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A B S T R A C T   

Neighborhood infrastructure, such as sidewalks, medical facilities, public transit, community gathering places, 
and tree canopy, provides essential support for safe, healthy, and resilient communities. This paper examines the 
presence and condition of neighborhood infrastructure and shows that “infrastructure deserts” exist, which are 
low-income neighborhoods with significantly more deficient infrastructure. A generalized data-driven frame-
work is developed and implemented at the street-level for 12 types of neighborhood infrastructure in Dallas, 
Texas. The results show significant infrastructure inequities across income levels for most types of infrastructure. 
Statistical inference predicts (with 95 % confidence) that low-income neighborhoods are 2.0 to 3.5 times more 
likely to have highly deficient infrastructure (8 or more deficient infrastructure types) than high-income areas 
and 1.4 to 2.4 times more likely to have highly deficient infrastructure than middle-income neighborhoods. This 
paper addresses the methodological challenge of considering multiple infrastructure types and provides a guide 
for infrastructure investment prioritization.   

1. Introduction 

This paper develops and implements a generalizable data-driven 
framework for assessing the condition and equity of neighborhood 
infrastructure. Neighborhood infrastructure is a system of relatively 
small-scale physical structures and service facilities that play an essen-
tial role in improving residents' lives, health, safety, and social justice 
(MacDonnell et al., 2004; Reduction & Recovery(GFDRR), 2017). Un-
derstanding neighborhood infrastructure is necessary to support com-
munity wellbeing and prioritize future infrastructure investments. While 
efforts have been made to study the condition and impact of individual 
types of neighborhood infrastructure, the focus and scope of such efforts 
remain relatively singular (limited to one or a few infrastructure types) 
and fail to treat infrastructure as a diverse, multi-component system. For 
example, leisure walking experiences are affected by multiple infra-
structure features such as sidewalk condition, crosswalk presence at 
intersections, street pavement condition, and street tree cover. So, to 
truly understand the overall impact of infrastructure on a neighborhood, 
multiple infrastructure types must be assessed through an integrated 
approach. 

The forms of neighborhood infrastructure can be physical structures 

(such as sidewalks, crosswalks, pedestrian trails, street lights, street tree 
canopy) or facilities (such as hospitals) located or operated outside of 
the neighborhood as community services. These facilities provide 
human development support (such as health clinics, financial facilities), 
public services (such as transportation, schools, libraries, internet), and 
shared space for social gatherings and recreational activities (such as 
parks, trails, community centers, noise walls). Neighborhood infra-
structure types can be quite diverse and vary from community to com-
munity depending on geophysical, socio-cultural, and economic factors. 
Therefore, the estimation of impacts, changes, and future development 
of neighborhood infrastructure not only requires a thorough under-
standing of infrastructure conditions but also the community's socio- 
economic and cultural settings. 

Previous studies have shown the importance of neighborhood 
infrastructure for human health, community growth, and community 
safety. For example, neighborhood infrastructure, particularly side-
walks, streets, and access to local destinations such as grocery stores, 
parks, and recreation facilities, have impacts on obesity (Booth et al., 
2005); related chronic health outcomes (Roux & Mair, 2010); health 
behaviors (Gordon-Larsen, 2006; Leventhal & Brooks-Gunn, 2000; 
McCormack & Shiell, 2011); mental health outcomes (Leventhal & 
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Brooks-Gunn, 2000; Ross, 2000; Roux & Mair, 2010); and social well- 
being outcomes (Handy et al., 2002; McCormack & Shiell, 2011; 
Rogers et al., 2013). Pedestrian-friendly streets, open green spaces, and 
well-maintained neighborhood infrastructure (such as sidewalks, 
crosswalks, healthcare, food stores, and community centers) not only 
promote healthy activities such as walking and bicycling (Handy et al., 
2002) but also enhance social interactions (Gunn et al., 2017), social 
cohesion and social capital (Rogers et al., 2013). These factors facilitate 
the organic growth of community attitudes toward healthy and active 
lifestyles (Gunn et al., 2017; Srinivasan et al., 2003; Ulmer et al., 2016). 
Furthermore, studies have shown the positive influence of well- 
established neighborhood infrastructure (such as sidewalks, cross-
walks, street lighting) on perceived and actual safety from crime or 
traffic-related events (Farrington & Welsh, 2002; Hong & Chen, 2014; 
Hwang et al., 2017). For example, well-designed crosswalks and side-
walks help reduce pedestrian-vehicle crashes (Hwang et al., 2017). 

Conversely, the lack of quality neighborhood infrastructure can in-
crease community susceptibility to natural disasters and chronic eco-
nomic crises (Aldrich & Meyer, 2015). Lack of neighborhood 
infrastructure has also been considered a critical indicator of social 
injustice based on three primary allocation principles (Deutsch, 1975): 
equity, equality, and need. Equity is an issue of distributive justice and 
calls for fairness where service are provided based on rectifying the 
existing patterns of service distribution (Lucy, 1981). Equality means 
that everyone receives the same public service (Lucy, 1981), which can 
lead to more harmonious social relationships (Deutsch, 1975) but may 
not meet individual needs. The concept of need is consistent with the 
idea that those needing more service should receive more rather than 
less (Lucy, 1981). Each of these three principles operates in a specific 
domain. For neighborhood infrastructure, including public utilities, 
parks, and facilities, equality is often impossible to achieve in the sense 
of equal access because of the variation in community development and 
terrain. The need is also likely tied to population and distributed 
geographically (Lucy, 1981). Therefore, analyzing the equitable distri-
bution of infrastructure services is a better approach for understanding 
the present condition and future investments. Thus we primarily focus 
on the equity aspect of neighborhood infrastructure distribution in this 
work. 

One way of studying infrastructure equity, as suggested by the U.S. 
Department of Transportation, is to compare the infrastructure charac-
teristics or conditions in neighborhoods with high concentrations of 
socially vulnerable populations (such as low-income households, mi-
norities, and car-free households) compared to those in adjacent 
neighborhoods or to regional averages (Forkenbrock et al., 2004). 
Following this guideline, many researchers have evaluated infrastruc-
ture conditions and discovered infrastructure inequities across many 
individual types of neighborhood infrastructure. Studies have shown 
economic and ethnic disparities in walkability, street trees, public 
transportation, parks, pedestrian crosswalks, and trails (Aman & Smith- 
Colin, 2020; Borowski et al., 2018; Hirsch et al., 2017; Wolch et al., 
2005; Xiao et al., 2017). Grocery stores and farmers' markets have also 
been widely studied in the realm of “food deserts,” as areas showing 
substantial inequities across different socio-economic and racial groups 
(Hilmers et al., 2012). While these studies show the importance of in-
dividual infrastructure types and their impacts on communities, the 
presence and impact of multiple deficient types of physical infrastruc-
ture on a community is not yet known. Hence, a systematic condition 
assessment is needed at the community level to evaluate multiple 
neighborhood infrastructure types and support examination of their 
aggregated impacts on the community. 

Previous studies have assessed neighborhood infrastructure using a 
variety of measures. Inspecting infrastructure surface exteriors and 
identifying defects is the most common method to assess infrastructure 
such as streets and sidewalks (Frackelton et al., 2013; Shah et al., 2013). 
Researchers have also used proximity as a metric for assessing coverage 
of infrastructure services such as parks (Cutts et al., 2009; Nicholls, 

2001; Wolch et al., 2005; Xiao et al., 2017), healthcare (Wang & Luo, 
2005), public transportation system (bus stops, rail stations) (El-Geneidy 
et al., 2010; O’Sullivan & Morrall, 1996), and fresh food supplies 
(Gordon et al., 2011; Ploeg et al., 2009). In addition, measures derived 
from field audits, secondary data sources, and satellite imagery/videos 
have allowed the assessment of ground-based or hard-to-measure 
infrastructure such as neighborhood street walkability (Ewing et al., 
2006; Frackelton et al., 2013; Parks & Schofer, 2006; Su et al., 2019), 
street tree canopy (Maco & McPherson, 2002; Roberts et al., 2019) 
internet speed (Perzynski et al., 2017), and street condition (Engineer-
ing-USACE, 2014; Shah et al., 2013). However, the integrated physical 
assessment of multiple neighborhood infrastructure types faces meth-
odological challenges and limitations in effective implementation 
(Rollings et al., 2015). Due to the difficulty of gathering neighborhood- 
scale data of multiple infrastructure types on a large scale, most previous 
studies have primarily focused on either small-scale studies of one or 
several infrastructure types or large-scale studies at city or regional scale 
of only a single infrastructure type. 

This study fills the gap between these two scales by providing 
quantitative infrastructure condition assessment at city scale and sys-
tematically combining multiple infrastructure types to show overall 
infrastructure condition using a data-driven framework. The results 
obtained from the framework are overlain with aspects of the neigh-
borhood's socio-economic data (for this case study, income level) to 
evaluate infrastructure equity. 

2. Materials and methods 

Fig. 1 shows the generalized data-driven framework developed in 
this work to assess multiple neighborhood infrastructure types at the 
neighborhood level quantitatively and to explore infrastructure inequity 
in urban settings. The framework consists of three primary components: 
1) compute neighborhood infrastructure deficiency by aggregating the 
presence and condition of each infrastructure type from street to 
neighborhood level; 2) compare infrastructure deficiency across income 
levels to identify the existence of infrastructure deserts; and 3) identify 
infrastructure inequity using statistical models. Each component is dis-
cussed in more detail in the following subsections. 

The framework given in Fig. 1 has several benefits: 1) integrating 
street-level condition assessment with neighborhood-level socio-eco-
nomic characteristics such as income; 2) enabling the addition of new 
infrastructure types while still maintaining robustness; and 3) providing 
a highly generalized approach that can be applied to other cities or re-
gions with available data. The first step of the framework is to determine 
a proper spatial representation of neighborhood. Ideally, the chosen 
representation should naturally represent the residency boundary as a 
neighborhood. To aid in generalization, the framework is applied with a 
consistent spatial representation of neighborhoods as Census block 
groups for two main reasons. First, the size of a block group (typically 
ranges from 500 to 1000 housing units) and the cartographic repre-
sentation approximates the overall size and geometry of a neighbor-
hood. Secondly, by definition, census block groups share compatible 
population densities. Finally, the Census block group is the smallest 
administrative boundary for which the Census Bureau freely publishes 
sample data (Bureau, 2020). Therefore, the Census block group seam-
lessly aligns with the U.S. Census Bureau's socio-economic attributes. 

The infrastructure condition data comes from both publicly acces-
sible databases and computer-assisted programs/algorithms, as pre-
sented in Table 1. For instance, the noise walls data were obtained by 
inspecting Google Street View images along the major highways in 
Dallas and labeling the presence of recognized noise walls manually. 
Crosswalk data were collected at intersections of all residential streets 
and within school zones using a deep learning object recognition algo-
rithm called YoLo3 (Redmon & Farhadi, 2018) and high-resolution 
Google satellite imagery. Finally, it is worth mentioning that internet 
service data are published at the Census tract level (Commission, 2019). 

Z. Li et al.                                                                                                                                                                                                                                        



Cities 130 (2022) 103927

3

To be spatially consistent with other infrastructure types, internet data 
were assumed to be uniform within Census tract and then allocated into 
Census block groups. Please see Appendix A.1 for more detailed 
implementation, descriptions, and data sources for each infrastructure 
type. 

2.1. Compute overall infrastructure deficiency 

The first step of the framework (shown in Step 1 of Fig. 1) examines 
each infrastructure type's condition and computes the overall neigh-
borhood infrastructure deficiency. At the street level, metrics for 
measuring infrastructure condition vary across different infrastructure 
types and may vary in different cities. A neighborhood-level binary 
deficiency indicator (θ) is used to aggregate from street level measures 
within the neighborhood to represent deficiency of individual infra-
structure type. To compute the binary infrastructure deficiency indica-
tor, any quantifiable infrastructure components are identified within a 
neighborhood. Depending on the infrastructure type, multiple types of 
elements could be measured in the neighborhood. 

This study focuses on two primary metrics for assessing deficiencies: 
1) direct or secondary condition attributes associated with the available 
condition dataset (e.g., pavement and sidewalk cracking or damage); 
and 2) physical presence or service area provided by the infrastructure. 
For the first metric, it is straightforward to apply the criteria following 
existing guidelines and determining substandard measurable compo-
nents without additional spatial transformations. For example, for 
pavement conditions, a numerical attribute called Pavement Condition 
Index (PCI) is often used to represent pavement segments' surface con-
ditions, and empirical guidelines have suggested cutoffs for adequate 
pavement condition ratings (e.g., the pavement is classified as poor if its 
PCI is <55) (Engineering-USACE, 2014). 

For the second type of metric, proximity calculations are needed to 
establish service areas before substandard criteria can be applied. A 
service area is computed around each infrastructure facility (such as 
hospitals, parks, food stores) that describes which residents in sur-
rounding housing units can reach the facility within a predefined travel 
range or duration along the road network (Talen & Anselin, 1998). Thus, 
the residential households living within the service area are assumed to 
have access to the facilities and to receive related services. Residential 
households outside of service areas are assumed not to receive such 
services. The choice of predefined travel distances depends on the type 
of infrastructure facility. For instance, a10-minute walking distance is 

frequently used as the walkable distance to adjacent parks and pedes-
trian & bicycle trails (Kaczynski et al., 2009; Rollings et al., 2015). The 
distance of 1-mile or less is widely accepted as the threshold for deter-
mining sufficient access to fresh food supplies in food desert studies 
(Jiao et al., 2012; Ploeg et al., 2009). 

Once all of the infrastructure facility locations and predefined travel 
distances are obtained, GIS is used to create the service area as spatial 
polygons. For the service area generation, the street network is used to 
ensure an accurate estimate of distances along the road network. Next, 
centroids of parcel data are used to represent and locate residential 
households. Lastly, all residential households living within and outside 
the service areas are identified using GIS intersect methods; this allows 
households outside of any service area to be identified as receiving 
substandard infrastructure services. 

For this analysis, a fraction number (μ) is defined to represent sub-
standard measurable components as a percentage of measurable infra-
structure components within the same neighborhood: 

μ = Mstd
M (1-1)  

where Mstd represents substandard measurable infrastructure compo-
nents within the neighborhood; and M is the total number of measurable 
components within the neighborhood. As shown in Eq. (2-2), the binary 
infrastructure deficiency indicator (θ) equals 1 if at least half (i.e., a 
majority) of the measurable components in a particular neighborhood 
are substandard (μ ≥ 0.5). Otherwise θ = 0. 

θ =
{

0; if μ ≥ 0.5
1; if μ < 0.5 (1-2) 

The benefit of using such indicators is to normalize all infrastructure 
measurements to the same scale of 0 or 1, which allows multiple binary 
indicators to be combined mathematically in later steps. The above 
procedure is repeated until θ is obtained for all infrastructure types and 
then the overall infrastructure deficiency (γ) of each neighborhood is 
computed as the summation of θ (Eq. (1-3)): 

γ =
∑

i∈I
θi (1-3)  

where I includes all the considered infrastructure types. The summation 
of multiple deficiency indicators into a single metric represents the 
overall neighborhood condition. Thus, γ ranges from zero to the total 

Fig. 1. Overview of the neighborhood infrastructure assessment framework.  
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number of infrastructure types considered. If a neighborhood does not 
have any deficient infrastructure types, γ=0. Finally, to aid in inter-
pretation, a categorical representation of overall infrastructure defi-
ciency is created based on the percentile of the resulting γ. As such, the 
resulting overall infrastructure deficiency values are defined as (1) 
Excellent ([0 % ~ 10 %]), (2) Good ([10 % ~ 25 %]), (3) Moderate ([25 
%–75 %]), (4) Deficient ([75 %–90 %]) and, (5) Highly deficient ([90 %– 
100 %]). 

2.2. Identify the existence of infrastructure deserts 

The next step is to find neighborhoods that are both economically 
disadvantaged and significantly lacking in neighborhood infrastructure 
relative to wealthier neighborhoods. These areas are labeled “infra-
structure deserts,” analogous to “food deserts,” which are defined as 
low-income neighborhoods with insufficient access to healthy food 
sources (Cummins & Macintyre, 2002; Ploeg et al., 2009; Wrigley, 
2002); and “transit deserts,” which are transit-dependent areas that lack 
adequate public transit service (Aman & Smith-Colin, 2020; Jiao & 
Dillivan, 2013). The introduction of “infrastructure deserts” presents a 
more comprehensive and integrated perspective of neighborhood 

weakness in physical assets and community services. We agree that 
including the effects/needs of residents can provide a more compre-
hensive view of some types of infrastructure. Determining deficiency 
based on differences between need and supply (Jiao, 2017) is widely 
used and accepted in the transportation arena, e.g. However, this 
approach is difficult to implement for neighborhood infrastructure due 
to the diversity of “infrastructure types”. It is challenging to properly 
define and measure the demand and need when multiple infrastructure 
types are considered. In terms of number of residents, our framework 
uses the number of residential households to approximate the size and 
the need of residents within the neighborhood when assessing infra-
structure types related to facility access, for other types of infrastructure 
(e.g., pavement condition), assessment is made by street segment, which 
is more relevant than number of residents. For example, we compute the 
number of residential households and compare it with the total number 
of households within the same neighborhood to determine whether 
infrastructure access is sufficient. The category of Highly deficient 
infrastructure condition from the previous step is chosen as the quan-
titative representation of neighborhoods as significantly more deficient 
in infrastructure presence and condition. Such areas that are also low 
income are identified as infrastructure deserts. 

To define neighborhood income category, neighborhoods are clas-
sified into three groups (low, middle, and high) using tertiles of annual 
median household income (Chau et al., 2013; Franco et al., 2008). A few 
studies use annual median family income as an income variable instead 
of household income (Franco et al., 2008). In this study, annual median 
household income since 2013 has more available historical data than 
annual family income and has been used to interpolate missing income 
data for some neighborhoods (Bureau, 2020) Our analyses indicate these 
choices do not significantly bias the resulting spatial patterns. 

2.3. Explore infrastructure inequity with statistical models 

Lastly, to account for any uncertainty within the observed data, 
statistical models can serve to further explain the relationship between 
neighborhood infrastructure condition and income, as well as calculate 
the significance of infrastructure inequity. Since the overall infrastruc-
ture deficiency is computed as an ordinal integer according to Eq. (1-3), 
the cumulative logit model (also called proportional odds model) 
(Agresti, 2003) is appropriate for this case as it was designed for a 
response variable that takes values in a set of ordered categories (mul-
tiple ordinal responses). This model was initially proposed by Walker 
and Duncan (Walker & Duncan, 1967) as an extension of the logistic 
regression model for binary responses. 

In this study, the model relates a response variable Y, consisting of 
ordered categories (e.g., overall infrastructure deficiency), to a cate-
gorical explanatory variable (e.g., neighborhood income characteristics) 
with k + 1 levels and represented by x, a vector of k dummy variables 
that represent k different levels (the remaining level is chosen as the 
reference level). The model has the following generalized 
representation: 

logit[Pr(Y ≤ j|x) ] = αj + βT x, j = 1,…, J − 1 (2-1)  

where Pr(Y ≤ j|x) is the cumulative probability of the event (Y ≤ j), αj 
are the unknown intercept parameters, and βT = (β1,β2,…,βk) is a vector 
of regression coefficients used for all response categories. J is the total 
number of response categories and logit, also known as the log-odds 
transformation, is the inverse function for the standard logistic cumu-
lative distribution function: 

logit(t) = log t
1 − t (2-2) 

The model assumes the same effects β for each logit. Thus the 
regression coefficient vector, β, does not depend on j, implying that the 
log-odds ratio is proportional to the difference between two x values and 

Table 1 
Substandard criteria for neighborhood infrastructure types.  

Infrastructure 
Type 

Assessment 
Unit 

Substandard Criteria Criteria Reference 

Streets Street 
Segments 

Pavement Condition 
Index (PCI) < 55 

(Engineering- 
USACE, 2014) 

Sidewalks Sidewalk 
Segments 

Any existence of 
obstruction, damage, 
or missing segments 

(Frackelton et al., 
2013) 

Internet Residential 
Households 

Internet speed <200 
kbps in at least one 
direction 

(Commission, 
2019) 

Crosswalks Street 
Intersections 

Missing crosswalks at 
intersections with 
traffic lights or school 
zones 

(Zegeer et al., 
2005) 

Noise Wall Residential 
Households 

Within 200 ft of the 
highway and no noise 
walls present 

(Rochat & Reiter, 
2016) 

Street Tree 
Canopy 

Street 
Segments 

The average 
percentage of street 
segment covered by 
tree canopy <25 % 

(Maco & 
McPherson, 2002) 

Public 
Transportation 
Access 

Residential 
Households 

Not within 5-min 
walking distance (0.4 
km) of the bus stop or 
10-min walking 
distance (0.8 km) of 
the rail station 

(El-Geneidy et al., 
2010; O’Sullivan 
& Morrall, 1996) 

Medical Facility 
Access 

Residential 
Households 

Not within 2 miles 
(3.2 km) of major 
hospitals or 1-mile 
(1.6 km) of walk-in 
clinics or urgent care 

(Ashwood et al., 
2011; Bersamin 
et al., 2011) 

Bike & 
Pedestrian 
Trails 

Residential 
Households 

Not within 10-min 
walking distance (0.8 
km) 

– 

Gathering Places Residential 
Households 

Including public parks, 
libraries, farmer 
markets and 
community centers. 
Not within 10-min 
walking distance (0.8 
km) 

(Xiao et al., 2017) 

Food Access Residential 
Households 

Nearby food stores are 
not within a 1-mile 
distance (1.6 km) 

(Gordon et al., 
2011) 

Bank Access Residential 
Households 

Nearby bank branches 
are not within a 1-mile 
distance (1.6 km) 

–  
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shares the same proportionality constant regardless of j. This is also 
called the proportional odds assumption. The validity of this assumption 
can be checked based on a χ2 score test (Peterson & Harrell, 1988). 

Applying this model with overall infrastructure deficiency as a 
response variable and income level as a single explanatory variable re-
sults in: 

logit[Pr(γ ≤ j|x) ] = αj + βMxM + βHxH , j = 1, 2,…, J − 1 (2-3)  

where γ is the computed overall infrastructure deficiency with each 
value of integer representing one category; xM, xH are two dummy 
variables: xM = 1 if the income level is middle, xM = 0; xH = 1 if income 
level is high, and xH = 0; xM = xH = 0 if the income level is low, serving as 
the reference level. J is the max number of deficient infrastructure types 
observed (J = 11 in this case study) and βM,βH are regression coefficients 
for the dummy variables of the categorical covariate with three levels 
(low, middle, high). 

The fitted model is validated by performing a Likelihood Ratio Test 
(LRT) (Agresti, 2003) between the fitted model and the same model 
using a multinomial link. With the null hypothesis that proportional 
odds assumption holds, a p-value of >0.05 indicates that the data do not 
show gross violation of the assumption. A relative risk measure of 
deficient infrastructure types (RRxj) is then computed between different 
income levels to draw statistical conclusions. In particular, the relative 
risk of low-income neighborhoods of having “more deficient (>j)” 
infrastructure types compared to neighborhoods with income-level 
denoted as x is written as: 

RRxj =
Pr(γ > j|low income)

Pr(γ > j|x)

= 1 − Pr(γ ≤ j|low income)
1 − Pr(γ ≤ j|x) = 1 + eαj+βx

1 + eαj  

j = 1,…, J− 1, x = {M,H} (2-4) 

Relative risk offers adequate measures to compare overall infra-
structure condition across different neighborhood income levels. Given 
neighborhood income x and the number of deficient infrastructure types 
j, if the relative risk value (RRxj) is larger than one; then low-income 
neighborhoods show a higher risk of having j or more deficient infra-
structure types than neighborhoods with income level x, also showing 
evidence of infrastructure inequity. 

To obtain the confidence intervals for relative risk at each j, a 
bootstrapping method (James et al., 2013) is used with 20,000 iterations 
to compute the upper (97.5 %) and lower (2.5 %) confidence level of the 
relative risk estimates. All of the statistical computations described 
herein are executed with the statistical software R. The cumulative logit 
model is fit using the function polr from package MASS (Ripley et al., 
2013). All coefficients were exported and visualized using Python. 

2.4. Case study – Dallas, Texas 

Dallas, TX, USA, was selected as the case study for this first infra-
structure assessment framework. It is a pertinent choice because of its 
ongoing strong economic development, significant infrastructure prob-
lems and issues, and plans for redevelopment activities in the future to 
address infrastructure issues, as well as its history of racial and wealth 
segregation by neighborhood. Dallas is one of the Rockefeller Founda-
tion's 100 Resilient Cities; its resilience strategy was released in 2018 
and includes equity and neighborhood infrastructure investment as core 
goals. Dallas has the highest level of income inequality in the United 
States (U.S.) (Florida, 2017; Taylor & Fry, 2012) and one of the highest 
rates of increase in urban heat among major US cities (Habeeb et al., 
2015) Furthermore, Dallas County has the 4th highest number of 
pedestrian fatalities among U.S. counties in 2016 (Retting et al., 2017). 
The city also rated significantly lower than the national average in street 

and infrastructure maintenance, according to a community survey in 
2018. These statistics highlight the existing neighborhood infrastructure 
issues and make Dallas an ideal location to study neighborhood-scale 
infrastructure equity. 

To assess neighborhood infrastructure in Dallas, a total of 12 
neighborhood infrastructure types with available and newly derived 
data were considered (pavement, sidewalk, crosswalk, noise wall, public 
transportation, trails, medical facilities, food stores, community gath-
ering places, bank service, street tree canopy, and internet service). 
Measurable data for each infrastructure type were identified based on 
multiple types of data (tabular data, spatial lines, or spatial points) and 
related references and infrastructure design guidelines as shown in 
Table 1. The table describes measurable components for each infra-
structure type and corresponding evaluating criteria. For noise walls, 
only households near highways can be affected by the presence or 
absence of noise walls. Hence, the evaluation is restricted only to resi-
dential households within 200 ft of major highways (Rochat & Reiter, 
2016). 

Lastly, annual median household income of Census block groups in 
the Dallas region were obtained from the 2018 U.S. Census table – 
B19013. For block groups with missing income records, the average 
between historical information at the block group level (linear regres-
sion using the past five years' income records, as available) and current- 
year income at the tract level is used to fill in missing data. This method 
offers a better estimation for missing income data because it accounts for 
currency inflation over the years and impacts of nearby neighborhoods 
within the same Census tract. After filling in missing income records, a 
total of 790 neighborhoods across Dallas had complete income and 
infrastructure condition data. The neighborhood income was then 
categorized as low-income (347 neighborhoods), middle-income (205 
neighborhoods), and high-income (238 neighborhoods) using tertiles 
across whole Dallas county. The cutoffs between income levels were 
$44,100 for the 33rd percentile and $70,200 for the 66th percentile. 

3. Results 

3.1. Individual and overall infrastructure condition 

Applying the framework (described in detail below) to the Dallas 
dataset required the following steps. First, individual infrastructure 
types were rated within each neighborhood using the substandard 
infrastructure criteria (Table 1). Second, overall neighborhood infra-
structure deficiency (γ) was then calculated by summing the binary 
deficiency indicators across all 12 infrastructure types. Categories of 
infrastructure deficiency were then allocated to each neighborhood 
based on percentiles to the nearest integer value of γ could have: 
Excellent (γ ≤ 3) (0 % ~ 10 %), Good (γ = 4) (10 % ~ 25 %), Moderate (5 
≤ γ ≤ 6) (25 % ~ 75 %), Deficient (γ = 7) (75 % ~ 90 %), and Highly 
deficient (γ ≥ 8) (90 % ~ 100 %). Following the definition of infra-
structure deserts, low-income neighborhoods with Highly deficient 
infrastructure (γ ≥ 8) were then identified across the city. Finally, a 
cumulative logit model was fit between overall infrastructure deficiency 
and income level to compute the relative risk of low-income neighbor-
hoods versus wealthier neighborhoods. 

Fig. 2 shows the percentage of neighborhoods with deficiencies for 
each individual type of infrastructure by income level. This distribution 
of deficient infrastructure exhibits three different patterns by infra-
structure type: 1) For crosswalks, internet service, medical facilities, 
noise walls, and food access, the share of neighborhoods with deficient 
infrastructure is much higher in low-income neighborhoods than others, 
showing a decreasing trend with increasing income; 2) For pavement, 
sidewalks, community gathering spaces, trail access, and street tree 
canopy, the share of deficient infrastructure does not show much dif-
ference across the three income groups; 3) For public transit, an 
increasing trend exists with deficient infrastructure versus income level. 

Some of the results are consistent with previous findings, which show 
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inequities across community's socio-economic status for individual 
infrastructure, such as crosswalks (Bereitschaft, 2017; Su et al., 2019), 
internet service (Perzynski et al., 2017), and food service (Chau et al., 
2013). However, high-income neighborhoods experience more defi-
ciency than low-income neighborhoods for public transit and, to some 
extent, sidewalks. This finding is not consistent with the literature 
(Borowski et al., 2018) and may be due to higher percentage of vehicle 
ownership in high-income neighborhoods. 

These types of mixed relationships between infrastructure types and 
neighborhoods' socio-economic status introduce challenges to studying 
infrastructure equity by individual infrastructure type. This illustrates 
the need to consider multiple infrastructure types simultaneously and to 
develop a multi-infrastructure framework with an overall infrastructure 
deficiency metric. 

Fig. 3 (a) shows a histogram of overall infrastructure deficiency as a 
percentage of Census block groups, the spatial unit defining 

neighborhoods in this study. Infrastructure deficiency categories are 
also represented by color, with dashed lines showing the boundaries 
between each category. Fig. 3 (b) shows the distributions of overall 
infrastructure deficiency by income level; the y-axis represents the 
percentage of neighborhoods with the same income level. The results 
show that the overall infrastructure deficiency ranges from 1 to 11, 
meaning that all neighborhoods have at least one deficient infrastruc-
ture type and none are deficient in all infrastructure types (12 types in 
total). The majority of neighborhoods have between 4 and 7 deficient 
infrastructure types. 

Overall, 14 % of the neighborhoods are classified as Excellent for 
their overall infrastructure condition, while 13 % of neighborhoods are 
Highly deficient. Fig. 3 (b) shows that middle-income neighborhoods 
have a similar distribution to high-income neighborhoods, except that 
there are more high-income neighborhoods with very few infrastructure 
deficits (Excellent). However, low-income neighborhoods clearly exhibit 

Fig. 2. Percentage of deficient infrastructure by neighborhood income level and infrastructure type.  

Fig. 3. Overall infrastructure deficiency. (a) Histogram of overall infrastructure deficiency as a percentage of block groups, (b) Histogram of overall infrastructure 
deficiency as a percentage of block groups by income level. 
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higher overall infrastructure deficiency than other neighborhoods, as 
the distribution is horizontally shifted toward Highly deficient (8 or more 
deficient infrastructure types). This pattern reveals evidence of inequi-
table infrastructure provision between low-income neighborhoods and 
others. 

3.2. Infrastructure deserts 

Fig. 4 shows the map of infrastructure deserts (low-income neigh-
borhoods with Highly deficient infrastructure (γ ≥ 8)) in Dallas. A total of 
62 neighborhoods were identified as infrastructure deserts. The infra-
structure deserts also show a clear spatial pattern where more low- 
income neighborhoods in the south (24 %, or as 54 out of 221 low- 
income neighborhoods) are identified as deserts than low-income 
neighborhoods in the north (6 %, or as 8 out of 126 low-income 
neighborhoods). 

As further comparison of infrastructure deserts versus other areas, 
Fig. 5 shows individual deficient infrastructure types as a percentage of 
neighborhoods citywide versus within infrastructure deserts. It suggests 
that more than half of the neighborhoods citywide have inadequate 
street tree canopy, sidewalk, noise wall, trail access, medical facility 
access, and food access. However, infrastructure deserts have substan-
tially more of these deficiencies. Furthermore, more than half of infra-
structure deserts have deficient crosswalks and access to bank services, 
internet services, and gathering places. Overall, street tree canopy and 
sidewalks are the most widespread deficient infrastructure types. 

3.3. Relative risk and infrastructure inequity 

The estimated parameters for the fitted cumulative logit model (Eq. 
(2-3)) are shown in Table 2. The positive coefficients for (βM, βH) indi-
cate a tendency for overall infrastructure deficiency to become less 
deficient for middle-income and high-income neighborhoods compared 
to low-income neighborhoods. The estimated coefficient for the middle- 
income neighborhoods (βM) is 0.714, and the estimated coefficient for 
high-income neighborhoods (βH) is 1.124. Both coefficients show that 
middle-income and high-income neighborhoods have the tendency of 
less deficient infrastructure types than low-income neighborhoods. 

Meanwhile, values show the tendency of overall infrastructure defi-
ciency toward less deficient to be stronger for high-income neighbor-
hoods than middle-income neighborhoods in comparison to low-income 
neighborhoods. To test the model assumption of proportional odds with 
these parameters, a likelihood ratio test (16 degrees of freedom) was 
performed between the fitted model and the same model with a multi-
nomial link. With the null hypothesis that proportional odds assumption 
holds, a p-value of 0.678 was computed, which indicates that the data do 
not show gross violation of the assumption. 

Fig. 6 shows the resulting relative risks (Eq. (2-4)) between: (A low- 
income and high-income neighborhoods and (B low-income and middle- 
income neighborhoods. The x-axis denotes the overall infrastructure 
deficiency, with the value being equal or greater than that of the dis-
played label. The y-axis represents the value of relative risk estimates, 
with mean results plotted as lines and 95 % confidence levels denoted by 
the shaded regions. As indicated in Fig. 6, the positive values of relative 
risk for both comparisons suggest that low-income neighborhoods show 
a greater risk of having more deficient infrastructure than middle and 
high-income neighborhoods. Furthermore, the relative risk mean and 
confidence intervals increase for both comparisons as overall infra-
structure deficiency increases. Low-income neighborhoods are 2.0 to 3.5 
times more likely to have Highly deficient infrastructure (γ ≥ 8) than 
high-income neighborhoods; and 1.4 to 2.4 times more likely to have 
Highly deficient infrastructure (γ ≥ 8) than middle-income neighbor-
hoods. Such substantial differences suggest significant infrastructure 
inequities across income levels. 

3.4. Robustness of statistical model 

To further confirm the association between neighborhood income 
and overall infrastructure deficiency, the model was refit using contin-
uous (log) income instead of categorical income levels (Table 2). The use 
of log income helps linearize the exponentially growing trends and 
reduce bias compared to linear income (Ermini & Hendry, 2008). 
Table 3 shows the estimates of model parameters. As the log income 
increases, the positive estimated coefficient shows that the overall 
infrastructure deficiency has a trend to be “less” deficient, which cor-
roborates the previous findings using categorical income data. Fig. 7 

Fig. 4. Identified infrastructure deserts in Dallas, Texas.  
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shows the predicted probability of overall infrastructure deficiency by 
different income percentiles (5th, 25th, 50th, 75th, 95th). Note that the 
probability curve shifts to the direction of “more” deficient with 
decreased neighborhood income, again showing a tendency to have 
more deficient infrastructure types for lower-income neighborhoods. 
This trend agrees with the earlier findings that lower-income neigh-
borhoods have a significantly higher risk of greater infrastructure defi-
ciency than other neighborhoods and shows the model's robustness 
using either continuous or categorical income data. 

4. Discussion and conclusions 

Given a wide variety of physical attributes within a neighborhood 
and their inter-dependent interactions, assessing neighborhood infra-
structure condition can be highly challenging. The task involves inte-
grating a substantial set of neighborhood infrastructure condition 
indicators that are multidimensional and heavily data dependent. To our 
knowledge, there are a lack of approaches or frameworks in the existing 
neighborhood infrastructure-related literature that consider the di-
versity of neighborhood infrastructure and study multiple types of 
infrastructure combined. This paper contributes a novel approach to 
assessing neighborhood infrastructure condition by systematically 
measuring multiple infrastructure types and statistically analyzing 
infrastructure equity across neighborhood income characteristics. 

Fig. 5. Deficient infrastructure as a percentage of block groups by infrastructure type.  

Table 2 
Estimated coefficients of the cumulative logit model. We validated the model 
assumption (proportional odds) by performing a likelihood ratio test (16 degrees 
of freedom) between the fitted model and the same model except using a 
multinomial link. With the null hypothesis that proportional odds assumption 
holds, the p-value of 0.678 indicates that the data do not show gross violation of 
the assumption.   

Value Std. Error t value 

Coefficients      
βM  0.714 0.157  4.558  
βH  1.124 0.153  7.364 

Intercepts (αj)      
α1  −6.196 0.582  −10.641  
α2  −3.430 0.178  −19.235  
α3  −2.380 0.134  −17.796  
α4  −1.436 0.113  −12.713  
α5  −0.534 0.103  −5.209  
α6  0.427 0.102  4.197  
α7  1.450 0.121  12.022  
α8  2.651 0.182  14.585  
α9  4.645 0.452  10.283  
α10  6.261 1.002  6.248 

Residual Deviance 3088.505  AIC  3112.505  

Fig. 6. Relative risk: Computed relative risk is shown as circles, and shaded regions denote its upper (97.5 %) and lower (2.5 %) confidence limits. 95 % confidence 
interval of both cases were obtained using bootstrapping after 20,000 simulations. (a) The relative risk of overall infrastructure deficiency between low-income and 
high-income areas, (b) Relative risk of overall infrastructure deficiency between low-income and middle-income areas. 

Table 3 
Cumulative logit model parameters using continuous income.   

Value Std. Error t value 

Coefficients      
Log Income (β)  0.670 0.105  6.404 

Intercepts (αj)      
α1  −12.941 1.292  −10.014  
α2  −10.163 1.163  −8.741  
α3  −9.117 1.153  −7.906  
α4  −8.182 1.146  −7.141  
α5  −7.294 1.139  −6.406  
α6  −6.349 1.132  −5.609  
α7  −5.340 1.130  −4.725  
α8  −4.145 1.136  −3.648  
α9  −0.215 1.207  −1.780  
α10  −0.532 1.502  −0.354 

Residual Deviance 3104.692  AIC  3126.692  
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A critical strength of this study is the systematic and street-level 
assessment of multiple neighborhood infrastructure types. The intro-
duction of binary infrastructure indicators and overall infrastructure 
deficiency effectively integrates multiple infrastructure types and pro-
vides a straightforward and intuitive neighborhood-level representation 
of infrastructure issues. The calculation of overall infrastructure defi-
ciency allows the framework to easily be expanded to other types of 
infrastructure data (e.g., housing condition). 

Unlike previous studies that are focus on single infrastructure types, 
our assessment results combine multiple infrastructure types and deliver 
more comprehensive insights into the community's overall infrastruc-
ture condition, which provides strategic benefits to stakeholders to plan 
and ensure equitable development among communities. Furthermore, 
this study introduces the new concept of “infrastructure deserts” – low- 
income areas with substantially higher infrastructure deficiency – and 
through the case study in Dallas, TX shows the presence of infrastructure 
deserts and infrastructure inequity throughout multiple low-income 
areas. 

The statistical analyses also show that the observed infrastructure 
inequities between low-income and higher-income neighborhoods are 
statistically significant. To address these types of infrastructure in-
equities, long-term investments are needed to improve infrastructure in 
low-income areas. Investment prioritization based on asset condition 
and economic impacts (Quadros & Nassi, 2015) is one popular approach 
for infrastructure management that could be used to foster healthier and 
more equitable communities. The existence of infrastructure inequity 
not only identifies vulnerable neighborhoods with inadequate infra-
structure resources, but also draws attention to highly deficient areas 
citywide to optimize investments. 

Bond programs, separate from the city's annual operating budget, 
focus on improving capital funding for the City of Dallas assets including 
neighborhood infrastructure such as facilities, streets, libraries, and 
parks (City of Dallas, 2017 [most recent Bond program]). To address the 
deficiencies identified in this study, significant investments will need to 
be made in neighborhood infrastructure in future Bond programs. Our 
results also have other policy implications for infrastructure in-
vestments. A notable finding from this study is that sidewalk and street 
tree canopy deficits are more widespread across the city than any other 
neighborhood infrastructure type. According to Dallas' “50–50 sidewalk 
replacement program” (Dallas City Hall, 2016), homeowners are 
responsible for keeping sidewalks in safe condition and 50 % of the 
reconstruction cost is shared by the city for homeowners to fix deteri-
orating sidewalks. The widespread presence of deficient sidewalks 
suggests that further actions are needed to improve overall sidewalk 
conditions, such as fully-funded sidewalk replacements in future bond 
programs. 

In addition, the extensive insufficient street tree canopy suggests the 
need to plant significantly more trees, which have been shown to be 
effective for reducing urban heat (Tan et al., 2016), particularly given 
increasing urban warming under climate change (Aniello et al., 1995). 
Several studies such as the Urban Forest Management Plan (Texas Trees 
Foundation, 2019) and Urban Heat Management Study (Texas Tree 
Foundation, 2017) have developed plans for Dallas to increase tree 
cover and reduce urban heat, but major investments are needed to 
implement these plans. In particular, street trees are needed to provide 
shade across paved areas, which reflect the most heat, as well as to shade 
residents as they walk in the neighborhood (e.g., while accessing public 
transit or parks). 

With careful planning, these types of infrastructure investments 
could simultaneously improve multiple types of infrastructure (e.g., 
street trees that are coupled with sidewalks and new community gath-
ering spaces, such as “complete streets” initiatives (LaPlante & McCann, 
2008)). Furthermore, implementers of the recently signed Infrastructure 
Investment and Jobs Act (IIJA), namely the “infrastructure bill” (Brian 
Naylor & Deirdre Walsh, 2021; Emily Cochrane, 2021), can also benefit 
from our results. Under IIJA, state governments are required to find 
ways to identify disinvested communities relevant to each provision's 
implementation (Carlos Martin et al., 2021; Diana Lonescu, 2022). The 
discovery of infrastructure inequity and overall infrastructure measures 
in our study explicitly address these gaps and would be beneficial to 
IIJA's investment and project prioritization. 

4.1. Limitations and future research 

This study has several limitations. First, the spatial representation of 
neighborhoods is challenging and has been addressed in multiple ways 
(Flowerdew et al., 2008; Rollings et al., 2015). Despite the widespread 
use of Census tracts or block groups, there are no definitive studies 
identifying the best spatial boundary to be used among all available 
options such as Census tracts, block groups, and zip codes (Flowerdew 
et al., 2008). Past studies have shown that the types of geographic 
boundaries used to aggregate data can affect variance, standard de-
viations, correlations, and regression analyses (Flowerdew et al., 2008). 
A better approach is to use perceived, resident-defined neighborhood 
boundaries, which may better represent the neighborhood and 
neighborhood-based measures such as access to destinations, walking 
routes, or the number of residences. For example, Nextdoor, a hyperlocal 
social network service for neighborhoods, offers a more reliable and 
accurate neighborhood geometry using a crowd-sourcing mechanism 
that allows users to sketch or modify the neighborhood in which they 
currently live (Abhyanker, 2014). However, despite better geographic 
representation, resident-defined boundaries can be affected by neigh-
borhood reputation and can introduce bias in neighborhood-based 
studies. For example, residents might report living in positively 
perceived neighborhoods but exclude stigmatized areas (Flowerdew 
et al., 2008). Besides, resident-defined neighborhood boundaries do not 
have spatial compatibility with socio-economic measures embedded in 
administrative boundaries. Since this paper aims to examine multiple 
infrastructure types and explore spatial patterns of infrastructure con-
ditions at the city level, choosing a Census block group as the repre-
sentation of neighborhoods is currently the best available approach to 
include socio-economic characteristics at the smallest scale possible. 
However, this approach may introduce some errors and bias. 

A second limitation is uncertainties in the criteria for measuring 
substandard infrastructure components. Every criterion was designed to 
be consistent with either prior studies, or published design guidelines. 
However, access measures developed using spatial measures and 
Geographic Information System (GIS) procedures may fail to account for 
the actual quality of and access to infrastructure (e.g., healthcare facil-
ities) (Rollings et al., 2015; Wells & Rollings, 2012). For example, res-
idents may access facilities that are not necessarily nearby their 
neighborhoods, potentially due to social networks, transportation 

Fig. 7. Predicted probability of overall infrastructure deficiency using contin-
uous income. 
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availability, or perceptions of crime and safety (Wells & Rollings, 2012). 
Hence relying only on proximity without considering social aspects of 
neighborhoods can introduce errors or biases on infrastructure avail-
ability. Another issue is the use of cutoff distances to measure infra-
structure accessibility. Although cut-offs used in this study come from 
relevant studies, those cut-offs admittedly are not be guaranteed to be 
optimal in the cases of any other cities. Recently, increase in GIS 
implementation has led to improvements in measuring the accessibility 
of activity locations (Aman & Smith-Colin, 2020; Luo & Wang, 2003; 
Nicholls, 2001). The gravity model-based method (Weibull, 1976) cal-
culates accessibility based on zones as a function of activity opportunity 
attractiveness and the travel distance between other zones and the in-
dividual's resident zones. It is one of the most popular methods to 
measure accessibility because of the ease of interpretation and robust-
ness of model extensions (El-Geneidy & Levinson, 2006). 

Nonetheless, fixed distance approaches, such as those implemented 
in this study, remain favorable in many infrastructure-related studies 
due to their simple intuition and easy implementation. However, the 
choice of “proper” distance is mostly empirical and lacks theoretical 
justification. For instance, the critical distance used in assessing 
healthcare services is 2-mile (3.2 km) for major hospitals and 1-mile 
(1.6 km) for walk-in clinics and urgent care (Ashwood et al., 2011; 
Bersamin et al., 2011). However, many factors could affect people's 
accessibility to these destinations, such as travel behaviors, trans-
portation mode, and city development, resulting in different values of 
suggested critical distances for accessibility assessment (Neutens, 2015). 
Despite these inevitable uncertainties, the criteria chosen for this case 
study are sufficient for a comparative assessment of infrastructure equity 
across multiple infrastructure types. 

Finally, a full and complete assessment of neighborhood infrastruc-
ture should involve six main categories: connective infrastructure, pro-
tective infrastructure, socio-economic structures, water and sanitation 
lifelines, energy lifelines, and communication lifelines (Reduction & 
Recovery(GFDRR), 2017). In this study, 12 infrastructure types were 
considered that included four of the six categories, excluding energy 
lifelines and water sanitation lifelines. With additional data availability, 
more infrastructure types such as stormwater drains, water supply and 
wastewater pipes, street lights, and energy reliability will undoubtedly 
add to the story of complex, interdependent dynamics among neigh-
borhood infrastructure. 

Similarly, when considering multiple infrastructure types, the 
weighting scheme (currently equally weighted) and deficient infra-
structure cutoff (currently 50 %) could be adjusted to better describe 
neighborhoods' demand and the focus of a city's development plan. The 
determination of weights and cutoffs may reflect the city's current 
infrastructure condition and emphasis on infrastructure. We chose to 
equally weight each infrastructure type to avoid any bias across infra-
structure types. Besides, the overall infrastructure deficiency has a more 
intuitive and straightforward interpretation if each type is equally 
weighted. Our equal-weight assumption not only simplifies the nuance 
among multiple infrastructure types but also keeps the generality of the 
approach to be consistent and interpretable. However, it is recom-
mended to explore the sensitivity of outcomes to these assumptions in 
future research. 

The framework proposed in this study can easily be expanded to 
include other infrastructure types as data are available and fine-tuned to 
match the characteristics of other regions, providing the capacity and 
flexibility to measure conditions of a wide range of infrastructure types 

systematically. 
Despite the limitations noted above, this study takes the first step to 

consider neighborhood infrastructure as a diverse, multi-type system 
and assesses infrastructure conditions with data-driven approaches. Our 
findings have important policy implications and lessons for cities and 
developers that are promoting equitable infrastructure. Much progress 
has been made on this front in Dallas, with the Dallas Sidewalk 
Replacement Program (Dallas City Hall, 2016), Urban Forest Manage-
ment Plan (Texas Trees Foundation, 2019), and other initiatives to 
improve neighborhood infrastructure and equity. 

However, as the findings of this study suggest, infrastructure in-
equities persist across income lines and planners and policymakers 
should address these issues to close the “infrastructure gap.” In addition 
to prioritized investments in disadvantaged neighborhoods, community 
engagement is also needed to better understand the impact of the lack of 
specific infrastructure types on residents and develop smart and effec-
tive strategies such as incorporating the effects/needs of residents based 
on demand and supply (Jiao, 2017) for promoting priorities in neigh-
borhood infrastructure development that better meets neighborhood 
needs. 
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Appendix A 

A.1. Table. Dataset information for individual infrastructure type.   

Dataset Source Data Year Notes 

Pavement City of Dallas ArcGIS REST Service1 2018 Polyline 
Crosswalk Object detection using Google Satellite images on residential intersections 2019 Point 
Noise Wall Annotated dataset using Google StreetView images along major state highways 2019 Point 
Internet Service Federal Communication Commission2 Broadband width map at tract level 2016 Point 
Bank Access Bank branches locations from NCTCOG3 data center 2019 Point 
Medical Facility Access Major hospitals are from NCTCOG data center and urgent care or clinics are fromYelp4 search listings 2018 Point 
Public Transportation Access Bus stops, rail stations locations from City of Dallas ArcGIS REST Service 2018 Point 
Gathering Place Access Public parks, libraries, farmer markets and community centers extracted from NCTCOG data center, tax parcel data 2019 Point 
Food Access Food stores (grocery stores, wholesale) locations from NCTCOG data center 2019 Point 
Trail Access Bike & pedestrian trails from City of Dallas ArcGIS REST Service 2019 Polyline 
Street Tree Canopy Tree coverage from Texas Tree Foundation5 2018 Polygon 
Sidewalk City of Dallas ArcGIS REST Service - Public Works 2017 Polyline  
1 City of Dallas REST Service: https://gis.dallascityhall.com/wwwgis/rest/services/. 
2 Federal Communication Commission: https://www.fcc.gov/reports-research/maps/residential-fixed-internet-access-service-connections-per-1000-households 

-by-census-tract/. 
3 North Central Texas Council of Governments (NCTCOG) data center: https://data-nctcoggis.opendata.arcgis.com/. 
4 Yelp search listing: https://www.yelp.com. 
5 Texas Tree Foundation (TTF): https://www.texastrees.org 

A.2. Table. Descriptive statistics for the substandard percentage (μ) of individual infrastructure type.   

Census Block Groups (n) Standard Deviation Min 25 % 50 % 75 % Max 

Pavement  790  0.150  0.000  0.136  0.246  0.346  0.794 
Crosswalk  790  0.281  0.000  0.000  0.333  0.500  1.000 
Noise Wall  70  0.446  0.000  0.013  1.000  1.000  1.000 
Internet Service  790  0.195  0.100  0.100  0.300  0.500  0.700 
Bank Access  790  0.439  0.000  0.000  0.458  1.000  1.000 
Medical Facility Access  790  0.427  0.000  0.066  0.835  1.000  1.000 
Public Transportation Access  790  0.322  0.000  0.000  0.138  0.473  1.000 
Gathering Place Access  790  0.349  0.000  0.000  0.114  0.552  1.000 
Food Access  790  0.416  0.000  0.029  0.529  1.000  1.000 
Trail Access  790  0.361  0.000  0.341  0.765  1.000  1.000 
Street Tree Canopy  790  0.131  0.286  0.763  0.856  0.943  1.000 
Sidewalk  786  0.145  0.101  0.768  0.874  0.933  1.000  

A.3. Dataset. A Shapefile consisting information of all assessed infrastructure types is included as separated file with submission. 

Filename: Infrastructure_assessment_Dallas.zip 
File Format: ArcGIS Shapefile (zipped) 
Attributes contains in the shapefile: 
BLOCKGROUP: 12 digits Census block Group ID. 
Income3: Categorical income class based on tertiles: Low, Middle, High. 
IncomeLog: Log value of annual household median income. 
Overall_IF: Overall infrastructure deficiency - integer. 
IF_5: Categorical overall infrastructure deficiency: Excellent, Good, Moderate, Deficient, Highly Deficient. 
PCNG_PAVE: Percentage of substandard pavement segments. 
PCNG_SDWK: Percentage of residential street segments that has substandard sidewalks. 
PCNG_CRWK: Percentage of intersections that do not have crosswalk present. 
PCNG_MEDL: Percentage of residential households that don't have access* to medical service facilities. 
PCNG_GATH: Percentage of residential households that don't have access* to gathering places. 
PCNG_BANK: Percentage of residential households that don't have access* to local bank branches. 
PCNG_INTT: Percentage of residential households with substandard internet service. 
PCNG_TRIL: Percentage of residential households that don't have access* to bicycle & pedestrian trails. 
PCNG_TRAN: Percentage of residential households that don't have access* to bus stops nor rail stations. 
PCNG_TREE: Percentage of residential street segments with substandard tree canopy percentage (below 25 %). 
PCNG_NSWL: Percentage of residential households near highways that do not have noise wall present. 
Geometry: Geometry of census block group. 
*: Based on corresponding substandard criteria table (see Table 1 in the main manuscript for more details). 

A.4. Code. Pseudocode of the method used to compute 12 deficient infrastructure types 

Pavement 
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Step-1: Initiate θ as an empty array with size N×1 (N = the number of neighborhoods).
Step-2: for each Neighborhood (i) do

Find all pavement segments Ci within/intersect with the neighborhood boundary. 
Initialize Measurable Components M = 0; Substandard Measurable Components 

Mstd = 0.
for each segment Cij do

Calculate segment length Lij.
Count Measurable Components in length M = M + Lij.
if segment Cij’s Pavement Condition Index ≤ 55
then Mstd = Mstd + Lij.
end

Calculate Substandard Measurable Components Percentage (μi) = Mstd /M
if μi ≥ 0.5 then θi = 1 else θi = 0 end

end

Sidewalks

Step-1: Initiate θ as an empty array with size N×1 (N = the number of neighborhoods).
Step-2: for each Neighborhood (i) do

Find residential street segments Ci within/intersect with the neighborhood 
boundary. 

Initialize Measurable Components M = 0; Substandard Measurable Components
Mstd = 0.

for each street segment Cij do
Calculate segment length Lij.

Count Measurable Components in length M = M + Lij.
if segment Cij has no sidewalks on both sides 
then Lmissing = Lij

end
if segment has sidewalk on at least one side
then calculate the portion length (Lstd) of segment that has been obstructed 

or damaged sidewalks; 
Mstd = Mstd + max(Lmissing ,Lstd ) 

end
end
Calculate Substandard Measurable Components Percentage (μi) = Mstd /M

if μi ≥ 0.5 then θi = 1 else θi = 0 end
end

Noise walls 
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Step-1: Initiate θ as an empty array with size N×1 (N = the number of neighborhoods).
Step-2: for each Neighborhood (i) do

Find residential households Ci located within 200 feet (61m) from major highways. 
Initialize Measurable Components M = 0; Substandard Measurable Components 

Mstd = 0.
for each household Cij do

Count Measurable Components M = M + 1.
if no noise walls existed within 200 feet (61m) from Cij

then Mstd = Mstd + 1 
end

end
Calculate Substandard Measurable Components Percentage (μi) = Mstd /M
if μi ≥ 0.5 then θi = 1 else θi = 0 end

end

Crosswalks

Step-1: Initiate θ as an empty array with size N×1 (N = the number of neighborhoods).
Step-2: for each Neighborhood (i) do

Within Neighborhood boundary, find all crosswalk intersections Ci intersections 
that are either:

1) Intersections between residential streets
2) Intersections between school zones. 

Initialize Measurable Components M = 0; Substandard Measurable Components 
Mstd = 0.

for each crosswalk intersection Cij do
Create a search buffer region (34m radius) bij given its coordinates.
Count Measurable Components M = M + 1.
if no crosswalks existed within bij

then Mstd = Mstd + 1 
end

end
Calculate Substandard Measurable Components Percentage (μi) = Mstd /M

if μi ≥ 0.5 then θi = 1 else θi = 0 end
end

Street Tree Canopy coverage 
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Step-1: Initiate θ as an empty array with size N×1 (N = the number of neighborhoods).
Step-2: for each Neighborhood (i) do

Final all street segments Ci within the neighborhood
Create street buffer polygons C’i (use city-wide median width: 6.5 feet or 2 meter 

radius)
Initialize Measurable Components M = 0; Substandard Measurable Components 

Mstd = 0.
for each street polygon C’ij do

Count Measurable Components M = M + 1
Compute the area of street polygon Aij.
Compute the area of the tree canopy Aijt within C’ij.
Compute the street tree canopy percentage as pij = Aijt / Aij.
if pij ≤ 0.25 then Mstd = Mstd + 1 end

end
Calculate Substandard Measurable Component Percentage (μi) = Mstd /M.
if μi ≥ 0.5 then θi = 1 else θi = 0 end

end

Pedestrian & bicycle trail access

Step-1: Initiate θ as an empty array with size N×1 (N = the number of neighborhoods).
Step-2:Break the pedestrian & bicycle trails into points using 600-meter intervals. 

Use points to create service area S for pedestrian & bicycle trails (0.8 km travel distance).
Step-3: for each Neighborhood (i) do

Find all residential households Ci within the neighborhood.
Initialize Measurable Components M = 0; Substandard Measurable Components 

Mstd = 0.
for each residential household Cij do

Count Measurable Components M = M + 1.
if Cij is spatially outside of S then Mstd = Mstd + 1 end

Calculate Substandard Measurable Components Percentage (μi) = Mstd /M
if μi ≥ 0.5 then θi = 1 else θi = 0 end

end

Medical facility access

Step-1: Initiate θ as an empty array with size N×1 (N = the number of neighborhoods).
Step-2:Create service area S1 for major hospitals (2-mile or 3.2 km travel distance).

Create service area S2 for walk-in clinics and urgent care (1-mile or 1.6 km travel 
distance).
Step-3: for each Neighborhood (i) do

Find all residential households ci within the neighborhood.
Initialize Measurable Components M = 0; Substandard Measurable Components 

Mstd = 0.
for each residential household Cij do

Count Measurable Components M = M + 1.
if Cij is spatially not in S1 nor S2  then Mstd = Mstd + 1 end

Calculate Substandard Measurable Components Percentage (μi) = Mstd /M
if μi ≥ 0.5 then θi = 1 else θi = 0 end

end

Public transportation access 
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Step-1: Initiate θ as an empty array with size N×1 (N = the number of neighborhoods).
Step-2:Create service area S1 for rail stations (0.8 km travel distance).

Create service area S2 for bus stops (0.4 km travel distance).
Step-3: for each Neighborhood (i) do

Find all residential households Ci within the neighborhood.
Initialize Measurable Components M = 0; Substandard Measurable Components 

Mstd = 0.
for each residential household Cij do

Count Measurable Components M = M + 1.
if Cij is spatially not in S1 nor S2 then Mstd = Mstd + 1 end

Calculate Substandard Measurable Components Percentage (μi) = Mstd /M
if μi ≥ 0.5 then θi = 1 else θi = 0 end

end

Food access

Step-1: Initiate θ as an empty array with size N×1 (N = the number of neighborhoods).
Step-2:Create service area S for fresh food stores (1-mile or 1.6 km travel distance).
Step-3: for each Neighborhood (i) do

Find all residential households Ci within the neighborhood.

Initialize Measurable Components (M) = 0; Substandard Measurable Components 
(Mstd) = 0.

for each residential household Cij do
Count Measurable Components M = M + 1.
if Cij is spatially not in S then Mstd = Mstd + 1 end

Calculate Substandard Measurable Components Percentage (μi) = Mstd /M
if μi ≥ 0.5 then θi = 1 else θi = 0 end

end

Bank access

Step-1: Initiate θ as an empty array with size N×1 (N = the number of neighborhoods).
Step-2:Create service area S for bank branches (1-mile or 1.6 km travel distance).
Step-3: for each Neighborhood (i) do

Find all residential households Ci within the neighborhood.
Initialize Measurable Components M = 0; Substandard Measurable Components 

Mstd = 0.
for each residential household Cij do

Count Measurable Components M = M + 1.
if Cij is spatially not in S then Mstd = Mstd + 1 end

Calculate Substandard Measurable Components Percentage (μi) = Mstd /M
if μi ≥ 0.5 then θi = 1 else θi = 0 end

end

Gathering place access 
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Step-1: Initiate θ as an empty array with size N×1 (N = the number of neighborhoods).
Step-2:Create service area S1 for parks (1-mile or 1.6 km travel distance).

Create service area S2 for libraries (1-mile or 1.6 km travel distance).
Create service area S3 for community centers (1-mile or 1.6 km travel distance).
Create service area S4 for farmers’ markets (1-mile or 1.6 km travel distance).

Step-3: for each Neighborhood (i) do
Find all residential households Ci within the neighborhood.
Initialize Measurable Components M = 0; Substandard Measurable Components 

Mstd = 0.
for each residential household Cij do

Count Measurable Components M = M + 1.

if Cij is spatially outside of S1 and S2 and  S3 and S4 then Mstd = Mstd + 1 
end

Calculate Substandard Measurable Components Percentage (μi) = Mstd /M
if μi ≥ 0.5 then θi = 1 else θi = 0 end

end

Internet Service

Step-1: Initiate θ as an empty array with size N×1 (N = the number of neighborhoods).
Step-2:Uniformly disaggregate data from census tract level into neighborhood level (Note: 
internet data is only available at Census tract level)
Step-3: for each Neighborhood (i) do

Find attribute (pcat_all) Si that represents the households with over 200 kbps in at 
least one direction

Convert Si into percentage measure si by taking the average of the range
Calculate Substandard Measurable Components Percentage (μi) = 1- si

if μi ≥ 0.5 then θi = 1 else θi = 0 end
end

Note: pcat_all represents the number residential households with fixed high-speed connections 
over 200 kpbs in at least one direction per 1000 households
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