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The circular maximal operator on Heisenberg radial functions

DAVID BELTRAN, SHAOMING GUO, JONATHAN HICKMAN
AND ANDREAS SEEGER

Abstract. Lebesgue space estimates are obtained for the circular maximal func-
tion on the Heisenberg group H! restricted to a class of Heisenberg radial func-
tions. Under this assumption, the problem reduces to studying a maximal opera-
tor on the Euclidean plane. This operator has a number of interesting features: it
is associated to a non-smooth curve distribution and, furthermore, fails both the
usual rotational curvature and cinematic curvature conditions.
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1. Introduction

Let H” denote the Heisenberg group given by endowing R x R?” with the non-
commutative group operation

(u,x)-(v,y):= (u +v+x"By,x+ y) for all (1, x), (v, y) € R x R?"

IO _én) the matrix associated to the standard sym-
n

plectic form on R?” and b # 0 (usually one takes b = 1/2).
Let u = p denote the normalised surface measure on the sphere

where B = bJ with J := (

{0} x S?"1:={(0,y) e RxR* : |y| = 1}.

If Dil; (1, x) := (t?u, tx) are the automorphic dilations on H”, then the normalised
surface measure p; supported on tS2"~! can be viewed as a dilate of yt; in the
sense that ( f, u;) = (f(Dil; -), u).

Given a function f on H" belonging to a suitable a priori class consider the
spherical means

fxu(u,x) = / fu—tx"By,x—ty)du(y) for (u,x) € H* andt > 0.
S2n—1

For smooth functions f one has f * u,;(u,x) — f(u, x) pointwise as t — 0. It is
of interest to extend this convergence result to an almost everywhere convergence
result for functions on L? (H"), in a suitable range of p. Such a result follows from
L? bounds for the associated spherical maximal function

Mf(u,x) := sup [ f * e (u, x)|. (1.1)

>0

The operator M can be understood as a Heisenberg analogue of the classical (Eu-
clidean) spherical maximal function of Stein [31] and Bourgain [5] (see also [19,
28,29]). The maximal function (1.1) was introduced by Nevo and Thangavelu
in [23] where L7 estimates were proven in dimensions n > 2 for p belonging to a
non-sharp range. By choosing f to be the standard example

f,x) = (Jxlog(1/]x]) ™" x(u, x)

for an appropriate choice of cutoff function y, it follows that L? — L? estimates
can only hold for p > if ;- For n > 2 the sufficiency of this condition was
established independently by Miiller and the fourth author [21] and by Narayanan
and Thangavelu [22]; the work in [21] also treats a wider class of operators defined
on Métivier groups. Results in a more general variable coefficient setting can be
found in a recent paper by Kim [15]. Related to these investigations the L? results

of [21,22] were extended in [1] to deal with variants of the operator (1.1) where the
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original sphere, centred at the origin, does not lie in the subspace {0} x R?" (that
is, the corresponding dilates of y are no longer supported in a fixed hyperplane).
The latter paper is closely related to [26,27] which establish sharp L?-Sobolev
bounds for certain Radon-type operators associated to curves in three-dimensional
manifolds; in particular [27] covers the averages f + f * i, in H', and perturba-
tions of these operators, when acting on compactly supported functions. Mapping
properties and sparse domination for a lacunary version of M have been recently
studied in [2], also under the assumption n > 2. We note that for the proofs of the
positive results on the Heisenberg spherical maximal functions mentioned above
it was essential that a boundedness result holds for p = 2, which leads to the
restriction n > 2. Such an L? result fails to hold on H!, and it is currently not
known whether the circular maximal operator (1.1) on the Heisenberg group H! is
bounded on L? (H") for any p < oo.

In this paper we consider the problem of estimating the maximal function
(1.1) on the sub-algebra of Heisenberg-radial (or H-radial) functions on H'. Here
a function f: H! — C is said to be H-radial if f(u, Rx) = f(u,x) forall R €
SO(2). Given the underlying symmetries of the maximal operator, this is a natural
condition to impose on the input function: indeed, if f is H-radial then, M f is
also H-radial. Our main theorem characterises the L” mapping properties of M
acting on H-radial functions.

Theorem 1.1. For2 < p < oo the a priori estimate

IMfllLrmry < CpllflLr@ny

holds for H-radial functions on H'. Here C p 1S a constant depending only on p.

We shall reduce Theorem 1.1 to bounding a maximal function sup,. , |A; f | where
the A; are non-convolution averaging operators in two dimensions. We aim to fol-
low the strategy used in [19,20] to study the Euclidean circular maximal function
and its relatives. However, in comparison with [20], substantial new difficulties
arise. First, we need to consider a distribution of curves which is not smooth.
Moreover, the rotational curvature and cinematic curvature conditions (as formu-
lated in [20,30]) fail to hold, and hence sup,. ¢ | A; f| does not belong to the classes
of variable coefficient maximal functions considered in [20]. Significant technical
challenges are encountered when dealing with the various singularities of the oper-
ator, and our arguments are based on the analysis of a class of oscillatory integral
operators with 2-sided fold singularities which extends the work in [25] and [8]. A
more detailed discussion of the proof strategy can be found in Section 2 below.

Structure of the paper

Section 2 reviews the strategy for bounding the Euclidean circular maximal func-
tion based on local smoothing estimates. The difficulties encountered in our par-
ticular situation are also described. In Sections 3-8 we prove bounds for a local
variant of M, where the supremum is restricted to 1 < ¢ < 2. In particular,
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Figure 1.1. The unit circle tilts and stretches as it is translated along the x,-axis under
the Heisenberg operation.

Section 3 reduces Theorem 1.1 to a bound for a maximal function in two dimen-
sions. Section 4 describes notions of curvature which feature in the analysis of
M . In Section 5 the maximal function is decomposed into different pieces accord-
ing to curvature considerations. In Section 6 we consider classes of oscillatory
integral operators depending on two parameters which are crucial for the relevant
L?-theory, mainly based on a “fixed-time” analysis. In Section 7 we apply these
L? estimates to the problem on the Heisenberg group. In Section 8 we discuss
the L? theory, based on L? space-time (‘local smoothing’) estimates. Finally,
in Section 9 the bounds for the local maximal function are extended to bounds
for M. Two appendices are included for the reader’s convenience, providing use-
ful integration-by-parts lemmata and many explicit computations helpful to the
analysis.

Notational conventions

Given a (possibly empty) list of objects L, for real numbers A ,, B, > 0 depending
on some Lebesgue exponent p the notation A, Sy, By, Ap = Op(Bp) or B, 21
A, signifies that A, < CB for some constant C = Cr_, > 0 depending on
the objects in the list and p. In addition, A, ~; B, is used to signify that both
Ap Si Bpand A, 21 B, hold. Givena, b € R we write a A b := min{a, b}
and a vV b := maxia,b}. Given x = (x1,x2,x3) € R3 we will often write
x = (x1,x") e RxR?orx = (x',x3) € RZxR. Given x € R?andt € R
we will also often write X = (x,1) € R? x R. Throughout the article N denotes
some fixed large integer, chosen so as to satisfy the forthcoming requirements of
the proofs. The choice of N = 1019 js permissible (and in the d-dimensional
version of estimates in Sections 6 and 7, it never needs to exceed 101°°9). For a
phase function ¢(x; z) the notation 92, ¢ refers to the matrix A with entries A;; =
8)261_ 2;® while the notation 8§x<p refers to its transpose. The length of a multiindex
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o€ Ng is given by || = ZLI ;. The C¥ norm of (x;z) > a(x;z) is given by
MaXx|q|+|8|<N ||8§82ﬁa||oo. We also use the notation ||a ||~ for sup, [la(x;-)|cn.
For a linear operator 7 bounded from L? to L4 we use both || T ||z»— 14, | T|| p—q
as a notation for the operator norm. For a one-parameter family of linear operators
{Tt}ieE. || sup,eg |Tt||| p—q denotes the L? — L9 operator norm of the sublinear
operator f — sup;cg |7t f1.

ACKNOWLEDGEMENTS. The authors would like to thank the anonymous referee
for a careful reading and valuable suggestions.

2. Proof strategy

Theorem 1.1 easily reduces to bounding a maximal function sup,. ¢ |A4; f| where
the A; are averaging operators on the Euclidean plane. We aim to follow the broad
strategy introduced in [19] to study the Euclidean circular maximal function, which
we now recall. Define 45! f by taking A5"! f(x) to be the average of f over the
circle Ee“d in the plane centred at x with radlus t. Note that the associated curve
dlstrlbutlon is described by the defining function

q)eucl(x 1;y) = |x_y|2_t2 for(x,t;y)ERZXRXRZ;

in particular, Ee“d = {y € R?: ®(x,1;y) = 0}. The associated maximal function
M f(x) i= sup |47 f(x))|
>0

is the classical circular maximal function studied by Bourgain [5] and also in [19].
A Littlewood—Paley argument reduces the problem of bounding M'“!  to bound-
ing the local maximal function

sup | A3 f(x)].

1<t<2

Decompose the averaging operator A?“Cl f as a sum of pieces Afud’] f localised at
frequency scale 2/. The sum of the low frequency pieces (j < 0) can be bounded
in one go via comparison with the Hardy-Littlewood maximal operator and it re-
mains to bound the high frequency pieces. There are two steps in the argument:

(i) The first step is to show that the inequality

T a2 < IS N2 @.1)

eucl

|| sup |A;

holds uniformly in j. An elementary Sobolev embedding reduces (2.1) to
proving L? estimates for certain oscillatory integral operators. A T*T argu-
ment further reduces (2.1) to bounding the corresponding kernels, which are
then amenable to stationary phase analysis;
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(ii) Interpolating (2.1) with the trivial L°° estimate,

sup 47" £

1<t<2

< CllfllLrw2) forall2 < p <oco. (2.2)
L7 (R2)

The problem here is that (2.2) does not sum in j. If, however, there exists
some 2 < po < 0o and &(p,) > 0 such that

sup A7 1|

1<t<2

< C27¥@| £l L po r2). (2.3)

LPo (R2)

then one may interpolate (2.2) and (2.3) to obtain favourable j dependence
for all 2 < p < oo, concluding the proof. The strategy in [19] is to prove
a bound of the form (2.3) via local in time L? space-time bounds (so-called
local smoothing estimates) for the wave equation.

There are two key properties of the circular maximal function which allow the
above analysis to be carried out, both of which can be expressed in terms of the
defining function ®®“!. The first is the standard decay properties of the Fourier
transform of surface carried measure which correspond to nonvanishing of the
Phong-Stein rotational curvature (see, for instance, [32, Chapter IX, Section 3.11Y.
This is used to prove the oscillatory integral estimates in (i). The second is that the
cinematic curvature (see [30]) is non-vanishing, which features in the proof of the
local smoothing estimates used in (ii). The analysis can be generalised to variable
coefficient maximal functions formed by averaging operators on the plane associ-
ated to defining functions ® which satisfy these two conditions [30].

Now suppose A4, f denote the averaging operators on R? which arises in the
study of our maximal operator acting on H-radial functions. This family of oper-
ators has an associated defining function ®, which is described in (3.2) below. As
before, one may decompose A; f as a sum of pieces A; f localised at a frequency
scale 2/ Significant issues arise, however, when it comes to implementing either

of the above steps to analyse the Atj f in this case:

(i") The defining function ® has vanishing rotational curvature. Indeed, the oscil-
latory integral estimates in the above proof sketch of (2.1) do not hold in this
case;

(ii’) The defining function ® also has vanishing cinematic curvature. This pre-
cludes direct application of local smoothing estimates in the proof of (2.3).

In order to deal with these issues it is necessary decompose the operator A; with
respect to the various curvatures and to prove bounds of the form (2.1), (2.2) and
(2.3) for each of the localised pieces.

! The definitions of the rotational curvature and other concepts featured in this discussion are
also reviewed in Section 4 below.
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In bounding the localised pieces of A;, the main difficulty is caused by the
vanishing of the rotational curvature. In particular, here the L? theory relies on
certain two parameter variants of estimates for oscillatory integral operators with
two-sided fold singularities. Our arguments build on the techniques in [8,11]. This
is in contrast with the analysis of the Euclidean maximal function, where the clas-
sical estimates for non-degenerate oscillatory integral operators of Hormander [13]
suffice. The presence of a two-sided fold incurs a (necessary) loss in the oscillatory
integral estimates (compared with the non-vanishing rotational curvature case), but
special properties of the Heisenberg maximal function allow one to compensate
for this. A similar phenomenon was previously observed in the analysis of the
spherical maximal function in H” for n > 1in [21].

The vanishing of the cinematic curvature presents less of a problem, essen-
tially because the desired bound (2.3) is non-quantitative: all that is required is
for (2.3) to hold for some p, and some &(p,) > 0. Roughly speaking, the
strategy is to decompose the operator into two parts: one piece supported on the
§-neighbourhood of the variety where the cinematic curvature vanishes and a com-
plementary piece. The former is dealt using a variant of (2.2) which includes a gain
in § arising from the additional localisation. The latter piece has non-vanishing cin-
ematic curvature and can be dealt with using local smoothing estimates. Choosing &
appropriately, one obtains the desired bound. Similar ideas were used by Kung [17]
to treat a family of Fourier integral operators with vanishing cinematic curvature.

3. Reduction to a maximal operator in the plane

3.1. Singular support of the Schwartz kernel and implicit definition

A computation shows that f * u,(u, x) corresponds to an average of f over the
ellipse in R3 given by

Suxt = {(v,z) eRXxR?:v—u+b(x1z2 — x221) =0, |x — Z|2 —1? = 0}.

Furthermore, using the identity (x1zy + x222)? + (x122 — x221)? = |x|?|z|?, one
checks that (v, z) € Sy x,; satisfies

@, (u. |x|:v. |z]) = 0 3.1)
where ®;(u,r; v, p) := ®(u,r,t;v, p) and

2
S rtivg)i= - = (3) @2 -0+ =) G

Below we relate explicitly f * u, to an operator acting on functions of the two
variables (v, p), with a Schwartz kernel §o® which will define this integral operator
as a weakly singular Radon transform.

In the forthcoming sections it will be necessary to carry out many computa-
tions involving ®. For the reader’s convenience, a dictionary of derivatives of this
function is provided in Appendix B.1.
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3.2. Properties of H-radial functions

A function f: H' — C is H-radial if and only if there exists some function
fo: Rx[0,00) — C such that

fu,x) = fo(u,|x|). (3.3)

Using the fact that RT BR = B for R € SO(2), if f and g are H-radial, then f % g
1s H-radial, and we have

(f * &o(u,r)

2r o
=/ // fo(v, p)go(u — v — brpsin®, v/r2 + p? — 2rpcos ) p dpdvdd.
o JrJo

This observation extends to H-radial measures and, in particular, if f is H-radial,
then f * u, is H-radial, and we get

1 b
(f * pur)o(u,r)= e fo(u — btrsin, Vr2 4+ 12 = 2rt cos ¥) dd
-

(3.4)

1 4
:E 2—/ fo(u & btrsind, \/r2+t2—2rtcosz9)dl9.
TJo
+

Applying polar coordinates in the planar slices {u} x R?, given p > 2 and f as in
(3.3), the goal is to establish the inequality

00 oo 1/p
(/; [0 |(Mf)0(u,r)|prdrdu)
0o oo 1/p
p
([ 1awprosar)

3.3. A weakly singular Radon-type operator on R?

(3.5)

By the implicit definition of the circle S, x, from (3.1), the function (f * p;)o
corresponds to an integral operator associated with the curve

Sure = {(v,p) € Rx[0,00) : D (u,r;v,p) = 0}.
It is easy to see that X, ,; is smooth whenever r # ¢ > 0. If r = ¢ > 0, then there
is a unique singular point on the curve at the point where it touches the v axis. See

Figure 3.1. Furthermore, any (v, p) € X, , satisfies

[r—t|<p<r+t and |u—v|<|b|min{rp,rt,tp}; (3.6)
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Figure 3.1. The curves X, for ¢ fixed and r < ¢ (left), r = ¢ (centre) and r > ¢
(right). When r = ¢ the curve has a unique singular point on the v axis.

these bounds follow since for (v, p) € Xy, ,;

0= (b/2) 2 —v)* =4r2p> — (> + p> —1?)?
= 4r%% — (r* + 1% — p?)? (3.7)
= 42> — (I + p* — 7).

Consider the integral operator in two dimensions defined on functions of the vari-
ables (v, p) by

Ai f(u,r) = Ap; f(u.r)

= [ [T rworp s s, Y
—00 J0

In view of (3.5), Theorem 1.1 will be a consequence of the following maximal
estimate in the Euclidean plane.

Theorem 3.1. Forall p > 2,

00 oo 1/p 00 o0 1
(/o /_w(?BE'Aff<“”>l)pdudr) 5(/0 /_w|f<v,p>|1’dvdp) "

Note that the r1/? p_l/ ? factor featured in the averaging operator in (3.8) arises
from the weights induced by the polar coordinates in (3.5). In order to relate The-
orem 1.1 to Theorem 3.1 we have to write for H-radial test functions the expres-
sion (f * W¢)o(u, r) in terms of the distribution § o ®; which is understood as a
weak limit of y, o ®; as ¢ — 0. The calculation, which is given in the proof of
Lemma 3.2 below, is standard (cf. [32, page 498] which provides a proof for a lo-
cal version). For the sake of convenience we include below a direct proof for our
example.
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In what follows we shall use, for a continuous compactly supported function
g. the integral notation g(c) = [ g(v)8(c — v)dv for the pairing of g with the
Dirac measure at ¢c. We also let y,(s) := ¢! y(¢7's) with y even and supported
in (—1/2,1/2) such that [ yds = 1. We shall prove the following.

Lemma 3.2. Let f € C'(H") be H-radial and compactly supported in {(v, p) €
R2 : p > 0}. Then, for any r > 0,

b o0
(7 s ooty =2 tim [ [ ge(@ituriv. o) foo. pipdvap
I L .
== /0 /R 8@, (.2 v. p) folv. p)pdv do.

With the above lemma in hand, Theorem 3.1 immediately implies Theorem 1.1.
Proof that Theorem 3.1 implies Theorem 1.1. We prove the a priori inequality for
smooth H-radial functions which are compactly supported in {(u, y) € R3 : |y| #
0}. By Lemma 3.2

PP ot r) = 1 sup A,[p!/? flu. ),

and the assertion follows. O

Proof of Lemma 3.2. We use (3.4) and make a change of variable by setting

p=p®) =Vr2+12—2rtcos?, 0<9 <.

Observe that the condition 0 < ¢ < 7 is equivalent with |[r —¢| < p < r +¢. Then

7'2+12—

2\ 2
u:tbtrsinﬂ:uj:btr\/l—( p) =uj:éG(r,t,p)
2rt 2

where

G(r.t,p) := 4r2t2 — (r2 + 12 — p?)2.

For the relevant range |r — | < p < r + ¢ the root is well defined (as sin ¢ > 0),
and we have the factorisation

Grit.p)=(r+1+p)r+1—p)r—t+pt—r+p)"% (3.9)

We calculate 4
ﬁ = p Yresin@®) = (2p)71G(r.1, p)
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and thus

7 (fpe)o(u, r)_Z/ o fo u =+ bG(r,l‘,,O) P) _G(rpz p_) dp

1
d
60 Grip P

hm/r » /pfo(v p))(g(u:I:bG(rtp) v)dv

Let U be an open interval with compact closure contained in (0, co) such that
supp (fo(u,:)) C U forallu e R. Let U(r,t) ={pe U :|r—t| <p<r+t}
We observe from (3.9) that for fixed r, t with r # ¢, the function p — |G(r,t, p)| !
satisfies

/ |G(r,t,p)| Pdp < C(r,t) <oo forl <p <2, (3.10)
U(r,t)

which we use for p > 1. Let Eo(r,t) = {p € U(r,t) : G(r,t,p) < €'/} and
Fe(r,t) = U(r,t) \ Ec(r,t). We use Holder’s inequality to bound

/ /Plfo(U,P)l Xe (UigG(I‘,t,p)—v)‘ dv
Ec.(rt) JR
Srf | Ee(r, l)|1/p,C(r, /P = 0(8@—1)/2),

1
—d
G(rt,p) P

noting that (3.10) implies | E¢| <. ¢?/2. For p € F,(r,t, p) we use the change of
variable

w—ve(w) =u=x %G(r,t,p) —(u—w)*+ ?G(r, t,p)?
which is one-to-one on (1, 00) and on (—o0, u) and satisfies
u—ve(w)=E gG(r,t,,o) =u—w)?— ?G(r,t,p)z.
We have |v'(w)| = 2|lu — w|, and |v(w) — w| = O(¢g) on the support of the

integrand, and therefore also |u — w| = G(r,t, p)|b|/2 + O(e). Hence, by Taylor
expansion of f(v, p) around (w, p),

/Fs(rt)/pfo(v pts (1% 5601, p) =) do G o

= 2|u — w|

a E /Fe(r,t) /Rpf()(v(w)’ P)Xe ((u - w)2 - (%G(F,l, P)) ) m dwdp
i . :
2 /S(rat)/RPfo(w,p))(e ((u w) (2G(V,Z,P)) ) dwdp + 0(8 )
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and by using the estimate | E¢(r,t)| <. €”/? the last displayed expression is equal
to

r+t
|l2)_| /Ir—tl /R,Ofo(w,P)Xe ((u —w)? — (’%G(r, [,p))z) dwdp + 0(81/2)’

for both choices of £. We sum in £ and, using (3.7), obtain, for r # ¢,

|b| r—+t (r—1)/2
(Fsote.r) =2 [ [ pfotw. pxe(@uturiw. ) dp+ O 012)
T Jir—t| JR

Letting ¢ — 0 concludes the proof. O

3.4. A local variant of the maximal operator

The main work in proving Theorem 3.1 will be to establish the following local
variant.

Theorem 3.3. Forall p > 2,

” 1222 |Atf|“L1’(Rx(0,oo)) S 1 e ®x0,00))-

This will be established in Section 4-Section 8. The passage from Theorem 3.3 to
the global result in Theorem 3.1 is postponed until Section 9.

4. Curvature considerations

As indicated in the introduction and Section 2, various “curvatures”, which feature
extensively in the analysis of generalised Radon transforms, are fundamental to
the proof of Theorem 3.3. In this section these concepts are reviewed and some
calculations are carried out in relation to the operator A; introduced above.

Definition 4.1. A smooth family of defining pairs [®; a] consists of a pair of func-
tions a € C®(R? x R x R?) and ® € C defined on a neighbourhood of supp a
satisfying

Vi) ®(x,t;2) #0 for (x,1;z) € suppa.

The ¢ variable will play a preferred role in the forthcoming analysis. For any fixed
t € Rlet ®;(x;z) := ®(x,t;z) and a;(x; z) := a(x, t; z); then [D;; a;] is referred
to as a defining pair . The Schwartz kernel a § o ® is then well defined, and the cor-
responding integral operator A[®;; a,] f(x) mapping test functions to distributions
is given by the pairing

Miocalre)i= [ swrs@uuas@ma) i @D
R2xR2
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Key example. For the defining function ®; in (3.2), where ¢ ~ 1, with the identi-
fication of coordinates (1, r) = (x1, x2), (v, p) = (21, z2), the distribution § o ® is
defined when paired with g(u, r) f(v, p) where g and f are compactly supported
C > functions with support away from {r = 0} and {p = 0} respectively. The cal-
culations in Lemma 3.2 show that in this case A[®;; a;] f(x) is pointwise defined
for xo # 0, as long as f € C{°(R?) with supp f C {y € R?: y, # 0}.

4.1. Rotational curvature

Given a defining pair [®;; a;] the rotational curvature Rot(®;) is defined to be
the function of (x;z) € R? x R? given by the determinant of the Monge-Ampére

matrix -
e th (az th)
M(D;) = |:8xq)t 8)2@(1% .

Note that 91(P;) is the mixed Hessian D(zg,x)’(s’z)\IJ, |g=s=1 of the function
0,x,5,2) > W, (0,x;5,2) := 0sD;(x; 2)
and, more generally,

2 _ ®t Sasz;r
D605, ¥t = |:08xCI>t 0505, P;. |°

It is well-known (see, for instance, [32, Chapter XI, Section 3]) that the behaviour
of Rot(®;) on the incidence relation {® = 0} plays an important r6le in determin-
ing the mapping properties of averaging operators A[®;; a,] on L?-Sobolev spaces
as well as the L? theory of their maximal variants. It is of particular interest to
identify points where the rotational curvature vanishes together with the defining
function.

Key example. For the defining function ®; in question, as introduced in (3.2), we
now have (x1, x2) = (u,r) and (21, z2) = (v, p) and

[ &, 0,0 9,9

M(P;) = | 0P 0;,,P; 35,

| 0, @, 32,9, 37,

i @, —2(u —v) —b%p(r? — p +t?)
= 2(u —v) -2 0
_—bzr(,o2 —r2+1?) 0 —2b%rp

Then, one computes that
det M(D,)
=2b%rp(b2(p* — 1> + 12)(r? — p* + 17) — 4(u — v)* + 20)
= 2b4r/o((,o2 — 2+t =P+ 12 —4r2p? + (2 + p? — t2)2) + 4b2%rp®;,.
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Setting ®; = 0 one obtains after further computation
Rot(®;)(u, r; v, p) = 4b*rt?p(t? — r? — p?) for (v,p) € Xy rr.  (42)

Thus, Rot(®;) vanishes along the co-ordinate hyperplanes r = 0, = 0and p = 0
and also, more significantly, along the hypersurface 12 = r? + p2.

Continuing with ®; as in (3.2), the rotational curvature and ¢-derivative of the
defining function are related via the identity

Rot(®;)(u, r;v, p) = 4b2rtp(8,d>t)(u, r;v,p). 4.3)
A relationship of this kind was previously noted in [21] in the context of the
spherical maximal operator on H” for n > 2. Here, in close analogy with [21],
the identity (4.3) will be important in the analysis near the singular hypersurface
12 =r? 4 p
Rather than freezing ¢ for the computation of the rotational curvature, it is
sometimes useful to freeze r and set

Q7 (u,t;v,p) := D (u, 130, p).
A similar computation to the one above yields in this case

Rot(®¥)(u,t;v, p) = 4b*r?tp(r* —t> — p?)  for (v,p) € Tyry.  (4.4)

4.2. The fold conditions

For the defining function from (3.2), the vanishing of the rotational curvature along
the hypersurface 12 = r2 + p? corresponds to a two-sided fold singularity.

Definition 4.2. A defining function ®;, satisfies the two-sided fold condition at
(x0:z0) € R? x R? if the following hold:

(1) Pyy(x0:z0) = 0 and Rank M(Py,)(x0;z0) = 2;
(i) IfU = (u1,us,u3) and V = (vq, v2,v3) € R3 span the cokernel and kernel
of M (P, ) (xo: zo), respectively, then

({effs.)
(e[,

where U” = (up,u3) and V" = (vy, v3).

V”, V/l> ;ﬁ 0’

(x0320)

U// , U//> ?é O,

(x0520)
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As a consequence of the fold condition, 9(P,,)(xo; zo) may be transformed
into a “normal form”. In particular, there exist X, Z € GL(3, R) satisfying

U//) .
(x0320)
e Zes =V and Ze,, Ze, are orthogonal to

)
O, 82 <U, |: to :|> V//
( = 0x Pt (x0320)

where e; denote the standard basis vectors in R3, and therefore

e Xe3; = U and Xej, Xe, are orthogonal to

XT 0 M(Dyy) (xo: 20) 0 Z = |:M(x0, to; Zo) O}

0 0

for M(xo, t9; o) a non-singular 2 x 2 matrix.

Key example. For the defining function ®; from (3.2), if ®;, and Rot(®;,) both
vanish at (xo; zg) = (U, 'o; Vo, Po) and rofope # 0, then

1 1
U .= —(uo — Uo) and V.= Uo — Vo (45)
—ro —pPo

span the cokernel and kernel of D(®;,)(xo; zo), respectively. Moreover,
2 q)t()
<8ZZ <Ua [8xq)t0
2 q)to
<axx <V, [82 q)to

and the matrices X and Z can be taken to be

V" V") =2b705(rg + p5) > 0.
(x0320)

( )U”, U”> =2b%r3(rg + p3) > 0
X020

1 0 1 1 0 1
X:=1{0 —=b%*3 —(uo—o) |, Z:=|0 b*} uo—vo|. (4.6)
0 up —vo —ro 0up—vo —po

Remark. For standard incidence relations M C ]R% XR%, where ]R% = ]R%e = R?
and M = {® = 0} with VO bounded below, the two sided fold condition is
equivalent to the more common assumption [18, 25] that the projections 7y, Tg
mapping the conormal bundle N*M to T*R37, T*R% have fold singularities.
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4.3. Individual curves

It is also useful to consider the curvatures of the individual curves in the curve
distribution induced by a defining family ®. In particular, for fixed (x, ¢) the non-
vanishing of the curvature of X, , := {z € R? : ®,(x;z) = 0} is equivalent to the
non-vanishing (on X ;) of

o 0 (3:P)T(x;2)
k(®;)(x;z) 1= det [3Z¢,(x;z) 8§Z&>t(x;z) } . 4.7

Example 4.3. For the defining family ® as introduced in (3.2), the curves have
non-vanishing curvature whenever r # t. To see this, note that

[ &, 09,P, 9,P;
[(’(q)t) = det aUQz 8%1)(1); 3%pq>,
| 8,0, 92,D, 92,

D, —2(u —v) —b%p(t? +r? — p?)
= det —2(u —v) 2 0 ,
| —b?p(t* + 1% — p?) 0 —b2(t?2 +r% —3p?)

which after a computation reduces, for (v, p) € Xy, 4, i.e. & =0, to
K@, 7,10, ) =b* (07— 302+ ) 4307 = 2202 (2= 22+ 12)).

Thus, k(®;)(u, r,t; v, p) = gr.:(p?), where g, is a cubic polynomial with coeffi-
cients depending on r, . We first calculate p((r —t)?) = —8b*r2t?(r —t)2. One
may verify that g, is a decreasing function on the interval [(r — 1)2, (r + 1)2],
leading to the lower bound

lk(®)(u,r,t;v,p)| > 8b4r212(r — t)2 for all (v, p) € Zy 1z (4.8)

Thus, the curves have non-vanishing curvature if r # ¢, as claimed.

4.4. Cinematic curvature

It is also necessary to analyse the averaging operator from the perspective of the
cinematic curvature condition of [30].

Definition 4.4. A smooth family of defining pairs [®; a] is said to satisfy the pro-
Jection condition if
Proj(®) := det [0z © 93 D]

is non-vanishing on an open neighbourhood U of suppa. Here X = (x,t) €
R? x R.
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Fixing ¥ € R? x R, the projection condition implies that the map
UNZ;)xR->R3 (2:0) > 00;P(X;2)

is a diffeomorphism and therefore its image I'; is an immersed submanifold of R3.
If { := 00;D(X; z) € I'z, then a basis for T; I'; is given by the vector fields

T':=0;®, T?:=(T].T5.T3) where T? :=det[0;® 3,3x,P] (4.9)

evaluated at (X; z); this may be seen computing the tangent vectors of the parametri-
sation o3 below. Note that I'; is clearly a cone and therefore has everywhere van-
ishing Gaussian curvature. If at every point on I'; there is a non-zero principal
curvature, then [®; a] is said to satisfy the cinematic curvature condition (see [30]
or [20] for further details).

Definition 4.5. For any defining family & let
Cin(®) := det [S T! T?]

where S = S! — S? where §' = (S}, S5, S}) for

1._ 0 (397 2. 0 (9:0x,®)7
SJ- .—det[azq) agzaqu) s Sj := det 5. 3§Z/CI> .

If [®; a] satisfies the projection condition, then the cinematic curvature condi-
tion is equivalent to the non-vanishing of Cin(®)(X; z) whenever z € X ;. Indeed,
fix X and let y;: [0,1] — X3 denote a unit speed parametrisation of X3; this
induces a parametrisation o3 : (6, s) > 00;®(X; yz(s)) of the cone ;. The cine-
matic curvature condition is then equivalent to the non-vanishing of

det [95503 (6. 5) 0503 (0.5) d50%(6,5)] (4.10)
and a computation shows that (4.10) is equal to —|6|?|d, ®|>Cin(®).
Key example. For the defining family & as introduced in (3.2) one has
Proj(®)(u,r, t;v, p) = —8b*rtp(r? —t?), (4.11)
Cin(®)(u,r, 1;v, p) = 64b3r313p3(r? — t?). (4.12)

Thus, [®; a] satisfies the cinematic curvature condition whenever supp a avoids the
hyperplanes r = 0, t = 0 and r = ¢.> For reference, Appendix B.1 contains the
formule for the various derivatives featured in these computations.

2 In this case, one may further deduce that I'y ;¢ is the cone defined implicitly by the equation

2 % 2

V75202 =52y T 22 —42)
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5. The initial decomposition

For ® as defined in (3.2) both the rotational and cinematic curvature conditions fail.
In this section, the operator A; is decomposed in order to isolate the singularities
corresponding to the failure of these curvature conditions.

5.1. Spatial decomposition

The operator A; is first decomposed dyadically with respect to the r variable. To
this end, fix a nonnegative n € C°(R) such that

n(r)=1 ifre[-1,1] and suppn C [~2.2] (5.1a)
and define 8 € C2°(R) and ™, ™ € C(R) by
B(r) := 1(0,00)(r)(n(r) — n(2r)) (5.1b)
and, for each m € Z,
n"(r) :==nQ2™r) and B"(r):= p27"r). (5.2)

One may then decompose

A flu,r) = Zﬂm(r)A,f(u,r) for (u,r) € R x (0, 00).

meZ

The r-localisation induces various spatial orthogonality relations via (3.6). In par-
ticular, if r € supp ™, then r ~ 2™ and it follows from (3.6) that

lu—v[<2", [r—pl <1 and [t —p[ S2" for(v,p) € Byps. (5.3)
To exploit this, given m, o € Z define
1™ (u,v) := Q2 "™u —o)n (C~'27"v —0)),

where C > 1 is an absolute constant which is chosen to be sufficiently large for
the purposes of the forthcoming arguments. We define

a®(u,r, 10, p) = B(r)r'/Ppl=VP,
am’a(u,r,t; v, p) 1= BN (u, v)n*%2(r, p), if m >0, (5.4)
am’a(u,r,t; v, p) := B ()™ (u, v)n™°2(t, p), if m <O,
so that for m > 0, a0 is supported where

r~2" u=2"01] <2", |v=2"01| <2", |r—03| <1, |p—o02] S 1.



THE CIRCULAR MAXIMAL OPERATOR ON HEISENBERG RADIAL FUNCTIONS 519

Moreover for m < 0, a9 is supported where
r~2" qu—=2"01| 2", lv—=2"01| S2™, |t —02] S2™, |p—o02] S 27

In view of (5.3), one may bound (using the notation in (4.1))

Atf,SA[th;a?]f—i— Z szA [CDt;a;n’a]f

Gez2 m>0

+ Y Yo 2mra|esa e

Gez? m<0

(5.5)

whenever f is a (say) continuous, non-negative function.

The unit scale piece a? is supported where r ~ 1 and it is now further dyad-
ically decomposed with respect to both the p variable and |r — ¢|. The rationale
behind this decomposition is to quantify the value of Rot(®;): in view of (4.2), the
function Rot(®;) can vanish on supp a?. If r ~ 1and p ~ 27% | then it follows

from (3.6) that |u — v| < 27 for (v, p) € Xy - Thus, given a function k — £(k)

on Z to be defined momentarily we set

oE v, )= BB ()T w0 BT = DA (), €< L),
i, p) = BB (00~ (u, v)n~ O (r — 1= O (1),

k,(,ff’ ck,&

so that on the support of a we have

r~1, p~2_k, |u—2_k01‘§2_k and ‘v—Z_kol‘fJZ_k;
moreover
r=t~27 r—2Te| 27 -2t g2

on supp aX¢-9 and

Ir—1] <2740, ‘r _ 2—€(k)02‘ < ot ‘, _ 2—£(k)02‘ < ot

on supp %% One may bound

alosaf]f s Y Y 270D A et (5.6)

GeZ? (kk)ez?
L<L(k)

+ 3y Zz—k(l—l/P)A[q>,;cf’3]f (5.7)

GeZ? kel
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For the purposes of our proof, we let
Lk) :=2k + Cio

for some (absolute) constant C,, > 1, suitably chosen so as to satisfy the forth-

coming requirements. Furthermore, by the first inequality in (3.6), one may in fact
restrict the range of the k summation in the above expression to k > —4 and of the
(k, £) summation to the parameter set

PB:={(k.{) €ZxZ :k=>—-4andk —3 <L < L(k)}.
We show presently that the following bounds imply Theorem 3.3.

Theorem 5.1. For all 2 < p < oo there exists some €, > 0 such that
: k6 —4/p— —
@ | sup_ |A[@; a7 O f1], S 27/ PR 2ROV £, for (K, 0) €
<t<

i) || sup (@0 7V f 1], S 27Ok 20 VDR £l for all k= —4;
=I=

i) | sup [A[®; a1 1], S 27"/ 1 form > 0;
1<r<2 3

@) | sup |A[®@:a7)f1], S 2" 27 P £, form < 0;
1<r<2

uniformly in & € Z*. The above a priori estimates hold for all f € C§°(R?) with
supportin {y € R? : y, # 0}
Proof of Theorem 3.3 assuming Theorem 5.1 holds. Consider the second and third
terms on the right-hand side of (5.5).

When m > 0 there is spatial orthogonality among the pieces of the decompo-
sition in both & and m. This observation combined with Theorem 5.1 (iii) above
yields

Z ZZ'” sup ‘A [CD,;a:"’a]f|

Gezzm>0  1=1=2
p
1/p
R P
m . 40
S{X X2 sw |afesa®| s | SIS0
gezzm>0  N1==2 P

as desired. .
When m < 0, note that by the support properties of a}"*,

sup Z ‘A [@t;a:"’c] f‘ < sup sup ‘A [(D,;a:"’a] f’
1<t<2 02€Z  1<t<2
o2€Z =275 S2m
1/p
m,o P
< E sup Al Dy a, f
1<t<2
2% [t—2"02 [ <2
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Furthermore, applying spatial orthogonality in the 6 parameter, the triangle in-
equality to the sum in m and Theorem 5.1 (iv), one deduces that

ZZ"’/” sup Z ‘A [Cbt;a;”’&]f‘

1<t<2
m<0 — =" Ggez? »
1/p
. P
s sup |A[@ca® ||l | S 1f 1
m<0 gezz |1=1=2 P

where the last step uses the exponential decay 2”¢7 to sum in m.
Next, consider the sums in (5.6). Again, there is spatial orthogonality in the
o1 parameter. This fact and Theorem 5.1 (i) yield

3 27kI=1R) gup

01€7Z 1=r=2

alosdts) r|| s 2arate s,
p

uniformly in 0,. As the parameter o, corresponds to a decomposition of the r
spatial variable,

Z 2—k(1-1/p) sup ‘A [Cbt;af’e’a] f’

gez? I=t=2 »
1/p
P
< Z Z p—k(1=1/p) sup ’A [Cbt;af’é’a] f‘
02€Z |orez 1=t=2
lo2|<2¢ P
1/p

ok [ ST o pe | SR g,

02€Z
o] <2¢

The desired result then follows from the triangle inequality in (k, £), using the
exponential decay 27%¢» to sum over k and £ < £(k). The sum in (5.7) is bounded
in a similar manner. O

5.2. Rescaling

Each piece of the decomposition is appropriately rescaled in order to obtain, wher-
ever possible, favourable bounds on the various curvatures. For the reader’s conve-
nience, Appendix B.2 describes the behaviour of the functions ®, Rot(®), Cin(P),
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etc. under general rescalings. These rescalings lead to phase functions satisfy-
ing certain nonisotropic conditions which will require extensions of some classical
results on oscillatory integral operators (see Section 6 below).

5.2.1. The case m = 0
For (k, £) € 3 we define the dilations

Dk’e(u, rt;v,p) = (Z_ku, Z_Zr, 2_41; 2_kv, 2_kp).

Let
L if £ > 2k

el ):=b=2k+ N2k =1, 0 ife <ok,

and define

®k,e = 22k+e(k,€)/3q)o Dk,e’ ak,(,U = ak,(,o’ o Dk,f’

OF = ktR) kG . kG o phte) (5-8)

Note that &+¢:9 is supported where

p~1, r~2% |r—t|~1, |u—o1 51,
[v—01| <1, |r—oz|S1 |t—02] S 1.

The support of ¢&% has similar properties, with £(k) in place of £ and |r —¢| < 1.

The appearance of the factor 22k +¢(®.0/3 js motivated by the fact that
Rot (cbf’f) ~1 on suppa® if [€ —2k| > Cror, (5.9)
Rot (@f) ~1 on suppEk’é, (5.10)
Rot ((Cbk) ) ~1 on suppEk’a (5.1D)
r

where (CDk);‘(u,t;v,p) = CIDf(u,r; v, p). Note, however, that Rot(Cfo’e) may
vanish on supp %49 if [£ — 2k| < Cyy.

Setting fx (v, p) = f(27%v,27%p), and using that § is homogeneous of degree
—1 one has

2~

A [Cbz—uk),; CI;’_&Z(,()I] f (2"‘14,2‘4’) =2t0/3 4 [be’e,if’&] Je(u,r).

Al @y T] (27270 ) = 2600R A [0p G0 S,
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Thus, by rescaling to prove Theorem 5.1 (i) and (ii) it suffices to show that

sup ‘A [‘Df’e; af,z,a] < 2—e(k,€)/3+(1—2/p)k—ks,;’ (5.12)
t

LP—>LP

< 2—13(k)/3+(1—2/p)k—k8p; (5.13)

LP—LP

sup ‘A [@f; Ef’a]
t

where (by a slight abuse of notation) we indicate the operator norms of the maximal
operators on the left-hand side. We note that in view of the support properties of
Gkt:0 Tk the global supremum in the definition of the maximal operator reduces
to a supremum over an interval / of length |/| ~ 1 centered at o,.

It is helpful to isolate the key features of the rescaled averaging operators
used to prove the above inequality. As a first step in this direction, note that each
[@f’e; &f’z’o] belongs to the class in the following definition. We use coordinates
(x; z) for the rescaled phase functions where (x1, x2) corresponds to a scaled ver-
sion of (u, ) and (z1, z3) to a scaled version of (v, p).

We define collections A%-¢ of defining pairs [®; a] involving inequalities and
support assumptions that are uniform in k, £.

Definition 5.2. Let 25¢ denote the set of all smooth families of defining pairs
[®; a] for which the following conditions hold:

(@ |8§8£ 8’ a(x,t,z)| < 1and diamsuppa < 1,

wf oy y—2e(k.0)/3
(®P1)k e 0507 07 Pr(x;2)[ S 2e(k.0)/3

(P2)ke 0:Ds(x:2) = 272¢(.0/3¢(x, 15 z)Rot(P; ) (x; z) for some ¢ € C>®
depending on [®; a] and with uniform C°° bounds on supp a.

ifas or y#0

D, (x:2)| ~2ek.D/3
otherwise - 102 (x:2)] ’

These estimates are understood to hold on supp a, with the constants only depend-
ing on the multiindices &, B,y € N3 . That is, if we fix a large N then we get
uniform estimates for |«|, |B], |y| < N.

For [CDM; ak“] it is easy to see that (a)r ¢ and (P1)x¢ hold via a direct
computation (the lower bound in (®1)g ¢ is a little trickier and uses (3.7)). The
remaining condition (P, ) ¢ follows from an appropriately rescaled variant of the
key identity (4.3). Indeed, note that

1
4b22~tr) 2 )p

T — (ot

where 7 ~ t ~ 2% and p ~ 1 on supp sz’e’&. Similarly, each [®*; 9] belongs to
kLl = gk,
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5.2.2. The casesm # 0

For m € Z \ {0}, define? (recalling m A 0 = min{m, 0})

D™ (u,r,t;v,p) i= (2™u, r, 2™ 0; 2"y, 2MN0 ),
" = 2_2'"(1) o DM am’a — a'”’a o D™ (514)

and let (&)X (u,t; v, p) := ®"(u,r,t; v, p). It follows from (4.2) and (4.4) that
Rot(®}") ~ 1 if m > 0 and Rot((®™);) ~ 1 if m <0 on supp am%: (5.15)

this observation motivates the choice of normalising factor 272,
Note that for m > 0 the new amplitude a7 is supported where

r~2" Ju-oi|SlL -0l Sl |r—o Sl lp—o02] S,
and if m < 0 then 8™ is supported where
r~2" Ju—o| <1, jv—01| <1, [t—02| <1, |p—0on| S 1.
Setting f™(v, p) = f(2™v, 2™ %p) a computation shows
A[®ymrog: Ao, 1 f M) = 272N AL &) ™, 7).,

Thus by rescaling, to prove Theorem 5.1 (iii) and (iv) it suffices to show that

< om0, (5.16)

LP—LP

wp |4 [oF:a7]

Note that in view of the support properties of @;"*°, the global supremum in the
definition of the maximal operator reduces to a supremum over an interval / which
equals [1,2] if m > 0 and has length |/| ~ 1 and it is centered at 05 if m < 0; in
the case m > 0 we abuse of notation and assume that a;"*’ is supported on ¢ ~ 1,
adding a cut-off function if necessary.

If m > 0, then a simple computation shows that [@™; M0 e A0 =: YO,
On the other hand, if m < 0, then [®™; @":9] belongs to the following class classes
2, in the following definition where the implicit constants are uniform in m.

3 The ®™ notation in (5.14) conflicts with the ®* notation introduced in (5.8). Nevertheless, it
shall always be clear from the context which definition is intended.



THE CIRCULAR MAXIMAL OPERATOR ON HEISENBERG RADIAL FUNCTIONS 525

Definition 5.3. For m < 0 let 2A™ denote the set of all smooth families of defining
pairs [®; a] satisfying:

27me2gf (0%) ?é 0

098 97 a(x, 1;2)| <
(@m 030707 a(x,1:2)] S 1 otherwise

diam supp a < 1, and the

projection of supp a in the x,-variable lies in an interval of length < 2™;

272 if oy £ 0

1 otherwise [0: P (x;2)] ~ 1

(@0)m 1850507 @ (x:2)| S %

on supp a for all &, B,y € N3 with |«|, |B], |y| < N.

The derivative bounds on the amplitude for ¢, = 0, which are uniformly
bounded, are used for the L?-estimates in Section 7. The bounds for a, # 0 are
used for the L?-estimates in Section 8, although they do not introduce any loss for
the purposes of the desired inequality (8.1).

5.3. Cinematic curvature decomposition

The decomposition described in Section 5.1 automatically isolates the region where
the cinematic curvature vanishes.

5.3.1. The casem =0
By (4.8), (4.11) and (4.12), each [®%-¢; Gk-¢-0] belongs to the following class.

Definition 5.4. Let Qllé;f denote the set of all [®; a] € A satisfying:
(O |k(P)(F;2)|, |Proj(®)(X;2)],|Cin(®)(X¥;z)| > 2~Mk for (X;z) esuppa.

Here M > 1 is an appropriate chosen absolute constant.

Observe, however, that the [Cbk ; Ek’g] lie in A%£®) put do not belong to
Qllé;ﬁ(k); it is for this reason that this part of the operator is isolated in the anal-
ysis. Indeed, the amplitude ¢ is supported on the region |r — 7| < 27¢®) and
therefore « (®), Proj(®) and Cin(®) can vanish on supp ¢, Nevertheless, these
quantities only vanish on a small set and, in particular, [®K; &-9] belongs to the
following class.

Definition 5.5. Let C’éin denote the set of all [D;¢] € AkLK) quch that, for all
8 > 0,if (x,¢;z) € supp ¢ with |t — x| > §, then

(Co  [K(®)(x,1;2)], [Proj(®)(x,7:2)], |Cin(®)(x,1;2)| 2 82~ MF,

As before, M > 1 is an appropriately chosen absolute constant.
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5.3.2. The casesm # 0

If m > 0, then (4.8), (4.11) and (4.12) show that [®"; &"%] belongs to A% =:
22, . On the other hand, if m < 0, then [®™; 9] belongs to the following class.

Definition 5.6. For m < 0 let A%, denote the set of [®; ¢] € A™ satisfying C)_,.

5.4. Rotational curvature decomposition

Further decomposition is required in order to isolate the regions where the rota-
tional curvature vanishes.

5.4.1. The casem =0

Let &5 > 0 be a fixed constant, chosen small enough to satisfy the requirements of
the forthcoming proof, and define

bk’e’&(u, rt;v,p) = ﬁk’e"}(u, rtv, p)n (8;1R0t(<bf’()(u,r; v, p)) .
In view of (5.9), one may readily verify that bk-4:0 g identically zero unless |{ —
2k| < 1, in which case [®%¢; 6F-4-0] € 952k —. gk

Vanishing rotational curvature. To analyse the operators A[CDf’e; bf’z’a] it is nec-

essary to exploit the fold conditions discussed in Section 4.1. The observations of
Section 4.1 imply that [®K-¢; b%:¢-9] belongs to the following class.

Definition 5.7. Let BX_ denote the set of all smooth families of defining pairs
[®; b] € A%k that, in addition to a)g ok, P1)k.2k» P2k 2k, satisfy:

The support condition:

(b)x supp b; is contained in an O(g,)-neighbourhood of supp b; N Z; where Z;
denotes the fold surface

Zy = {(x;z) e R x R*: &;(x;z) = Rot(P,)(x;2) =0}.  (5.17)
The fold conditions: For every (xo; zo) € supp b, N Z;, there exist:

(F)r Vectors U = (uy,uz,u3), V = (v1,v2,v3) € R3 satisfying

[ ney)
[Ahe)

where U” = (u,,u3) and V" = (v,, v3).

~ 2—4k/3

(x03520)

V// V//>

o —4k/3

U// U//>

(x0320)
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(F2)r 3 x 3 real matrices X and Z such that:
(i) If X/ and Z¥ denote the (i, j) entry of X and Z, respectively, then

272k if (i, ) € {(1,3),(2,3)}

X < !
| IS 1 otherwise

29 <1

(i1)) Xe3 = U, Ze; = V and | detX| ~ | detZ| ~ 1;
(iii) The matrices X, Z transform 9t(®;,)(xo; zo) into the normal form

XT 0 M(®1,) (x0: 20) 0 Z = [M"’(ﬁc’; ) 8] ,

where the 2 x 2 principal minor satisfies | det My, (xo; zo)| ~ 24%/3.

For [®K¢; bk’e’a] the support condition is satisfied owing to the choice of lo-
calisation whilst, for the fold conditions, U, V' and X, Z can be taken to be suitably
rescaled versions of the vectors in (4.5) and the matrices in (4.6), respectively.

Nonvanishing rotational curvature. By (5.9), each [®%-; Gk-£:6 — pk-£:] belongs
to the following class.

Definition 5.8. Let A5 denote the set of all [®: a] € k¢ that satisfy
(R)k¢ Rot(®;) ~ 1 onsuppa,.

Recalling (5.12), to prove Lemma 5.1 (i) it therefore suffices to show:

sup | A [®,: b,]| P R L T P

tel LP—LP
if [@; b] € BE N BE
_ek.) _ 2\,
sup | A [®;; a]| 3R g o
tel LP—>LP

if [®; ] € AL N ALt

where [ is an interval of length |/| ~ 1 containing the ¢-support of a or b.
Similarly, by (5.10) and (5.11), each [®¥; %] belongs to the following class.

Definition 5.9. Let €’l§0t denote the set of all [®; ¢] € ¢* that satisfy R) k,e(k) and
(R*)x  Rot(®%,) ~ 1 onsuppcy,
where @;Z(xl,t;z) = ®Py(x1, x2;2) and c;z(xl, t;z) = ¢ (x1,X2;2).

Thus, recalling (5.13), to prove Lemma 5.1 (ii) it suffices to show:

2k 4 2y .
<273 TU=RRkE 1) o if [@;¢] e €k, ek,
LP—>LP

sup |A[Dy; ¢

tel

where [ is an interval of length |/ | ~ 1 containing the z-support of ¢.
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5.4.2. The casesm # 0

If m > 0, then it follows from (5.15) that [®"; @] e Ay =: AY . On the
other hand, if m < 0, then (5.15) implies that [®™; @°] has favourable rotational
curvature properties once the roles of the r and ¢ variables are interchanged. In

particular, in this case [®™; amff] belongs to the following class.

Definition 5.10. For m < 0 let AF’ denote the set of all [®; a] € A™ that satisfy
(R*)m  Rot(®},) ~ 1 onsuppaj,

where @} (x1,1;2) 1= ®;(x1, X2 2) and a}, (X1, 5 2) 1= a; (X1, X2; 2).

Thus, recalling (5.16), to prove Lemma 5.1 (iii) and (iv) it suffices to show
that

sup | A[D;; az]]
tel

: . 0 0
S llallew if [®;a] € 2Aci, N Agg,
LP—LP

sup | A[D;; az]]
tel

S2"rsupllalley | if [@ra] € AT, N AR, m <0,
LP—LP X2 e

where [ is an interval of length |/| ~ 1 containing the ¢-support of a.

5.5. Frequency decomposition

Given a smooth family of defining pairs [®; a] note that, since the inverse Fourier
transform 7 of the cutoff 7 from (5.1a) has unit mean,

A ) = fim 27 [ 3202t £2)

where 7 is a bump function as in (5.1a). The integral formula for 7 then yields

o0
A[®s; 0] = A<y [Priar] + Z Aj[®s; a4
j=J

for any J € Z where

Acsl@ial )= 5o [ [ D0 (i’ )06 1) az,
(5.18)

Aol 1) i= 5o [ [ e xinp 1800 12

This provides a frequency decomposition of (4.1). The low frequency part of the
operator (corresponding to A< [®;; a;] for a suitable choice of J) can be dealt with
via pointwise comparison with the Hardy-Littlewood maximal operator, and so the



THE CIRCULAR MAXIMAL OPERATOR ON HEISENBERG RADIAL FUNCTIONS 529

remainder of the article will focus on the high frequency parts. In view of this and
the observations of the preceding subsection, Theorem 5.1 is a consequence of the
following proposition, which will be proved in Section 7 and Section 8 using the
theory developed in Section 6.

Proposition 5.11. There exists N € N, ¢, > 0 such that for all k > —4, (k,{) €
B, ] = —e(k,£)/3and 2 < p < oo, the following bounds hold, with the implicit
constants depending on p. In each inequality, I denotes an interval of length
|I| ~ 1 containing the t-support of the amplitude.

(i) For [®;b] € B, NBE

< 27 GVOep = H U= Dk—kep )1 || £
p

sup [A;[Ds; b,] f |

tel

(i) For [®;a] € 25 Nkt

. _ek.0) _2N\p_
sup |A;[@a] £ S 27UVOer2m TS AR R gl on [ f N1
tel D
(iii) For [®;¢] € €5, N CRop

< 2_(jv0)sp2—%+k(1_%)_k8” lellen 1f 1 ps
p

sup [A[®r; ¢ f |
tel

(iv) For [®;a] € A%, N A,

S277 lallen 1L 1p:
p

sup [A;[Dr; ar] f]

tel

(v) Form < 0and [®;a] € AT, DA,

sup |A4;[®y; ] f|
tel

S27eamer suplallen 1/
p X2 e

Remark. Here cases (i), (iii), (iv) and (v) are understood to hold for £ = 2k so
that j ranges over values j > —2k/3, with k = 0 in the cases (iv) and (v). In
each case, similar estimates hold for A<_,( ¢)/3[®Ps; a;] (corresponding to the low
frequency part), which can be proved by elementary means.

6. L? bounds for two parameter oscillatory integral operators

The first step towards establishing Proposition 5.11 is to obtain L? bounds for the
frequency localised pieces with favourable dependence in the parameters k and £.
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This will follow from certain estimates for maximal functions associated to two
parameter oscillatory integrals, which will be proven in this section.

To this end, let U € R? x R be an open set, W : U — R be a smooth phase
function and a € C§°(U). Consider, for A > 1, the oscillatory integral operator
associated to the phase/amplitude pair [V; a],

T* f(x) = TMY: d] f(x) := / Mg (x;2) f(2) dz. (6.1)
R4

We now let 0 < 6, < 1 and we shall assume that the following nonisotropic
derivative estimates

aggag’\p(x;z)‘ o

5298 axdlll(x;z)‘ < Cup 6.2)

hold for all (x;z) € U and all o, 8 € Ng . We shall then derive estimates in terms
of the two parameters A > 1 and §o < 1. Our results could be rewritten as a two
parameter oscillatory integral estimates with phase A(¢(x'; z) + do¥ (x; z)), where
x = (x/, x4), and uniform upper bound derivative estimates on ¢ and .

6.1. The nondegenerate case

We first formulate a variant of the classical L? result of Hérmander in [13] under
the assumption (6.2).

Proposition 6.1. Let A > 1,0 < 6 < 1, ¥ be as in (6.2) and suppose that there
is ¢ > 0 such that | det 92, W (xo; zo)| > 8o for some (x¢;z0) € U. Then there
exist o > 0 and N > 0, independent of A and §., such that for all smooth a with
supp a C Bg, (x0; 20),

1T L2y L2y S A7 min {1872, 1} lall e

Proof. After apﬁ)lying translation operators we may assume (xo; zg) = (0;0). The
kernel of T*(T*)* is given by

K (x,y):= / eAYED=YOID g (x: 2)a(y; 2) dz,
Rd
and by the Schur’s test, the desired estimate follows from the bounds

suP/ |K*(x, y)|dy, sup/ |K*(x, )] dx
R4 R4

xeR4 yer?
Sl_(d_l) min {(ASO)_lv I}HaHéN

(6.3)

We have

Vo (W(x;z) —W(y:2)) = A5, (x,y:2) |:50()§C/d_—y)/’d):|
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where x = (x’, x4),y = (), yq) and

1raz, w 50_182, R4
sy (x.y32) =/ [322 s ! \P} @
0 zgx' o Yzgxg (y+s(x—y);z)

By (6.2) we have |45, llcv S~ 1. Also clearly |det As,(0,0;0)| > ¢ and thus
there is an &, > 0 such that for |(x, y;z)| < &, the matrix Ag is invertible and

we obtain the estimate [|0% , , A3 (x,y:2)|| < Cy forall o € N3¢ for the matrix

norms of the derivatives of As_ol- Hence for | x|, |y], |z] < &0

V(¥ (x:2) =W (y:2)| = c(|x’ = y'| + 8o|xa — yal).
By (6.2) we have
|02 (W(x:2) — W(y:2)| < C(Ix" = y'| + bolxa — yal)

forall o € Ng. By repeated integration-by-parts in the form of Corollary A.2, with
the choices of p(x,y) = |x’ — ¥'| + 8o|xq — ya| and Rz (x, y) = 1, one obtains

|K 0| S llallZn (1+ Alx" = ' + Ado|xa —yd|)_N-

In view of the compact support of a, the desired bounds (6.3) follow from integrat-
ing in x € supp a for fixed y € supp a, and in y € supp a for fixed x € supp a
respectively. O

6.2. A two parameter oscillatory integral estimate under two-sided
fold conditions

We shall also formulate a variant of the L? estimates for oscillatory integral op-
erators with fold singularities of Pan and Sogge [24], which were based on the
previous work on Fourier integral operators by Melrose and Taylor [18], under the
assumption (6.2). We will instead follow the approach in the works of Phong and
Stein [25], Cuccagna [8] and Greenleaf and the fourth author [11].

Proposition 6.2. Let A > 1, 0 < §, < 1, ¥ be as in (6.2) and suppose that for
some (xg; z9) € U there is ¢ > 0 such that

|det 82, W(xo: z0)| > c, (6.42)
32, ¥(x0:20) =0, 32 W(x0:29) =0, (6.4b)
|8)3€dzdzd\11(x0;zo)| > cdo, |8§’dxdxd\11(xo;zo)| > ¢o. (6.4¢c)

Then there exist eo > 0 and N > 0, independent of A and 8., such that for all
smooth a with supp a C Bg,(xo; 2o),

_d=1 . —
1T L2ty 2y S A7 min {(A8)72, 1} llallc.
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Following [25, 8, 11], we decompose dyadically our operator according to the size
of det 8)2C .. Itis useful to consider the auxiliary quantity

-1
o=0(W) =, V-3 W [(ai,z,\p)T] 2, 6.5)

XdZd zgx’

which measures the size of the mixed Hessian. In fact, note that if A is an invertible
(d —1) x (d — 1) matrix, b,c € R~ and d € R, one has the identity

I 0][Ab] T[4 b
—TA 1 ||eTd| T 0T d=cTAa

det 92, W(x;z) = o(x;z)detd2,,, ¥(x;2) (6.6)
for (x; z) near (xo; zg). Hence we get, assuming that &, is small enough,

lo(x;z)| ~ |det8iz\ll(x;z)|.

and therefore

The fold conditions (6.4c) together with (6.4b) imply that
|0x,0(x;2)| = |03 W(x;2)| + O(eodo),

XqXqZd
|8zdo(x;z)| = |83 lIl(x;z)| + 0(&660),

XdZdZd

and using (6.4c) we get
|8xd0(x;z)| ~ 6o, |82do(x;z)| ~ 6. (6.7)

Finally, note that the assumption (6.2) implies

aggago(x;z)] <ap b0 6.8)

foralle, B € Ng.
Let ng, n1 be C° functions on the real line with

supp 1o C [-2,2], supp 1 C [-2,—1/2] U [1/2,2].
For A > 1, set
M = max {Uogz(xl/z) J,o} 6.9)

and define

T)"mf(x):=/demw(x;z)a(x;z)n1(2m80_1|0(x;z)|)f(z) dz, 0<m<M, (6.10)
R

TAM f(x):= /

e MEDa(x; 2yno (2M87 0 (vi2) ) £(2) . (6.11)
R4

By (6.6) and (6.8) we have | det 32, W| ~ 27™§, on the support of the amplitude in
TAmif 0 <m < M and |detd? | < 27M§, < A71/28, on the support of the
amplitude in TAM
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Proposition 6.3. Let A > 1, 8, < 1, [V;a] be as in Proposition 6.2 and M as in
(6.9).

G) If A > 87" then, for0 <m < M,

d—

HTW| < 2~%=" min {(zm/(wo))l/z,z—’"} lallen.

L2(RY)—L2(R4)

Moreover,
_d
2

|7

< A. .
2R L2(RA) ™ lallen
@) If1 <)L<8°1then,f0r0<m<M

H T“") <27~ T allen.
L2(R9)—L2(RY)

Moreover,
d
SAT 2 allen-

~

7]

L2(R4)—L2(R4)

We first note that the bounds in Proposition 6.3 imply Proposition 6.2 by summing
in the m-parameter.

Proof of Proposition 6.2, assuming Proposition 6.3. Letn, B be defined as in(5.1a),
(5.1b). Taking n; = B(| - |) and no = 7 in the definitions (6.10), (6.11), we have
T = Z%:o T4,

If A6, < 1, the bound trivially follows from summing in m the estimates in
(i1) in Proposition 6.3.

If A6 > 1, note that the bounds in (i) in Proposition 6.3 imply

17412 r2

<A S 2208) 2 4 3 2 | allen

1<2M<(A8,)1/3 (A8o)1/3<2m<p1/2

AT A8 Pl e

as desired. O

6.3. Proof of Proposition 6.3

We fix N >100d. As the operators depend linearly on a we may assume ||a| ¢, <
1. The proof is based on a variant of the arguments in [25, 8, 11]; the latter two are
themselves inspired by the Calderén-Vaillancourt theorem on the L? boundedness
of pseudo-differential operators [6]. Again, by performing translations we may
take (xg; z9) = (0;0).
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Recall that, by hypothesis, 0(0;0) = 0 and by (6.8) and (6.7) we have that
|0x,0| ~ 6o, |0;,0] ~ 8o and |8§8§0| Sa,8 8o in B, (0;0) for some small

~!

&, > 0. By an application of a quantitative version of the implicit function theorem
(see for example [7, Section 8]) there exist smooth functions

(x;2) > u(x';2) and (x;:2") = o(x;2),
defined for |x'| < 2e¢o, |z| < 26& and |x| < 2¢., 2’| < 26, respectively, such that
o(x',u(x’;z);z2) =0 and o(x;:z/,0(x;z")) = 0.
Furthermore, by (6.7)
lu(x’; z) — xgq|, |o(x;2") = zq| ~ 85 o (x;2)].

We may expand |xg — yq| < |xg —u(x’; )| +[u(x"; 2) —u(y; 2)| + [u(y'; 2) — ya |
and obtain the crucial estimate

|o(x;2)[~27"8s, |o(yi2)] ~ 2780 = |xg — yal S27™ + ¥ = )'| (6.12)
and similarly (using v)
lo(x;w)|~27"86, lo(x:2)| ~ 2780 = |wg —zg| 27" + |w' —Z/|.

These observations suggest further decomposing the amplitude into functions sup-
ported essentially on Ceo2™™ cubes. Let { € C5°(R) supported in (—1, 1) such

that ), ., ¢(-—n) = 1. Set

d

bl'fv(x;Z):=a(x;z)n1(2m50_la(x;z)) l_[ §(80_12mxj — ,uj)é‘(eo_l2mzj —vj)
j=1

and write the corresponding decomposition
Am _ A,m
r - Z Tuv
(n,v)ezd xzd

where 5™ f = TH[W:; b ] f. Observe that

agafb;’:v(x;z)’ < om(lal+1B)

forall o, B € Ng. By the Cotlar-Stein lemma (see, for instance, [32, Chapter VII,
Section 2.1]), the proof of the proposition reduces to showing the estimates

A, A,m * A, * A,m
i () |, + | (Thm) 75
< A=@=D min{2™ /(18,), 272}
~oA+ e —al+ v -1

‘2—)2
(6.13)

for all (i, v), (ft, ) € Z2 x Z2. The proof of (6.13) is divided in two cases.
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Off-diagonal estimates. The first step is to establish (6.13) in the off-diagonal
case where
max{|p — fil, [V — D[} = Caiages " (6.14)

for a large absolute constant Cgiae > 2, chosen independently of &,. To this end, it
is convenient to introduce the kernels associated to the operators of the type T'T*

and T*T. The Schwartz kernel of T,f,;m (T[ffjm)* is given by
W W(x y) = /Rd e A (n2) =Wy Z))bl'fv a5(x,yiz)dz, (6.15)

and the Schwartz kernel of (Tj,jm)*Tl%‘gm is given by

_ —t)t(\Il(x z)—W(x;w))m . .
Kﬂv Mv(Z w) = [I‘{d blw ﬂv(x’z’w) dx;

here the symbols are given by

/w/w(x y;z) = by, (x; z)b 505 2), bl'fvm(x z,w) := by, (x; Z)b 5 (s w).

Lemma 6.4 (Off-diagonal estimate). Ler 1 < 2™ < AY2 and suppose that (6.14)
holds.

(i) Il — il > Cainge3, then (Ti™)* 7" = 0 and

|7 (i)

(i) If v — D] > Cing€y L, then TA m(Tlf}]gm)* = 0 and

< 2724 (22— )

2—2

H T/l m Tﬁ)};m <n y—2dm (12—2m|v _ ‘jl)_N

2—2

Proof. Only the proof of (i) is given; the same argument can be applied to (ii) mu-
tatis mutandis (the asymmetry of assumptions regarding the x; dependence does
not make a difference for the current proof). Furthermore, if | —ft| > 2, then it im-

mediately follows from the support properties of the symbols that (T,j},;m)*T é};m =
. . . A,m
0 and it only remains to consider the Schwartz kernel K. v (x,y) of of

T,ﬁ;m (Té‘gm)*. By Schur’s test, the desired estimate follows from

A,m A,m
xseuﬂsd [Rd Kuvuv(x»y)‘ de yseu]lsd Ad ‘pr,u,v(x Y) dx
< 2—2dm (2—2mk)—N

~ ~

I — |y

(6.16)
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First note that, provided Cgj,, is suitably chosen, combining the hypothesis | —
| > Cgiages ! with (6.12) yields

g —yal SIX' =y onsuppb, s ©6.17)
Thus, by Taylor’s theorem and (6.17)
|02/ (W(x:2) = W(y:2)| Sa &' = y'l. (6.18a)

For the lower bounds we use (6.4a) and, from (6.4b), d W(0;0) = 0, to deduce

’zx

1
0 W(x: 2)— 0, W(y:2) = / 02, W (y+5(x—y):2) ds (x'— ')+ Oeolxa—yal).
0

Thus, from (6.17) we obtain that, for (x, y; z) near (0, 0;0),
|02/ (W (x:2) = W(y:2)| = elx’ — y'|. (6.18b)

Finally, |8"‘me ;1\7| « 2™l and the z-integration is extended over a set of di-
ameter O(27 "’) By (6.18b) and (6.18a), we may use repeated integration-by-
parts in the form of Corollary A.2, with the choices of p(x, y) := |x" — y’| and

R(x,y) := 1, to obtain

K2m G| S 27l =y,

By (6.12), the kernel is identically zero unless |u3 — 3| < max{l, |u — i'|}.

Provided Cyiy is sufficiently large, |’ —ji’| ~ | —fi| and, furthermore, |’ — 4’| >
2. Consequently, e512"|x" — y’| ~ | — ji| and so

Ko | s 270 (72— )™

_(x,y) is a set of measure O(27¢™) and
~(x,y), and (6.16) follows. O

For fixed x, the support of y — Kuv T

likewise, for fixed y the support of x +— Kuv T

Diagonal estimates. The proof of (6.13) has now been reduced to the following
two lemmata.
Lemma 6.5. Suppose that A > 1 and 1 < 2™ < AY2. Then, for all (,v) €
74 x 74,

H TAm H < gmmy—d=1/2

Furthermore,
H T)L M H < 2—d/2
252 )
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Lemma 6.6. Suppose that A§o > 1 and 1 < 2™ < (A8,)'/3. Then for all (u,v) €
Z% x 74,
H T)L m

‘ 2m/28—1/2)t—d/2.

Note that the estimate in Lemma 6.6 is better than the estimate in Lemma 6.5 in
the range A8, > 1,1 <2 < (A8,)/3.

Proof of Lemma 6.5. Let I, J,, denote the intervals of length £0217™ centered
at Xy, = 802" Ug » Zv, = €02 ™ vy , respectively. For g € L2(R?~1) define

T:;m,xd,zdg(xl) — /d 1 eil\l/(x’,xd;z’,zd)blrf’v(x;Z)g(zl) dz’
Rd—

and observe that

T f(x) = 11, (xa) f, TAm 2 [ (-, x0)] dzq.
vd

The Schwartz kernel Kﬁ;,m’x" Zd(x!,y") of Tlf,jm’x" ad (T,f\jM’x" Zdy* is equal to

/ z/l(\Il(x Xq32"2q)—V (Y xq3z’ Zd))bm (X x4 Z Zd)b (y x4, . Zd)dZ
RA—1

We use integration-by-parts based on (6.4a); that is, we use the (d — 1)-dimensional
case of Corollary A.2 with the choices p(x’, y’) := |x’—y'|, R(x, y) := 1 and the
fact that 0%, applied to the amplitude yields a term which is O(2™l). This implies

)Kﬁ;)m,xd, SN 2—m(d—1)(1 + Az—m|xl _ y/|)—N

uniformly in x4, z4, and by the Schur’s test one has

H TA m,Xgq,Zq A—(d 1)/2

Lz(Rd 1)—>L2(Rd l)

Consequently,

1/2
T/\mxd,zd , ‘ d d
e S [ ) (/ |ramsazatsczl| Xd) 2

g 2—m/2/\_(d_1)/2 f || [f(v Zd)] ||L2(]Rd_1) dZd

Jv,

S 2_ml_(d_1)/2||f||Lz(Rd)

||

and hence || T/5™ |22 < 27MA~@=1/2 4 desired. The arguments for Tj;™ is
analogous.
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Proof of Lemma 6.6. Let Kﬁ,’,m = Kﬁ,’,’fzv denote the kernel of Tlﬁjm (Tl%,;m)*, as
given by the formula in (6.15). It will also be useful to write by), for the symbol
bm By the Schur test, the problem is reduced to showing

AV, LY
supd /Rd ‘Kﬁ;m(x,y)‘ dx < 2ms7Ia9, (6.19a)
yER
supd /Rd )Kﬁ;,m(x,y)| dy <2ms;ta4, (6.19b)
x€R

Since Tlf,;m(Tlf‘;m)* is self-adjoint (6.19b) follows from (6.19a). We proceed to
show (6.19a).

Since the partial mixed Hessian Bﬁ,x,‘l! is non-singular, there exist local so-
lutions in x’ to the implicit equation V,/W(x;z) = VyW¥(y;z). In particular,
by applying a quantitative version of the implicit function theorem (see, for in-
stance, [7, Section 8]), provided &, is chosen suitably small, there exists a smooth
R4~ 1_valued function (x4, y,z) — X(xg; y;z) defined by

0V (X(xq:y:2),xq:2) = 0¥(y:2), (6.20)
X(yasy;z) =y (6.21)

Implicit differentiation yields

By X(xg:yiz) = — (92, %) 92, \11) . 6.22
ra X0 y32) = =Qoar¥) T, W) e (22
From this formula, the chain rule and the definition of o one deduces that

Oxy [Bzd\IJ(X(xd;y; Z),xd;z))] = O(X(xd; y;z),xd;z). (6.23)

Notice that the right-hand side of (6.22) vanishes at (x4; y;z) = (0;0;0) and that
9%, X(xa;y;2) = O(S). Hence we get

|92, X (xa5 3 2)| S £obo. (6.24)
Moreover, implicit differentiation of (6.20) with respect to z yields

02, W(X(xXg:y:2). ya: 2)0: X (xg: y: 2)
=02, V(Y ya:z) — 02, W(X(xq: y:2). X4 2)
S = X(xq: y:2)| 4 8olxa — yal
= 0(8o|xa — yal),

where we have used (6.21) and (6.24). This gives

[0: X(xq;y:2)| S dolxa — yal. (6.25)
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We shall now state the inequalities for the integration-by-parts argument which

will allow us to prove (6.19a). In what follows we write X := X(xg4;y;z) and
Xy := X(x4;y; zv) where z, := €,2™v, noting that the z-support of b}, lies in a
ball of radius O(g,27"") about this point. We claim that
020 (x:2) — 02W(y:2)| < Callx' = Xo| + Solxg — yal) (6.26)
and
VoW (x;2) = VaW(p;2)] = e(x — Xol + 8027 |xa — yal). (6.27)

To see (6.26), by Taylor expansion the left-hand side is dominated by a constant
times |x" — y'| 4+ §o|xg — yq|. We then bound |x" — y'| < |x' — X,| + |y — X,
and, using (6.21), by the mean value theorem, (6.24) and (6.25) one has

Y = Xol < [X(xa:y:2) = X(ya: y: 2| + [ X(vai y:2) — X(vai yizv)|

S BolxXa — yal.

Now (6.26) easily follows.

We turn to (6.27). Taking a Taylor expansion in the x’-variables,

0 W(x;2) — 0, ¥(y;2) = 0 W(x;z) — 0 V(X, x4:2)

it , L (6.28)
=0, VX, xq:2)(x" = X) + O(|x" — X|7)

whilst, by a Taylor expansion in the z-variables, the last expression is equal to
2 (X, x2;2)(x" = Xp) + O(Ix = Xo|* + £027"8o|xa — yal).  (6.29)

Here the additional error term arises by applying the mean value theorem to | X —
X, | together with (6.25).
On the other hand, one may write d;, ¥(x;z) — d;, V(y; z) = I + Il where

I:=0,,V(X,xg;2) = 0;,¥(y;2), 1l:=0,,¥(x;z)—0,,¥(X, xq:2).

To estimate I, take a Taylor expansion first in the x; variable and then in the z
variable to obtain

I=0(y;2)(xg — ya) + O(Solxs — yal?)

' (6.30)
=0 (y;20)(xa — ya) + O(8027™8c|xq — yal)-

Here o appears owing to (6.23) and (6.21). The second estimate holds due to (6.8)
and the localisation of the (x, y; z)-support of b}j\,. To estimate the II term, arguing

as in (6.28), take a Taylor expansion in the x’ variable and then in the z variable to
obtain

=092 WX, xs:2)(x' = X) + O(|x" = X|*)

2 / , m (6.31)
=0, v V(X,xq:2)(x —Xv)+0(eo|x — Xy| 48278 |x4 —yd|).
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In the last step we applied (6.25). From (6.29), (6.30) and (6.31) we get (assuming
& 1s chosen sufficiently small) that

10 W(x:2) =0 W(y:2)| = c1]x' = X,|  if X' =X, | = C18627"80]xg — yal
and

102, W(x;2) — 0z, ¥ (y:2)| = (6/2)27™"|xa — Yal
if |x' — X,,| < C18027"86|xq — val,

and these inequalities imply (6.27).
We now estimate K&,’,m (x, ). Using just the size and support of the integrand
we get
K (el s 27 (6.32)

v

which we use for [x' — X,,| + 27"8|xg — ya| < A7L.

Now assume |x’'— X, |4+27"8,|xq4—ya| > A~!; we use integration-by-parts to
improve on (6.32). By (6.26), (6.27) we can apply Corollary A.2 with the choices
R(x,y) := 2™ and p(x,y) := |x' — Xy(xgq, y;zv)| + 27™"86|xq — y4|. We also
use that for fixed x, y the amplitude is supported in a set of diameter 27" and the
estimates

|92 b}, (x. )b, (v, 2)]] S 2.

Altogether, Corollary A.2 yields, for x # y,
—_ — —_ —N
K oe )| S 27NN (13— ]+ A2l — val)
Combining this with (6.32) we obtain
K 0e )| S 27 (14 A2 = Xl + A2 oleg = yal)

Fixing y and integrating in x yields

/ ‘Kﬁ;m(x, y)‘ dx 5 2—md (2m)’—1)d_1 22m)\,_18°_1 5 2m80_1)\,_d,
R4

which is the desired estimate for the first term in (6.19a). This finishes the proof of
(6.19a) and the proof of the lemma. ]

6.4. Uniform estimates depending on a ¢-variable

The estimates obtained in Propositions 6.1, 6.2 and 6.3 will be used to obtain L?-
bounds for the operators A ;[®;; a;]. To this end, we shall allow a 7-dependence
in our operator and obtain uniform estimates in #. Consider now an open set U C
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R? x R x R¥, a phase function ¥ : U — R and an amplitude a € Cy°(U), and
define
WU, (x;z) =W(x;t;z) and as(x;z) =a(x;t;z2). (6.33)

Given A > 1, let T}* denote the oscillatory integral associated to the pair [¥;; a,] as
in (6.1), given by Tt)k = T)“[lIJt; a;]. For 0 < §, < 1, we assume that the condition
(6.2) continues to hold under ¢-derivatives. That is, the estimates

agafatyqf,(x;z)‘ 85 02080 0, Wi (xi2)| < Capy,  (639)

hold for all (x;¢;z) € U and all o, 8 € Ng, y € Np. Thus, if the condition
| det 8§x\11t0 (x0;20)| = cdo holds for some (xo;%;z0) € U, Proposition 6.1 in
conjunction with (6.34) immediately extends to a uniform estimate for the operators
Tt)L for all |t — ty| < &, for suitable &,. Likewise if (6.34) holds and the conditions
(6.4a), (6.4b) and (6.4c) are satisfied at a certain (xo; fo; zo) € U, Propositions 6.2
and 6.3 also extend to the operators T,)L for all |t — t9| < &o, with uniform bounds
on ¢; note that (6.34) implies that the quantity o;(x;z) = o(x;¢;z) defined as in
(6.5), also satisfies the derivative bounds (6.8) under ¢-differentiation, that is,

929287 0, (x:2)| Sapy 8o (6.35)

holds for all (x;¢;z) e U and all o, 8 € Ng, y € Np.

6.5. Estimates for maximal oscillatory integrals

We now state the version of the estimates in Propositions 6.1 and 6.2 for the maxi-
mal functions associated to the oscillatory integral operators TtA.

To obtain such maximal estimates we will assume that (6.34) holds and that, in
addition, there is §o,-smallness when we differentiate with respect to the ¢-variable;
more precisely we assume that

020207 W, (x; 2)| <y 8o (6.36)
holds for all (x;;z) € U and all o, B € N¢, y > 0.

Proposition 6.7. Let [V, a] be as in (6.33). Suppose ¥ satisfies (6.34), (6.36) and
| det agx‘llto (x0;20)| = cbo for some (xg;tg;z9) € U. Then there is ¢5 > 0 and
N > 0 such that, under the assumption of a; supported in B, (xo, zo),

d—1
SAT 7 alew.

L2(R9)—L2(RY)

TA [W::a;]

sup
[t—to|<eo

Proposition 6.8. Let [V, a] be as in (6.33). Assume that V satisfies (6.4a), (6.4b)
(6.4¢) at a certain (xg; to; o) € U, the estimates (6.34) and (6.36) and, in addition,
assume that

0y (x;2) = cs(x; z) det Bix\lft (x;2) (6.37)
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for some ¢ € C® in a neighbourhood of supp a. Then there is ¢, > 0 and N > 0
such that, under the assumption of a; supported in B, (x¢, zo)

<A log(2 + Ado)[lall e -
L2(R4)—L2(R9)

sup T’l[\I’,; ay]

[t—to|<eo

The proofs rely on a standard Sobolev embedding inequality (see for instance [32,
Chapter XI, Section 3.2]). Namely, for a C! function ¢ — g(t) supported on an
interval I, with g € I, we have, for 1 < p < oo,

sup g(1)|” < 1g(t0)|” + plel? el (6.38)
te

which follows by the fundamental theorem of calculus applied to |g|? and Holder’s
inequality. We can apply this to F(x,¢) with F € L?(R?; C"), and after integrat-
ing in x and another application of Holder’s inequality, (6.38) gives

p

sup [F(-,7)]
tel

< inf |F(-,20)l

p
LP (R4
LP(Rd) toel (R4)

(6.39)

—1
+ PN oy 190 F Lo -

Proof of Proposition 6.7. Note that if T,)L := T, a,], then 8,Tt)L = T, d;],
where d; := (iA0;W;)a; +0:a;. By (6.36) one has ||d; ||cnv S (14+A80) ||as||onv+1-
Thus, by the hypothesis and Proposition 6.1 applied to Tt’1 and 9, T,’1 (as discussed
in Section 6.4), there exist &, and N > 0 such that, if a; is supported in B, (xo; zo),
the bounds

(1 + 28 | T2 || poay + (14 28) ™[0 TA £ L2 eay
SA™ T lallen 1l £ 2 gga)

hold uniformly in |t — f9| < &,. Now the assertion follows immediately by the
Sobolev inequality (6.39) for the exponent p = 2. O

Proof of Proposition 6.8. Given 0 <m < M, let

TH™ f(x) == /

ei)t\lf;(x;z)at(x;Z)'g(zmgo—lwt(x;z)”f(z) dz, 0<m<M,
R4

TAM f(x) = / D g, () (M55 0y (x: 2)) (2) dz
Rd

that is, (6.10) and (6.11) with (| - |), n in place of 1y, no and with the phase-
amplitude pair [¥y; a;].
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Using (6.37) and (6.6) we compute
0; TtA’mf(x) = woz—"’/ M )T (x;z)at(x;z)m(ZmSO_lat (x:2)) f(z)dz
R4
+2m/ e’-’w”(X;Z)2_m8tat(x;z),B(Z’”So_l oy (x:32)]) f(z) dz
R4

—1—2’"/ AV §108 6 (x2)ar (x:2)Th (2’”80_10, (x:2)) f(2)dz
R4

where ¢ = ¢;02,,,¥;, is smooth and n1(s) = sB(s|), M (s) = £(B(Is])). For
m = M we have a similar formula with 8 replaced by 1. Note that in view of
(6.35) we have |8%02 [8519,01a,]] < Ca.p-

Assume 1 < 2 < (A8,)!/3. By the hypothesis and Proposition 6.3 applied

to 7™ and 9, T/*™, there exist & and N > 0 such that, if a; is supported in
Be, (x0; zo), one has the bounds

a1 (272
vy S5 (35) Wl

Amf‘

and

—m m
py AT (M) (8627 +2") 1 £ | 2ty

aza (2m\T2
7 (55) Wl

uniformly in |t — #y| < &o, where the last inequality follows because we are under
the assumption 1 < 2" < (A8,)'/3 < (18,)/2. Therefore, the above estimates
combined with (6.39) yield

2

0<m=logy(180)1/3]

atTtA’mf‘

sup
[t—to|<eo

T,“"f‘ < log(2 + A8o)A~ " ||f||L2(Rd)

L2(R4)

Similarly, if A1/2 > 2" > min{(18,)'/3, 1}, Proposition 6.3 implies

<A 2771 f Il L2 ey

T‘t/\',mf‘

L2R4) ™

and

SAT T2 (827 + 2"V f Nl L2 ey

atTvt/l,mf‘

L2(R9)
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uniformly in |t — 79| < &,. The above bounds imply, by (6.39), that

sup Tll,mf < A—%Z—m(xgoz—m +2m)1/2”f”L2(Rd)7
[t—tol<eo Lz(Rd)
and thus
A, _d=1
2 swp [T Al AT N e
llogy (R60)1/3 | A1 =m<p [[11=Tol=e0 L2(R4)

follows from summing a geometric series, as A8,2™" < 22™ in the range of sum-
mation. Combining both sums one obtains the desired bound by the triangle in-
equality, which concludes the proof of the proposition. O

6.6. Radon-type operators in d dimensions versus oscillatory
integral operators in d + 1 dimensions

In this section we use variables (x;z) € R4t x R4+ and split x = (xq,x"),
z = (z1,z") with x” € R?, 2" € R¥. Recall that the frequency localised Radon-
type operators in (5.18) are of the form (with d = 2)

AJ’ [th;at]f(x”)
_ ", n —J i0®;(x";z") " "
_/Rd ar(x":z )/Rﬁ(2 |0])e’? f(z")dodz (6.40)
— 2j / a (X//; Z//)ﬂ(|w|)ei2/w<b,(x”;z”)f(z//) dew dz".
RxR4

We rely on an idea in [32, Chapter XI, Section 3.2.1] to show that a L? (Rd) esti-
mate for sup;c; |A;[®;:a;] f|is implied by a L?-estimate for a maximal function
associated with a closely related family of oscillatory integral operators acting on
functions on R?*+! which we will presently define.

Recall that f is supported in [1/2, 2]. Let B be supported in (1/4, 4) such that
also B(s) = 1 fors € [1/3, 3]. Notice that B(s)B(us) = B(us)for2/3 <u < 3/2.
Now let y; € Cg°(R) so that y;(r) = 1 on J := [2/3,3/2]. Consider the
family of oscillatory integral operators 7% [p¢;as], as defined in (6.1) but acting
on functions g on R+, where

¢ (x:2) =x121D; (x":2”), and a;(x:z) = y1(x)x10 (x":2") B(x1]z1]). (6.41)
Lemma 6.9. Let E C (0,00), ©, ¢, a, a as in (6.41), and define

M;[®:a]f = tsug|Aj[<1>t:at]f, M;p:alg qug|T2j [ aclg|.

Then

HM,-[cp;a]||Lp(Rd)9Lp(Rd)s21(6/5)1/P||/3||LP(R)HM,~ [p:a]ll Lo ga+1)— Lo (ma+1)-
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Proof. For fixed x; we change variables w = x;z; in (6.40). We use that y(x;) =
1 for x; € J and that 8(|z1|)B(x1|z1]) = B(x1|z1]|) for (x1,21) € J X R to obtain
the identity

AP af (x") = 2iT? [¢,;at](,g® f)(x1,x")  forall xq € J.
This identity implies that

27 M; (@ al £l Lo ey
<|J|7VP HMj[d’m](E@ f)‘ Lo xzd)

=(3/2-2/3)"7|M,[p:a)( & 1)
= (6/5)"7 | M [¢:a]|

LP(RA+T)

L/’(Rd+1)_>Lp(Rd+1)”'B”Lﬁ(R)HfHLP(Rd)

which implies the assertion. O

7. Proof of Proposition 5.11: L? bounds

In this section we apply the maximal function results in Section 6 to deduce
favourable L2 bounds which will feature in the proof of Proposition 5.11.

Proposition 7.1. Forallm < 0, k > —4, (k,f) € Pand j = —e(k,l)/3, the
following bounds hold, where in each inequality I denotes an interval of length
|I| ~ 1 containing the t-support of the amplitude.

(i) [[sup |4;[®r: by]] SV D273 6] e if [@: b] € BE
tel L2(R2)—L2(R2)
(ii) || sup |4 [®:: ]| <27¢®OBallcn i [®ra] € ALY
tel L2(R?)—>L2(R?)
(i) [[sup |A;[®;: ]| S 278l e if [®:c] € €,
tel L2(R2)—L2(R2)
(iv) [sup|A4;[®:: a/]| < llallew if [®:a] € AP,
tel L2(R2)—L2(R2)
(V) sup IA] [@z; Clz]| ,S 2m/2 sup ”a”CN lf[@, Cl] € Qq{not‘
el L2(R2)—>L2(R2) X2 X1.z.0

As in Section 5, the cases (i), (iii), (iv) and (v) are understood to hold for £ = 2k,
with k = 0 in the cases (iv) and (v).

The proof of Proposition 7.1 is presented in what follows. Observe that, by
the definition of the classes, (iii) and (iv) are both just special cases of (ii). Thus, it
will suffice to prove (i), (ii) and (v) only.
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Remark. Only rotational curvature considerations are required to establish the
above L2 bounds. The cinematic curvature is used in Section 8 to deduce local
smoothing estimates in order to obtain summable bounds in the j parameter.

Using Lemma 6.9 the estimates in Proposition 7.1 may be deduced from es-
timates on oscillatory integral operators acting on functions in R3; in particular,
our assumptions on the phase/amplitude pairs allow direct applications of Proposi-
tions 6.7 and 6.8 with suitable choices of the parameters A and §..

7.1. Proof of Proposition 7.1 (i)

By Lemma 6.9, it suffices to show that

sup |T% [y br] <277 v 1273 b o,

tel

L2(R3)—>L2(R3)

where ¢;(x;z) = x121D(x", ;") and by (x; z) = y(x1)x1b6:(x";2")B(x1|21])-
First we use the fold conditions, inherent in the hypotheses (F;); and (F2)x
in the definition of SBﬁot, to place the operator in a normal form. By assumption
(b),, one may assume without loss of generality, decomposing b; into at most O(1)
pieces, that supp b is contained in an &,-ball centred at some point (xy; fo; z;) With
(xg:2y) € Zi,. Here 24 is as defined in (5.17). Fix a pair of 3 x 3 matrices
X and Z satisfying the properties enumerated in property (F,),. Since |detX]| ~
|detZ| ~ 1, by a change of variables it suffices to show the L? bound for the

maximal function supj,_,| <, |T2j [¢¢: b:] f(x)| in R3, where

bi(x:2) := ¢y (Xx;Zz),  by(x:z) 1= by (Xx; Z2).

Now the assumption [®; b] € %ﬁot implies that the support of by is contained in a
go-ball centred at (xo, fo; zo) = (0, xy, to; 1, 2) € R3 xR xR?; moreover we have
the following conditions on the derivatives of ¢:

274K/3 ifas #0

19502 1 (63 2)1 S 43 (7.12)

otherwise,
3;2532@0 (x0:20) = 8)262343,0 (zo;z9)=0and |deta§,z,¢3,0 (x0;20)|~24k/3, (7.1b)
1032425 B10 (X0 20) |, 183, 2 Pro (x03 20) | ~ 274473, (7.1¢)
1020807 ¢, (x; 2)| S27*/3 for y > 0, (7.1d)

8t¢~>, (x;z) =¢(x,t; 2)2_‘”‘/3 det 8)%2@ (x;2)

N (7.1¢)
for some ¢ € C* with uniform C* bounds on supp b;.
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The following table shows which conditions for the class B% of defining functions
imply the conditions in (7.1).

(7.1a) (P12 and (F2)i (i) (7.1d)  (P1)k,2k and (F2)x (1)
(7.1b)  (F2)i (iii) (7.1e)  (P2)k,2k and (F2)y (ii)
(7.1c)  (F1)k and (F3)x (ii)

One now checks that the phase function
Wy (x:2) = 275, (x; 2)

satisfies the assumptions in Proposition 6.8 with d = 3 and §, = 272K via (7.1). If
we put A = 2/72%/3 then AW = 2/ ¢ and we can apply Proposition 6.8 to obtain

sup T (&3 D]
tel

<A1 og(2 + A8o) 1Bl en
L2(R3)—>L2(R3)

S22 BG v Dbl en,

as desired. L]

7.2. Proof of Proposition 7.1 (ii)

We again use the reduction in Section 6.6 so that it suffices to show

sup [T% [¢: as] < 27727 kOB g o,

tel

L2(R3)—L2(R3)

where ¢, (x;z) = x121P(x",1;2") and a; (x;2) = y(x1)x10,(x”;z")B(x1]z1]).
The condition [®;a] € Qlllgéﬁ implies that the phase function ¢;(x;z) =
x1z1®D, (x”; z") satisfies the inequalities

272603 if gy £ 0

o B .
|axaz ¢t(X,Z)| 5 gze(k,g)/;; otherwise, (7.2)
|det 3%, ¢ (x:2)| ~ 1, (7.3)
109980 ¢ (x:2)| < 272¢*DB fory > 0. (7.4)

These estimates are understood to hold on supp a; (which has diameter < 1) for

all ¢, B € N2, y € N with implicit constants depending on the multiindices. One

checks that (7.2) and (7.4) are implied by (@) ¢ in the definition of 2kt while

(7.3) is implied by the additional rotational curvature condition in Definition 5.8.
We can now verify that the phase function

W, (x;z) = 27¢*DBg, (x; 2)
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satisfies the assumptions in Proposition 6.7 with d = 3 and 8, = 27¢k0 If we
put A = 27+e®.0/3 ‘then AW = 2/ ¢ and by Proposition 6.7 we get

sup T2 [¢r: ay]
tel

<A Mlallen <2777 ® 0B g o,
L2(R3)—~L2(R3)

as desired. O

7.3. Proof of Proposition 7.1 (v)

Again, by Lemma 6.9, it suffices to show that

sup 7% [W;; a;]
tel

<2772 2 sup |la| o~ , (7.5)
L2(R3)—L2(R3) X3 X1.x2.2.0
where W(x;t;z) = x121P(x”,t;2") and a;(x; z) = x(x1)x10:(x"; z")B(x1|21])-
By the condition [®; a] € A, the diameter of the support of a is O(1) and more-
over the following conditions hold (see Definitions 5.3 and 5.10). First, there exists
an interval I, of length < 2™ so that a(x;¢;z) = 0 when x3 ¢ [I,. Next, if
‘I’;3 (x1,x2,t;2) := x121P(x",1; 2") then W1, satisfies

272m  ifay # 0
B av\y* . 3
|8‘;32 9y Wi, (X1, x2,1; Z)| < {1 otherwise. (7.6a)
2 *
idet a(xbxz,t),(Zl,Zz,Zs)lpm| ~ L (7.6b)

In what follows we will freeze x3, so the derivatives with respect to x3 in (7.6a)
will be irrelevant for our purposes.
To establish (7.5) we show that if

Sty e, x0,0) = T [Whsa), ] f(xn, %2, 1) = T [Wisag] f(x1, X2, %3),

where a;3(x1,X2, t;z) = as(x; z), then we have, for all x3 € I,
) 5 1/2
([ |S§3/f(x1,xz,t)| dxldX2d[)
R3
_ ) 5 1/2
+ 27/ (/ |8tS§3j f(xl,xz,t)| dxi dx; dl) (7.7)
S272swllalley NS 2
X3 X1.X2.2.1

Indeed, note that 8tS§; f(x1.x2,1) = 7% [W* :d*]f(x1,x2.1), where

X3’ X3

d* = (i2j8,\11;3)a + 0;a%

X3 X3’
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and, in view of (7.6a) and (7.6b), the estimate (7.7) is now an immediate conse-
quence of the oscillatory integral estimate in Proposition 6.1 with §, = 1, which
holds uniformly in x3 € I,,,. Note that, in this case, our application of Proposi-
tion 6.1 corresponds to the classical Hormander L2-estimate for oscillatory inte-
grals [13]. Integrating the square of the left-hand side of (7.7) over x3 € I,,, and
using | I, < 2™, we get

(/Im/RJTZ/ [q/t;at]f(x)‘z_{_z—Zj

—3j/2 2
S22 supalley 1S 2.
X3 X1,X2.Z.t

) 5 1/2
3: T [V, ar] f(x)| dxydxpds dx3)

By the Sobolev inequality (6.39) and Fubini’s theorem, the desired estimate (7.5)
immediately follows. 0

8. Proof of Proposition 5.11: L? theory

This section deals with the remainder of the proof of Proposition 5.11. Local space-
time L? estimates are used to establish L? bounds with favourable j dependence
when p > 2. These bounds can be combined with the L? estimates from Proposi-
tion 7.1 and L*° estimates to yield the desired results.

8.1. L? bounds

It is first noted that the L? bounds of the previous section imply L? estimates via
interpolation with straightforward L bounds.

Corollary 8.1. Forallm <0, (k,£) €B, j > —e(k,)/3and 2 < p < oo, there
exists N € N such that the following bounds hold. In each inequality, I denotes an
interval of length ~ 1 containing the t-support of the amplitude.

(i) |[sup |4, [®;:b/]| SG VD22 b|| on if [@:b] € BE s
tel LP(R2)—LP(R2)

(ii) |[sup |4 [®r:0,]] <27¢®03g)| o if [®:a) €Afys
tel LP(R2)—L7(R2)

(iii) ||sup |4, [®:e/]| S272k B el| e w if [:a] € €k s
tel L7 (R2)—LP(R2)

(iv) [sup|A4;[®s;a/]] Slalcw if [P:a] €AY,
tel LP(R2)—LP(R2)

(V) [[sup | 4[| <S2™7 sup |lall e if [®:a] € AR,
tel LP(R2)— L7 (R2) x2 X1t
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Remark. The estimates from Corollary 8.1 are not summable in the j parameter,
so alone they do not imply Proposition 5.11. However, (i), (ii) and (iii) have better k
2
dependence than what is required in Proposition 5.11 (by a factor of 2U=plk—kep )
and, similarly, (v) has a better m dependence (by a factor of om/p—mep)  Thig

observation is used below to mitigate losses in k and m in Proposition 8.2.
Proof of Corollary 8.1. We will only consider (i) since the proofs of the remaining
cases are similar. For p = 2 the desired bound is precisely Proposition 7.1 (i). By

interpolation, it suffices to verify the bound for p = co.
Let [®; b] € B and recall from (5.18) that

A7[®0: b1 f(x) = /R @b 2)27 B2 @i 2)) .

Further recall that ®; satisfies Definition 5.7 and, in particular, the condition
(®1)k 2 as stated in Definition 5.2. Thus, on the support of b; we have

[0,D;(x;2)| 2 22k/3
and so the desired L estimate follows. O

The following proposition provides the crucial j summability for j > 0.

Proposition 8.2. There exist N, M € N and ¢, > 0 such that for all (k, ) € B,
the inequality

< aMko=ise ||| o n (8.1)

sup [A;[®;: af]|

tel

L6(R2)—>L6(R2)
holds if [®; a] belongs to any one of the following classes:
; k .
(1) %Cin’
okl
(i1) A,
(111) Q:léin N Q:Ilgot"
@iv) ngin taking k = 0 in (8.1);
(v) A&, m <0, taking k = —m in (8.1).
In (8.1), I denotes an interval of length ~ 1 containing the t-support of a.

Remark. The exponent p = 6 does not play a significant role and is used merely
for convenience (one could equally work with other p values). See the comments
after Theorem 8.5 below.

Assuming this result, Proposition 5.11 easily follows by interpolation with the
estimates in Corollary 8.1.
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Proof of Proposition 5.11 assuming Proposition 8.2 holds. For —e(k,{)/3<j <0
the asserted bounds are an immediate consequence of Corollary 8.1. For j > 0 it
suffices, by Corollary 8.1, to show each of the five estimates in Proposition 5.11
hold for a single value 2 < p. < oo: indeed, once this is established, one may
interpolate the p. estimates with the p = 2 and p = oo cases of Corollary 8.1 to
obtain Proposition 5.11 for all 2 < p < oc.

We interpolate the inequalities from Proposition 8.2 with the corresponding
L estimates of Corollary 8.1, or the L? estimate in case (v). In the case (V),
note that ||allcy < 279%™ which is harmless in view of the 2~M" Joss in
(8.1). Therefore, it follows that Proposition 5.11 holds for some ps in the range
6 < px < oo for the cases (i) to (iv), or in the range 2 < p. < 6 for case (v),
concluding the proof. O

It remains to prove Proposition 8.2. By the definition of the classes, Proposi-
tion 8.2 (i) and (iv) automatically follow from (ii). Furthermore, for the purposes of
the argument, the cases (ii) and (v) are essentially simplified variants of case (iii).
In particular, the main difficulties occur in the proof of (iii).

8.2. Reduction to Fourier integral estimates

Following the strategy of [19,20], Proposition 8.2 is derived from local smoothing
estimates for Fourier integral operators. In order to invoke the local smoothing
inequalities, it is desirable to express A ;j[®;; a,] as a Fourier integral operator with
two Fourier variables. That such a representation is possible is a standard result,
referred to as the equivalence of phase theorem (see, for instance, [12] or [9]). Since
here, however, the estimates are required to be quantitative, at least in some weak
sense, basic stationary phase techniques are instead applied to obtain an explicit
two Fourier variable representation of the frequency localised averaging operators.

Fourier integral representation.  Fix a smooth family of defining pairs [®; a] and,
for the purposes of this subsection, assume that

|k () (X;2)]. [Proj(®)(x: 2)

)

Cin(®)(X;z)| > ecin > 0 forall (X;z) € supp a;

moreover, assume that upper bounds for the derivatives of ® depend polynomially
on 2K, where k is as in Proposition 8.2. Here X = (x,t) € R? x R. Owing
to the nature of the estimates in Proposition 8.2, here one does not need to be
very precise about dependencies involving various derivatives of ® and a and the
bounds on the curvatures (as opposed to the situation in Section 7). For instance,
the constant ¢y, may depend on the parameters k, £ and m. In what follows, we
will not determine the precise dependence of our estimates on these parameters but
will only be concerned with showing that it is not worse than 2M* for some large
constant M > 1.

Given a phase/amplitude pair [®;; a;], from (5.18) and the Fourier inversion
formula,

Aoialfw) = [ R Gio) 7@
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where

1
(2m)?

K*(%:8) = /R . /R e OPEDHZED (3. 2)B(0/1) d6 dz. (8.2)

This function can be analysed via stationary phase arguments. The critical points
(z¢r, Bcr) of the phase function

(z,0) > W(z,0;X;:€) = 0D(X;2) + (2, §) (8.3)
satisfy ®(X;z¢r) = 0 and 6.,0,P(X; z¢r) + € = 0. The former condition implies
that z., € 3z = {z € R? : ®,(x;z) = 0} while the latter implies that the normal
to X3 at z., is parallel to =&. We also have | det 8%2 9)\IJ| = |0|%k (D) so that the

critical points are nondegenerate.
Let Cs > 1 satisfy

(Co/10)7! <10, ®(X;2)| < Co/10 for all (X;z) € suppa.

There are no critical points for the phase if [§| > 4C,A or |§] < A/4C,. Thus, by
repeated integration-by-parts

KM% 8) = KA 6)B(EI/A) + E*F:6) (8.4)

where B(r) := n(C;'r) — n(Cor) and the error E* satisfies

as [e—“x’f)E*(;é;g)”§C§A—N/2(1+|g|)—N/2 forallja| < N, (8.5)

with implicit bounds depending on ||a|| -~ . Note that the value of C, will generally
depend on k or m for the classes considered in Proposition 8.2, but this dependence
is admissible in our forthcoming analysis.

Key example. Let [®;a] € @’éin N Qﬁﬁot. The condition (@) 2k ensures that
|0, ®(¥; z)| ~ 22K/3 and so C, ~ 22/3 in this case.

We further analyse I’Z"\(fc; £) for C;1/4 < || < 4C,|€|. Decompose
K*&e)B(sl/0) =) KHE:©)
ieg

where the cardinality of the index set 7 is polynomial in &¢;, and C, and each I?i)‘
is of the form

1
(2m)?

KA €) := x(X:6) / / ! OPEDHZED (3. 2)B(O/X)dO dz,  (8.6)
R2 JR

with y, B, a supported on sets of diameter & with egin < & < &cin.

~
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It suffices to consider the kernel (8.6). If ®(X; z) does not vanish in the neigh-
borhood of the support then the integral represents a smooth function with deriva-
tive bounds polynomial in ea}l, C,. Otherwise we may use the method of stationary
phase, using that the critical points of (8.3) are nondegenerate. In a neighborhood
of the support of the symbol, we can then solve the equation Vg ,¥(z,0;X,§) =0
in (z,0) with z = v(X;€), 0 = O(X; &) denoting the solutions; moreover v is
homogeneous of degree 0 in £ and ® is homogeneous of degree 1 in £. Hence

O(X;v(X:§) =0

OF: £)0; B(F: v(¥:£)) + € = 0. ®D
Furthermore, if
P(X;6) == V(v(X,§), 0(X; §); X; £),
then (8.7) implies that
P(x:8) = (v(X: ), §). (8.8)

By rescaling and applying the method of stationary phase [14, Theorem 7.7.5], one
deduces that

e X;E/A -
K1) = elw’ém% + EGE/N) (8.9)

where, for some My > 0:

e The symbol @ is supported in {C;! < |£] < C,} and satisfies

- — M
9L aF:6)| < (ech + Co + [ @llesn+2 + lallcsv)

and all (o, B) € N3 x N2 with |a/, |8] < N.
e The error term E is rapidly decaying in the sense that

82 [e_i(x’g)E()?;S/A)]‘ < (ech + 1@l eanz + lallean)™ AN (8.10)

for any o € N2 with || < N.
One is therefore led to consider operators belonging to the following class.

Definition 8.3. An FIO pair [¢; a] consists of a pair of functions ¢, a € C%°(R3 x

Rz) with & supported in a compact set of diameter 1. For any such pair [¢; a] and
1 € R define Fourier integral operators of order u by

a(x:§/2)

Txep) amPUEUDS @) foraz1. B11)

fﬁ[w;a]f(ié):/ eI AO(E:E/2)
R2
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Local smoothing estimates. Under certain “geometric” hypotheses on the phase,
LY — L? .+ estimates are known for the operators (8.11) with good A decay (in-
deed, the best possible decay (up to € losses) for 6 < p < oo). Here the relevant
hypotheses are stated in a weakly quantitative form. In what follows we use the

notation /\i=1 vy, for the standard vector product v x v for vectors in R3.

Definition 8.4. For R > 1 let A(R) denote the class of all [¢; a] satisfying

(HO) [020fp(¥;£)| S R for|a| < N and0 < |B| < N;

2
HD |\ 9,050 6)| = R
k=1

2
(H2) max ‘<3§,.gj3;c 6. N\ 3sk3£<ﬂ(5€';$)>’ >R
k=1

1<i,j<2

for all (X; &) € supp a.
The following theorem is the key ingredient in the proof of Proposition 8.2.

Theorem 8.5 ([3]). There exist N, M € N such that
1720 alll Loy ro@sy Se RMAYETE e allon  forall [p:a] € A(R).

This weakly quantitative statement is not explicit in [3] or the corresponding survey
[4] but it may be extracted from the proof. It is remarked that Theorem 8.5 is
more than enough for the purposes of this article and, indeed, any non-trivial local
smoothing estimate (that is, a gain of an epsilon derivative over the fixed term
estimate) would suffice. Thus one could equally appeal to the older results of [20]
(see also the related work [16, Chapter 3], or the more recent work [10]).

Relating the phase functions. In order to apply Theorem 8.5 we analyse the hy-
potheses (HO), (H1) and (H2) for the specific case of the phase ¢ arising from the
averaging operators A[D;; a;] f.

Let ¢ be of the form (8.8), induced by some defining function ®. Implicit
differentiation of (8.7) yields

%01 [0 @.dT] 'O

[3@} B [azﬂb 02,0 [ldp] (8.12)
01 [0 @] -

[32”} o [82<b o] L3P O%® (8.13)

where the right-hand matrices are evaluated at z = v(X;£). In particular, (8.12)
implies that dg,v; = J¢, v and combining this with Euler’s homogeneity relation
@(X:§) = (9gp(x:§).§) yields

dgp = v. (8.14)
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Consequently, one can check that if (o, 8) € N3 x N2 satisfies |/, || < N, then

= M
3%8§(p(x;$)‘ Sy (I®llen + ) (8.15)

for a certain My > 0.
Furthermore, (8.13) and (8.14) also imply that

. [a;c@(fc;s)}
B S [LCTE
~Joz0GE o] Lo e)

> Proj(®)(¥;£) - || 3.

2
g, 030 (X; €)
,-/=\1 (8.16)

These inequalities allow one to deduce (HO) and (H1); the condition (H2) requires
a slightly more involved analysis.
Letting 01 := 2 and 0, := 1, the identities in (8.12) and (8.13) give

(=D&,

9 v = , 8.17

Ejvl ®(®2K(¢)) ( )
(-1)f 0, ® 07 ., |, 2

dzv; = —— | det o | T — (3, ®)T?|, 8.18
(@) 0, ® 02, @ (0z,, @) (8.18)

where «(®) is as defined in (4.7) and the T’ are the tangent vector fields from
(4.9). Recalling (8.14), the condition (H2) for the phase function (8.8) involves
mixed second order derivatives of v; by (8.17), computing these derivatives boils

down to differentiating (®2K(<I>))_1 ©~! with respect to X. Recalling the definition
of ® and v from (8.7) and the identities of (8.13),

0 &7 )
9z (©%k(P)) = 5 det [g aiq}} =078, 50=—"3 (det[07, @]T" +8?)

where the S' are as in Definition 4.5. The product rule then yields
0z ((0%(®)7'07") = —0 7 k(®)2(S - det [¢2,@]T"). (8.19)

Combining (8.14), (8.17), (8.18) and (8.19), one deduces that

02, 3z p(X:§) . S,
Eigj XY s Cin(®)(x;v(x;€))

det | 9g, 0z p(¥:8) | = (=)' T —— s o ke, (8.20)
9o 0 0(F8) O(F:6)% (P)(F: v(%:5))?

The identities (8.15), (8.16) and (8.20) allow one to relate the conditions (HO), (H1)
and (H2) of the phase ¢ to properties of the underlying defining function (and, in
particular, bounds on || ®| o~ , k£ (P), Proj(®) and Cin(P)).
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8.3. Application of local smoothing
Theorem 8.5 can now be applied to yield Proposition 8.2.

Proof of Proposition 8.2. The main difficulty is to prove (iii). Fix [®;¢] € CCm

QﬁRot and § > 0. Let [ denote an interval of length |/| ~ 1. The Sobolev embedding
argument used to prove (6.39) yields

6
SUP|Aj[¢z§Ct]f|

tel

L6(R2)
< 1A (@ ] f gy
6114, 105 €0l f I oz 147 @0 001 Loy

(8.21)

where 0; := 27i27 (3, ®;)¢; + 0;¢,. By the definition of the class C’éin,
[k (P)(x,t;2)|, |Proj(®)(x,t;z)|, |Cin(D)(x,t;2)| 2 2~ Mks (8.22)
whenever (x,7;z) € suppc and |t — x| > 8. Decompose ¢ := ¢ + ¢¥ where
O (x,1:2) := c(x, 1:2)n((t — x2)/108)

so that the estimates (8.22) hold on the support of ¢¥.
The piece corresponding to ¢©® can be bounded using the theory from Sec-
tions 6.1 and 6.6. Indeed, let G(x1, x2,1,z) := (x1, X3 + 1, ¢; z) and define

d:=dog, @ .= @og.

Note that |x,| < § in supp ¢®). Performing the above change of variables, by
Fubini’s theorem

s o)1),

where

L6(R2xT) / HA [(qD)”( (5)) ]f‘

L6(R2)

(D)*(u,t, 750, p):= D, r,t;v,p) and ED)*(u,t,r;v,0): =t ,r,1;v,p).

ko it follows that [(P)*: )] € Qlﬁ;ﬁ(k). Combining Proposi-
tion 6.1 with Lemma 6.9 we get an L?(R?) estimate for fixed r,

S @A) oy

Since [®;¢] € ¢k

|4,[@);:]

L2(R2)—L2(R2)

4 To be more precise, one may write A;[®;:0,] = A; [@t;Dtl] + Aj [@t;btz] where Dtl =
27127 (3; ;)¢ and the average corresponding to th is defined with the frequency cut-off 6
0B(0), rather than just 8. It is remarked that this ambiguity in the definition has no bearing on
the analysis.
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Interpolating this bound with the L* estimate from Corollary 8.1 (iii) one gets

(2—]/6 2= 2k/3 ||c5H N

roCr

i@

L6(R2)—>L6(R2) ™
and therefore

|4 [@:]) < 8116 (27918 A 27253 el en

LS(R2)—LO6R2x1) ~ (8.23)
S 8Y52799 ||l
On the other hand, Theorem 8.5 can be used to show that
. LT —M AMk~H—j(1/3—¢)
HAJ [Cbt, c,] Loy oy S 81212 lellon - (8.24)

Temporarily assuming (8.24), by taking § := 27/ @4M) and ¢ := 1/12, we get

o]

and hence combining this with (8.23) we obtain

<2Mk2 j(/3—-1/12— 1/24)||C|| N
LO(R2)—>L6(R2xI) "~

451965 €l ooy Loqraxny S 2ME2 710 (27244 277 C44D) e o

(8.25)
SRR

for some g9 > 0 (indeed g9 = (144M)~1). This gives a favourable bound for the
terms on the right-hand side of (8.21) involving ¢;. For the amplitude 9; it suffices
to note that ||9] < 27||¢| and that [®; ] € Qéin N @’lgm. Therefore

(14 [Pr; 0e]ll L6 (R2)—> Lo ®R2x 1) Se <o 2MkIGI6720) || (8.26)

Combining (8.25) and (8.26) in (8.21) concludes the argument of Proposition 8.2
for [®;¢] € €k Nek .

It remains to prove (8.24). Let [¢; ¢] be the FIO pair associated to [®; ¢f] €
C’ém, defined as in (8.8) and (8.9). Thus,

Aj| @il | 100 = P2 plei el S () + €5 ().

where the operator £ arises from the errors in (8.4) and (8.9). The smoothing term
£; can be easily estimated using repeated integration-by-parts and the rapid decay
from (8.5) and (8.10).

Turning to the main term JF- fjl /z[go; c] f, the condition (Cg)y together with
(8.15), (8.16) and (8.20) imply that [p:c] € AF := A(§~Me2Mek) (in the sense
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of Definition 8.4) for some absolute constant M, > 1. Thus, Theorem 8.5 implies
that

< 8_M2Mk/11/6+u+6”(|:”cN.

Al
H}—” le: C]‘ LO(R2)— LO(R3) ~°

The case of interest is given by u = —1/2; note that for this value the A exponent
is —1/3 + &, corresponding to the 2/ exponent in (8.24).

For the remaining cases (i), (ii), (iv) and (v) of the proposition the argument
is similar but somewhat easier. Indeed, here the condition (C); provides favourable
lower bounds for the various curvatures and this obviates the need to form
any decomposition a = a® + af (one may bound A ;[®; a] directly using Theo-
rem 8.5). O

9. The global maximal function

It remains to extend the bound for the local maximal function from Theorem 3.3
to the bound on the “global” maximal function from Theorem 3.1. This is the last
step in the proof of Theorem 1.1.

Proof of Theorem 3.1. Break the operator according to the relative size of r with
respect to ¢, thus:

suplAcfu.r)l=swp sup | D 4D+ BT OAS )l

Tel2T <t<2TH1\ ;y>10 m<—10 |m|<10
Each of the three terms is estimated separately. Of these, the first case (correspond-
ing to ¢ < r) presents the most interesting features.

The first term: t < r. The orthogonality relation (3.6) induces spatial orthogo-
nality and it therefore suffices to show that

T
sip swp Y BT A, <1 Hap—1 29421l
TeZ2T <t<2T+1 m=>10 LP(RX[ZW 2W+1])

uniformly in W € Z. By the rescaling (u,r,¢; v, p) — (22Wu,2Wr,2Wt;22Wv,
2% p), the problem reduces to the case W = 0, and therefore one needs to only
show that

sup sup B0 |4 f]

T=—52T<t<2T+1

S

LP(Rx[1,2])

For fixed T < —5, decompose f into frequency localised pieces

f=Pcrf+Y Poryf.

k=1
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where (P )" (€) := n™(|E) f(§) and (P f) " (§) 1= ™ (|£]).f (&) for the

functions n™ and 8™ defined in (5.2). A routine computation shows that the pre-
composition of the above maximal operator with P<_r is pointwise dominated by
the Hardy-Littlewood maximal function. Consequently, for p > 2 it suffices to
show that

—epk
S22 Nl
P

sup  sup B |A Py f]

T=<-52T<t<2T+I

and Littlewood-Paley theory further reduces the problem to proving

<275 £l 9.1)
p

sup B |AP_rix f|

2T <t <2T+1

uniformly in T < —5. The rescaling (u, r,t; v, p) — (22Tu,2Tr,27¢;22Ty, 27 p)
transforms (9.1) into

—epk
S2778 S N
p

sup 77 |4 P{ f|

1<t<2

where PkT denotes the anisotropic frequency projection associated to the multiplier
BE(I2 e, ).

The situation in the last display is close to the case m = —T > 0 in the
decomposition (5.5), although a direct application of Theorem 5.1 (iii) will not
give the desired decay in j. Instead, we decompose the operator A as a sum of
frequency localised operators A; as in (5.18) and appeal to Proposition 5.11 (iv).
First, for fixed T < —5, write

BT - APL fury =3 2774 [cb,; a;”’] PT fau.r),

Gez?

where at_T’& is as in (5.4). The relations (3.6) ensure that |r —p| < land |u —v| <
2T 5o by spatial orthogonality it suffices to prove

swp |alons "] 27 || 2z,
p

1<tr<2

uniformly in ¢ € Z2. A further rescaling (u,v) = (277 u,27Tv) transforms the
above estimate into

sup 4 [@; 71577 Pef |

1<t<2

<2778 £l 9.2)
P
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where now Py is the usual dyadic frequency projection at scale 2¢ and ®~7 and
a~T:9 are defined as in (5.14); in particular, [®~7;a"7] € A2, N AY . Decom-
pose A[®; T a; 7] = im0 A0 a; 7%] as in (5.18). Then, for fixed k > 0,
one needs to understand

A [0 P = [ R worippt @@ 03

for j > 0, where K? isasin (8.2).
The main contribution arises from the terms with | j — k| < 5. Here we appeal
to Proposition 5.11 (iv), which yields

s |4; (@755 pes| <2,
1<t<2 D
with some ¢, > 0 when p > 2.

Now consider the case |j — k| > 5 in (9.3). In our present rescaled situation
we have |3(,,,)® 7| ~ 1 and also favourable upper bounds for the higher (v, p)-
derivatives. Hence, arguing as in Section 8.2, using repeated integration-by-parts,
we obtain

82 [e—Zni((u,r),E)['ZZj (u,rt: g)]‘ < min {Z_jN/2,2_kN/2} (1+1g)~N2

for all (u,r,t) € supp & 7%, & € supp ¥, a € N2 such that |¢| < N. This yields,
via another integration-by-parts,

4y [@7T50 "] P far)

o Fv.p)
SEMEATEE) | e =

dvdp,

which readily implies that

1<t<2

sup |4, [0 75" peg|| < @Az 51
p

for 1 < p < oo, whenever |j — k| > 5. Combining the above observations, one
obtains the desired estimate (9.2).

The second term: t > r. By the triangle inequality, for all p > 2 it suffices to
show that

sup sup BT |4, f|
TeZ2T <t<2T+1

<277 Ay
D
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holds uniformly in m for some ¢, > 0. The orthogonality relation (3.6) ensures
that |t — p| < r ~ 2™*+T < 2T This induces spatial orthogonality between the
and p variables and reduces the analysis to proving

sup ,Bm+T A f

2T <t<2T+1

S22y

p

uniformly in T € Z. By the rescaling (u, 7, t; v, p)— (22T u, 27 r, 27¢; 22T v, 27 p),
it suffices to consider the case 7' = 0. The resulting term corresponds to

3" 2P A[ @ o) f(u.r)

Gez?
in (5.5), whose L? norm is bounded by 2™°» for some ¢, > 01if p > 2 via
Theorem 5.1 (iv), using the orthogonality arguments in the proof of Theorem 3.3.

The third term: t ~ r. Without loss of generality, by replacing § with a cutoff
function with slightly larger support, it suffices to bound the term corresponding to
m = 0. Assuming f is non-negative, for each fixed T perform a decomposition of
the operator similar to that in (5.6) and (5.7) by dominating

BT(r) - Ay flu, 1) < Z Z Sk(1— l/p)+TA[ ( keo)t]f

(k,0)ez? Ge7?
k>—4
k—3<t<l(k)

I Z Z k(1= 1/p)+TA[ (kéa)t]f

keZ Gez?
k>—4
where

H ”(u rtv,p) = ak’z"?(Z_ZTu,Z_Tr, Z_Tt;Z_ZTv,Z_T,o), < L(k),
cT’ (u,r,t; v, p) = ck"?(Z_ZTu,Z_Tr, 2_Tt;2_2Tv,2_T,o).

By the triangle inequality, for all p > 2 it suffices to prove

Hk(1— 1/p)+TA[q) (kea)] <p—epk
sup  sup P Al =2 A

TeZaT <t<2T+1 1 34 p(k) Gez2 »

k,t,G -
sup  sup sz(l 1/17)+TA[ (T a)l]f SR £

T T+1
TeZ2T <t<2T+ Gez2

p
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for some ¢, > 0. After fixing k, spatial orthogonality becomes available: the vari-

able p is localised at p ~ 27%*T  Therefore, in order to show the above estimates,
it suffices to prove

sup > Z2"‘1‘1/”)+TA[<1%;(a'}’z"’)t]f <27 K) £l

2T <t<2T+1 k—3<tl<l(k) 5ez?

sup 30 KOTUPHT 4@ (A7) 7| <2k £,
t

T T+1
20 =t=2TT g2

p

uniformly in 7. By the rescaling (u,7,1;v, p) — (22Tu,27r,27¢;22T v, 27 p), it
suffices to only consider the case T = 0. This follows from Theorem 5.1 (i) and
(i1) using the arguments in the proof of Theorem 3.3 (following the statement of
Theorem 5.1). L]
Appendix

A. Lemmata on integration-by-parts

The proofs on oscillatory integrals in Section 6 use a lemma which keeps track of
the terms that occur in the repeated integration-by-parts arguments. Assume that

z > h(z) € C (and keep track of the CV-norms of ), and that VO # 0 on
supp (h). Define a differential operator £ by

Then, by integration by parts,
/ ei’lg(z)h(z) dz = iNA_N/ 0@ LNp(2) dz
R4 R

and thus

/ eMQ(Z)h(Z) dz
Rd

<AV / |LVh(2)| dz
]Rd

< A™¥meas(supp y) sup |£Nh(z)|.

zeR4

(A.1)

A careful analysis of the term £Vh is needed for various integration-by-parts argu-
ments in this paper and elsewhere in the literature, but a detailed analysis is often
left to the reader. For an explicit reference, a straightforward induction proof of
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the following lemma is contained, e.g., in the appendix of [1] (and probably else-
where).

We shall introduce the following notation. We say that a term is of type (A, j)
if it is of the form h;/|V,®|/ where h; is a z-derivative of order j of . A term
of type (B,0) is equal to 1. A term is of type (B, j) for some j > 1 if it is of the
form ®;41/|V,0|/T1 where ®; 1 is a z-derivative of order j + 1 of ©.

LemmaA.l. Let N =0,1,2,.... Then

K(N,d)
£N1’l= Z CN,vhN,v

v=1

where K(N, d) > 0, ¢y, are absolute constants independent of h and ©, and each
function hy., is of the form >

(|V®|)ﬂAv ]"[yev (A2)

such that each P, is a polynomial of d variables (independent of h and ®), B4,
is of type (A, ja,) for some ja, € {0,..., N} and the terms vy, are of type
(B,kyy) for some ky,, € {1,...,N}, sothatforv=1,...,K(N,d)

M,

jA,v + ZKC,V = N. (A3)
=1

Example. In Section 6 we use Lemma A.1 in the form of Corollary A.2 below,
choosing
O(z) = ¥(x:z) — V(y:2), (A4)

for fixed x = (x',x4), ¥y = (3, y4) € R%. Our differential operator £ = L,
depends then on x, y.

Corollary A.2. Let h € CN (R?) be compactly supported. Let p(x,y) > 0, and
assume that for all z in a neighborhood of supp h

Vo W(x;2) = VW (y;2)| 2 plx, p). (A.5a)
Let R(x,y) > 1 and assume that for all z-derivatives up to order |a| < N + 1,
02W(x;2) — 92 (y; 2)| S R(x, y)p(x, y). (A.5b)
Then

hllci R(x, y)N =7
/ MDY () dz| <y A~ meas(supp h) max Mlles RGx.y)
R4 =0,....N p(x? y)N

5 The product ]_[?i"l is interpreted to be 1if M,, =0, i.e., ja, = N.
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Proof. Using (A.1), the assertion follows from

h ‘R N—j

j=0,...,N p(x, y)N

To see this use Lemma A.1 with the choice (A.4). Observe that by (A.5a) an ex-
pression of type (A4, j) is bounded by a constant times |4/ (p(x,y))™/. By
(A.5a) and (A.5b) an expression of type (B, k) is bounded by a constant times
R(x,y)(p(x,y))™*. Weuse (A.3) to see that the expression corresponding to (A.2)
is bounded by

12l gran RGEM Bl iay RO y)N 40

Cn SN
(p(x’y))jA.v"‘ZQ/[:l)l K¢ v p(x, y)N

and hence we get (A.6). O

Applications of Corollary A.2. Here 0 < §, < 1andm > 0.

e In the proof of Proposition 6.1, Corollary A.2 is applied with the choice of
o(x,y) = |x" = Y| + 8o|lxq — yal, R(x,y) < 1 and the CV norm of the
amplitude is O(1);

e In the proof of Lemma 6.4, Corollary A.2 is applied with p(x, y) := |x’ — y’|
and R(x, y) < 1, and the C¥ norm of the amplitude is O (2™V);

e In the proof of Lemma 6.5, the d — 1-dimensional version of Corollary A.2 is
applied with p(x’, y’) := |x’ — y’| and R(x’, y") < 1, and the C¥ norm of the
amplitude is 0(2™");

e In the proof of Lemma6.6, Corollary A.2 is applied with the choices of p(x,y):=
Ix" — Xy (xq, ¥:2v)| + 8.27"|xg — yal, and R(x, y) < 2™, and the C¥ norm
of the amplitude is O(2"V).

B. Computations related to the defining function

B.1. Derivative dictionary

For reference, here some derivatives are computed for the specific defining function
®; in (3.2). Recall,

b 2
DO, rt;v,p) 1= (u—v)>— (5) (41’2,02 - (r2 + p? — t2)2>
so that the first order derivatives are

0Py = 2(u —v), 0, ®; = —bzr(fz —-r’ 4+ pZ)
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and
0y ®; = —2(u —v), 0,P; = —bzp(tz L2 pZ)

together with the time derivative
atCD, = bzt(lz — 1"2 — p2)

Of course 97, ®; = 95, ®; = 07, = 03, ® = 0 whilst the non-vanishing
second order derivatives are

92,0, = 02,0, =2, 92, &, = -2,
02, @ == (12 =32 + p), 32,0,=—2b%rp, 2,0 =—b*(12+ 12— 3p?)
and the time derivatives
07, =—2b*r and  3;,® = —2b%p.
Finally, the third order derivatives relevant to the argument are
82”@, = —2b%p and 8zpr = —2b7r.

With these formula in hand, it is a simple computation to obtain the expressions
(4.2) and (4.4) for the rotational curvature,

Rot(®;)(u,r;v, p) = 4b4rt2p(l2 —r?— pz),

Rot(®))(u, t;v, p) = 4b4r2t,o(r2 —1? - pz),
as well as the key identity (4.3),
Rot(®,) (u, 73 v, p) = 4b>rip(d; D) (u, 73 v, p),

and expressions (4.11) and (4.12) related to the cinematic curvature

Proj(®)(u,r,t;v, p) = —8194rt/o(r2 — zz),

Cin(®)(u,r, t;v, p) = 64b8r313,o3<r2 — t2)

for (v,p) € Xy rs-
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B.2. Rescaling

It is useful to note how the expressions in the previous subsection behave under
rescaling. Given k, 7 € Z and ¢, § € Z?, let ok-end . — 2k @ o DTS where

D&% (u, r,t;v, p) = (281u,282r, 2’t;251v,282p>.
Then
%989y dk-em8 (x 1 2) = 2kpeapB oy (agag 3 cp) o D& (x, 1)
forall o, B € N2, y € Ny. In particular,
Rot(@f’g’r’s)(x; z) = 232+ BIRot(®yr,) 0 D (x; 2)
where D®%(x;z) := (2°x;2%z), and the rescaled key identity becomes
Rot(cbf’g’r’g )(x; z) = 4b%rpr2821922kglel 18l phetd (. 1. 7).
Furthermore,

K(q)k,a,r,S)()-é; Z) — 23k22|8|K(q)) ° Da,t,S ()-c" Z),
Proj(@k’a”"g)(}; z) = 23k2|8|+r+|8|Pr0j(cD) o DETS ()_C', 2),

Cin(<1>k’“’8)(5é; z) = 20K 2lelFe+3BICin(d) 0 DI (¥: 2).
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