < 0 let Am denote the set of all smooth families of defining
pairs ŒˆI aç satisfying:

(a)m j@˛

x
@

ˇ

z
@

�

t a.x; t I z/j .
(
2

�m˛2 if ˛2 ¤ 0

1 otherwise
diam supp a . 1, and the

projection of supp a in the x2-variable lies in an interval of length . 2
m;

(ˆ1)m j@˛

x
@

ˇ

z
@

�

t ˆt .xI z/j .
⇢
2

�2m if ˛2 ¤ 0

1 otherwise j@zˆt .xI z/j ⇠ 1

on supp a for all ˛; ˇ; � 2 N
2

0
with j˛j, jˇj, j� j  N .

The derivative bounds on the amplitude for ˛2 D 0, which are uniformly
bounded, are used for the L2-estimates in Section 7. The bounds for ˛2 ¤ 0 are
used for the Lp-estimates in Section 8, although they do not introduce any loss for
the purposes of the desired inequality (8.1).

5.3. Cinematic curvature decomposition

The decomposition described in Section 5.1 automatically isolates the region where
the cinematic curvature vanishes.

5.3.1. The case m D 0

By (4.8), (4.11) and (4.12), each Œˆk;`I Qak;`;E�
ç belongs to the following class.

Definition 5.4. Let Ak;`

Cin denote the set of all ŒˆI aç 2 Ak;` satisfying:

(C)k j.ˆ/.ExI z/j; jProj.ˆ/.ExI z/j; jCin.ˆ/.ExI z/j & 2
�Mk for .ExI z/2supp a.

Here M � 1 is an appropriate chosen absolute constant.

Observe, however, that the ŒˆkI Qck;E�
ç lie in Ak;`.k/ but do not belong to

Ak;`.k/

Cin ; it is for this reason that this part of the operator is isolated in the anal-
ysis. Indeed, the amplitude Qck;E� is supported on the region jr � t j . 2

�`.k/ and
therefore .ˆ/, Proj.ˆ/ and Cin.ˆ/ can vanish on supp Qck;E� . Nevertheless, these
quantities only vanish on a small set and, in particular, ŒˆkI Qck;E�

ç belongs to the
following class.

Definition 5.5. Let Ck

Cin denote the set of all ŒˆI cç 2 Ak;`.k/ such that, for all
ı > 0, if .x; t I z/ 2 supp c with jt � x2j > ı, then

(Cı )k j.ˆ/.x; t I z/j; jProj.ˆ/.x; t I z/j; jCin.ˆ/.x; t I z/j & ı2
�Mk .

As before, M � 1 is an appropriately chosen absolute constant.
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5.3.2. The cases m ¤ 0

If m > 0, then (4.8), (4.11) and (4.12) show that ŒˆmI Qam;E�
ç belongs to A0;0

Cin DW
A0

Cin. On the other hand, if m < 0, then ŒˆmI Qam;E�
ç belongs to the following class.

Definition 5.6. For m < 0 let Am

Cin denote the set of ŒˆI cç 2 Am satisfying C)�m.

5.4. Rotational curvature decomposition

Further decomposition is required in order to isolate the regions where the rota-
tional curvature vanishes.

5.4.1. The case m D 0

Let "ı > 0 be a fixed constant, chosen small enough to satisfy the requirements of
the forthcoming proof, and define

bk;`;E�
.u; r; t I v; ⇢/ WD Qak;`;E�

.u; r; t I v; ⇢/⌘
⇣
"

�1

ı Rot
�
ˆ

k;`

t

�
.u; r I v; ⇢/

⌘
:

In view of (5.9), one may readily verify that bk;`;E� is identically zero unless j` �
2kj . 1, in which case Œˆk;`I bk;`;E�

ç 2 Ak;2k

Cin DW Bk

Cin.

Vanishing rotational curvature. To analyse the operators AŒˆk;`

t I bk;`;E�

t ç it is nec-
essary to exploit the fold conditions discussed in Section 4.1. The observations of
Section 4.1 imply that Œˆk;`I bk;`;E�

ç belongs to the following class.

Definition 5.7. Let Bk

Rot denote the set of all smooth families of defining pairs
ŒˆI bç 2 Ak;2k that, in addition to a)k;2k , ˆ1)k;2k , ˆ2)k;2k , satisfy:

The support condition:

(b)k supp bt is contained in an O."ı/-neighbourhood of supp bt \ Zt where Zt

denotes the fold surface

Zt WD
˚
.xI z/ 2 R

2 ⇥ R
2 W ˆt .xI z/ D Rot.ˆt /.xI z/ D 0

 
: (5.17)

The fold conditions: For every .x0I z0/ 2 supp bt0
\ Zt0

there exist:

(F1)k Vectors U D .u1; u2; u3/; V D .v1; v2; v3/ 2 R
3 satisfying

ˇ̌
ˇ̌
⌧
@

2

zz

⌧
U;


ˆt0

@xˆt0

�� ˇ̌
ˇ
.x0Iz0/

V
00
; V

00

�ˇ̌
ˇ̌ ⇠ 2

�4k=3
;

ˇ̌
ˇ̌
⌧
@

2

xx

⌧
V;


ˆt0

@zˆt0

�� ˇ̌
ˇ
.x0Iz0/

U
00
; U

00

�ˇ̌
ˇ̌ ⇠ 2

�4k=3
;

where U 00 D .u2; u3/ and V 00 D .v2; v3/.



THE CIRCULAR MAXIMAL OPERATOR ON HEISENBERG RADIAL FUNCTIONS 527

(F2)k 3 ⇥ 3 real matrices X and Z such that:
(i) If Xij and Zij denote the .i; j / entry of X and Z, respectively, then

jXij j .
⇢
2

�2k if .i; j / 2 f.1; 3/; .2; 3/g
1 otherwise

ˇ̌
Zij
ˇ̌
. 1I

(ii) Xe3 D U , Ze3 D V and j det Xj ⇠ j det Zj ⇠ 1;
(iii) The matrices X;Z transform M.ˆt0

/.x0I z0/ into the normal form

X> ı M.ˆt0
/.x0I z0/ ı Z D


Mt0

.x0I z0/ 0

0 0

�
;

where the 2 ⇥ 2 principal minor satisfies j det Mt0
.x0I z0/j ⇠ 2

4k=3.

For Œˆk;`I bk;`;E�
ç the support condition is satisfied owing to the choice of lo-

calisation whilst, for the fold conditions, U , V and X, Z can be taken to be suitably
rescaled versions of the vectors in (4.5) and the matrices in (4.6), respectively.

Nonvanishing rotational curvature. By (5.9), each Œˆk;`I Qak;`;E� � bk;`;E�
ç belongs

to the following class.

Definition 5.8. Let Ak;`

Rot denote the set of all ŒˆI aç 2 Ak;` that satisfy

(R)k;` Rot.ˆt / ⇠ 1 on supp at .

Recalling (5.12), to prove Lemma 5.1 (i) it therefore suffices to show:
����sup

t2I

jA Œˆt I bt çj

����
Lp!Lp

. 2
�

2k
3 C.1�

2
p /k�k"p kbkC N

if ŒˆI bç 2 Bk

Cin \ Bk

Rot,����sup
t2I

jA Œˆt I at çj

����
Lp!Lp

. 2
�

e.k;`/
3 C.1�

2
p /k�k"p kakC N

if ŒˆI aç 2 Ak;`

Cin \ Ak;`

Rot,

where I is an interval of length jI j ⇠ 1 containing the t -support of a or b.
Similarly, by (5.10) and (5.11), each ŒˆkI Qck;E�

ç belongs to the following class.

Definition 5.9. Let Ck

Rot denote the set of all ŒˆI cç 2 Ck that satisfy R/k;`.k/ and

(R?)k Rot.ˆ?
x2
/ ⇠ 1 on supp c?

x2

where ˆ?
x2
.x1; t I z/ WD ˆt .x1; x2I z/ and c?

x2
.x1; t I z/ WD ct .x1; x2I z/.

Thus, recalling (5.13), to prove Lemma 5.1 (ii) it suffices to show:
����sup

t2I

jAŒˆt I ct çj

����
Lp!Lp

. 2
�

2k
3 C.1�

2
p /k�k"p kckC N if ŒˆI cç 2 Ck

Cin \ Ck

Rot,

where I is an interval of length jI j ⇠ 1 containing the t -support of c.
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5.4.2. The cases m ¤ 0

If m > 0, then it follows from (5.15) that ŒˆmI Qam;E�
ç 2 A0;0

Rot DW A0

Rot. On the
other hand, if m < 0, then (5.15) implies that ŒˆmI Qam;E�

ç has favourable rotational
curvature properties once the rôles of the r and t variables are interchanged. In
particular, in this case ŒˆmI Qam;E�

ç belongs to the following class.

Definition 5.10. For m < 0 let Am

Rot denote the set of all ŒˆI aç 2 Am that satisfy

(R?)m Rot.ˆ?
x2
/ ⇠ 1 on supp a?

x2

where ˆ?
x2
.x1; t I z/ WD ˆt .x1; x2I z/ and a?

x2
.x1; t I z/ WD at .x1; x2I z/.

Thus, recalling (5.16), to prove Lemma 5.1 (iii) and (iv) it suffices to show
that
����sup

t2I

jAŒˆt I at çj

����
Lp!Lp

. kakC N if ŒˆI aç 2 A0

Cin \ A0

Rot;

����sup
t2I

jAŒˆt I at çj

����
Lp!Lp

. 2
m"p sup

x2

kak
C

N
x1;z;t

if ŒˆI aç 2 Am

Cin \ Am

Rot; m < 0;

where I is an interval of length jI j ⇠ 1 containing the t -support of a.

5.5. Frequency decomposition

Given a smooth family of defining pairs ŒˆI aç note that, since the inverse Fourier
transform L⌘ of the cutoff ⌘ from (5.1a) has unit mean,

AŒˆt I at çf .x/ D lim
j !1

2
j

Z
R2

L⌘
�
2

j
ˆt .xI z/

�
at .xI z/f .z/ dz;

where ⌘ is a bump function as in (5.1a). The integral formula for L⌘ then yields

AŒˆt I at ç D AJ Œˆt I at çC
1X

j DJ

Aj Œˆt I at ç

for any J 2 Z where

AJ Œˆt I at çf .x/ WD
1

2⇡

Z
R2

Z
R

e
i✓ˆt .xIz/at .xI z/⌘J

.✓/ d✓ f .z/ dz;

Aj Œˆt I at çf .x/ WD
1

2⇡

Z
R2

Z
R

e
i✓ˆt .xIz/at .xI z/ˇj

.j✓ j/ d✓ f .z/ dz:
(5.18)

This provides a frequency decomposition of (4.1). The low frequency part of the
operator (corresponding toAJ Œˆt I at ç for a suitable choice of J ) can be dealt with
via pointwise comparison with the Hardy-Littlewood maximal operator, and so the
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remainder of the article will focus on the high frequency parts. In view of this and
the observations of the preceding subsection, Theorem 5.1 is a consequence of the
following proposition, which will be proved in Section 7 and Section 8 using the
theory developed in Section 6.

Proposition 5.11. There exists N 2 N, "p > 0 such that for all k � �4, .k; `/ 2
P, j � �e.k; `/=3 and 2 < p < 1, the following bounds hold, with the implicit
constants depending on p. In each inequality, I denotes an interval of length
jI j ⇠ 1 containing the t -support of the amplitude.

(i) For ŒˆI bç 2 Bk

Cin \ Bk

Rot,
����sup

t2I

jAj Œˆt I bt çf j

����
p

. 2
�.j _0/"p2

�
2k
3 C.1�

2
p /k�k"p kbkC N kf kpI

(ii) For ŒˆI aç 2 Ak;`

Cin \ Ak;`

Rot,
����sup

t2I

jAj Œˆt I at çf j

����
p

. 2
�.j _0/"p2

�
e.k;`/

3 C.1�
2
p /k�k"p kakC N kf kpI

(iii) For ŒˆI cç 2 Ck

Cin \ Ck

Rot,
����sup

t2I

jAj Œˆt I ct çf j

����
p

. 2
�.j _0/"p2

�
2k
3 Ck.1�

2
p /�k"p kckC N kf kpI

(iv) For ŒˆI aç 2 A0

Cin \ A0

Rot,
����sup

t2I

jAj Œˆt I at çf j

����
p

. 2
�j"p kakC N kf kpI

(v) For m < 0 and ŒˆI aç 2 Am

Cin \ Am

Rot,
����sup

t2I

jAj Œˆt I at çf j

����
p

. 2
�j"p2

m"p sup
x2

kak
C

N
x1;z;t

kf kp:

Remark. Here cases (i), (iii), (iv) and (v) are understood to hold for ` D 2k so
that j ranges over values j � �2k=3, with k D 0 in the cases (iv) and (v). In
each case, similar estimates hold for A�e.k;`/=3Œˆt I at ç (corresponding to the low
frequency part), which can be proved by elementary means.

6. LLL222 bounds for two parameter oscillatory integral operators

The first step towards establishing Proposition 5.11 is to obtain L2 bounds for the
frequency localised pieces with favourable dependence in the parameters k and `.
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This will follow from certain estimates for maximal functions associated to two
parameter oscillatory integrals, which will be proven in this section.

To this end, let U ⇢ R
d ⇥ R

d be an open set, ‰ W U ! R be a smooth phase
function and a 2 C

1
0
.U /. Consider, for � > 1, the oscillatory integral operator

associated to the phase/amplitude pair Œ‰I aç,

T
�
f .x/ ⌘ T

�
Œ‰I açf .x/ WD

Z
Rd

e
i�‰.xIz/

a.xI z/f .z/ dz: (6.1)

We now let 0 < ıı  1 and we shall assume that the following nonisotropic
derivative estimates

ˇ̌
ˇ@˛

x
@

ˇ

z
‰.xI z/

ˇ̌
ˇC ı

�1

ı

ˇ̌
ˇ@˛

x
@

ˇ

z
@xd

‰.xI z/
ˇ̌
ˇ  C˛;ˇ (6.2)

hold for all .xI z/ 2 U and all ˛; ˇ 2 N
d

0
. We shall then derive estimates in terms

of the two parameters � > 1 and ıı  1. Our results could be rewritten as a two
parameter oscillatory integral estimates with phase �.'.x0I z/C ıı .xI z//, where
x D .x

0
; xd /, and uniform upper bound derivative estimates on ' and  .

6.1. The nondegenerate case

We first formulate a variant of the classical L2 result of Hörmander in [13] under
the assumption (6.2).

Proposition 6.1. Let � � 1, 0 < ıı  1, ‰ be as in (6.2) and suppose that there
is c > 0 such that j det @2

zx
‰.x0I z0/j � cıı for some .x0I z0/ 2 U . Then there

exist "ı > 0 and N > 0, independent of � and ıı, such that for all smooth a with
supp a ⇢ B"ı.x0I z0/,

��T �
��

L2.Rd /!L2.Rd /
. �

�
d�1

2 min
˚
.�ıı/

�1=2
; 1

 
kakC N :

Proof. After applying translation operators we may assume .x0I z0/ D .0I 0/. The
kernel of T �

.T
�
/
⇤ is given by

K
�
.x; y/ WD

Z
Rd

e
i�.‰.xIz/�‰.yIz//

a.xI z/a.yI z/ dz;

and by the Schur’s test, the desired estimate follows from the bounds

sup
x2Rd

Z
Rd

ˇ̌
K

�
.x; y/

ˇ̌
dy; sup

y2Rd

Z
Rd

ˇ̌
K

�
.x; y/

ˇ̌
dx

.��.d�1/ min
˚
.�ıı/

�1
; 1

 
kak2

C N :

(6.3)

We have
rz.‰.xI z/ �‰.yI z// D Aıı.x; yI z/


x

0 � y0

ıı.xd � yd /

�
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where x D .x
0
; xd /; y D .y

0
; yd / and

Aıı.x; yI z/ D
Z

1

0


@

2

z0x0‰ ı
�1
ı @

2

z0xd
‰

@
2

zd x0‰ ı
�1
ı @

2
zd xd

‰

� ˇ̌
ˇ̌
.yCs.x�y/Iz/

ds:

By (6.2) we have kAııkC N .N 1. Also clearly j detAıı.0; 0I 0/j � c and thus
there is an "ı > 0 such that for j.x; yI z/j  "ı the matrix Aı is invertible and
we obtain the estimate k@˛

x;y;z
A

�1

ıı .x; yI z/k  C˛ for all ˛ 2 N
3d

0
for the matrix

norms of the derivatives of A�1

ıı . Hence for jxj; jyj; jzj  "ı

jrz.‰.xI z/ �‰.yI z//j � c.jx0 � y0j C ııjxd � yd j/:

By (6.2) we have
ˇ̌
@

˛

z
.‰.xI z/ �‰.yI z//

ˇ̌
 C.jx0 � y0j C ııjxd � yd j/

for all ˛ 2 N
d

0
. By repeated integration-by-parts in the form of Corollary A.2, with

the choices of ⇢.x; y/ D jx0 � y0j C ııjxd � yd j and R2.x; y/ D 1, one obtains
ˇ̌
K

�
.x; y/

ˇ̌
.N kak2

C N

�
1C �jx0 � y0j C �ııjxd � yd j

��N
:

In view of the compact support of a, the desired bounds (6.3) follow from integrat-
ing in x 2 supp a for fixed y 2 supp a, and in y 2 supp a for fixed x 2 supp a
respectively.

6.2. A two parameter oscillatory integral estimate under two-sided
fold conditions

We shall also formulate a variant of the L2 estimates for oscillatory integral op-
erators with fold singularities of Pan and Sogge [24], which were based on the
previous work on Fourier integral operators by Melrose and Taylor [18], under the
assumption (6.2). We will instead follow the approach in the works of Phong and
Stein [25], Cuccagna [8] and Greenleaf and the fourth author [11].

Proposition 6.2. Let � � 1, 0 < ıı < 1, ‰ be as in (6.2) and suppose that for
some .x0I z0/ 2 U there is c > 0 such that

ˇ̌
det @2

z0x0‰.x0I z0/
ˇ̌

� c; (6.4a)

@
2

zxd
‰.x0I z0/ D 0; @

2

zd x
‰.x0I z0/ D 0; (6.4b)ˇ̌

@
3

xd zd zd
‰.x0I z0/

ˇ̌
� cıı;

ˇ̌
@

3

zd xd xd
‰.x0I z0/

ˇ̌
� cıı: (6.4c)

Then there exist "ı > 0 and N > 0, independent of � and ıı, such that for all
smooth a with supp a ⇢ B"ı.x0I z0/,

kT �kL2.Rd /!L2.Rd / . �
�

d�1
2 min

n
.�ıı/

�1=3
; 1

o
kakC N :



532 D. BELTRAN, S. GUO, J. HICKMAN AND A. SEEGER

Following [25, 8, 11], we decompose dyadically our operator according to the size
of det @2

xz
‰. It is useful to consider the auxiliary quantity

� ⌘ �.‰/ D @
2

xd zd
‰ � @2

xd z0‰
h�
@

2

x0z0‰
�>
i�1

@
2

zd x0‰; (6.5)

which measures the size of the mixed Hessian. In fact, note that ifA is an invertible
.d � 1/ ⇥ .d � 1/ matrix, b; c 2 R

d�1 and d 2 R, one has the identity


I 0

�c>
A

�1
1

� 
A b

c
>
d

�
D


A b

0
>
d � c>

A
�1
d

�

and therefore
det @2

xz
‰.xI z/ D �.xI z/ det @2

x0z0‰.xI z/ (6.6)

for .xI z/ near .x0I z0/. Hence we get, assuming that "ı is small enough,

j�.xI z/j ⇠
ˇ̌
det @2

xz
‰.xI z/

ˇ̌
:

The fold conditions (6.4c) together with (6.4b) imply that
ˇ̌
@xd

�.xI z/
ˇ̌

D
ˇ̌
@

3

xd xd zd
‰.xI z/

ˇ̌
CO."ııı/;ˇ̌

@zd
�.xI z/

ˇ̌
D
ˇ̌
@

3

xd zd zd
‰.xI z/

ˇ̌
CO."ııı/;

and using (6.4c) we get
ˇ̌
@xd

�.xI z/
ˇ̌

⇠ ıı;
ˇ̌
@zd

�.xI z/
ˇ̌

⇠ ıı: (6.7)

Finally, note that the assumption (6.2) implies
ˇ̌
ˇ@˛

x
@

ˇ

z
�.xI z/

ˇ̌
ˇ .˛;ˇ ıı (6.8)

for all ˛; ˇ 2 N
d

0
.

Let ⌘0; ⌘1 be C1 functions on the real line with

supp ⌘0 ⇢ Œ�2; 2ç; supp ⌘1 ⇢ Œ�2;�1=2ç [ Œ1=2; 2ç:

For � � 1, set
M WD max

n
blog2.�

1=2
/c; 0

o
(6.9)

and define

T
�;m
f .x/ WD

Z
Rd

e
i�‰.xIz/

a.xI z/⌘1

�
2

m
ı

�1

ı j�.xIz/j
�
f .z/ dz; 0m<M; (6.10)

T
�;M

f .x/ WD
Z
Rd

e
i�‰.xIz/

a.xI z/⌘0

⇣
2

M
ı

�1

ı �.xIz/
⌘
f .z/ dz: (6.11)

By (6.6) and (6.8) we have j det @2
zx
‰j ⇠ 2

�m
ıı on the support of the amplitude in

T
�;m if 0  m < M and j det @2

zx
‰j . 2

�M
ıı . �

�1=2
ıı on the support of the

amplitude in T �;M .
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Proposition 6.3. Let � � 1, ıı < 1, Œ‰I aç be as in Proposition 6:2 and M as in
(6.9).

(i) If � � ı
�1
ı then, for 0  m < M ,

���T �;m

���
L2.Rd /!L2.Rd /

. �
�

d�1
2 min

n
.2

m
=.�ıı//

1=2
; 2

�m

o
kakC N :

Moreover, ���T �;M

���
L2.Rd /!L2.Rd /

. �
�

d
2 kakC N :

(ii) If 1  �  ı
�1
ı then, for 0  m < M

���T �;m

���
L2.Rd /!L2.Rd /

. 2
�m
�

�
d�1

2 kakC N :

Moreover, ���T �;M

���
L2.Rd /!L2.Rd /

. �
�

d
2 kakC N :

We first note that the bounds in Proposition 6.3 imply Proposition 6.2 by summing
in the m-parameter.

Proof of Proposition 6:2, assuming Proposition 6:3. Let⌘,ˇ be defined as in(5.1a),
(5.1b). Taking ⌘1 D ˇ.j � j/ and ⌘0 D ⌘ in the definitions (6.10), (6.11), we have
T

� D
P

M

mD0
T

�;m.
If �ıı  1, the bound trivially follows from summing in m the estimates in

(ii) in Proposition 6.3.
If �ıı � 1, note that the bounds in (i) in Proposition 6.3 imply
��T �

��
L2!L2

.��
d�1

2

0
@ X

12m.�ıı/1=3

2
m=2

.�ıı/
�1=2 C

X
.�ıı/1=3<2m�1=2

2
�m

1
A kakC N

.��
d�1

2 .�ıı/
�1=3kakC N ;

as desired.

6.3. Proof of Proposition 6.3

We fix N �100d . As the operators depend linearly on a we may assume kakCN


1. The proof is based on a variant of the arguments in [25, 8, 11]; the latter two are
themselves inspired by the Calderón-Vaillancourt theorem on the L2 boundedness
of pseudo-differential operators [6]. Again, by performing translations we may
take .x0I z0/ D .0I 0/.
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Recall that, by hypothesis, �.0I 0/ D 0 and by (6.8) and (6.7) we have that
j@xd

� j ⇠ ıı, j@zd
� j ⇠ ıı and j@˛

x
@

ˇ

z � j .˛;ˇ ıı in B"ı.0I 0/ for some small
"ı > 0. By an application of a quantitative version of the implicit function theorem
(see for example [7, Section 8]) there exist smooth functions

.x
0I z/ 7! u.x0I z/ and .xI z0

/ 7! v.xI z0
/;

defined for jx0j  2"ı, jzj  2"ı and jxj  2"ı, jz0j  2"ı respectively, such that

�.x
0
; u.x0I z/I z/ D 0 and �.xI z0

; v.xI z0
// D 0:

Furthermore, by (6.7)

ju.x0I z/ � xd j; jv.xI z0
/ � zd j ⇠ ı

�1

ı j�.xI z/j:

We may expand jxd �yd j  jxd �u.x0I z/jCju.x0I z/�u.y0I z/jCju.y0I z/�yd j
and obtain the crucial estimate

j�.xI z/j⇠2�m
ıı; j�.yI z/j ⇠ 2

�m
ıı H) jxd � yd j.2�m C jx0 � y0j (6.12)

and similarly (using v)

j�.xIw/j⇠2�m
ıı; j�.xI z/j ⇠ 2

�m
ıı H) jwd � zd j.2�m C jw0 � z0j:

These observations suggest further decomposing the amplitude into functions sup-
ported essentially on C"ı2

�m cubes. Let ⇣ 2 C
1
0
.R/ supported in .�1; 1/ such

that
P

n2Z
⇣.� � n/ ⌘ 1. Set

b
m

�⌫
.xI z/ WDa.xI z/⌘1

�
2

m
ı

�1

ı �.xI z/
�
0
@

dY
j D1

⇣
�
"

�1

ı 2
m
xj � �j

�
⇣
�
"

�1

ı 2
m
zj � ⌫j

�
1
A

and write the corresponding decomposition

T
�;m D

X
.�;⌫/2Zd ⇥Zd

T
�;m

�⌫

where T �;m
�⌫ f WD T

�
Œ‰I bm

�⌫
çf: Observe that

ˇ̌
ˇ@˛

x
@

ˇ

z
b

m

�⌫
.xI z/

ˇ̌
ˇ . 2

m.j˛jCjˇ j/

for all ˛; ˇ 2 N
d

0
. By the Cotlar-Stein lemma (see, for instance, [32, Chapter VII,

Section 2.1]), the proof of the proposition reduces to showing the estimates
���T �;m

�⌫

⇣
T

�;m

Q�Q⌫

⌘⇤���
2!2

C
���
⇣
T

�;m

�⌫

⌘⇤

T
�;m

Q�Q⌫

���
2!2

. �
�.d�1/ minf2m

=.�ıı/; 2
�2mg

.1C j� � Q�j C j⌫ � Q⌫j/3d

(6.13)

for all .�; ⌫/; . Q�; Q⌫/ 2 Z
d ⇥ Z

d . The proof of (6.13) is divided in two cases.
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Off-diagonal estimates. The first step is to establish (6.13) in the off-diagonal
case where

maxfj� � Q�j; j⌫ � Q⌫jg � Cdiag"
�1

ı (6.14)

for a large absolute constant Cdiag � 2, chosen independently of "ı. To this end, it
is convenient to introduce the kernels associated to the operators of the type T T ⇤

and T ⇤
T . The Schwartz kernel of T �;m

�⌫ .T
�;m

Q�Q⌫
/
⇤ is given by

K
�;m

�⌫; Q�Q⌫
.x; y/ WD

Z
Rd

e
i�.‰.xIz/�‰.yIz//

b
m

�⌫; Q�Q⌫
.x; yI z/ dz; (6.15)

and the Schwartz kernel of .T �;m
�⌫ /

⇤
T

�;m

Q�Q⌫
is given by

QK�;m

�⌫; Q�Q⌫
.z; w/ WD

Z
Rd

e
�i�.‰.xIz/�‰.xIw// Qbm

�⌫; Q�Q⌫
.xI z; w/ dxI

here the symbols are given by

b
m

�⌫; Q�Q⌫
.x; yI z/ WD b

m

�⌫
.xI z/bm

Q�Q⌫
.yI z/; Qbm

�⌫; Q�Q⌫
.xI z; w/ WD b

m

�⌫
.xI z/bm

Q�Q⌫
.xIw/:

Lemma 6.4 (Off-diagonal estimate). Let 1  2
m  �

1=2 and suppose that (6.14)
holds.

(i) If j� � Q�j � Cdiag"
�1
ı , then .T �;m

�⌫ /
⇤
T

�;m

Q�Q⌫
⌘ 0 and

���T �;m

�⌫

⇣
T

�;m

Q�Q⌫

⌘⇤���
2!2

.N 2
�2dm

�
�2

�2mj� � Q�j
��N

:

(ii) If j⌫ � Q⌫j � Cdiag"
�1
ı , then T �;m

�⌫ .T
�;m

Q�Q⌫
/
⇤ ⌘ 0 and

���
⇣
T

�;m

�⌫

⌘⇤

T
�;m

Q�Q⌫

���
2!2

.N 2
�2dm

�
�2

�2mj⌫ � Q⌫j
��N

:

Proof. Only the proof of (i) is given; the same argument can be applied to (ii) mu-
tatis mutandis (the asymmetry of assumptions regarding the xd dependence does
not make a difference for the current proof). Furthermore, if j�� Q�j � 2, then it im-
mediately follows from the support properties of the symbols that .T �;m

�⌫ /
⇤
T

�;m

Q�Q⌫
⌘

0 and it only remains to consider the Schwartz kernel K�;m

�⌫; Q�Q⌫
.x; y/ of of

T
�;m
�⌫ .T

�;m

Q�Q⌫
/
⇤. By Schur’s test, the desired estimate follows from

sup
x2Rd

Z
Rd

ˇ̌
ˇK�;m

�⌫; Q�Q⌫
.x; y/

ˇ̌
ˇ dy; sup

y2Rd

Z
Rd

ˇ̌
ˇK�;m

�⌫; Q�Q⌫
.x; y/

ˇ̌
ˇ dx

. 2
�2dm

.2
�2m

�/
�N

j� � Q�jN
:

(6.16)
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First note that, provided Cdiag is suitably chosen, combining the hypothesis j� �
Q�j � Cdiag"

�1
ı with (6.12) yields

jxd � yd j . jx0 � y0j on supp bm

�⌫; Q�Q⌫
. (6.17)

Thus, by Taylor’s theorem and (6.17)
ˇ̌
@

˛

z0.‰.xI z/ �‰.yI z//
ˇ̌
.˛ jx0 � y0j: (6.18a)

For the lower bounds we use (6.4a) and, from (6.4b), @2

z0xd
‰.0I 0/ D 0, to deduce

@z0‰.xI z/�@z0‰.yI z/D
Z

1

0

@
2

z0x0‰.yCs.x�y/I z/ ds .x0�y0
/CO."ıjxd �yd j/:

Thus, from (6.17) we obtain that, for .x; yI z/ near .0; 0I 0/,
ˇ̌
@z0.‰.xI z/ �‰.yI z//

ˇ̌
� cjx0 � y0j: (6.18b)

Finally, j@˛
z
b

m

�⌫; Q�Q⌫
j .˛ 2

mj˛j, and the z-integration is extended over a set of di-
ameter O.2�m

/. By (6.18b) and (6.18a), we may use repeated integration-by-
parts in the form of Corollary A.2, with the choices of ⇢.x; y/ WD jx0 � y

0j and
R.x; y/ WD 1, to obtain

ˇ̌
ˇK�;m

�⌫; Q�Q⌫
.x; y/

ˇ̌
ˇ . 2

�dm
.2

�m
�jx0 � y0j/�N

:

By (6.12), the kernel is identically zero unless j�3 � Q�3j . maxf1; j�0 � Q�0jg.
ProvidedCdiag is sufficiently large, j�0� Q�0j ⇠ j�� Q�j and, furthermore, j�0� Q�0j �
2. Consequently, "�1

ı 2
mjx0 � y0j ⇠ j� � Q�j and so

ˇ̌
ˇK�;m

�⌫; Q�Q⌫
.x; y/

ˇ̌
ˇ . 2

�dm
�
2

�2m
�j� � Q�j

��N
:

For fixed x, the support of y 7! K
�;m

�⌫; Q�Q⌫
.x; y/ is a set of measure O.2�dm

/ and

likewise, for fixed y the support of x 7! K
�;m

�⌫; Q�Q⌫
.x; y/, and (6.16) follows.

Diagonal estimates. The proof of (6.13) has now been reduced to the following
two lemmata.

Lemma 6.5. Suppose that � � 1 and 1  2
m . �

1=2. Then, for all .�; ⌫/ 2
Z

d ⇥ Z
d , ���T �;m

�⌫

���
2!2

. 2
�m
�

�.d�1/=2
:

Furthermore, ���T �;M

�⌫

���
2!2

. �
�d=2

:
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Lemma 6.6. Suppose that �ıı � 1 and 1  2
m  .�ıı/

1=3. Then for all .�; ⌫/ 2
Z

d ⇥ Z
d , ���T �;m

�⌫

���
2!2

. 2
m=2

ı
�1=2

ı �
�d=2

:

Note that the estimate in Lemma 6.6 is better than the estimate in Lemma 6.5 in
the range �ıı � 1, 1  2

m  .�ıı/
1=3.

Proof of Lemma 6:5. Let I�d
, J⌫d

denote the intervals of length "ı2
1�m centered

at x�d
D "ı2

�m
�d , z⌫d

D "ı2
�m
⌫d , respectively. For g 2 L2

.R
d�1

/ define

T
�;m;xd ;zd
�⌫

g.x
0
/ D

Z
Rd�1

e
i�‰.x0;xd Iz0;zd /

b
m

�;⌫
.xI z/g.z0

/ dz0

and observe that

T
�;m

�⌫
f .x/ D I�d

.xd /

Z
J⌫d

T
�;m;xd ;zd
�⌫

Œf .�; xd /ç dzd :

The Schwartz kernel K�;m;xd ;zd
�⌫ .x

0
; y

0
/ of T �;m;xd ;zd

�⌫ .T
�;M;xd ;zd
�⌫ /

⇤ is equal to
Z
Rd�1

e
i�.‰.x0;xd Iz0;zd /�‰.y0;xd Iz0;zd //

b
m

�⌫
.x

0
; xd I z0

; zd /b
m
�⌫
.y0; xd I z0; zd / dz0

:

We use integration-by-parts based on (6.4a); that is, we use the .d�1/-dimensional
case of Corollary A.2 with the choices ⇢.x0

; y
0
/ WD jx0 �y0j, R.x; y/ WD 1 and the

fact that @˛

z0 applied to the amplitude yields a term which is O.2mj˛j
/. This implies

ˇ̌
ˇK�;m;xd ;zd

�⌫
.x

0
; y

0
/

ˇ̌
ˇ .N 2

�m.d�1/
.1C �2

�mjx0 � y0j/�N

uniformly in xd ; zd , and by the Schur’s test one has
���T �;m;xd ;zd

�;⌫

���
L2.Rd�1/!L2.Rd�1/

. �
�.d�1/=2

:

Consequently,

���T �;m

�⌫
f

���
L2.Rd /

.
Z

J⌫d

 Z
I�d

���T �;m;xd ;zd
�⌫

Œf .�; zd /ç

���2

L2.Rd�1/

dxd

!1=2

dzd

. 2
�m=2

�
�.d�1/=2

Z
J⌫d

kŒf .�; zd /çkL2.Rd�1/ dzd

. 2
�m
�

�.d�1/=2kf kL2.Rd /

and hence kT �;m
�⌫ k2!2 . 2

�m
�

�.d�1/=2 as desired. The arguments for T �;M
�⌫ is

analogous.
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Proof of Lemma 6:6. Let K�;m
�⌫ WD K

�;m
�⌫;�⌫ denote the kernel of T �;m

�⌫ .T
�;m
�⌫ /

⇤, as
given by the formula in (6.15). It will also be useful to write bm

�⌫
for the symbol

b
m
�⌫;�⌫

. By the Schur test, the problem is reduced to showing

sup
y2Rd

Z
Rd

ˇ̌
ˇK�;m

�⌫
.x; y/

ˇ̌
ˇ dx . 2

m
ı

�1

ı �
�d
; (6.19a)

sup
x2Rd

Z
Rd

ˇ̌
ˇK�;m

�⌫
.x; y/

ˇ̌
ˇ dy . 2

m
ı

�1

ı �
�d
: (6.19b)

Since T �;m
�⌫ .T

�;m
�⌫ /

⇤ is self-adjoint (6.19b) follows from (6.19a). We proceed to
show (6.19a).

Since the partial mixed Hessian @2

z0x0‰ is non-singular, there exist local so-
lutions in x0 to the implicit equation rz0‰.xI z/ D rz0‰.yI z/. In particular,
by applying a quantitative version of the implicit function theorem (see, for in-
stance, [7, Section 8]), provided "ı is chosen suitably small, there exists a smooth
R

d�1-valued function .xd ; y; z/ 7! X.xd IyI z/ defined by

@z0‰.X.xd IyI z/; xd I z/ D @z0‰.yI z/; (6.20)
X.yd IyI z/ D y

0
: (6.21)

Implicit differentiation yields

@xd
X.xd IyI z/ D �

�
@

2

x0z0‰
��1

@
2

z0xd
‰

ˇ̌
ˇ
.X.xd IyIz/;xd Iz/

: (6.22)

From this formula, the chain rule and the definition of � one deduces that

@xd

⇥
@zd

‰.X.xd IyI z/; xd I z//
⇤

D �
�
X.xd IyI z/; xd I z

�
: (6.23)

Notice that the right-hand side of (6.22) vanishes at .xd IyI z/ D .0I 0I 0/ and that
@

˛
xd
X.xd IyI z/ D O.ıı/. Hence we get

ˇ̌
@xd

X.xd IyI z/
ˇ̌
. "ııı: (6.24)

Moreover, implicit differentiation of (6.20) with respect to z yields

@
2

z0x0‰.X.xd IyI z/; yd I z/@zX.xd IyI z/

D @
2

z0z‰.y
0
; yd I z/ � @2

z0z‰.X.xd IyI z/; xd I z/

. jy0 �X.xd IyI z/j C ııjxd � yd j

DO.ııjxd � yd j/;

where we have used (6.21) and (6.24). This gives

j@zX.xd IyI z/j . ııjxd � yd j: (6.25)
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We shall now state the inequalities for the integration-by-parts argument which
will allow us to prove (6.19a). In what follows we write X WD X.xd IyI z/ and
X⌫ WD X.xd IyI z⌫/ where z⌫ WD "ı2

m
⌫, noting that the z-support of bm

�⌫
lies in a

ball of radius O."ı2
�m
/ about this point. We claim that

ˇ̌
@

˛

z
‰.xI z/ � @˛

z
‰.yI z/

ˇ̌
 C˛

�
jx0 �X⌫ j C ııjxd � yd j

�
(6.26)

and

jrz‰.xI z/ � rz‰.yI z/j � c
�
jx0 �X⌫ j C ıı2

�mjxd � yd j
�
: (6.27)

To see (6.26), by Taylor expansion the left-hand side is dominated by a constant
times jx0 � y

0j C ııjxd � yd j. We then bound jx0 � y
0j  jx0 � X⌫ j C jy0 � X⌫ j

and, using (6.21), by the mean value theorem, (6.24) and (6.25) one has

jy0 �X⌫ j  jX.xd IyI z/ �X.yd IyI z/j C jX.yd IyI z/ �X.yd IyI z⌫/j

. ııjxd � yd j:

Now (6.26) easily follows.
We turn to (6.27). Taking a Taylor expansion in the x0-variables,

@z0‰.xI z/ � @z0‰.yI z/ D @z0‰.xI z/ � @z0‰.X; xd I z/

D @
2

z0x0‰.X; xd I z/.x0 �X/CO.jx0 �X j2/
(6.28)

whilst, by a Taylor expansion in the z-variables, the last expression is equal to

@
2

z0x0‰.X; xd I z/.x0 �X⌫/CO
�
jx0 �X⌫ j2 C "ı2

�m
ııjxd � yd j

�
: (6.29)

Here the additional error term arises by applying the mean value theorem to jX �
X⌫ j together with (6.25).

On the other hand, one may write @zd
‰.xI z/ � @zd

‰.yI z/ D I C II where

I WD @zd
‰.X; xd I z/ � @zd

‰.yI z/; II WD @zd
‰.xI z/ � @zd

‰.X; xd I z/:

To estimate I, take a Taylor expansion first in the xd variable and then in the z
variable to obtain

I D �.yI z/.xd � yd /CO
�
ııjxd � yd j2

�
D �.yI z⌫/.xd � yd /CO

�
"ı2

�m
ııjxd � yd j

�
:

(6.30)

Here � appears owing to (6.23) and (6.21). The second estimate holds due to (6.8)
and the localisation of the .x; yI z/-support of bm

�⌫
. To estimate the II term, arguing

as in (6.28), take a Taylor expansion in the x0 variable and then in the z variable to
obtain

IID@2

zd x0‰.X; xd I z/.x0 �X/CO.jx0 �X j2/

D@2

zd x0‰.X; xd I z/.x0 �X⌫/CO
�
"ıjx0 �X⌫ jC"ı2

�m
ııjxd � yd j

�
:

(6.31)



540 D. BELTRAN, S. GUO, J. HICKMAN AND A. SEEGER

In the last step we applied (6.25). From (6.29), (6.30) and (6.31) we get (assuming
"ı is chosen sufficiently small) that

j@z0‰.xI z/�@z0‰.yI z/j � c1jx0�X⌫ j if jx0�X⌫ j � C1"ı2
�m
ııjxd �yd j

and

j@zd
‰.xI z/ � @zd

‰.yI z/j � .ıı=2/2
�mjxd � yd j

if jx0 �X⌫ j  C1"ı2
�m
ııjxd � yd j;

and these inequalities imply (6.27).
We now estimateK�;m

�⌫ .x; y/. Using just the size and support of the integrand
we get

jK�;m

�⌫
.x; y/j . 2

�md (6.32)

which we use for jx0 �X⌫ j C 2
�m
ııjxd � yd j  �

�1.
Now assume jx0�X⌫ jC2�m

ııjxd �yd j � �
�1; we use integration-by-parts to

improve on (6.32). By (6.26), (6.27) we can apply Corollary A.2 with the choices
R.x; y/ WD 2

m and ⇢.x; y/ WD jx0 � X⌫.xd ; yI z⌫/j C 2
�m
ııjxd � yd j. We also

use that for fixed x; y the amplitude is supported in a set of diameter 2�m and the
estimates

j@˛

z
Œb

m

�⌫
.x; z/b

m

�⌫
.y; z/çj . 2

mj˛j
:

Altogether, Corollary A.2 yields, for x ¤ y,
ˇ̌
ˇK�;m

�⌫
.x; y/

ˇ̌
ˇ . 2

�md
�

�N
2

mN
�
jx0 �X⌫ j C �2

�m
ııjxd � yd j/

��N
:

Combining this with (6.32) we obtain
ˇ̌
ˇK�;m

�⌫
.x; y/

ˇ̌
ˇ . 2

�md
�
1C �2

�mjx0 �X⌫ j C �2
�2m

ııjxd � yd j/
��N

:

Fixing y and integrating in x yields
Z
Rd

ˇ̌
ˇK�;m

�⌫
.x; y/

ˇ̌
ˇ dx . 2

�md
�
2

m
�

�1
�d�1

2
2m
�

�1
ı

�1

ı . 2
m
ı

�1

ı �
�d
;

which is the desired estimate for the first term in (6.19a). This finishes the proof of
(6.19a) and the proof of the lemma.

6.4. Uniform estimates depending on a ttt -variable

The estimates obtained in Propositions 6.1, 6.2 and 6.3 will be used to obtain L2-
bounds for the operators Aj Œˆt I at ç. To this end, we shall allow a t -dependence
in our operator and obtain uniform estimates in t . Consider now an open set U ⇢
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R
d ⇥ R ⇥ R

d , a phase function ‰ W U ! R and an amplitude a 2 C
1
0
.U /, and

define
‰t .xI z/ D ‰.xI t I z/ and at .xI z/ D a.xI t I z/: (6.33)

Given � � 1, let T �
t

denote the oscillatory integral associated to the pair Œ‰t I at ç as
in (6.1), given by T �

t
⌘ T

�
Œ‰t I at ç. For 0 < ıı  1, we assume that the condition

(6.2) continues to hold under t -derivatives. That is, the estimates
ˇ̌
ˇ@˛

x
@

ˇ

z
@

�

t ‰t .xI z/
ˇ̌
ˇC ı

�1

ı

ˇ̌
ˇ@˛

x
@

ˇ

z
@

�

t @xd
‰t .xI z/

ˇ̌
ˇ  C˛;ˇ;� (6.34)

hold for all .xI t I z/ 2 U and all ˛; ˇ 2 N
d

0
, � 2 N0. Thus, if the condition

j det @2
zx
‰t0

.x0I z0/j � cıı holds for some .x0I t0I z0/ 2 U , Proposition 6.1 in
conjunction with (6.34) immediately extends to a uniform estimate for the operators
T

�
t

for all jt � t0j  "ı, for suitable "ı. Likewise if (6.34) holds and the conditions
(6.4a), (6.4b) and (6.4c) are satisfied at a certain .x0I t0I z0/ 2 U , Propositions 6.2
and 6.3 also extend to the operators T �

t
for all jt � t0j  "ı, with uniform bounds

on t ; note that (6.34) implies that the quantity �t .xI z/ ⌘ �.xI t I z/ defined as in
(6.5), also satisfies the derivative bounds (6.8) under t -differentiation, that is,

ˇ̌
ˇ@˛

x
@

ˇ

z
@

�

t �t .xI z/
ˇ̌
ˇ .˛;ˇ;� ıı (6.35)

holds for all .xI t I z/ 2 U and all ˛; ˇ 2 N
d

0
, � 2 N0.

6.5. Estimates for maximal oscillatory integrals

We now state the version of the estimates in Propositions 6.1 and 6.2 for the maxi-
mal functions associated to the oscillatory integral operators T �

t
.

To obtain such maximal estimates we will assume that (6.34) holds and that, in
addition, there is ıı-smallness when we differentiate with respect to the t -variable;
more precisely we assume that

ˇ̌
@

˛

x
@

ˇ

z
@

�

t ‰t .xI z/
ˇ̌
.� ıı (6.36)

holds for all .xI t I z/ 2 U and all ˛; ˇ 2 N
d

0
, � > 0.

Proposition 6.7. Let Œ‰; aç be as in (6.33). Suppose ‰ satisfies (6.34), (6.36) and
j det @2

zx
‰t0

.x0I z0/j � cıı for some .x0I t0I z0/ 2 U . Then there is "ı > 0 and
N > 0 such that, under the assumption of at supported in B"ı.x0; z0/,

����� sup
jt�t0j"ı

ˇ̌
ˇT �

Œ‰t I at ç

ˇ̌
ˇ
�����

L2.Rd /!L2.Rd /

. �
�

d�1
2 kakC N :

Proposition 6.8. Let Œ‰; aç be as in (6.33). Assume that ‰ satisfies (6.4a), (6.4b)
(6.4c) at a certain .x0I t0I z0/ 2 U , the estimates (6.34) and (6.36) and, in addition,
assume that

@t‰t .xI z/ D ct .xI z/ det @2

zx
‰t .xI z/ (6.37)
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for some c 2 C1 in a neighbourhood of supp a. Then there is "ı > 0 and N > 0

such that, under the assumption of at supported in B"ı.x0; z0/

����� sup
jt�t0j"ı

ˇ̌
ˇT �

Œ‰t I at ç

ˇ̌
ˇ
�����

L2.Rd /!L2.Rd /

. �
�

d�1
2 log.2C �ıı/kakC N :

The proofs rely on a standard Sobolev embedding inequality (see for instance [32,
Chapter XI, Section 3.2]). Namely, for a C 1 function t 7! g.t/ supported on an
interval I , with t0 2 I , we have, for 1  p < 1,

sup
t2I

jg.t/jp  jg.t0/j
p C pkgkp�1

Lp.I /
kg0kp (6.38)

which follows by the fundamental theorem of calculus applied to jgjp and Hölder’s
inequality. We can apply this to F.x; t/ with F 2 Lp

.R
d IC 1

/, and after integrat-
ing in x and another application of Hölder’s inequality, (6.38) gives

����sup
t2I

jF.�; t /j

����
p

Lp.Rd /

 inf
t02I

kF.�; t0/k
p

Lp.Rd /

C pkF kp�1

Lp.Rd ⇥I/
k@tF kLp.Rd ⇥I/:

(6.39)

Proof of Proposition 6:7. Note that if T �
t

WD T
�
Œ‰t I at ç, then @tT

�
t

D T
�
Œ‰t I dt ç,

where dt WD .i�@t‰t /at C@tat . By (6.36) one has kdtkC N . .1C�ıı/katkC N C1 .
Thus, by the hypothesis and Proposition 6.1 applied to T �

t
and @tT

�
t

(as discussed
in Section 6.4), there exist "ı andN > 0 such that, if at is supported inB"ı.x0I z0/,
the bounds

.1C �ıı/
1=2

��T �

t
f
��

L2.Rd /
C .1C �ıı/

�1=2
��@tT

�

t
f
��

L2.Rd /

.��
d�1

2 kakC N C1kf kL2.Rd /

hold uniformly in jt � t0j  "ı. Now the assertion follows immediately by the
Sobolev inequality (6.39) for the exponent p D 2.

Proof of Proposition 6:8. Given 0  m  M , let

T
�;m

t f .x/ WD
Z
Rd

e
i�‰t .xIz/

at .xI z/ˇ
�
2

m
ı

�1

ı j�t .xI z/j
�
f .z/ dz; 0  m < M;

T
�;M

t f .x/ WD
Z
Rd

e
i�‰t .xIz/

at .xI z/⌘
�
2

M
ı

�1

ı �t .xI z/
�
f .z/ dzI

that is, (6.10) and (6.11) with ˇ.j � j/, ⌘ in place of ⌘1, ⌘0 and with the phase-
amplitude pair Œ‰t I at ç.
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Using (6.37) and (6.6) we compute

@tT
�;m

t f .x/ D �ıı2
�m

Z
Rd

e
i�‰t .xIz/ect .xIz/at .xIz/⌘1

�
2

m
ı

�1

ı �t .xIz/
�
f .z/ dz

C2m

Z
Rd

e
i�‰t .xIz/

2
�m
@tat .xIz/ˇ

�
2

m
ı

�1

ı j�t .xIz/j
�
f .z/ dz

C2m

Z
Rd

e
i�‰t .xIz/

ı
�1

ı @t�t .xIz/at .xIz/e⌘1

�
2

m
ı

�1

ı �t .xIz/
�
f .z/ dz

where ect D ct@
2

x0z0‰t , is smooth and ⌘1.s/ D sˇ.jsj/, e⌘1.s/ D d

ds
.ˇ.jsj//. For

m D M we have a similar formula with ˇ replaced by ⌘. Note that in view of
(6.35) we have j@˛

x
@

ˇ

z Œı
�1

0
@t�tat çj . C˛;ˇ .

Assume 1  2
m  .�ıı/

1=3. By the hypothesis and Proposition 6.3 applied
to T �;m

t and @tT
�;m

t , there exist "ı and N > 0 such that, if at is supported in
B"ı.x0I z0/, one has the bounds

���T �;m

t f

���
L2.Rd /

. �
�

d�1
2

✓
2

m

�ıı

◆1=2

kf kL2.Rd /

and

���@tT
�;m

t f

���
L2.Rd /

. �
�

d�1
2

✓
2

m

�ıı

◆1=2 �
�ıı2

�m C 2
m
�
kf kL2.Rd /

. �
�

d�1
2

✓
2

m

�ıı

◆�1=2

kf kL2.Rd /

uniformly in jt � t0j  "ı, where the last inequality follows because we are under
the assumption 1  2

m  .�ıı/
1=3  .�ıı/

1=2. Therefore, the above estimates
combined with (6.39) yield

X
0mblog2.�ıı/1=3c

����� sup
jt�t0j"ı

ˇ̌
ˇT �;m

t f

ˇ̌
ˇ
�����

L2.Rd /

. log.2C �ıı/�
�

d�1
2 kf kL2.Rd /:

Similarly, if �1=2 � 2
m � minf.�ıı/

1=3
; 1g, Proposition 6.3 implies

���T �;m

t f

���
L2.Rd /

. �
�

d�1
2 2

�mkf kL2.Rd /

and
���@tT

�;m

t f

���
L2.Rd /

. �
�

d�1
2 2

�m
�
�ıı2

�m C 2
m
�
kf kL2.Rd /
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uniformly in jt � t0j  "ı. The above bounds imply, by (6.39), that
����� sup

jt�t0j"ı

ˇ̌
ˇT �;m

t f

ˇ̌
ˇ
�����

L2.Rd /

. �
�

d�1
2 2

�m
.�ıı2

�m C 2
m
/
1=2kf kL2.Rd /;

and thus
X

blog2.�ıı/1=3c^1mM

����� sup
jt�t0j"ı

ˇ̌
ˇT �;m

t f

ˇ̌
ˇ
�����

L2.Rd /

. �
�

d�1
2 kf kL2.Rd /

follows from summing a geometric series, as �ıı2
�m  2

2m in the range of sum-
mation. Combining both sums one obtains the desired bound by the triangle in-
equality, which concludes the proof of the proposition.

6.6. Radon-type operators in ddd dimensions versus oscillatory
integral operators in ddd CCC 111 dimensions

In this section we use variables .xI z/ 2 R
dC1 ⇥ R

dC1 and split x D .x1; x
00
/,

z D .z1; z
00
/ with x00 2 R

d , z00 2 R
d . Recall that the frequency localised Radon-

type operators in (5.18) are of the form (with d D 2)

Aj Œˆt I at çf
�
x

00
�

D
Z
Rd

at

�
x

00I z00
� Z

R

ˇ.2
�j j✓ j/ei✓ˆt .x00Iz00/

f
�
z

00
�

d✓ dz00

D 2
j

Z
R⇥Rd

at

�
x

00I z00
�
ˇ.j!j/ei2j !ˆt .x00Iz00/

f
�
z

00
�

d! dz00
:

(6.40)

We rely on an idea in [32, Chapter XI, Section 3.2.1] to show that a Lp
.R

d
/ esti-

mate for supt2I jAj Œˆt I at çf j is implied by a Lp-estimate for a maximal function
associated with a closely related family of oscillatory integral operators acting on
functions on R

dC1 which we will presently define.
Recall that ˇ is supported in Œ1=2; 2ç. Let ěbe supported in .1=4; 4/ such that

also ě.s/ D 1 for s 2 Œ1=3; 3ç. Notice that ě.s/ˇ.us/ D ˇ.us/ for 2=3 < u < 3=2.
Now let �1 2 C

1
0
.R/ so that �1.r/ D 1 on J WD Œ2=3; 3=2ç. Consider the

family of oscillatory integral operators T 2j
Œ�t I at ç, as defined in (6.1) but acting

on functions g on R
dC1, where

�t .xIz/Dx1z1ˆt

�
x

00Iz00
�
; and at .xIz/D�1.x1/x1at

�
x

00Iz00
�
ˇ.x1jz1j/: (6.41)

Lemma 6.9. Let E ⇢ .0;1/, ˆ, �, a, a as in (6.41), and define

Mj ŒˆI açf WD sup
t2E

ˇ̌
Aj Œˆt I at çf

ˇ̌
; Mj Œ�I açg D sup

t2E

ˇ̌
T

2j
Œ�t I at çg

ˇ̌
:

Then���Mj ŒˆIaçkLp.Rd /!Lp.Rd /2
j
.6=5/

1=pkěkLp.R/

���Mj Œ�IaçkLp.RdC1/!Lp.RdC1/:
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Proof. For fixed x1 we change variables ! D x1z1 in (6.40). We use that �.x1/ D
1 for x1 2 J and that ě.jz1j/ˇ.x1jz1j/ D ˇ.x1jz1j/ for .x1; z1/ 2 J ⇥R to obtain
the identity

Aj Œˆt I at çf
�
x

00
�

D 2
j
T

2j
Œ�t I at ç

�ě˝ f
��
x1; x

00
�

for all x1 2 J:

This identity implies that

2
�j kMj ŒˆI açf jkLp.Rd /

 jJ j�1=p

���Mj Œ�I aç
�ě˝ f

����
Lp.J ⇥Rd /

 .3=2 � 2=3/1=p

���Mj Œ�I aç
�ě˝ f

����
Lp.RdC1/

 .6=5/1=p

���Mj Œ�I aç
���

Lp.RdC1/!Lp.RdC1/

��ě��
Lp.R/

kf kLp.Rd /

which implies the assertion.

7. Proof of Proposition 5.11: LLL222 bounds

In this section we apply the maximal function results in Section 6 to deduce
favourable L2 bounds which will feature in the proof of Proposition 5.11.

Proposition 7.1. For all m < 0, k � �4, .k; `/ 2 P and j � �e.k; `/=3, the
following bounds hold, where in each inequality I denotes an interval of length
jI j ⇠ 1 containing the t -support of the amplitude.

(i)
����sup

t2I

jAj Œˆt I bt çj

����
L2.R2/!L2.R2/

. .j _ 1/2�2k=3kbkC N if ŒˆI bç 2 Bk

Rot;

(ii)
����sup

t2I

jAj Œˆt I at çj

����
L2.R2/!L2.R2/

. 2
�e.k;`/=3kakC N if ŒˆI aç 2 Ak;`

Rot;

(iii)
����sup

t2I

jAj Œˆt I ct çj

����
L2.R2/!L2.R2/

. 2
�2k=3kckC N if ŒˆI cç 2 Ck

Rot;

(iv)
����sup

t2I

jAj Œˆt I at çj

����
L2.R2/!L2.R2/

. kakC N if ŒˆI aç 2 A0

Rot;

(v)
����sup

t2I

jAj Œˆt I at çj

����
L2.R2/!L2.R2/

. 2
m=2 sup

x2

kak
C

N
x1;z;t

if ŒˆI aç 2 Am

Rot.

As in Section 5, the cases (i), (iii), (iv) and (v) are understood to hold for ` D 2k,
with k D 0 in the cases (iv) and (v).

The proof of Proposition 7.1 is presented in what follows. Observe that, by
the definition of the classes, (iii) and (iv) are both just special cases of (ii). Thus, it
will suffice to prove (i) , (ii) and (v) only.
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Remark. Only rotational curvature considerations are required to establish the
above L2 bounds. The cinematic curvature is used in Section 8 to deduce local
smoothing estimates in order to obtain summable bounds in the j parameter.

Using Lemma 6.9 the estimates in Proposition 7.1 may be deduced from es-
timates on oscillatory integral operators acting on functions in R

3; in particular,
our assumptions on the phase/amplitude pairs allow direct applications of Proposi-
tions 6.7 and 6.8 with suitable choices of the parameters � and ıı.

7.1. Proof of Proposition 7.1 (i)

By Lemma 6.9, it suffices to show that
����sup

t2I

ˇ̌
ˇT 2j

Œ�t I bt ç

ˇ̌
ˇ
����

L2.R3/!L2.R3/

. 2
�j
.j _ 1/2�2k=3kbkC N ;

where �t .xI z/ D x1z1ˆ.x
00
; t I z00

/ and bt .xI z/ D �.x1/x1bt .x
00I z00

/ˇ.x1jz1j/.
First we use the fold conditions, inherent in the hypotheses (F1)k and (F2)k

in the definition of Bk

Rot, to place the operator in a normal form. By assumption
.b/k , one may assume without loss of generality, decomposing bt into at mostO.1/
pieces, that supp b is contained in an "ı-ball centred at some point .x00

0
I t0I z00

0
/ with

.x
00
0
I z00

0
/ 2 Zt0

. Here Zt0
is as defined in (5.17). Fix a pair of 3 ⇥ 3 matrices

X and Z satisfying the properties enumerated in property .F2/k . Since j det Xj ⇠
j det Zj ⇠ 1, by a change of variables it suffices to show the L2 bound for the
maximal function supjt�t0j<"ı jT 2j

Œ Q�t I Qbt çf .x/j in R
3, where

Q�t .xI z/ WD �t .XxI Zz/; Qbt .xI z/ WD bt .XxI Zz/:

Now the assumption ŒˆI bç 2 Bk

Rot implies that the support of Qbt is contained in a
"ı-ball centred at .x0; t0I z0/ D .0; x

00
0
; t0I 1; z00

0
/ 2 R

3 ⇥R⇥R
3; moreover we have

the following conditions on the derivatives of Q�:

j@˛

x
@

ˇ

z
Q�t .xI z/j.

(
2

�4k=3 if ˛3 ¤ 0

2
2k=3 otherwise;

(7.1a)

@
2

x3z
Q�t0
.x0Iz0/D@

2

xz3
Q�t0
.z0Iz0/D0 and

ˇ̌
det@2

x0z0 Q�t0
.x0Iz0/

ˇ̌
⇠24k=3

; (7.1b)

j@3

x3z3z3
Q�t0
.x0I z0/j; j@

3

x3x3z3
Q�t0
.x0I z0/j ⇠ 2

�4k=3
; (7.1c)

j@˛

x
@

ˇ

z
@

�

t
Q�t .xI z/j.2�4k=3 for � > 0; (7.1d)

@t
Q�t .xI z/ D Qc.x; t I z/2�4k=3 det @2

xz
Q�t .xI z/

for some Qc 2 C1 with uniform C
1 bounds on supp Qbt .

(7.1e)
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The following table shows which conditions for the class Bk
rot of defining functions

imply the conditions in (7.1).

(7.1a) .ˆ1)k;2k and (F2)k (i) (7.1d) (ˆ1)k;2k and (F2)k (i)
(7.1b) (F2)k (iii) (7.1e) (ˆ2)k;2k and (F2)k (ii)
(7.1c) (F1)k and (F2)k (ii)

One now checks that the phase function

‰t .xI z/ D 2
�2k=3e�t .xI z/

satisfies the assumptions in Proposition 6.8 with d D 3 and ıı D 2
�2k via (7.1). If

we put � D 2
j C2k=3, then �‰ D 2

j Q� and we can apply Proposition 6.8 to obtain
����sup

t2I

ˇ̌
ˇT 2j

Œ�t I bt ç

ˇ̌
ˇ
����

L2.R3/!L2.R3/

. �
�1 log.2C �ıı/kbkC N

. 2
�j �2k=3

.j _ 1/kbkC N ;

as desired.

7.2. Proof of Proposition 7.1 (ii)

We again use the reduction in Section 6.6 so that it suffices to show
����sup

t2I

ˇ̌
ˇT 2j

Œ�t I at ç

ˇ̌
ˇ
����

L2.R3/!L2.R3/

. 2
�j
2

�e.k;`/=3kakC N ;

where �t .xI z/ D x1z1ˆ.x
00
; t I z00

/ and at .xI z/ D �.x1/x1at .x
00I z00

/ˇ.x1jz1j/.
The condition ŒˆI aç 2 Ak;`

Rot implies that the phase function �t .xI z/ D
x1z1ˆt .x

00I z00
/ satisfies the inequalities

j@˛

x
@

ˇ

z
�t .xI z/j .

(
2

�2e.k;`/=3 if ˛3 ¤ 0

2
e.k;`/=3 otherwise,

(7.2)

j det @2

xz
�t .xI z/j ⇠ 1; (7.3)

j@˛

x
@

ˇ

z
@

�

t �t .xI z/j . 2
�2e.k;`/=3 for � > 0. (7.4)

These estimates are understood to hold on supp at (which has diameter . 1) for
all ˛; ˇ 2 N

3

0
, � 2 N with implicit constants depending on the multiindices. One

checks that (7.2) and (7.4) are implied by (ˆ1/k;` in the definition of Ak;` while
(7.3) is implied by the additional rotational curvature condition in Definition 5.8.

We can now verify that the phase function

‰t .xI z/ D 2
�e.k;`/=3

�t .xI z/
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satisfies the assumptions in Proposition 6.7 with d D 3 and ıı D 2
�e.k;`/. If we

put � D 2
j Ce.k;`/=3, then �‰ D 2

j
� and by Proposition 6.7 we get

����sup
t2I

ˇ̌
ˇT 2j

Œ�t I at ç

ˇ̌
ˇ
����

L2.R3/!L2.R3/

. �
�1kakC N . 2

�j �e.k;`/=3kakC N ;

as desired.

7.3. Proof of Proposition 7.1 (v)

Again, by Lemma 6.9, it suffices to show that
����sup

t2I

ˇ̌
ˇT 2j

Œ‰t I at ç

ˇ̌
ˇ
����

L2.R3/!L2.R3/

. 2
�j
2

m=2 sup
x3

kak
C

N
x1;x2;z;t

; (7.5)

where ‰.xI t I z/ D x1z1ˆ.x
00
; t I z00

/ and at .xI z/ D �.x1/x1at .x
00I z00

/ˇ.x1jz1j/.
By the condition ŒˆI aç 2 Am

Rot, the diameter of the support of a is O.1/ and more-
over the following conditions hold (see Definitions 5.3 and 5.10). First, there exists
an interval Im of length . 2

m so that a.xI t I z/ D 0 when x3 … Im. Next, if
‰

?
x3
.x1; x2; t I z/ WD x1z1ˆ.x

00
; t I z00

/ then ‰?
x3

satisfies

ˇ̌
@

˛

x
@

ˇ

z
@

�

t ‰
?

x3
.x1; x2; t I z/

ˇ̌
.
(
2

�2m if ˛3 ¤ 0

1 otherwise;
(7.6a)

ˇ̌
det @2

.x1;x2;t/;.z1;z2;z3/
‰

?

x3

ˇ̌
⇠ 1: (7.6b)

In what follows we will freeze x3, so the derivatives with respect to x3 in (7.6a)
will be irrelevant for our purposes.

To establish (7.5) we show that if

S
2j

x3
f .x1; x2; t / ⌘ T

2j ⇥
‰

?

x3
I a?

x3

⇤
f .x1; x2; t / ⌘ T

2j
Œ‰t I at çf .x1; x2; x3/;

where a?
x3
.x1; x2; t I z/ D at .xI z/, then we have, for all x3 2 Im,

✓Z
R3

ˇ̌
S

2j

x3
f .x1; x2; t /

ˇ̌
2dx1 dx2 dt

◆1=2

C 2
�j

✓Z ˇ̌
@tS

2j

x3
f .x1; x2; t /

ˇ̌
2 dx1 dx2 dt

◆1=2

. 2�3j=2 sup
x3

kak
C

N
x1;x2;z;t

kf k2:

(7.7)

Indeed, note that @tS
2j

x3
f .x1; x2; t / D T

2j
Œ‰

?
x3

I d?
x3
çf .x1; x2; t /, where

d
?

x3
WD

�
i2

j
@t‰

?

x3

�
aC @ta

?

x3
;
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and, in view of (7.6a) and (7.6b), the estimate (7.7) is now an immediate conse-
quence of the oscillatory integral estimate in Proposition 6.1 with ıı D 1, which
holds uniformly in x3 2 Im. Note that, in this case, our application of Proposi-
tion 6.1 corresponds to the classical Hörmander L2-estimate for oscillatory inte-
grals [13]. Integrating the square of the left-hand side of (7.7) over x3 2 Im and
using jImj . 2

m, we get

✓Z
Im

Z
R3

ˇ̌
ˇT 2j

Œ‰t I at çf .x/

ˇ̌
ˇ2C2�2j

ˇ̌
ˇ@tT

2j
Œ‰t I at çf .x/

ˇ̌
ˇ2 dx1 dx2 dt dx3

◆1=2

. 2�3j=2
2

m=2 sup
x3

kak
C

N
x1;x2;z;t

kf k2:

By the Sobolev inequality (6.39) and Fubini’s theorem, the desired estimate (7.5)
immediately follows.

8. Proof of Proposition 5.11: LLLppp theory

This section deals with the remainder of the proof of Proposition 5.11. Local space-
time Lp estimates are used to establish Lp bounds with favourable j dependence
when p > 2. These bounds can be combined with the L2 estimates from Proposi-
tion 7.1 and L1 estimates to yield the desired results.

8.1. LLLppp bounds

It is first noted that the L2 bounds of the previous section imply Lp estimates via
interpolation with straightforward L1 bounds.

Corollary 8.1. For all m < 0, .k; `/ 2 P, j � �e.k; `/=3 and 2  p  1, there
existsN 2 N such that the following bounds hold. In each inequality, I denotes an
interval of length ⇠ 1 containing the t -support of the amplitude.

(i)
����sup

t2I

jAj Œˆt Ibt çj

����
Lp.R2/!Lp.R2/

. .j_1/2=p
2

�2k=3kbkC N if ŒˆIbç2Bk

Rot;

(ii)
����sup

t2I

jAj Œˆt Iat çj

����
Lp.R2/!Lp.R2/

.2�e.k;`/=3kakC N if ŒˆIaç2Ak;`

Rot;

(iii)
����sup

t2I

jAj Œˆt Ict çj

����
Lp.R2/!Lp.R2/

.2�2k=3kckC N if ŒˆIaç2Ck

Rot;

(iv)
����sup

t2I

jAj Œˆt Iat çj

����
Lp.R2/!Lp.R2/

.kakC N if ŒˆIaç2A0

Rot;

(v)
����sup

t2I

jAj Œˆt Iat çj

����
Lp.R2/!Lp.R2/

.2m=p sup
x2

kak
C

N
x1;z;t

if ŒˆIaç2Am

Rot.
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Remark. The estimates from Corollary 8.1 are not summable in the j parameter,
so alone they do not imply Proposition 5.11. However, (i), (ii) and (iii) have better k
dependence than what is required in Proposition 5.11 (by a factor of 2.1�

2
p /k�k"p )

and, similarly, (v) has a better m dependence (by a factor of 2m=p�m"p ). This
observation is used below to mitigate losses in k and m in Proposition 8.2.

Proof of Corollary 8:1. We will only consider (i) since the proofs of the remaining
cases are similar. For p D 2 the desired bound is precisely Proposition 7.1 (i). By
interpolation, it suffices to verify the bound for p D 1.

Let ŒˆI bç 2 Bk

Rot and recall from (5.18) that

Aj Œˆt I bt çf .x/ D
Z
R2

f .z/bt .xI z/2j Ľ�2j
ˆt .xI z/

�
dz:

Further recall that ˆt satisfies Definition 5.7 and, in particular, the condition
(ˆ1/k;2k as stated in Definition 5.2. Thus, on the support of bt we have

j@zˆt .xI z/j & 2
2k=3

and so the desired L1 estimate follows.

The following proposition provides the crucial j summability for j > 0.

Proposition 8.2. There exist N;M 2 N and "ı > 0 such that for all .k; `/ 2 P,
the inequality

����sup
t2I

ˇ̌
Aj Œˆt I at ç

ˇ̌����
L6.R2/!L6.R2/

. 2
Mk
2

�j"ıkakC N (8.1)

holds if ŒˆI aç belongs to any one of the following classes:

(i) Bk

Cin;

(ii) Ak;`

Cin;

(iii) Ck

Cin \ Ck

Rot;
(iv) A0

Cin taking k D 0 in (8.1);
(v) Am

Cin, m < 0, taking k D �m in (8.1).

In (8.1), I denotes an interval of length ⇠ 1 containing the t -support of a.

Remark. The exponent p D 6 does not play a significant rôle and is used merely
for convenience (one could equally work with other p values). See the comments
after Theorem 8.5 below.

Assuming this result, Proposition 5.11 easily follows by interpolation with the
estimates in Corollary 8.1.
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Proof of Proposition 5:11 assuming Proposition 8:2 holds. For �e.k; `/=3j 0
the asserted bounds are an immediate consequence of Corollary 8.1. For j > 0 it
suffices, by Corollary 8.1, to show each of the five estimates in Proposition 5.11
hold for a single value 2 < p⇤ < 1: indeed, once this is established, one may
interpolate the p⇤ estimates with the p D 2 and p D 1 cases of Corollary 8.1 to
obtain Proposition 5.11 for all 2 < p < 1.

We interpolate the inequalities from Proposition 8.2 with the corresponding
L

1 estimates of Corollary 8.1, or the L2 estimate in case (v). In the case (v),
note that kakC N . 2

�O.N /m, which is harmless in view of the 2�Mm loss in
(8.1). Therefore, it follows that Proposition 5.11 holds for some p⇤ in the range
6 < p⇤ < 1 for the cases (i) to (iv), or in the range 2 < p⇤ < 6 for case (v),
concluding the proof.

It remains to prove Proposition 8.2. By the definition of the classes, Proposi-
tion 8.2 (i) and (iv) automatically follow from (ii). Furthermore, for the purposes of
the argument, the cases (ii) and (v) are essentially simplified variants of case (iii).
In particular, the main difficulties occur in the proof of (iii).

8.2. Reduction to Fourier integral estimates

Following the strategy of [19, 20], Proposition 8.2 is derived from local smoothing
estimates for Fourier integral operators. In order to invoke the local smoothing
inequalities, it is desirable to express Aj Œˆt I at ç as a Fourier integral operator with
two Fourier variables. That such a representation is possible is a standard result,
referred to as the equivalence of phase theorem (see, for instance, [12] or [9]). Since
here, however, the estimates are required to be quantitative, at least in some weak
sense, basic stationary phase techniques are instead applied to obtain an explicit
two Fourier variable representation of the frequency localised averaging operators.

Fourier integral representation. Fix a smooth family of defining pairs ŒˆI aç and,
for the purposes of this subsection, assume that

j.ˆ/.ExI z/j; jProj.ˆ/.ExI z/j; jCin.ˆ/.ExI z/j � "Cin > 0 for all .ExI z/ 2 supp a;

moreover, assume that upper bounds for the derivatives of ˆ depend polynomially
on 2k , where k is as in Proposition 8.2. Here Ex D .x; t/ 2 R

2 ⇥ R. Owing
to the nature of the estimates in Proposition 8.2, here one does not need to be
very precise about dependencies involving various derivatives of ˆ and a and the
bounds on the curvatures (as opposed to the situation in Section 7). For instance,
the constant "Cin may depend on the parameters k; ` and m. In what follows, we
will not determine the precise dependence of our estimates on these parameters but
will only be concerned with showing that it is not worse than 2Mk for some large
constant M � 1.

Given a phase/amplitude pair Œˆt I at ç, from (5.18) and the Fourier inversion
formula,

Aj Œˆt I at çf .x/ D
Z

OR2

eK2j
.ExI ⇠/ Of .⇠/ d⇠
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where

eK�
.ExI ⇠/ WD

1

.2⇡/3

Z
R2

Z
R

e
i.✓ˆ.ExIz/Chz;⇠i/a.ExI z/ˇ.✓=�/ d✓ dz: (8.2)

This function can be analysed via stationary phase arguments. The critical points
.zcr ; ✓cr/ of the phase function

.z; ✓/ 7! ‰.z; ✓ I ExI ⇠/ D ✓ˆ.ExI z/C hz; ⇠i (8.3)

satisfy ˆ.ExI zcr/ D 0 and ✓cr@zˆ.ExI zcr/C ⇠ D 0. The former condition implies
that zcr 2 †Ex D fz 2 R

2 W ˆt .xI z/ D 0g while the latter implies that the normal
to †Ex at zcr is parallel to ˙⇠ . We also have j det @2

.z;✓/
‰j D j✓ jd.ˆ/ so that the

critical points are nondegenerate.
Let Cı � 1 satisfy

.Cı=10/
�1  j@zˆ.ExI z/j  Cı=10 for all .ExI z/ 2 supp a:

There are no critical points for the phase if j⇠j � 4Cı� or j⇠j  �=4Cı. Thus, by
repeated integration-by-parts

eK�
.ExI ⇠/ D eK�

.ExI ⇠/ Q̌.j⇠j=�/CE
�
.ExI ⇠/ (8.4)

where Q̌.r/ WD ⌘.C
�1
ı r/ � ⌘.Cır/ and the error E� satisfies

ˇ̌
ˇ@˛

⇠

h
e

�ihx;⇠i
E

�
.ExI ⇠/

iˇ̌
ˇ . C

N

ı �
�N=2

.1C j⇠j/�N=2 for all j˛j  N , (8.5)

with implicit bounds depending on kakC N . Note that the value of Cı will generally
depend on k orm for the classes considered in Proposition 8.2, but this dependence
is admissible in our forthcoming analysis.

Key example. Let ŒˆI aç 2 Ck

Cin \ Ck

Rot. The condition (ˆ1)k;2k ensures that
j@zˆ.ExI z/j ⇠ 2

2k=3 and so Cı ⇠ 2
2k=3 in this case.

We further analyse eK�
.ExI ⇠/ for C�1

ı =4 < j⇠j < 4Cıj⇠j. Decompose

eK�
.ExI ⇠/ Q̌.j⇠j=�/ D

X
i2J

eK�

i
.ExI ⇠/

where the cardinality of the index set J is polynomial in "Cin and Cı and each eK�

i

is of the form

K�
.ExI ⇠/ WD �.ExI ⇠/

1

.2⇡/3

Z
R2

Z
R

e
i.✓ˆ.ExIz/Chz;⇠i/a.ExI z/ˇ.✓=�/ d✓ dz; (8.6)

with �, ˇ, a supported on sets of diameter " with "C

Cin . " . "Cin.
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It suffices to consider the kernel (8.6). If ˆ.ExI z/ does not vanish in the neigh-
borhood of the support then the integral represents a smooth function with deriva-
tive bounds polynomial in "�1

Cin, Cı. Otherwise we may use the method of stationary
phase, using that the critical points of (8.3) are nondegenerate. In a neighborhood
of the support of the symbol, we can then solve the equation r✓;z‰.z; ✓ I Ex; ⇠/ D 0

in .z; ✓/ with z D ⌫.ExI ⇠/, ✓ D ‚.ExI ⇠/ denoting the solutions; moreover ⌫ is
homogeneous of degree 0 in ⇠ and ‚ is homogeneous of degree 1 in ⇠ . Hence

(
ˆ.ExI ⌫.ExI ⇠// D 0

‚.ExI ⇠/@zˆ.ExI ⌫.ExI ⇠//C ⇠ D 0:
(8.7)

Furthermore, if
'.ExI ⇠/ WD ‰.⌫.Ex; ⇠/;‚.ExI ⇠/I ExI ⇠/;

then (8.7) implies that
'.ExI ⇠/ D h⌫.ExI ⇠/; ⇠i: (8.8)

By rescaling and applying the method of stationary phase [14, Theorem 7.7.5], one
deduces that

K�
.ExI ⇠/ D e

i�'.ExI⇠=�/
.ExI ⇠=�/

.1C j⇠j2/1=4
CE.ExI ⇠=�/ (8.9)

where, for some MN > 0:

✏ The symbol is supported in fC�1
ı . j⇠j . Cıg and satisfies

ˇ̌
ˇ@˛

Ex
@

ˇ

⇠
.ExI ⇠/

ˇ̌
ˇ . �

"
�1

Cin C Cı C kˆkC 3N C2 C kakC 3N

�MN

and all .˛; ˇ/ 2 N
3

0
⇥ N

2

0
with j˛j; jˇj  N .

✏ The error term E is rapidly decaying in the sense that
ˇ̌
ˇ@˛

⇠

h
e

�ihx;⇠i
E.ExI ⇠=�/

iˇ̌
ˇ . �

"
�1

Cin C kˆkC 3N C2 C kakC 3N

�MN
�

�N (8.10)

for any ˛ 2 N
2

0
with j˛j  N .

One is therefore led to consider operators belonging to the following class.

Definition 8.3. An FIO pair Œ'I ç consists of a pair of functions '; 2 C1
.R

3 ⇥
OR2
/ with supported in a compact set of diameter 1. For any such pair Œ'I ç and

� 2 R define Fourier integral operators of order � by

F�

�
Œ'I çf .Ex/ WD

Z
OR2

e
i�'.ExI⇠=�/

.ExI ⇠=�/

.1Cj⇠j2/��=2
ˇ.j⇠j=�/ Of .⇠/ d⇠ for ��1: (8.11)
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Local smoothing estimates. Under certain “geometric” hypotheses on the phase,
L

p

x ! L
p

x;t estimates are known for the operators (8.11) with good � decay (in-
deed, the best possible decay (up to " losses) for 6  p  1). Here the relevant
hypotheses are stated in a weakly quantitative form. In what follows we use the
notation

V
2

kD1
Evk for the standard vector product Ev1 ⇥ Ev2 for vectors in R

3.

Definition 8.4. For R � 1 let A.R/ denote the class of all Œ'I ç satisfying

(H0) j@˛

Ex
@

ˇ

⇠
'.ExI ⇠/j . R for j˛j  N and 0 < jˇj  N ;

(H1)
ˇ̌
ˇ

2^
kD1

@⇠k
@Ex'.ExI ⇠/

ˇ̌
ˇ � R

�1;

(H2) max
1i;j 2

ˇ̌
ˇ
*
@

2

⇠i ⇠j
@Ex '.ExI ⇠/ ;

2^
kD1

@⇠k
@Ex'.ExI ⇠/

+ ˇ̌
ˇ � R

�1;

for all .ExI ⇠/ 2 supp .

The following theorem is the key ingredient in the proof of Proposition 8.2.

Theorem 8.5 ([3]). There exist N;M 2 N such that

kF�

�
Œ'I çkL6.R2/!L6.R3/ ." R

M
�

1=6C�C"k kC N for all Œ'I ç 2 A.R/.

This weakly quantitative statement is not explicit in [3] or the corresponding survey
[4] but it may be extracted from the proof. It is remarked that Theorem 8.5 is
more than enough for the purposes of this article and, indeed, any non-trivial local
smoothing estimate (that is, a gain of an epsilon derivative over the fixed term
estimate) would suffice. Thus one could equally appeal to the older results of [20]
(see also the related work [16, Chapter 3], or the more recent work [10]).

Relating the phase functions. In order to apply Theorem 8.5 we analyse the hy-
potheses (H0), (H1) and (H2) for the specific case of the phase ' arising from the
averaging operators AŒˆt I at çf .

Let ' be of the form (8.8), induced by some defining function ˆ. Implicit
differentiation of (8.7) yields


@⇠‚

@⇠⌫

�
D �


0 .@zˆ/

>

@zˆ ‚@
2
zz
ˆ

��1 
0

Id2

�
; (8.12)


@Ex‚

@Ex⌫

�
D �


0 .@zˆ/

>

@zˆ ‚@
2
zz
ˆ

��1 ⇥
@Ex ˆ ‚@

2

Exz
ˆ
⇤>
; (8.13)

where the right-hand matrices are evaluated at z D ⌫.ExI ⇠/. In particular, (8.12)
implies that @⇠2

⌫1 D @⇠1
⌫2 and combining this with Euler’s homogeneity relation

'.ExI ⇠/ D h@⇠'.ExI ⇠/; ⇠i yields
@⇠' D ⌫: (8.14)
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Consequently, one can check that if .˛; ˇ/ 2 N
3

0
⇥ N

2

0
satisfies j˛j, jˇj  N , then

ˇ̌
ˇ@˛

Ex
@

ˇ

⇠
'.ExI ⇠/

ˇ̌
ˇ .N

�
kˆkC N C "

�1

Cin
�MN (8.15)

for a certain MN > 0.
Furthermore, (8.13) and (8.14) also imply that

ˇ̌
ˇ̌
ˇ̌

2^
j D1

@⇠j
@Ex'.ExI ⇠/

ˇ̌
ˇ̌
ˇ̌ &

1

j@Ex‚.ExI ⇠/j
det


@Ex‚.ExI ⇠/
@Ex⌫.ExI ⇠/

�

� Proj.ˆ/.ExI ⇠/ � kˆk�3

C 2 :

(8.16)

These inequalities allow one to deduce (H0) and (H1); the condition (H2) requires
a slightly more involved analysis.

Letting �1 WD 2 and �2 WD 1, the identities in (8.12) and (8.13) give

@⇠j
⌫i D

.�1/iCj C1
⇠�i
⇠�j

‚
�
‚2.ˆ/

� ; (8.17)

@Ex⌫i D
.�1/i

.ˆ/

 
det

"
@z1
ˆ @

2
z1z�i

ˆ

@z2
ˆ @

2
z2z�i

ˆ

#
T1 � .@z�i

ˆ/T2

!
; (8.18)

where .ˆ/ is as defined in (4.7) and the Ti are the tangent vector fields from
(4.9). Recalling (8.14), the condition (H2) for the phase function (8.8) involves
mixed second order derivatives of ⌫; by (8.17), computing these derivatives boils
down to differentiating

�
‚

2
.ˆ/

��1
‚

�1 with respect to Ex. Recalling the definition
of ‚ and ⌫ from (8.7) and the identities of (8.13),

@Ex

�
‚

2
.ˆ/

�
D @Ex det


0 ⇠

>

⇠ @
2
zz
ˆ

�
D‚2S1

; @Ex‚D�
‚

.ˆ/

�
det

⇥
@

2

zz
ˆ
⇤
T1 C S2

�

where the Si are as in Definition 4.5. The product rule then yields

@Ex

⇣�
‚

2
.ˆ/

��1
‚

�1

⌘
D �‚�3

.ˆ/
�2

�
S � det

⇥
@

2

zz
ˆ
⇤
T1

�
: (8.19)

Combining (8.14), (8.17), (8.18) and (8.19), one deduces that

det

2
4
@

2

⇠i ⇠j
@Ex '.ExI ⇠/

@⇠1
@Ex '.ExI ⇠/

@⇠2
@Ex '.ExI ⇠/

3
5 D .�1/iCj C1

Cin.ˆ/.ExI ⌫.ExI ⇠//

‚.ExI ⇠/3.ˆ/.ExI ⌫.ExI ⇠//3
⇠�i
⇠�j
: (8.20)

The identities (8.15), (8.16) and (8.20) allow one to relate the conditions (H0), (H1)
and (H2) of the phase ' to properties of the underlying defining function (and, in
particular, bounds on kˆkC N , .ˆ/, Proj.ˆ/ and Cin.ˆ/).
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8.3. Application of local smoothing

Theorem 8.5 can now be applied to yield Proposition 8.2.

Proof of Proposition 8:2. The main difficulty is to prove (iii). Fix ŒˆI cç 2 Ck

Cin \
Ck

Rot and ı > 0. Let I denote an interval of length jI j ⇠ 1. The Sobolev embedding
argument used to prove (6.39) yields

����sup
t2I

jAj Œˆt I ct çf j

����
6

L6.R2/

 jI j�1kAj Œˆt I ct çf k6

L6.R2⇥I/

C 6kAj Œˆt I ct çf k5

L6.R2⇥I/
kAj Œˆt I dt çf kL6.R2⇥I/;

(8.21)

where dt WD 2⇡i2
j
.@tˆt /ct C @t ct .4 By the definition of the class Ck

Cin,

j.ˆ/.x; t I z/j; jProj.ˆ/.x; t I z/j; jCin.ˆ/.x; t I z/j & 2
�Mk

ı (8.22)

whenever .x; t I z/ 2 supp c and jt � x2j & ı. Decompose c WD c.ı/ C cé where

c.ı/
.x; t I z/ WD c.x; t I z/⌘..t � x2/=10ı/

so that the estimates (8.22) hold on the support of cé.
The piece corresponding to c.ı/ can be bounded using the theory from Sec-

tions 6.1 and 6.6. Indeed, let G.x1; x2; t; z/ WD .x1; x2 C t; t I z/ and define

Q̂ WD ˆ ı G; Qc.ı/ WD c.ı/ ı G:

Note that jx2j  ı in supp Qc.ı/. Performing the above change of variables, by
Fubini’s theorem

���Aj

h
ˆt I c

.ı/

t

i
f

���6

L6.R2⇥I/

D
Z

ı

�ı

���Aj

h
. Q̂ /?

r
I .Qc.ı/

/
?

r

i
f

���6

L6.R2/

dr

where

. Q̂ /?.u; t; r Iv; ⇢/ WD Q̂ .u; r; t Iv;⇢/ and .Qc.ı/
/
?
.u; t; r Iv;⇢/ WD Qc.ı/

.u; r; t Iv;⇢/:

Since ŒˆI cç 2 Ck

Rot, it follows that Œ. Q̂ /?I .Qc.ı/
/
?
ç 2 Ak;`.k/

Rot . Combining Proposi-
tion 6.1 with Lemma 6.9 we get an L2

.R
2
/ estimate for fixed r ,

���Aj

⇥
. Q̂ /?

r
I Qc.ı/

r

⇤���
L2.R2/!L2.R2/

.
�
2

�j=2 ^ 2�2k=3
���cı

��
C

N
z
:

4 To be more precise, one may write Aj Œˆt I dt ç D Aj Œˆt I d1
t
ç C Aj Œˆt I d2

t
ç where d1

t
WD

2⇡i2
j
.@tˆt /ct and the average corresponding to d2

t
is defined with the frequency cut-off ✓ 7!

✓ˇ.✓/, rather than just ˇ. It is remarked that this ambiguity in the definition has no bearing on
the analysis.
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Interpolating this bound with the L1 estimate from Corollary 8.1 (iii) one gets
���Aj

⇥
. Q̂ /?

r
I Qc.ı/

r

⇤���
L6.R2/!L6.R2/

.
�
2

�j=6 ^ 2�2k=3
���cı

��
C

N
z

and therefore
���Aj

h
ˆt I c

.ı/

t

i���
L6.R2/!L6.R2⇥I/

. ı
1=6

⇣
2

�j=6 ^ 2�2k=3

⌘
kckC N

. ı
1=6
2

�j=6kckC N :

(8.23)

On the other hand, Theorem 8.5 can be used to show that
���Aj

h
ˆt I c

é

t

i���
L6.R2/!L6.R2⇥I/

." ı
�M

2
Mk
2

�j.1=3�"/kckC N : (8.24)

Temporarily assuming (8.24), by taking ı WD 2
�j=.24M/ and " WD 1=12, we get

���Aj

h
ˆt I c

é

t

i���
L6.R2/!L6.R2⇥I/

. 2
Mk
2

�j.1=3�1=12�1=24/kckC N

and hence combining this with (8.23) we obtain
��Aj Œˆt I ct ç

��
L6.R2/!L6.R2⇥I/

." 2
Mk
2

�j=6
�
2

�j=24C2�j=.144M/
�
kckC N

.2Mk
2

�j=6�j"0kckC N

(8.25)

for some "0 > 0 (indeed "0 D .144M/
�1). This gives a favourable bound for the

terms on the right-hand side of (8.21) involving ct . For the amplitude dt it suffices
to note that kdk . 2

j kck and that ŒˆI dç 2 Ck

Cin \ Ck

Rot. Therefore

kAj Œˆt I dt çkL6.R2/!L6.R2⇥I/ ." 2
Mk
2

j.5=6�"0/kckC N : (8.26)

Combining (8.25) and (8.26) in (8.21) concludes the argument of Proposition 8.2
for ŒˆI cç 2 Ck

Cin \ Ck

Rot.
It remains to prove (8.24). Let Œ'I ç be the FIO pair associated to ŒˆI cé

ç 2
Ck

Cin, defined as in (8.8) and (8.9). Thus,

Aj

h
ˆt I c

é

t

i
f .x/ D F2j

�1=2
Œ'I çf .Ex/C Ejf .Ex/;

where the operator Ej arises from the errors in (8.4) and (8.9). The smoothing term
Ej can be easily estimated using repeated integration-by-parts and the rapid decay
from (8.5) and (8.10).

Turning to the main term F2j

�1=2
Œ'I çf , the condition (Cı/k together with

(8.15), (8.16) and (8.20) imply that Œ'I ç 2 A
k WD A.ı

�Mı2Mık
/ (in the sense
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of Definition 8.4) for some absolute constant Mı � 1. Thus, Theorem 8.5 implies
that ���F�

�
Œ'I ç

���
L6.R2/!L6.R3/

." ı
�M

2
Mk
�

1=6C�C"k kC N :

The case of interest is given by � D �1=2; note that for this value the � exponent
is �1=3C ", corresponding to the 2j exponent in (8.24).

For the remaining cases (i), (ii), (iv) and (v) of the proposition the argument
is similar but somewhat easier. Indeed, here the condition (C)k provides favourable
lower bounds for the various curvatures and this obviates the need to form
any decomposition a D a.ı/ C aé (one may bound Aj ŒˆI aç directly using Theo-
rem 8.5).

9. The global maximal function

It remains to extend the bound for the local maximal function from Theorem 3.3
to the bound on the “global” maximal function from Theorem 3.1. This is the last
step in the proof of Theorem 1.1.

Proof of Theorem 3:1. Break the operator according to the relative size of r with
respect to t , thus:

sup
t>0

jAtf .u; r/j D sup
T 2Z

sup
2T t<2T C1

0
@X

m�10

C
X

m�10

C
X

jmj<10

1
AˇmCT

.r/jAtf .u; r/j:

Each of the three terms is estimated separately. Of these, the first case (correspond-
ing to t ⌧ r) presents the most interesting features.

The first term: t ⌧ r . The orthogonality relation (3.6) induces spatial orthogo-
nality and it therefore suffices to show that
������sup

T 2Z

sup
2T t2T C1

X
m�10

ˇ
mCT � jAtf j

������
Lp.R⇥Œ2W ;2W C1ç/

. kf�
R⇥Œ2W �1;2W C2çkp;

uniformly in W 2 Z. By the rescaling .u; r; t I v; ⇢/ 7! .2
2W
u; 2

W
r; 2

W
t I 22W

v;

2
W
⇢/, the problem reduces to the case W D 0, and therefore one needs to only

show that ����� sup
T �5

sup
2T t2T C1

ˇ
0 � jAtf j

�����
Lp.R⇥Œ1;2ç/

. kf kp:

For fixed T  �5, decompose f into frequency localised pieces

f D P�T f C
1X

kD1

P�T Ckf;
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where .Pmf /b.⇠/ WD ⌘
m
.j⇠j/ bf .⇠/ and .Pmf /b.⇠/ WD ˇ

m
.j⇠j/ bf .⇠/ for the

functions ⌘m and ˇm defined in (5.2). A routine computation shows that the pre-
composition of the above maximal operator with P�T is pointwise dominated by
the Hardy-Littlewood maximal function. Consequently, for p > 2 it suffices to
show that

����� sup
T �5

sup
2T t2T C1

ˇ
0 � jAtP�T Ckf j

�����
p

. 2
�"pkkf kp

and Littlewood-Paley theory further reduces the problem to proving
����� sup

2T t2T C1

ˇ
0 � jAtP�T Ckf j

�����
p

. 2
�"pkkf kp; (9.1)

uniformly in T  �5. The rescaling .u; r; t I v; ⇢/ 7! .2
2T
u; 2

T
r; 2

T
t I 22T

v; 2
T
⇢/

transforms (9.1) into
���� sup

1t2

ˇ
�T � jAtP

T

k
f j

����
p

. 2
�"pkkf kp;

where P T

k
denotes the anisotropic frequency projection associated to the multiplier

ˇ
k
�
j.2�T

⇠1; ⇠2/j
�
.

The situation in the last display is close to the case m D �T > 0 in the
decomposition (5.5), although a direct application of Theorem 5.1 (iii) will not
give the desired decay in j . Instead, we decompose the operator A as a sum of
frequency localised operators Aj as in (5.18) and appeal to Proposition 5.11 (iv).
First, for fixed T  �5, write

ˇ
�T
.r/ � AtP

T

k
f .u; r/ D

X
E�2Z2

2
�T
A

h
ˆt I a

�T;E�

t

i
P

T

k
f .u; r/;

where a�T;E�

t is as in (5.4). The relations (3.6) ensure that jr �⇢j . 1 and ju�vj .
2

�T , so by spatial orthogonality it suffices to prove
���� sup

1t2

ˇ̌
ˇA
h
ˆt I a

�T;E�

t

i
P

T

k
f

ˇ̌
ˇ
����

p

. 2
T
2

�"pkkf kp

uniformly in E� 2 Z
2. A further rescaling .u; v/ D .2

�T
u; 2

�T
v/ transforms the

above estimate into
���� sup

1t2

ˇ̌
ˇA
h
ˆ

�T

t
I Qa�T;E�

t

i
Pkf

ˇ̌
ˇ
����

p

. 2
�"pkkf kp; (9.2)
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where now Pk is the usual dyadic frequency projection at scale 2k and ˆ�T and
Qa�T;E� are defined as in (5.14); in particular, Œˆ�T I a�T;E�

ç 2 A0

Cin \ A0

Rot. Decom-
pose AŒˆ�T

t
I a�T;E�

t ç D
P

j �0
Aj Œˆ

�T
t

I a�T;E�

t ç as in (5.18). Then, for fixed k > 0,
one needs to understand

Aj

h
ˆ

�T

t
I a�T;E�

t

i
Pkf .u; r/ D

Z
OR2

eK2j
.u; r; t I ⇠/ˇk

.⇠/ Of .⇠/ d⇠ (9.3)

for j � 0, where eK2j is as in (8.2).
The main contribution arises from the terms with jj �kj  5. Here we appeal

to Proposition 5.11 (iv), which yields
���� sup

1t2

ˇ̌
ˇAj

h
ˆ

�T

t
I Qa�T;E�

t

i
Pkf

ˇ̌
ˇ
����

p

. 2
�k"p kf kp;

with some "p > 0 when p > 2.
Now consider the case jj � kj > 5 in (9.3). In our present rescaled situation

we have j@.v;⇢/ˆ
�T j ⇠ 1 and also favourable upper bounds for the higher .v; ⇢/-

derivatives. Hence, arguing as in Section 8.2, using repeated integration-by-parts,
we obtain

ˇ̌
ˇ@˛

⇠

h
e

�2⇡ih.u;r/;⇠i eK2j
.u; r; t I ⇠/

iˇ̌
ˇ . min

n
2

�jN=2
; 2

�kN=2

o
.1C j⇠j/�N=2

for all .u; r; t/ 2 supp Qa�T;E� , ⇠ 2 supp ˇk , ˛ 2 N
2

0
such that j˛j  N . This yields,

via another integration-by-parts,
ˇ̌
ˇAj

h
ˆ

�T

t
I a�T;E�

t

i
Pkf .u; r/

ˇ̌
ˇ

.
�
2

�jN=2 ^ 2�kN=2
� Z

R2

f .v; ⇢/

.1C j.u; r/ � .v; ⇢/j/N=2
dv d⇢;

which readily implies that
���� sup

1t2

ˇ̌
ˇAj

h
ˆ

�T

t
I Qa�T;E�

t

i
Pkf

ˇ̌
ˇ
����

p

.
�
2

�jN=2 ^ 2�kN=2
�
kf kp

for 1  p  1, whenever jj � kj > 5. Combining the above observations, one
obtains the desired estimate (9.2).

The second term: t � r . By the triangle inequality, for all p > 2 it suffices to
show that �����sup

T 2Z

sup
2T t<2T C1

ˇ
mCT � jAtf j

�����
p

. 2
"pmkf kp
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holds uniformly in m for some "p > 0. The orthogonality relation (3.6) ensures
that jt � ⇢j  r ⇠ 2

mCT . 2
T . This induces spatial orthogonality between the t

and ⇢ variables and reduces the analysis to proving
����� sup

2T t<2T C1

ˇ
mCT � jAtf j

�����
p

. 2
"pmkf kp

uniformly in T 2 Z. By the rescaling .u; r; t I v; ⇢/ 7!.2
2T
u; 2

T
r; 2

T
t I 22T

v; 2
T
⇢/,

it suffices to consider the case T D 0. The resulting term corresponds to

X
E�2Z2

2
m=p

A
⇥
ˆt I a

m;E�

t

⇤
f .u; r/

in (5.5), whose Lp norm is bounded by 2m"p for some "p > 0 if p > 2 via
Theorem 5.1 (iv), using the orthogonality arguments in the proof of Theorem 3.3.

The third term: t ⇠ r . Without loss of generality, by replacing ˇ with a cutoff
function with slightly larger support, it suffices to bound the term corresponding to
m D 0. Assuming f is non-negative, for each fixed T perform a decomposition of
the operator similar to that in (5.6) and (5.7) by dominating

ˇ
T
.r/ � Atf .u; r/ .

X
.k;`/2Z2

k��4

k�3`<`.k/

X
E�2Z2

2
k.1�1=p/CT

A

h
ˆt I

⇣
ak;`;E�

T

⌘
t

i
f

C
X
k2Z

k��4

X
E�2Z2

2
k.1�1=p/CT

A

h
ˆt I

⇣
ck;`;E�

T

⌘
t

i
f

where

ak;`;E�

T
.u; r; t I v; ⇢/ WD ak;`;E�

�
2

�2T
u; 2

�T
r; 2

�T
t I 2�2T

v; 2
�T
⇢
�
; ` < `.k/;

ck;E�

T
.u; r; t I v; ⇢/ WD ck;E�

�
2

�2T
u; 2

�T
r; 2

�T
t I 2�2T

v; 2
�T
⇢
�
:

By the triangle inequality, for all p > 2 it suffices to prove
������sup

T 2Z

sup
2T t2T C1

X
k�3`<`.k/

X
E�2Z2

2
k.1�1=p/CT

A

h
ˆt I

⇣
ak;`;E�

T

⌘
t

i
f

������
p

.2�"pkkf kp;

������sup
T 2Z

sup
2T t2T C1

X
E�2Z2

2
k.1�1=p/CT

A

h
ˆt I

⇣
ck;`;E�

T

⌘
t

i
f

������
p

.2�"pkkf kp
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for some "p > 0. After fixing k, spatial orthogonality becomes available: the vari-
able ⇢ is localised at ⇢ ⇠ 2

�kCT . Therefore, in order to show the above estimates,
it suffices to prove
������ sup

2T t2T C1

X
k�3`<`.k/

X
E�2Z2

2
k.1�1=p/CT

A

h
ˆt I

⇣
ak;`;E�

T

⌘
t

i
f

������
p

. 2
�"pkkf kp;

������ sup
2T t2T C1

X
E�2Z2

2
k.1�1=p/CT

A

h
ˆt I

⇣
ck;`;E�

T

⌘
t

i
f

������
p

. 2
�"pkkf kp;

uniformly in T . By the rescaling .u; r; t I v; ⇢/ 7! .2
2T
u; 2

T
r; 2

T
t I 22T

v; 2
T
⇢/, it

suffices to only consider the case T D 0. This follows from Theorem 5.1 (i) and
(ii) using the arguments in the proof of Theorem 3.3 (following the statement of
Theorem 5.1).

Appendix

A. Lemmata on integration-by-parts

The proofs on oscillatory integrals in Section 6 use a lemma which keeps track of
the terms that occur in the repeated integration-by-parts arguments. Assume that
z 7! h.z/ 2 C

1
c

(and keep track of the CN -norms of h), and that r‚ ¤ 0 on
supp .h/. Define a differential operator L by

Lh D div
✓
hr‚

jr‚j2

◆
:

Then, by integration by parts,
Z
Rd

e
i�‚.z/

h.z/ dz D i
N
�

�N

Z
Rd

e
i�‚.z/LN

h.z/ dz

and thus
ˇ̌
ˇ̌
Z
Rd

e
i�‚.z/

h.z/ dz
ˇ̌
ˇ̌  �

�N

Z
Rd

jLN
h.z/j dz

 �
�N meas.supp �/ sup

z2Rd

ˇ̌
LN
h.z/

ˇ̌
:

(A.1)

A careful analysis of the term LN
h is needed for various integration-by-parts argu-

ments in this paper and elsewhere in the literature, but a detailed analysis is often
left to the reader. For an explicit reference, a straightforward induction proof of
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the following lemma is contained, e.g., in the appendix of [1] (and probably else-
where).

We shall introduce the following notation. We say that a term is of type .A; j /
if it is of the form hj =jrz‚jj where hj is a z-derivative of order j of h. A term
of type .B; 0/ is equal to 1. A term is of type .B; j / for some j � 1 if it is of the
form ‚j C1=jrz‚jj C1 where ‚j C1 is a z-derivative of order j C 1 of ‚.

Lemma A.1. Let N D 0; 1; 2; : : : . Then

LN
h D

K.N;d/X
⌫D1

cN;⌫hN;⌫

whereK.N; d/ > 0, cN;⌫ are absolute constants independent of h and‚, and each
function hN;⌫ is of the form 5

P⌫

✓
r‚

jr‚j

◆
ˇA;⌫

M⌫Y
`D1

�`;⌫ (A.2)

such that each P⌫ is a polynomial of d variables (independent of h and ‚), ˇA;⌫

is of type .A; jA;⌫/ for some jA;⌫ 2 f0; : : : ; N g and the terms �`;⌫ are of type
.B; `;⌫/ for some `;⌫ 2 f1; : : : ; N g, so that for ⌫ D 1; : : : ; K.N; d/

jA;⌫ C
M⌫X
`D1

`;⌫ D N: (A.3)

Example. In Section 6 we use Lemma A.1 in the form of Corollary A.2 below,
choosing

‚.z/ D ‰.xI z/ �‰.yI z/; (A.4)

for fixed x D .x
0
; xd /, y D .y

0
; yd / 2 R

d . Our differential operator L D Lx;y

depends then on x; y.

Corollary A.2. Let h 2 C
N
.R

d
/ be compactly supported. Let ⇢.x; y/ > 0, and

assume that for all z in a neighborhood of supp h

jrz‰.xI z/ � rz‰.yI z/j & ⇢.x; y/: (A.5a)

Let R.x; y/ � 1 and assume that for all z-derivatives up to order j˛j  N C 1,

j@˛

z
‰.xI z/ � @˛

z
‰.yI z/j .N R.x; y/⇢.x; y/: (A.5b)

Then
ˇ̌
ˇ̌
Z
Rd

e
i�.‰.xIz/�‰.yIz//

h.z/ dz
ˇ̌
ˇ̌.N �

�N meas.supp h/ max
j D0;:::;N

khkC jR.x; y/
N �j

⇢.x; y/N
:

5 The product
QM⌫

`D1
is interpreted to be 1 if M⌫ D 0, i.e., jA;⌫ D N .
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Proof. Using (A.1), the assertion follows from

ˇ̌
LN

x;y
h.z/

ˇ̌
.N max

j D0;:::;N

khkC jR.x; y/
N �j

⇢.x; y/N
: (A.6)

To see this use Lemma A.1 with the choice (A.4). Observe that by (A.5a) an ex-
pression of type .A; j / is bounded by a constant times khkC j .⇢.x; y//

�j . By
(A.5a) and (A.5b) an expression of type .B; / is bounded by a constant times
R.x; y/.⇢.x; y//

� . We use (A.3) to see that the expression corresponding to (A.2)
is bounded by

CN

khk
C

jA;⌫R.x; y/
M⌫

.⇢.x; y//
jA;⌫C

PM⌫
`D1

`;⌫

.N

khk
C

jA;⌫R.x; y/
N �jA;⌫

⇢.x; y/N

and hence we get (A.6).

Applications of Corollary A.2. Here 0 < ıı  1 and m > 0.

✏ In the proof of Proposition 6.1, Corollary A.2 is applied with the choice of
⇢.x; y/ WD jx0 � y

0j C ııjxd � yd j, R.x; y/ . 1 and the CN norm of the
amplitude is O.1/;

✏ In the proof of Lemma 6.4, Corollary A.2 is applied with ⇢.x; y/ WD jx0 � y
0j

and R.x; y/ . 1, and the CN norm of the amplitude is O.2mN
/;

✏ In the proof of Lemma 6.5, the d � 1-dimensional version of Corollary A.2 is
applied with ⇢.x0

; y
0
/ WD jx0 � y

0j and R.x0
; y

0
/ . 1, and the CN norm of the

amplitude is O.2mN
/;

✏ In the proof of Lemma6.6, CorollaryA.2 is applied with the choices of ⇢.x;y/ WD
jx0 � X⌫.xd ; yI z⌫/j C ıı2

�mjxd � yd j, and R.x; y/ . 2
m, and the CN norm

of the amplitude is O.2mN
/.

B. Computations related to the defining function

B.1. Derivative dictionary

For reference, here some derivatives are computed for the specific defining function
ˆt in (3.2). Recall,

ˆ.u; r; t I v; ⇢/ WD .u � v/2 �

✓
b

2

◆2 ⇣
4r

2
⇢

2 �
�
r

2 C ⇢
2 � t2

�2
⌘

so that the first order derivatives are

@uˆt D 2.u � v/; @rˆt D �b2
r

⇣
t
2 � r2 C ⇢

2

⌘
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and

@vˆt D �2.u � v/; @⇢ˆt D �b2
⇢

⇣
t
2 C r

2 � ⇢2

⌘

together with the time derivative

@tˆt D b
2
t

⇣
t
2 � r2 � ⇢2

⌘
:

Of course @2
ru
ˆt D @

2
⇢u
ˆt D @

2
rv
ˆt D @

2
⇢v
ˆt D 0 whilst the non-vanishing

second order derivatives are

@
2

uu
ˆt D @

2

vv
ˆt D 2; @

2

uv
ˆt D �2;

@
2

rr
ˆt D�b2

⇣
t
2 � 3r2 C ⇢

2

⌘
; @

2

r⇢
ˆt D�2b2

r⇢; @
2

⇢⇢
ˆt D�b2

⇣
t
2 C r

2 � 3⇢2

⌘

and the time derivatives

@
2

tr
ˆ D �2b2

t r and @
2

t⇢
ˆ D �2b2

t⇢:

Finally, the third order derivatives relevant to the argument are

@
3

⇢rr
ˆt D �2b2

⇢ and @
3

⇢⇢r
D �2b2

r:

With these formulæ in hand, it is a simple computation to obtain the expressions
(4.2) and (4.4) for the rotational curvature,

Rot.ˆt /.u; r I v; ⇢/ D 4b
4
rt

2
⇢

⇣
t
2 � r2 � ⇢2

⌘
;

Rot.ˆ?

r
/.u; t I v; ⇢/ D 4b

4
r

2
t⇢

⇣
r

2 � t2 � ⇢2

⌘
;

as well as the key identity (4.3),

Rot.ˆt /.u; r I v; ⇢/ D 4b
2
rt⇢.@tˆt /.u; r I v; ⇢/;

and expressions (4.11) and (4.12) related to the cinematic curvature

Proj.ˆ/.u; r; t I v; ⇢/ D �8b4
rt⇢

⇣
r

2 � t2
⌘
;

Cin.ˆ/.u; r; t I v; ⇢/ D 64b
8
r

3
t
3
⇢

3

⇣
r

2 � t2
⌘

for .v; ⇢/ 2 †u;r;t .
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B.2. Rescaling

It is useful to note how the expressions in the previous subsection behave under
rescaling. Given k; ⌧ 2 Z and "; ı 2 Z

2, let ˆk;";⌧;ı WD 2
k
ˆ ıD";⌧;ı where

D
";⌧;ı

.u; r; t I v; ⇢/ WD
⇣
2

"1u; 2
"2r; 2

⌧
t I 2ı1v; 2

ı2⇢

⌘
:

Then

@
˛

x
@

ˇ

z
@

�

t ˆ
k;";⌧;ı

.x; t I z/ D 2
k
2

"�˛
2

ı �ˇ
2

⌧�

⇣
@

˛

x
@

ˇ

z
@

�

t ˆ

⌘
ıD";⌧;ı

.x; t I z/

for all ˛; ˇ 2 N
2

0
, � 2 N0. In particular,

Rot
⇣
ˆ

k;";⌧;ı

t

⌘
.xI z/ D 2

3k
2

j"jCjıjRot.ˆ2⌧ t / ıD";ı
.xI z/

where D";ı
.xI z/ WD .2

"
xI 2ı

z/, and the rescaled key identity becomes

Rot
⇣
ˆ

k;";⌧;ı

t

⌘
.xI z/ D 4b

2
r⇢t2

"2Cı22
2k
2

j"jCjıj
@tˆ

k;";⌧;ı
.x; t I z/:

Furthermore,



⇣
ˆ

k;";⌧;ı

⌘
.ExI z/ D 2

3k
2

2jıj
.ˆ/ ıD";⌧;ı

.ExI z/;

Proj
⇣
ˆ

k;";⌧;ı

⌘
.ExI z/ D 2

3k
2

j"jC⌧CjıjProj.ˆ/ ıD";⌧;ı
.ExI z/;

Cin
⇣
ˆ

k;";⌧;ı

⌘
.ExI z/ D 2

6k
2

j"jC⌧C3jıjCin.ˆ/ ıD";⌧;ı
.ExI z/:
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[13] L. HÖRMANDER, Oscillatory integrals and multipliers on FLp , Ark. Mat. 11 (1973), 1–11.
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