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Neighborhood infrastructure, such as sidewalks, medical facilities, public transit, community gathering places,
and tree canopy, provides essential support for safe, healthy, and resilient communities. This paper examines the
presence and condition of neighborhood infrastructure and shows that “infrastructure deserts” exist, which are
low-income neighborhoods with significantly more deficient infrastructure. A generalized data-driven frame-

work is developed and implemented at the street-level for 12 types of neighborhood infrastructure in Dallas,
Texas. The results show significant infrastructure inequities across income levels for most types of infrastructure.
Statistical inference predicts (with 95 % confidence) that low-income neighborhoods are 2.0 to 3.5 times more
likely to have highly deficient infrastructure (8 or more deficient infrastructure types) than high-income areas
and 1.4 to 2.4 times more likely to have highly deficient infrastructure than middle-income neighborhoods. This
paper addresses the methodological challenge of considering multiple infrastructure types and provides a guide
for infrastructure investment prioritization.

1. Introduction

This paper develops and implements a generalizable data-driven
framework for assessing the condition and equity of neighborhood
infrastructure. Neighborhood infrastructure is a system of relatively
small-scale physical structures and service facilities that play an essen-
tial role in improving residents' lives, health, safety, and social justice
(MacDonnell et al., 2004; Reduction & Recovery(GFDRR), 2017). Un-
derstanding neighborhood infrastructure is necessary to support com-
munity wellbeing and prioritize future infrastructure investments. While
efforts have been made to study the condition and impact of individual
types of neighborhood infrastructure, the focus and scope of such efforts
remain relatively singular (limited to one or a few infrastructure types)
and fail to treat infrastructure as a diverse, multi-component system. For
example, leisure walking experiences are affected by multiple infra-
structure features such as sidewalk condition, crosswalk presence at
intersections, street pavement condition, and street tree cover. So, to
truly understand the overall impact of infrastructure on a neighborhood,
multiple infrastructure types must be assessed through an integrated
approach.

The forms of neighborhood infrastructure can be physical structures
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(such as sidewalks, crosswalks, pedestrian trails, street lights, street tree
canopy) or facilities (such as hospitals) located or operated outside of
the neighborhood as community services. These facilities provide
human development support (such as health clinics, financial facilities),
public services (such as transportation, schools, libraries, internet), and
shared space for social gatherings and recreational activities (such as
parks, trails, community centers, noise walls). Neighborhood infra-
structure types can be quite diverse and vary from community to com-
munity depending on geophysical, socio-cultural, and economic factors.
Therefore, the estimation of impacts, changes, and future development
of neighborhood infrastructure not only requires a thorough under-
standing of infrastructure conditions but also the community's socio-
economic and cultural settings.

Previous studies have shown the importance of neighborhood
infrastructure for human health, community growth, and community
safety. For example, neighborhood infrastructure, particularly side-
walks, streets, and access to local destinations such as grocery stores,
parks, and recreation facilities, have impacts on obesity (Booth et al.,
2005); related chronic health outcomes (Roux & Mair, 2010); health
behaviors (Gordon-Larsen, 2006; Leventhal & Brooks-Gunn, 2000;
McCormack & Shiell, 2011); mental health outcomes (Leventhal &
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Brooks-Gunn, 2000; Ross, 2000; Roux & Mair, 2010); and social well-
being outcomes (Handy et al., 2002; McCormack & Shiell, 2011;
Rogers et al., 2013). Pedestrian-friendly streets, open green spaces, and
well-maintained neighborhood infrastructure (such as sidewalks,
crosswalks, healthcare, food stores, and community centers) not only
promote healthy activities such as walking and bicycling (Handy et al.,
2002) but also enhance social interactions (Gunn et al., 2017), social
cohesion and social capital (Rogers et al., 2013). These factors facilitate
the organic growth of community attitudes toward healthy and active
lifestyles (Gunn et al., 2017; Srinivasan et al., 2003; Ulmer et al., 2016).
Furthermore, studies have shown the positive influence of well-
established neighborhood infrastructure (such as sidewalks, cross-
walks, street lighting) on perceived and actual safety from crime or
traffic-related events (Farrington & Welsh, 2002; Hong & Chen, 2014;
Hwang et al., 2017). For example, well-designed crosswalks and side-
walks help reduce pedestrian-vehicle crashes (Hwang et al., 2017).

Conversely, the lack of quality neighborhood infrastructure can in-
crease community susceptibility to natural disasters and chronic eco-
nomic crises (Aldrich & Meyer, 2015). Lack of neighborhood
infrastructure has also been considered a critical indicator of social
injustice based on three primary allocation principles (Deutsch, 1975):
equity, equality, and need. Equity is an issue of distributive justice and
calls for fairness where service are provided based on rectifying the
existing patterns of service distribution (Lucy, 1981). Equality means
that everyone receives the same public service (Lucy, 1981), which can
lead to more harmonious social relationships (Deutsch, 1975) but may
not meet individual needs. The concept of need is consistent with the
idea that those needing more service should receive more rather than
less (Lucy, 1981). Each of these three principles operates in a specific
domain. For neighborhood infrastructure, including public utilities,
parks, and facilities, equality is often impossible to achieve in the sense
of equal access because of the variation in community development and
terrain. The need is also likely tied to population and distributed
geographically (Lucy, 1981). Therefore, analyzing the equitable distri-
bution of infrastructure services is a better approach for understanding
the present condition and future investments. Thus we primarily focus
on the equity aspect of neighborhood infrastructure distribution in this
work.

One way of studying infrastructure equity, as suggested by the U.S.
Department of Transportation, is to compare the infrastructure charac-
teristics or conditions in neighborhoods with high concentrations of
socially vulnerable populations (such as low-income households, mi-
norities, and car-free households) compared to those in adjacent
neighborhoods or to regional averages (Forkenbrock et al., 2004).
Following this guideline, many researchers have evaluated infrastruc-
ture conditions and discovered infrastructure inequities across many
individual types of neighborhood infrastructure. Studies have shown
economic and ethnic disparities in walkability, street trees, public
transportation, parks, pedestrian crosswalks, and trails (Aman & Smith-
Colin, 2020; Borowski et al., 2018; Hirsch et al., 2017; Wolch et al.,
2005; Xiao et al., 2017). Grocery stores and farmers' markets have also
been widely studied in the realm of “food deserts,” as areas showing
substantial inequities across different socio-economic and racial groups
(Hilmers et al., 2012). While these studies show the importance of in-
dividual infrastructure types and their impacts on communities, the
presence and impact of multiple deficient types of physical infrastruc-
ture on a community is not yet known. Hence, a systematic condition
assessment is needed at the community level to evaluate multiple
neighborhood infrastructure types and support examination of their
aggregated impacts on the community.

Previous studies have assessed neighborhood infrastructure using a
variety of measures. Inspecting infrastructure surface exteriors and
identifying defects is the most common method to assess infrastructure
such as streets and sidewalks (Frackelton et al., 2013; Shah et al., 2013).
Researchers have also used proximity as a metric for assessing coverage
of infrastructure services such as parks (Cutts et al., 2009; Nicholls,
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2001; Wolch et al., 2005; Xiao et al., 2017), healthcare (Wang & Luo,
2005), public transportation system (bus stops, rail stations) (El-Geneidy
et al.,, 2010; O’Sullivan & Morrall, 1996), and fresh food supplies
(Gordon et al., 2011; Ploeg et al., 2009). In addition, measures derived
from field audits, secondary data sources, and satellite imagery/videos
have allowed the assessment of ground-based or hard-to-measure
infrastructure such as neighborhood street walkability (Ewing et al.,
2006; Frackelton et al., 2013; Parks & Schofer, 2006; Su et al., 2019),
street tree canopy (Maco & McPherson, 2002; Roberts et al., 2019)
internet speed (Perzynski et al., 2017), and street condition (Engineer-
ing-USACE, 2014; Shah et al., 2013). However, the integrated physical
assessment of multiple neighborhood infrastructure types faces meth-
odological challenges and limitations in effective implementation
(Rollings et al., 2015). Due to the difficulty of gathering neighborhood-
scale data of multiple infrastructure types on a large scale, most previous
studies have primarily focused on either small-scale studies of one or
several infrastructure types or large-scale studies at city or regional scale
of only a single infrastructure type.

This study fills the gap between these two scales by providing
quantitative infrastructure condition assessment at city scale and sys-
tematically combining multiple infrastructure types to show overall
infrastructure condition using a data-driven framework. The results
obtained from the framework are overlain with aspects of the neigh-
borhood's socio-economic data (for this case study, income level) to
evaluate infrastructure equity.

2. Materials and methods

Fig. 1 shows the generalized data-driven framework developed in
this work to assess multiple neighborhood infrastructure types at the
neighborhood level quantitatively and to explore infrastructure inequity
in urban settings. The framework consists of three primary components:
1) compute neighborhood infrastructure deficiency by aggregating the
presence and condition of each infrastructure type from street to
neighborhood level; 2) compare infrastructure deficiency across income
levels to identify the existence of infrastructure deserts; and 3) identify
infrastructure inequity using statistical models. Each component is dis-
cussed in more detail in the following subsections.

The framework given in Fig. 1 has several benefits: 1) integrating
street-level condition assessment with neighborhood-level socio-eco-
nomic characteristics such as income; 2) enabling the addition of new
infrastructure types while still maintaining robustness; and 3) providing
a highly generalized approach that can be applied to other cities or re-
gions with available data. The first step of the framework is to determine
a proper spatial representation of neighborhood. Ideally, the chosen
representation should naturally represent the residency boundary as a
neighborhood. To aid in generalization, the framework is applied with a
consistent spatial representation of neighborhoods as Census block
groups for two main reasons. First, the size of a block group (typically
ranges from 500 to 1000 housing units) and the cartographic repre-
sentation approximates the overall size and geometry of a neighbor-
hood. Secondly, by definition, census block groups share compatible
population densities. Finally, the Census block group is the smallest
administrative boundary for which the Census Bureau freely publishes
sample data (Bureau, 2020). Therefore, the Census block group seam-
lessly aligns with the U.S. Census Bureau's socio-economic attributes.

The infrastructure condition data comes from both publicly acces-
sible databases and computer-assisted programs/algorithms, as pre-
sented in Table 1. For instance, the noise walls data were obtained by
inspecting Google Street View images along the major highways in
Dallas and labeling the presence of recognized noise walls manually.
Crosswalk data were collected at intersections of all residential streets
and within school zones using a deep learning object recognition algo-
rithm called YoLo3 (Redmon & Farhadi, 2018) and high-resolution
Google satellite imagery. Finally, it is worth mentioning that internet
service data are published at the Census tract level (Commission, 2019).
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Fig. 1. Overview of the neighborhood infrastructure assessment framework.

To be spatially consistent with other infrastructure types, internet data
were assumed to be uniform within Census tract and then allocated into
Census block groups. Please see Appendix A.1 for more detailed
implementation, descriptions, and data sources for each infrastructure

type.
2.1. Compute overall infrastructure deficiency

The first step of the framework (shown in Step 1 of Fig. 1) examines
each infrastructure type's condition and computes the overall neigh-
borhood infrastructure deficiency. At the street level, metrics for
measuring infrastructure condition vary across different infrastructure
types and may vary in different cities. A neighborhood-level binary
deficiency indicator () is used to aggregate from street level measures
within the neighborhood to represent deficiency of individual infra-
structure type. To compute the binary infrastructure deficiency indica-
tor, any quantifiable infrastructure components are identified within a
neighborhood. Depending on the infrastructure type, multiple types of
elements could be measured in the neighborhood.

This study focuses on two primary metrics for assessing deficiencies:
1) direct or secondary condition attributes associated with the available
condition dataset (e.g., pavement and sidewalk cracking or damage);
and 2) physical presence or service area provided by the infrastructure.
For the first metric, it is straightforward to apply the criteria following
existing guidelines and determining substandard measurable compo-
nents without additional spatial transformations. For example, for
pavement conditions, a numerical attribute called Pavement Condition
Index (PCI) is often used to represent pavement segments' surface con-
ditions, and empirical guidelines have suggested cutoffs for adequate
pavement condition ratings (e.g., the pavement is classified as poor if its
PCI is <55) (Engineering-USACE, 2014).

For the second type of metric, proximity calculations are needed to
establish service areas before substandard criteria can be applied. A
service area is computed around each infrastructure facility (such as
hospitals, parks, food stores) that describes which residents in sur-
rounding housing units can reach the facility within a predefined travel
range or duration along the road network (Talen & Anselin, 1998). Thus,
the residential households living within the service area are assumed to
have access to the facilities and to receive related services. Residential
households outside of service areas are assumed not to receive such
services. The choice of predefined travel distances depends on the type
of infrastructure facility. For instance, al0-minute walking distance is

frequently used as the walkable distance to adjacent parks and pedes-
trian & bicycle trails (Kaczynski et al., 2009; Rollings et al., 2015). The
distance of 1-mile or less is widely accepted as the threshold for deter-
mining sufficient access to fresh food supplies in food desert studies
(Jiao et al., 2012; Ploeg et al., 2009).

Once all of the infrastructure facility locations and predefined travel
distances are obtained, GIS is used to create the service area as spatial
polygons. For the service area generation, the street network is used to
ensure an accurate estimate of distances along the road network. Next,
centroids of parcel data are used to represent and locate residential
households. Lastly, all residential households living within and outside
the service areas are identified using GIS intersect methods; this allows
households outside of any service area to be identified as receiving
substandard infrastructure services.

For this analysis, a fraction number (x) is defined to represent sub-
standard measurable components as a percentage of measurable infra-
structure components within the same neighborhood:

MSld
M

p= 1-1)
where M4 represents substandard measurable infrastructure compo-
nents within the neighborhood; and M is the total number of measurable
components within the neighborhood. As shown in Eq. (2-2), the binary
infrastructure deficiency indicator (¢) equals 1 if at least half (i.e., a
majority) of the measurable components in a particular neighborhood
are substandard (u > 0.5). Otherwise 6 = 0.

_ | 0sifu =05 )
e_{l;ifp<0.5 (-2

The benefit of using such indicators is to normalize all infrastructure
measurements to the same scale of 0 or 1, which allows multiple binary
indicators to be combined mathematically in later steps. The above
procedure is repeated until ¢ is obtained for all infrastructure types and
then the overall infrastructure deficiency (y) of each neighborhood is
computed as the summation of 6 (Eq. (1-3)):

T=>06 (1-3)

iel

where I includes all the considered infrastructure types. The summation
of multiple deficiency indicators into a single metric represents the
overall neighborhood condition. Thus, y ranges from zero to the total
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Table 1

Substandard criteria for neighborhood infrastructure types.

Infrastructure Assessment Substandard Criteria Criteria Reference
Type Unit
Streets Street Pavement Condition (Engineering-
Segments Index (PCI) < 55 USACE, 2014)
Any exi f
. Sidewalk Y eXls.tence ° (Frackelton et al.,
Sidewalks obstruction, damage,
Segments . 2013)
or missing segments
I 2
Internet Residential kr]l)te:;ﬁt;[p lee ea(it<0n(;0 (Commission,
Households . P K 2019)
direction
Missing crosswalks at
Crosswalks Street intersections with (Zegeer et al.,
Intersections traffic lights or school 2005)
zones
ithin 200 ft of th
Noise Wall Residential gl h\:?a (21?1 d I'(l)O no?se (Rochat & Reiter,
Households 3 Y 2016)
walls present
The average
Street Tree Street percentage of street (Maco &
Canopy Segments segment covered by McPherson, 2002)
tree canopy <25 %
Not within 5-min
Public . X walking distance (0.4 (El-Geneidy et al.,
R Residential km) of the bus stop or . e
Transportation . . 2010; O’Sullivan
Access Households 10-min walking % Morrall, 1996)
distance (0.8 km) of c o
the rail station
Not within 2 miles
3.2k f maj Ashwood et al.
Medical Facility Residential ( R m) o major (Ashwood e T
Access Households hospitals or 1-mile 2011; Bersamin
(1.6 km) of walk-in etal., 2011)
clinics or urgent care
Bike & . . Not within 10-min
. Residential R .
Pedestrian Households walking distance (0.8 -
Trails km)
Including public parks,
libraries, farmer
Residential markets and
Gathering Places community centers. (Xiao et al., 2017)
Households S .
Not within 10-min
walking distance (0.8
km)
Residential Nearb'y f_OOd storfes are (Gordon et al.,
Food Access Households not within a 1-mile 2011)
distance (1.6 km)
Residential Nearby be.mk. branchfs
Bank Access are not within a 1-mile -
Households

distance (1.6 km)

number of infrastructure types considered. If a neighborhood does not
have any deficient infrastructure types, y=0. Finally, to aid in inter-
pretation, a categorical representation of overall infrastructure defi-
ciency is created based on the percentile of the resulting y. As such, the
resulting overall infrastructure deficiency values are defined as (1)
Excellent ([0 % ~ 10 %]), (2) Good ([10 % ~ 25 %]), (3) Moderate ([25
%-75 %1), (4) Deficient ([75 %90 %]) and, (5) Highly deficient ([90 %—
100 %]).

2.2. Identify the existence of infrastructure deserts

The next step is to find neighborhoods that are both economically
disadvantaged and significantly lacking in neighborhood infrastructure
relative to wealthier neighborhoods. These areas are labeled “infra-
structure deserts,” analogous to “food deserts,” which are defined as
low-income neighborhoods with insufficient access to healthy food
sources (Cummins & Macintyre, 2002; Ploeg et al., 2009; Wrigley,
2002); and “transit deserts,” which are transit-dependent areas that lack
adequate public transit service (Aman & Smith-Colin, 2020; Jiao &
Dillivan, 2013). The introduction of “infrastructure deserts” presents a
more comprehensive and integrated perspective of neighborhood
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weakness in physical assets and community services. We agree that
including the effects/needs of residents can provide a more compre-
hensive view of some types of infrastructure. Determining deficiency
based on differences between need and supply (Jiao, 2017) is widely
used and accepted in the transportation arena, e.g. However, this
approach is difficult to implement for neighborhood infrastructure due
to the diversity of “infrastructure types”. It is challenging to properly
define and measure the demand and need when multiple infrastructure
types are considered. In terms of number of residents, our framework
uses the number of residential households to approximate the size and
the need of residents within the neighborhood when assessing infra-
structure types related to facility access, for other types of infrastructure
(e.g., pavement condition), assessment is made by street segment, which
is more relevant than number of residents. For example, we compute the
number of residential households and compare it with the total number
of households within the same neighborhood to determine whether
infrastructure access is sufficient. The category of Highly deficient
infrastructure condition from the previous step is chosen as the quan-
titative representation of neighborhoods as significantly more deficient
in infrastructure presence and condition. Such areas that are also low
income are identified as infrastructure deserts.

To define neighborhood income category, neighborhoods are clas-
sified into three groups (low, middle, and high) using tertiles of annual
median household income (Chau et al., 2013; Franco et al., 2008). A few
studies use annual median family income as an income variable instead
of household income (Franco et al., 2008). In this study, annual median
household income since 2013 has more available historical data than
annual family income and has been used to interpolate missing income
data for some neighborhoods (Bureau, 2020) Our analyses indicate these
choices do not significantly bias the resulting spatial patterns.

2.3. Explore infrastructure inequity with statistical models

Lastly, to account for any uncertainty within the observed data,
statistical models can serve to further explain the relationship between
neighborhood infrastructure condition and income, as well as calculate
the significance of infrastructure inequity. Since the overall infrastruc-
ture deficiency is computed as an ordinal integer according to Eq. (1-3),
the cumulative logit model (also called proportional odds model)
(Agresti, 2003) is appropriate for this case as it was designed for a
response variable that takes values in a set of ordered categories (mul-
tiple ordinal responses). This model was initially proposed by Walker
and Duncan (Walker & Duncan, 1967) as an extension of the logistic
regression model for binary responses.

In this study, the model relates a response variable Y, consisting of
ordered categories (e.g., overall infrastructure deficiency), to a cate-
gorical explanatory variable (e.g., neighborhood income characteristics)
with k + 1 levels and represented by x, a vector of k dummy variables
that represent k different levels (the remaining level is chosen as the
reference level). The model has the following generalized
representation:

logitlPr(Y <jlx)]=a;+fx,j=1,... —1 (2-1)
where Pr(Y < j|x) is the cumulative probability of the event (Y < j), a;j
are the unknown intercept parameters, and ﬂT = ($1,P2, ..., Px) is a vector
of regression coefficients used for all response categories. J is the total
number of response categories and logit, also known as the log-odds
transformation, is the inverse function for the standard logistic cumu-
lative distribution function:

(2-2)

logit(t) =/
ogit(t) = log
The model assumes the same effects f for each logit. Thus the
regression coefficient vector, #, does not depend on j, implying that the
log-odds ratio is proportional to the difference between two x values and
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shares the same proportionality constant regardless of j. This is also
called the proportional odds assumption. The validity of this assumption
can be checked based on a ;(2 score test (Peterson & Harrell, 1988).

Applying this model with overall infrastructure deficiency as a
response variable and income level as a single explanatory variable re-
sults in:

logit[Pr(y <jlx)] = a; + fyxu + Puxu,j = 1,2, ..., — 1 (2-3)

where y is the computed overall infrastructure deficiency with each
value of integer representing one category; X, Xg are two dummy
variables: x); = 1 if the income level is middle, xp; = 0; xy = 1 if income
level is high, and xy = 0; xp = xg = O if the income level is low, serving as
the reference level. J is the max number of deficient infrastructure types
observed (J = 11 in this case study) and Sy, Sy are regression coefficients
for the dummy variables of the categorical covariate with three levels
(low, middle, high).

The fitted model is validated by performing a Likelihood Ratio Test
(LRT) (Agresti, 2003) between the fitted model and the same model
using a multinomial link. With the null hypothesis that proportional
odds assumption holds, a p-value of >0.05 indicates that the data do not
show gross violation of the assumption. A relative risk measure of
deficient infrastructure types (RRy) is then computed between different
income levels to draw statistical conclusions. In particular, the relative
risk of low-income neighborhoods of having “more deficient (>j)”
infrastructure types compared to neighborhoods with income-level
denoted as x is written as:

RR. — Pr(y > jllow income)
Y Py >y

1= Pr(y <jllow income) 1+ e%th
B 1—Pr(y <jlx) T oldew

j=1,..,0—1,x = {M,H} (2-4)

Relative risk offers adequate measures to compare overall infra-
structure condition across different neighborhood income levels. Given
neighborhood income x and the number of deficient infrastructure types
J» if the relative risk value (RRy) is larger than one; then low-income
neighborhoods show a higher risk of having j or more deficient infra-
structure types than neighborhoods with income level x, also showing
evidence of infrastructure inequity.

To obtain the confidence intervals for relative risk at each j, a
bootstrapping method (James et al., 2013) is used with 20,000 iterations
to compute the upper (97.5 %) and lower (2.5 %) confidence level of the
relative risk estimates. All of the statistical computations described
herein are executed with the statistical software R. The cumulative logit
model is fit using the function polr from package MASS (Ripley et al.,
2013). All coefficients were exported and visualized using Python.

2.4. Case study — Dallas, Texas

Dallas, TX, USA, was selected as the case study for this first infra-
structure assessment framework. It is a pertinent choice because of its
ongoing strong economic development, significant infrastructure prob-
lems and issues, and plans for redevelopment activities in the future to
address infrastructure issues, as well as its history of racial and wealth
segregation by neighborhood. Dallas is one of the Rockefeller Founda-
tion's 100 Resilient Cities; its resilience strategy was released in 2018
and includes equity and neighborhood infrastructure investment as core
goals. Dallas has the highest level of income inequality in the United
States (U.S.) (Florida, 2017; Taylor & Fry, 2012) and one of the highest
rates of increase in urban heat among major US cities (Habeeb et al.,
2015) Furthermore, Dallas County has the 4th highest number of
pedestrian fatalities among U.S. counties in 2016 (Retting et al., 2017).
The city also rated significantly lower than the national average in street
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and infrastructure maintenance, according to a community survey in
2018. These statistics highlight the existing neighborhood infrastructure
issues and make Dallas an ideal location to study neighborhood-scale
infrastructure equity.

To assess neighborhood infrastructure in Dallas, a total of 12
neighborhood infrastructure types with available and newly derived
data were considered (pavement, sidewalk, crosswalk, noise wall, public
transportation, trails, medical facilities, food stores, community gath-
ering places, bank service, street tree canopy, and internet service).
Measurable data for each infrastructure type were identified based on
multiple types of data (tabular data, spatial lines, or spatial points) and
related references and infrastructure design guidelines as shown in
Table 1. The table describes measurable components for each infra-
structure type and corresponding evaluating criteria. For noise walls,
only households near highways can be affected by the presence or
absence of noise walls. Hence, the evaluation is restricted only to resi-
dential households within 200 ft of major highways (Rochat & Reiter,
2016).

Lastly, annual median household income of Census block groups in
the Dallas region were obtained from the 2018 U.S. Census table —
B19013. For block groups with missing income records, the average
between historical information at the block group level (linear regres-
sion using the past five years' income records, as available) and current-
year income at the tract level is used to fill in missing data. This method
offers a better estimation for missing income data because it accounts for
currency inflation over the years and impacts of nearby neighborhoods
within the same Census tract. After filling in missing income records, a
total of 790 neighborhoods across Dallas had complete income and
infrastructure condition data. The neighborhood income was then
categorized as low-income (347 neighborhoods), middle-income (205
neighborhoods), and high-income (238 neighborhoods) using tertiles
across whole Dallas county. The cutoffs between income levels were
$44,100 for the 33rd percentile and $70,200 for the 66th percentile.

3. Results
3.1. Individual and overall infrastructure condition

Applying the framework (described in detail below) to the Dallas
dataset required the following steps. First, individual infrastructure
types were rated within each neighborhood using the substandard
infrastructure criteria (Table 1). Second, overall neighborhood infra-
structure deficiency (y) was then calculated by summing the binary
deficiency indicators across all 12 infrastructure types. Categories of
infrastructure deficiency were then allocated to each neighborhood
based on percentiles to the nearest integer value of y could have:
Excellent (y < 3) (0% ~ 10 %), Good (y = 4) (10 % ~ 25 %), Moderate (5
<7y <6) (25 % ~ 75 %), Deficient (y = 7) (75 % ~ 90 %), and Highly
deficient (y > 8) (90 % ~ 100 %). Following the definition of infra-
structure deserts, low-income neighborhoods with Highly deficient
infrastructure (y > 8) were then identified across the city. Finally, a
cumulative logit model was fit between overall infrastructure deficiency
and income level to compute the relative risk of low-income neighbor-
hoods versus wealthier neighborhoods.

Fig. 2 shows the percentage of neighborhoods with deficiencies for
each individual type of infrastructure by income level. This distribution
of deficient infrastructure exhibits three different patterns by infra-
structure type: 1) For crosswalks, internet service, medical facilities,
noise walls, and food access, the share of neighborhoods with deficient
infrastructure is much higher in low-income neighborhoods than others,
showing a decreasing trend with increasing income; 2) For pavement,
sidewalks, community gathering spaces, trail access, and street tree
canopy, the share of deficient infrastructure does not show much dif-
ference across the three income groups; 3) For public transit, an
increasing trend exists with deficient infrastructure versus income level.

Some of the results are consistent with previous findings, which show
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Fig. 2. Percentage of deficient infrastructure by neighborhood income level and infrastructure type.

inequities across community's socio-economic status for individual
infrastructure, such as crosswalks (Bereitschaft, 2017; Su et al., 2019),
internet service (Perzynski et al., 2017), and food service (Chau et al.,
2013). However, high-income neighborhoods experience more defi-
ciency than low-income neighborhoods for public transit and, to some
extent, sidewalks. This finding is not consistent with the literature
(Borowski et al., 2018) and may be due to higher percentage of vehicle
ownership in high-income neighborhoods.

These types of mixed relationships between infrastructure types and
neighborhoods' socio-economic status introduce challenges to studying
infrastructure equity by individual infrastructure type. This illustrates
the need to consider multiple infrastructure types simultaneously and to
develop a multi-infrastructure framework with an overall infrastructure
deficiency metric.

Fig. 3 (a) shows a histogram of overall infrastructure deficiency as a
percentage of Census block groups, the spatial unit defining
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neighborhoods in this study. Infrastructure deficiency categories are
also represented by color, with dashed lines showing the boundaries
between each category. Fig. 3 (b) shows the distributions of overall
infrastructure deficiency by income level; the y-axis represents the
percentage of neighborhoods with the same income level. The results
show that the overall infrastructure deficiency ranges from 1 to 11,
meaning that all neighborhoods have at least one deficient infrastruc-
ture type and none are deficient in all infrastructure types (12 types in
total). The majority of neighborhoods have between 4 and 7 deficient
infrastructure types.

Overall, 14 % of the neighborhoods are classified as Excellent for
their overall infrastructure condition, while 13 % of neighborhoods are
Highly deficient. Fig. 3 (b) shows that middle-income neighborhoods
have a similar distribution to high-income neighborhoods, except that
there are more high-income neighborhoods with very few infrastructure
deficits (Excellent). However, low-income neighborhoods clearly exhibit
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Fig. 3. Overall infrastructure deficiency. (a) Histogram of overall infrastructure deficiency as a percentage of block groups, (b) Histogram of overall infrastructure

deficiency as a percentage of block groups by income level.
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higher overall infrastructure deficiency than other neighborhoods, as
the distribution is horizontally shifted toward Highly deficient (8 or more
deficient infrastructure types). This pattern reveals evidence of inequi-
table infrastructure provision between low-income neighborhoods and
others.

3.2. Infrastructure deserts

Fig. 4 shows the map of infrastructure deserts (low-income neigh-
borhoods with Highly deficient infrastructure (y > 8)) in Dallas. A total of
62 neighborhoods were identified as infrastructure deserts. The infra-
structure deserts also show a clear spatial pattern where more low-
income neighborhoods in the south (24 %, or as 54 out of 221 low-
income neighborhoods) are identified as deserts than low-income
neighborhoods in the north (6 %, or as 8 out of 126 low-income
neighborhoods).

As further comparison of infrastructure deserts versus other areas,
Fig. 5 shows individual deficient infrastructure types as a percentage of
neighborhoods citywide versus within infrastructure deserts. It suggests
that more than half of the neighborhoods citywide have inadequate
street tree canopy, sidewalk, noise wall, trail access, medical facility
access, and food access. However, infrastructure deserts have substan-
tially more of these deficiencies. Furthermore, more than half of infra-
structure deserts have deficient crosswalks and access to bank services,
internet services, and gathering places. Overall, street tree canopy and
sidewalks are the most widespread deficient infrastructure types.

3.3. Relative risk and infrastructure inequity

The estimated parameters for the fitted cumulative logit model (Eq.
(2-3)) are shown in Table 2. The positive coefficients for (fy, fy) indi-
cate a tendency for overall infrastructure deficiency to become less
deficient for middle-income and high-income neighborhoods compared
to low-income neighborhoods. The estimated coefficient for the middle-
income neighborhoods (fy) is 0.714, and the estimated coefficient for
high-income neighborhoods (By) is 1.124. Both coefficients show that
middle-income and high-income neighborhoods have the tendency of
less deficient infrastructure types than low-income neighborhoods.
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Meanwhile, values show the tendency of overall infrastructure defi-
ciency toward less deficient to be stronger for high-income neighbor-
hoods than middle-income neighborhoods in comparison to low-income
neighborhoods. To test the model assumption of proportional odds with
these parameters, a likelihood ratio test (16 degrees of freedom) was
performed between the fitted model and the same model with a multi-
nomial link. With the null hypothesis that proportional odds assumption
holds, a p-value of 0.678 was computed, which indicates that the data do
not show gross violation of the assumption.

Fig. 6 shows the resulting relative risks (Eq. (2-4)) between: (A low-
income and high-income neighborhoods and (B low-income and middle-
income neighborhoods. The x-axis denotes the overall infrastructure
deficiency, with the value being equal or greater than that of the dis-
played label. The y-axis represents the value of relative risk estimates,
with mean results plotted as lines and 95 % confidence levels denoted by
the shaded regions. As indicated in Fig. 6, the positive values of relative
risk for both comparisons suggest that low-income neighborhoods show
a greater risk of having more deficient infrastructure than middle and
high-income neighborhoods. Furthermore, the relative risk mean and
confidence intervals increase for both comparisons as overall infra-
structure deficiency increases. Low-income neighborhoods are 2.0 to 3.5
times more likely to have Highly deficient infrastructure (y > 8) than
high-income neighborhoods; and 1.4 to 2.4 times more likely to have
Highly deficient infrastructure (y > 8) than middle-income neighbor-
hoods. Such substantial differences suggest significant infrastructure
inequities across income levels.

3.4. Robustness of statistical model

To further confirm the association between neighborhood income
and overall infrastructure deficiency, the model was refit using contin-
uous (log) income instead of categorical income levels (Table 2). The use
of log income helps linearize the exponentially growing trends and
reduce bias compared to linear income (Ermini & Hendry, 2008).
Table 3 shows the estimates of model parameters. As the log income
increases, the positive estimated coefficient shows that the overall
infrastructure deficiency has a trend to be “less” deficient, which cor-
roborates the previous findings using categorical income data. Fig. 7
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Fig. 5. Deficient infrastructure as a percentage of block groups by infrastructure type.

Table 2

Estimated coefficients of the cumulative logit model. We validated the model
assumption (proportional odds) by performing a likelihood ratio test (16 degrees
of freedom) between the fitted model and the same model except using a
multinomial link. With the null hypothesis that proportional odds assumption
holds, the p-value of 0.678 indicates that the data do not show gross violation of
the assumption.

Value Std. Error t value
Coefficients
Pum 0.714 0.157 4.558
Pu 1.124 0.153 7.364
Intercepts (a;)
ay —6.196 0.582 —10.641
ay —-3.430 0.178 —19.235
as —2.380 0.134 -17.796
as —1.436 0.113 -12.713
as —0.534 0.103 —5.209
ag 0.427 0.102 4.197
az 1.450 0.121 12.022
as 2.651 0.182 14.585
ag 4.645 0.452 10.283
Q10 6.261 1.002 6.248
Residual Deviance 3088.505 AIC 3112.505

shows the predicted probability of overall infrastructure deficiency by
different income percentiles (5th, 25th, 50th, 75th, 95th). Note that the
probability curve shifts to the direction of “more” deficient with
decreased neighborhood income, again showing a tendency to have
more deficient infrastructure types for lower-income neighborhoods.
This trend agrees with the earlier findings that lower-income neigh-
borhoods have a significantly higher risk of greater infrastructure defi-
ciency than other neighborhoods and shows the model's robustness
using either continuous or categorical income data.
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4. Discussion and conclusions

Given a wide variety of physical attributes within a neighborhood
and their inter-dependent interactions, assessing neighborhood infra-
structure condition can be highly challenging. The task involves inte-
grating a substantial set of neighborhood infrastructure condition
indicators that are multidimensional and heavily data dependent. To our
knowledge, there are a lack of approaches or frameworks in the existing
neighborhood infrastructure-related literature that consider the di-
versity of neighborhood infrastructure and study multiple types of
infrastructure combined. This paper contributes a novel approach to
assessing neighborhood infrastructure condition by systematically
measuring multiple infrastructure types and statistically analyzing
infrastructure equity across neighborhood income characteristics.

Table 3
Cumulative logit model parameters using continuous income.
Value Std. Error t value
Coefficients
Log Income () 0.670 0.105 6.404
Intercepts (a;)
2 -12.941 1.292 —10.014
ay —10.163 1.163 —8.741
as -9.117 1.153 —7.906
ay —8.182 1.146 —7.141
as —7.294 1.139 —6.406
g —6.349 1.132 —5.609
ay —5.340 1.130 —4.725
ag —4.145 1.136 —3.648
a9 —0.215 1.207 —1.780
a0 —0.532 1.502 —0.354
Residual Deviance 3104.692 AIC 3126.692
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Fig. 6. Relative risk: Computed relative risk is shown as circles, and shaded regions denote its upper (97.5 %) and lower (2.5 %) confidence limits. 95 % confidence
interval of both cases were obtained using bootstrapping after 20,000 simulations. (a) The relative risk of overall infrastructure deficiency between low-income and
high-income areas, (b) Relative risk of overall infrastructure deficiency between low-income and middle-income areas.



Z. Lietal

Probability Plot for Overall Infrastructure Deficiency
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Fig. 7. Predicted probability of overall infrastructure deficiency using contin-
uous income.

A critical strength of this study is the systematic and street-level
assessment of multiple neighborhood infrastructure types. The intro-
duction of binary infrastructure indicators and overall infrastructure
deficiency effectively integrates multiple infrastructure types and pro-
vides a straightforward and intuitive neighborhood-level representation
of infrastructure issues. The calculation of overall infrastructure defi-
ciency allows the framework to easily be expanded to other types of
infrastructure data (e.g., housing condition).

Unlike previous studies that are focus on single infrastructure types,
our assessment results combine multiple infrastructure types and deliver
more comprehensive insights into the community's overall infrastruc-
ture condition, which provides strategic benefits to stakeholders to plan
and ensure equitable development among communities. Furthermore,
this study introduces the new concept of “infrastructure deserts” — low-
income areas with substantially higher infrastructure deficiency — and
through the case study in Dallas, TX shows the presence of infrastructure
deserts and infrastructure inequity throughout multiple low-income
areas.

The statistical analyses also show that the observed infrastructure
inequities between low-income and higher-income neighborhoods are
statistically significant. To address these types of infrastructure in-
equities, long-term investments are needed to improve infrastructure in
low-income areas. Investment prioritization based on asset condition
and economic impacts (Quadros & Nassi, 2015) is one popular approach
for infrastructure management that could be used to foster healthier and
more equitable communities. The existence of infrastructure inequity
not only identifies vulnerable neighborhoods with inadequate infra-
structure resources, but also draws attention to highly deficient areas
citywide to optimize investments.

Bond programs, separate from the city's annual operating budget,
focus on improving capital funding for the City of Dallas assets including
neighborhood infrastructure such as facilities, streets, libraries, and
parks (City of Dallas, 2017 [most recent Bond program]). To address the
deficiencies identified in this study, significant investments will need to
be made in neighborhood infrastructure in future Bond programs. Our
results also have other policy implications for infrastructure in-
vestments. A notable finding from this study is that sidewalk and street
tree canopy deficits are more widespread across the city than any other
neighborhood infrastructure type. According to Dallas' “50-50 sidewalk
replacement program” (Dallas City Hall, 2016), homeowners are
responsible for keeping sidewalks in safe condition and 50 % of the
reconstruction cost is shared by the city for homeowners to fix deteri-
orating sidewalks. The widespread presence of deficient sidewalks
suggests that further actions are needed to improve overall sidewalk
conditions, such as fully-funded sidewalk replacements in future bond
programs.
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In addition, the extensive insufficient street tree canopy suggests the
need to plant significantly more trees, which have been shown to be
effective for reducing urban heat (Tan et al., 2016), particularly given
increasing urban warming under climate change (Aniello et al., 1995).
Several studies such as the Urban Forest Management Plan (Texas Trees
Foundation, 2019) and Urban Heat Management Study (Texas Tree
Foundation, 2017) have developed plans for Dallas to increase tree
cover and reduce urban heat, but major investments are needed to
implement these plans. In particular, street trees are needed to provide
shade across paved areas, which reflect the most heat, as well as to shade
residents as they walk in the neighborhood (e.g., while accessing public
transit or parks).

With careful planning, these types of infrastructure investments
could simultaneously improve multiple types of infrastructure (e.g.,
street trees that are coupled with sidewalks and new community gath-
ering spaces, such as “complete streets” initiatives (LaPlante & McCann,
2008)). Furthermore, implementers of the recently signed Infrastructure
Investment and Jobs Act (IIJA), namely the “infrastructure bill” (Brian
Naylor & Deirdre Walsh, 2021; Emily Cochrane, 2021), can also benefit
from our results. Under IIJA, state governments are required to find
ways to identify disinvested communities relevant to each provision's
implementation (Carlos Martin et al., 2021; Diana Lonescu, 2022). The
discovery of infrastructure inequity and overall infrastructure measures
in our study explicitly address these gaps and would be beneficial to
IIJA's investment and project prioritization.

4.1. Limitations and future research

This study has several limitations. First, the spatial representation of
neighborhoods is challenging and has been addressed in multiple ways
(Flowerdew et al., 2008; Rollings et al., 2015). Despite the widespread
use of Census tracts or block groups, there are no definitive studies
identifying the best spatial boundary to be used among all available
options such as Census tracts, block groups, and zip codes (Flowerdew
et al.,, 2008). Past studies have shown that the types of geographic
boundaries used to aggregate data can affect variance, standard de-
viations, correlations, and regression analyses (Flowerdew et al., 2008).
A better approach is to use perceived, resident-defined neighborhood
boundaries, which may better represent the neighborhood and
neighborhood-based measures such as access to destinations, walking
routes, or the number of residences. For example, Nextdoor, a hyperlocal
social network service for neighborhoods, offers a more reliable and
accurate neighborhood geometry using a crowd-sourcing mechanism
that allows users to sketch or modify the neighborhood in which they
currently live (Abhyanker, 2014). However, despite better geographic
representation, resident-defined boundaries can be affected by neigh-
borhood reputation and can introduce bias in neighborhood-based
studies. For example, residents might report living in positively
perceived neighborhoods but exclude stigmatized areas (Flowerdew
et al., 2008). Besides, resident-defined neighborhood boundaries do not
have spatial compatibility with socio-economic measures embedded in
administrative boundaries. Since this paper aims to examine multiple
infrastructure types and explore spatial patterns of infrastructure con-
ditions at the city level, choosing a Census block group as the repre-
sentation of neighborhoods is currently the best available approach to
include socio-economic characteristics at the smallest scale possible.
However, this approach may introduce some errors and bias.

A second limitation is uncertainties in the criteria for measuring
substandard infrastructure components. Every criterion was designed to
be consistent with either prior studies, or published design guidelines.
However, access measures developed using spatial measures and
Geographic Information System (GIS) procedures may fail to account for
the actual quality of and access to infrastructure (e.g., healthcare facil-
ities) (Rollings et al., 2015; Wells & Rollings, 2012). For example, res-
idents may access facilities that are not necessarily nearby their
neighborhoods, potentially due to social networks, transportation
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availability, or perceptions of crime and safety (Wells & Rollings, 2012).
Hence relying only on proximity without considering social aspects of
neighborhoods can introduce errors or biases on infrastructure avail-
ability. Another issue is the use of cutoff distances to measure infra-
structure accessibility. Although cut-offs used in this study come from
relevant studies, those cut-offs admittedly are not be guaranteed to be
optimal in the cases of any other cities. Recently, increase in GIS
implementation has led to improvements in measuring the accessibility
of activity locations (Aman & Smith-Colin, 2020; Luo & Wang, 2003;
Nicholls, 2001). The gravity model-based method (Weibull, 1976) cal-
culates accessibility based on zones as a function of activity opportunity
attractiveness and the travel distance between other zones and the in-
dividual's resident zones. It is one of the most popular methods to
measure accessibility because of the ease of interpretation and robust-
ness of model extensions (El-Geneidy & Levinson, 2006).

Nonetheless, fixed distance approaches, such as those implemented
in this study, remain favorable in many infrastructure-related studies
due to their simple intuition and easy implementation. However, the
choice of “proper” distance is mostly empirical and lacks theoretical
justification. For instance, the critical distance used in assessing
healthcare services is 2-mile (3.2 km) for major hospitals and 1-mile
(1.6 km) for walk-in clinics and urgent care (Ashwood et al., 2011;
Bersamin et al., 2011). However, many factors could affect people's
accessibility to these destinations, such as travel behaviors, trans-
portation mode, and city development, resulting in different values of
suggested critical distances for accessibility assessment (Neutens, 2015).
Despite these inevitable uncertainties, the criteria chosen for this case
study are sufficient for a comparative assessment of infrastructure equity
across multiple infrastructure types.

Finally, a full and complete assessment of neighborhood infrastruc-
ture should involve six main categories: connective infrastructure, pro-
tective infrastructure, socio-economic structures, water and sanitation
lifelines, energy lifelines, and communication lifelines (Reduction &
Recovery(GFDRR), 2017). In this study, 12 infrastructure types were
considered that included four of the six categories, excluding energy
lifelines and water sanitation lifelines. With additional data availability,
more infrastructure types such as stormwater drains, water supply and
wastewater pipes, street lights, and energy reliability will undoubtedly
add to the story of complex, interdependent dynamics among neigh-
borhood infrastructure.

Similarly, when considering multiple infrastructure types, the
weighting scheme (currently equally weighted) and deficient infra-
structure cutoff (currently 50 %) could be adjusted to better describe
neighborhoods' demand and the focus of a city's development plan. The
determination of weights and cutoffs may reflect the city's current
infrastructure condition and emphasis on infrastructure. We chose to
equally weight each infrastructure type to avoid any bias across infra-
structure types. Besides, the overall infrastructure deficiency has a more
intuitive and straightforward interpretation if each type is equally
weighted. Our equal-weight assumption not only simplifies the nuance
among multiple infrastructure types but also keeps the generality of the
approach to be consistent and interpretable. However, it is recom-
mended to explore the sensitivity of outcomes to these assumptions in
future research.

The framework proposed in this study can easily be expanded to
include other infrastructure types as data are available and fine-tuned to
match the characteristics of other regions, providing the capacity and
flexibility to measure conditions of a wide range of infrastructure types
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systematically.

Despite the limitations noted above, this study takes the first step to
consider neighborhood infrastructure as a diverse, multi-type system
and assesses infrastructure conditions with data-driven approaches. Our
findings have important policy implications and lessons for cities and
developers that are promoting equitable infrastructure. Much progress
has been made on this front in Dallas, with the Dallas Sidewalk
Replacement Program (Dallas City Hall, 2016), Urban Forest Manage-
ment Plan (Texas Trees Foundation, 2019), and other initiatives to
improve neighborhood infrastructure and equity.

However, as the findings of this study suggest, infrastructure in-
equities persist across income lines and planners and policymakers
should address these issues to close the “infrastructure gap.” In addition
to prioritized investments in disadvantaged neighborhoods, community
engagement is also needed to better understand the impact of the lack of
specific infrastructure types on residents and develop smart and effec-
tive strategies such as incorporating the effects/needs of residents based
on demand and supply (Jiao, 2017) for promoting priorities in neigh-
borhood infrastructure development that better meets neighborhood
needs.
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Appendix A

A.1. Table. Dataset information for individual infrastructure type.

Dataset Source Data Year Notes
Pavement City of Dallas ArcGIS REST Service' 2018 Polyline
Crosswalk Object detection using Google Satellite images on residential intersections 2019 Point
Noise Wall Annotated dataset using Google StreetView images along major state highways 2019 Point
Internet Service Federal Communication Commission® Broadband width map at tract level 2016 Point
Bank Access Bank branches locations from NCTCOG® data center 2019 Point
Medical Facility Access Major hospitals are from NCTCOG data center and urgent care or clinics are fromYelp” search listings 2018 Point
Public Transportation Access Bus stops, rail stations locations from City of Dallas ArcGIS REST Service 2018 Point
Gathering Place Access Public parks, libraries, farmer markets and community centers extracted from NCTCOG data center, tax parcel data 2019 Point
Food Access Food stores (grocery stores, wholesale) locations from NCTCOG data center 2019 Point
Trail Access Bike & pedestrian trails from City of Dallas ArcGIS REST Service 2019 Polyline
Street Tree Canopy Tree coverage from Texas Tree Foundation® 2018 Polygon
Sidewalk City of Dallas ArcGIS REST Service - Public Works 2017 Polyline

1 City of Dallas REST Service: https://gis.dallascityhall.com /wwwgis/rest/services/.

2 Federal Communication Commission: https://www.fcc.gov/reports-research/maps/residential-fixed-internet-access-service-connections-per-1000-households
-by-census-tract/.

3 North Central Texas Council of Governments (NCTCOG) data center: https://data-nctcoggis.opendata.arcgis.com/.

# Yelp search listing: https://www.yelp.com.

5 Texas Tree Foundation (TTF): https://www.texastrees.org

A.2. Table. Descriptive statistics for the substandard percentage (u) of individual infrastructure type.

Census Block Groups (n) Standard Deviation Min 25 % 50 % 75 % Max
Pavement 790 0.150 0.000 0.136 0.246 0.346 0.794
Crosswalk 790 0.281 0.000 0.000 0.333 0.500 1.000
Noise Wall 70 0.446 0.000 0.013 1.000 1.000 1.000
Internet Service 790 0.195 0.100 0.100 0.300 0.500 0.700
Bank Access 790 0.439 0.000 0.000 0.458 1.000 1.000
Medical Facility Access 790 0.427 0.000 0.066 0.835 1.000 1.000
Public Transportation Access 790 0.322 0.000 0.000 0.138 0.473 1.000
Gathering Place Access 790 0.349 0.000 0.000 0.114 0.552 1.000
Food Access 790 0.416 0.000 0.029 0.529 1.000 1.000
Trail Access 790 0.361 0.000 0.341 0.765 1.000 1.000
Street Tree Canopy 790 0.131 0.286 0.763 0.856 0.943 1.000
Sidewalk 786 0.145 0.101 0.768 0.874 0.933 1.000

A.3. Dataset. A Shapefile consisting information of all assessed infrastructure types is included as separated file with submission.

Filename: Infrastructure_assessment_Dallas.zip

File Format: ArcGIS Shapefile (zipped)

Attributes contains in the shapefile:

BLOCKGROUP: 12 digits Census block Group ID.

Income3: Categorical income class based on tertiles: Low, Middle, High.

IncomeLog: Log value of annual household median income.

Overall IF: Overall infrastructure deficiency - integer.

IF_5: Categorical overall infrastructure deficiency: Excellent, Good, Moderate, Deficient, Highly Deficient.
PCNG_PAVE: Percentage of substandard pavement segments.

PCNG_SDWK: Percentage of residential street segments that has substandard sidewalks.

PCNG_CRWK: Percentage of intersections that do not have crosswalk present.

PCNG_MEDL: Percentage of residential households that don't have access* to medical service facilities.
PCNG_GATH: Percentage of residential households that don't have access* to gathering places.
PCNG_BANK: Percentage of residential households that don't have access* to local bank branches.
PCNG_INTT: Percentage of residential households with substandard internet service.

PCNG_TRIL: Percentage of residential households that don't have access* to bicycle & pedestrian trails.
PCNG_TRAN: Percentage of residential households that don't have access* to bus stops nor rail stations.
PCNG_TREE: Percentage of residential street segments with substandard tree canopy percentage (below 25 %).
PCNG_NSWL: Percentage of residential households near highways that do not have noise wall present.
Geometry: Geometry of census block group.

*: Based on corresponding substandard criteria table (see Table 1 in the main manuscript for more details).

A.4. Code. Pseudocode of the method used to compute 12 deficient infrastructure types

Pavement
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Sidewalks

Noise walls

Step-1:Initiate 6 as an empty array with size NxI (N = the number of neighborhoods).
Step-2: for each Neighborhood (i) do
Find all pavement segments C; within/intersect with the neighborhood boundary.

Initialize Measurable Components M = 0; Substandard Measurable Components
Ma=0.

for each segment Cj; do

Calculate segment length L;;.

Count Measurable Components in length M = M + L;.

if segment C;;’s Pavement Condition Index <55

then Mya = Mya + Li.

end
Calculate Substandard Measurable Components Percentage (1;) = Mga /M
if 11; > 0.5 then 0; = [ else 0; = 0 end

end

Step-1:Initiate 0 as an empty array with size Nx1 (N = the number of neighborhoods).
Step-2: for each Neighborhood (i) do

Find residential street segments C; within/intersect with the neighborhood
boundary.

Initialize Measurable Components M = 0; Substandard Measurable Components
M= 0.

for cach street segment C;; do
Calculate segment length L;;.
Count Measurable Components in length M = M + L;;.
if segment C;; has no sidewalks on both sides
then Lissing = Lij
end
if segment has sidewalk on at least one side

then calculate the portion length (L) of segment that has been obstructed
or damaged sidewalks;

Msa = My + max(Lumissing ,Lstd )
end
end

Calculate Substandard Measurable Components Percentage (ui) = Msia/M

if i > 0.5 then 0; = 1 else 6; = 0 end

end
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Step-1:Initiate @ as an empty array with size Nx1 (N = the number of neighborhoods).
Step-2: for each Neighborhood (i) do
Find residential households C; located within 200 feet (61m) from major highways.

Initialize Measurable Components M = 0; Substandard Measurable Components
M= 0.

for each household Cj; do
Count Measurable Components M= M + 1.
if no noise walls existed within 200 feet (61m) from Cj
then Ma = Mya + 1
end
end
Calculate Substandard Measurable Components Percentage (1;) = Mya /M
if i > 0.5 then 0; = ] else 0;= 0 end

end

Crosswalks
Step-1:Initiate 0 as an empty array with size Nx1 (N = the number of neighborhoods).
Step-2: for each Neighborhood (i) do
Within Neighborhood boundary, find all crosswalk intersections C; intersections
that are either:
1) Intersections between residential streets
2) Intersections between school zones.
Initialize Measurable Components M = 0; Substandard Measurable Components
M= 0.
for each crosswalk intersection Cj; do
Create a search buffer region (34m radius) b; given its coordinates.
Count Measurable Components M= M + 1.
if no crosswalks existed within b;;
then Mi = Mya + 1
end
end
Calculate Substandard Measurable Components Percentage (1;) = Mya /M
if 11;> 0.5 then 6; = [ else 6; = 0 end
end

Street Tree Canopy coverage
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Step-1:Initiate 0 as an empty array with size Nx1 (N = the number of neighborhoods).
Step-2: for each Neighborhood (i) do
Final all street segments C; within the neighborhood

Create street buffer polygons C'; (use city-wide median width: 6.5 feet or 2 meter

radius)
Initialize Measurable Components M = 0; Substandard Measurable Components
Mia=0.
for each street polygon C; do
Count Measurable Components M = M + 1
Compute the area of street polygon 4.
Compute the area of the tree canopy 4, within C'y;.
Compute the street tree canopy percentage as p;; = 4;' / Ajy.
if pij <0.25 then My = Mya + 1 end
end
Calculate Substandard Measurable Component Percentage (1) = M /M.
if 4i > 0.5 then 0;= I else 0;= 0 end
end

Pedestrian & bicycle trail access

Medical facility access

Step-1:Initiate 0 as an empty array with size Nx1 (N = the number of neighborhoods).

Step-2: Break the pedestrian & bicycle trails into points using 600-meter intervals.

Use points to create service area S for pedestrian & bicycle trails (0.8 km travel distance).

Step-3: for each Neighborhood (i) do
Find all residential households C; within the neighborhood.

Initialize Measurable Components M = 0; Substandard Measurable Components

Miia= 0.
for each residential household Cj; do
Count Measurable Components M = M + 1.
if Cj; is spatially outside of S then My = M + I end
Calculate Substandard Measurable Components Percentage (1;) = Msa /M
if 11;> 0.5 then 6; = [ else 6; = 0 end
end

Step-1:Initiate 0 as an empty array with size Nx1 (N = the number of neighborhoods).
Step-2: Create service area S; for major hospitals (2-mile or 3.2 km travel distance).

Create service area S for walk-in clinics and urgent care (1-mile or 1.6 km travel
distance).

Step-3: for each Neighborhood (i) do
Find all residential households ¢; within the neighborhood.

Initialize Measurable Components M = 0; Substandard Measurable Components

Miia= 0.
for each residential household Cj; do
Count Measurable Components M= M + 1.
if Cj; is spatially not in S;nor S> then My = Mya + 1 end
Calculate Substandard Measurable Components Percentage (1;) = Msa /M
if 21;> 0.5 then 6; = [ else 6; = 0 end
end

Public transportation access
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Food access

Bank access

Gathering place access

Step-1:Initiate 0 as an empty array with size Nx1 (N = the number of neighborhoods).
Step-2: Create service area S for rail stations (0.8 km travel distance).
Create service area Sz for bus stops (0.4 km travel distance).
Step-3: for each Neighborhood (i) do
Find all residential households C; within the neighborhood.

Initialize Measurable Components M = 0; Substandard Measurable Components

Mia = 0.
for each residential household Cj; do
Count Measurable Components M = M + 1.
if Cj is spatially not in S; nor S> then Myq = Msa + 1 end
Calculate Substandard Measurable Components Percentage (1;) = Mya /M
if i > 0.5 then 0, = I else 6; = 0 end
end

Step-1:Initiate 6 as an empty array with size NxI (N = the number of neighborhoods).
Step-2: Create service area S for fresh food stores (1-mile or 1.6 km travel distance).
Step-3: for each Neighborhood (i) do

Find all residential households C; within the neighborhood.

Initialize Measurable Components (M) = 0; Substandard Measurable Components

(M) = 0.
for each residential household Cj; do
Count Measurable Components M= M + 1.
if Cj; is spatially not in S then My = Myq + 1 end
Calculate Substandard Measurable Components Percentage (1;) = Msa /M
if 11;> 0.5 then 6; = [ else 6; = 0 end
end

Step-1:Initiate 6 as an empty array with size NxI (N = the number of neighborhoods).
Step-2: Create service area S for bank branches (1-mile or 1.6 km travel distance).
Step-3: for each Neighborhood (i) do

Find all residential households C; within the neighborhood.

Initialize Measurable Components M = 0; Substandard Measurable Components

Miia= 0.
for each residential household Cj; do
Count Measurable Components M = M + 1.
if Cj is spatially not in S then My = Mya + I end
Calculate Substandard Measurable Components Percentage (1;) = Msa /M
if 11;> 0.5 then 6; = [ else 6; = 0 end
end
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Step-3: for each Neighborhood (i) do

Step-1:Initiate 0 as an empty array with size Nx1 (N = the number of neighborhoods).
Step-2: Create service area S; for parks (1-mile or 1.6 km travel distance).

Create service area S: for libraries (1-mile or 1.6 km travel distance).

Create service area S; for community centers (1-mile or 1.6 km travel distance).

Create service area Sy for farmers’ markets (1-mile or 1.6 km travel distance).

Find all residential households C; within the neighborhood.

Initialize Measurable Components M = 0; Substandard Measurable Components

Miia = 0.
for each residential household Cj; do
Count Measurable Components M= M + 1.
if Cy is spatially outside of S; and S>and S; and Sythen Msuq = Msa + 1
end
Calculate Substandard Measurable Components Percentage (1;) = Msa /M
if i > 0.5 then 0; = I else 6; = 0 end
end

Internet Service

Step-3: for each Neighborhood (i) do

least one direction

end

Step-1:Initiate 6 as an empty array with size NxI (N = the number of neighborhoods).

Step-2: Uniformly disaggregate data from census tract level into neighborhood level (Note:
internet data is only available at Census tract level)

Find attribute (pcat_all) S; that represents the households with over 200 kbps in at

Convert S; into percentage measure s; by taking the average of the range
Calculate Substandard Measurable Components Percentage (u;) = 1- si
if 11;> 0.5 then 0; = [ else 6; = 0 end

Note: pcat_all represents the number residential households with fixed high-speed connections
over 200 kpbs in at least one direction per 1000 households
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