

1                   **EFFECTS OF NETWORK UNCERTAINTY ON SEISMIC VULNERABILITY**  
2                   **ASSESSMENT OF WATER PIPE NETWORKS**  
3

4                   Abhijit Roy<sup>1</sup>; Mohsen Shahandashti<sup>2</sup>; and Jay M. Rosenberger<sup>3</sup>

5                   <sup>1</sup>Graduate Student, Department of Civil Engineering, University of Texas at Arlington, 416 S.  
6                   Yates St., Arlington, TX 76019, email: abhijit.roy@mavs.uta.edu

7                   <sup>2</sup>Associate Professor, Department of Civil Engineering, University of Texas at Arlington, 416 S.  
8                   Yates St., Arlington, TX 76019, email: mohsen@uta.edu

9                   <sup>3</sup>Professor, Department of Industrial, Manufacturing and Systems Engineering, University of  
10                   Texas at Arlington, email: jrosenbe@uta.edu

11

12                   **ABSTRACT**

13                   Past earthquakes revealed that earthquakes disrupt operations of underground water infrastructure  
14                   systems. Assessment of the seismic vulnerability of underground water pipe networks plays a  
15                   critical role in formulating preventive rehabilitation decision making to avoid high repair costs.  
16                   Although existing seismic vulnerability assessment methods are sensitive to water pipe network  
17                   uncertainties (e.g., uncertainties in nodal demand, reservoir head, pipe roughness coefficient), the  
18                   extent of the effects of these uncertainties on the post-earthquake serviceability of the networks  
19                   has not been examined. This research investigates the effects of water pipe network uncertainties  
20                   on the seismic vulnerability assessment of networks. Transient ground displacements due to  
21                   seismic wave propagation are considered for this investigation. The methodology includes seven  
22                   steps: uncertainty identification and quantification, design of experiments, integrated multi-  
23                   physics modeling, seismic repair rate calculations, Monte Carlo simulation, statistical analysis of  
24                   the data (Analysis of Variance (ANOVA), and Tukey tests), and sensitivity analysis. Uncertainties  
25                   in nodal demand, reservoir head, and pipe roughness coefficient were examined in this study. An  
26                   integrated multi-physics model was created to simulate hydraulic network behavior and seismic  
27                   vulnerability assessment. The approach was tested on two networks (New York Tunnel Network  
28                   and Oberlin Network). The statistical analysis results indicate that the combined impact of the  
29                   three selected water pipe network uncertainties on the seismic vulnerability assessment of  
30                   networks is statistically significant. Nodal demand and pipe roughness coefficient uncertainties do  
31                   not individually have a statistically significant effect. The individual effect of reservoir head

32 uncertainty is statistically significant. Sensitivity analysis determined the minimum value of the  
33 coefficient of variation to have a statistically significant effect. Sensitivity analysis was divided  
34 into three parts to investigate the individual and combined effects of network uncertainties. The  
35 results from sensitivity analysis show that small uncertainty in reservoir head results in a  
36 statistically significant effect on seismic vulnerability assessment. By contrast, the coefficient of  
37 variation for uncertainties in nodal demand and pipe roughness has to be quite large to significantly  
38 affect seismic vulnerability assessment. Statistical analysis and sensitivity analysis results show  
39 that water pipe network uncertainties have a statistically significant impact on seismic  
40 vulnerability assessment of networks. Hence, it is recommended to integrate water pipe network  
41 uncertainties with existing methods for assessing seismic vulnerabilities.

## 42 **INTRODUCTION**

43 Water pipe networks are among the lifelines of modern cities (Eidinger and Avila 1999). Past  
44 earthquakes (e.g., the San Fernando earthquake of 1971, the Northridge earthquake of 1994, the  
45 Kobe earthquake of 1995) and some recent earthquakes (e.g., the Christchurch earthquake of 2011,  
46 the East Japan earthquake of 2011, the Gorkha earthquake of 2015, and the Central Mexico  
47 earthquake of 2017) have divulged the vulnerability of the underground water pipe networks  
48 (Knight 2017; Thapa et al. 2016; O'Rourke et al. 2014; Maruyama et al. 2011; Cubrinovski et al.  
49 2011; O'Rourke 1996). Residential, industrial, and commercial activities get disrupted due to the  
50 damages to the water pipe networks. Any disruption in such networks can cause extensive direct  
51 and indirect losses such as repair costs or disturbance in water distribution (Yerri et al. 2017; Piratla  
52 et al. 2015). In the Northridge earthquake of 1994, utilities performed around 1400 repairs in water  
53 pipes, of which approximately 100 repairs were carried out in pipes with large diameters  
54 (O'Rourke 1996). About 50,000 people were disconnected from the drinkable water supply for  
55 over seven days after the Northridge earthquake (Scawthorn et al. 2005). The Kobe earthquake  
56 caused damages at 23 locations of the water pipeline (Yoo et al. 2016). Although an earthquake is  
57 a rare event, it can significantly degrade the performance of water supply networks. Therefore,  
58 assessing seismic vulnerability underground water pipe networks is crucial to ensure acceptable  
59 post-earthquake serviceability.

60 In the current practice of vulnerability assessment of underground water pipe networks subjected  
61 to seismic events, it is implicitly assumed that currently established hydraulic network analysis  
62 models can accurately estimate reliability and serviceability measures. However, several studies

63 have identified significant shortcomings of the hydraulic models representing actual networks  
64 (Sabzkouhi and Haghghi 2016; Seifollahi-Aghmiuni et al. 2013; Lansey et al. 2001; Bargiela and  
65 Hainsworth 1989). These shortcomings are mostly due to the high sensitivity of hydraulic models  
66 to their input variables. The bottleneck is the highly limited knowledge about the actual input  
67 values, which drive the hydraulic models. These values include nodal demands, pipe roughness  
68 coefficients, reservoir head, pipe material, pipe age, and pipe diameter (Kang and Lansey 2009,  
69 Shibu and Janga Reddy 2011). Sabzkouhi and Haghghi (2016) showed that a slight 15%  
70 uncertainty in a demand and pipe's roughness coefficient could cause around 11% deviation in  
71 predicted nodal pressures and 50% deviation in flow velocities. These results represent the high  
72 sensitivity of network hydraulic analysis models to uncertainties. Therefore, it is crucial to  
73 investigate the effects of water pipe network uncertainties on seismic vulnerability assessment of  
74 the networks. This study investigates the effects of network uncertainties on seismic vulnerability  
75 assessment considering transient ground displacements due to seismic wave propagation.

## 76 **RESEARCH BACKGROUND**

77 Component-level and system-level seismic vulnerability assessments are two broadly classified  
78 categories of the methods for assessing the vulnerability of water pipe networks subjected to  
79 seismic events. Individual components can be evaluated by component-level assessment models.  
80 The seismic performance of an entire network can be evaluated by system-level assessment  
81 models. The methods for assessing the vulnerability of individual pipes can be further divided into  
82 two categories: analytical and empirical. Newmark and Rosenblueth (1971) proposed an analytical  
83 method to investigate the response of an underground pipeline assuming negligible soil-pipe  
84 interaction. Since then, these interactions have been studied using quasi-static analysis (Singhal  
85 and Zuroff 1990; Wang et al. 1982), shell theory (Liu et al. 2004; Luco and De Barros 1994),  
86 dynamic plain-strain modeling (Datta et al. 1984), finite element analysis (Saber et al. 2014;  
87 Vazouras et al. 2010), probabilistic fault displacement hazard analysis and beam-type finite  
88 element modeling (Melissianos et al. 2016), and nonlinear modeling of seismic response (Hosseini  
89 and Tahamouli Roudsari 2010). Honegger and Eguchi (1992) estimated the failure rate of brittle  
90 pipes subjected to permanent ground deformation. American Lifeline Airlines (ALA 2001)  
91 formulated seismic fragility relations for a wide range of pipes based on 81 data points from 12  
92 earthquakes. Christodoulou and Fragiadakis (2015) investigated the effects of a network's  
93 historical performance on seismic vulnerability through the introduction of the number of observed

94 previous breaks (NOPB) risk factor. Although these component-level models are useful to gain a  
95 good insight into failure mechanisms of small-scale cases, they are impractical for large-scale  
96 vulnerability assessment (Hosseini and Tahamouli Roudsari 2010).

97 While it is necessary to understand the performance of individual pipes, their network resilience  
98 depends on these pipes' dynamic interactions. Advancements in network simulation, probabilistic  
99 modeling, and computational engineering have helped researchers to conduct system-level seismic  
100 vulnerability assessments of networks (Pudasaini et al. 2017; Wang et al. 2010; Shi 2006).  
101 Individual pipe failure probabilities are used to generate damages in pipes for system-level  
102 vulnerability assessment (Pudasaini and Shahandashti 2020b). Damages were integrated with  
103 hydraulic models using Monte Carlo simulation. Shi (2006) combined fragility relations with  
104 hydraulic principles to model the seismic response of water networks. Shi's methodology was  
105 further expanded to generate various system serviceability and reliability indices (Wang et al.  
106 2010; Huang et al. 2008). System serviceability index (SSI) was used by Wang et al. (2010) to  
107 measure the performance of a water pipe network susceptible to seismic damages. SSI was used  
108 to locate the critical pipes of the network and rank them accordingly. Fragiadakis and  
109 Christodoulou (2013) proposed a methodology for assessing the reliability of water pipe networks  
110 combining data of past non-seismic damage and the vulnerability of network's components against  
111 seismic loading. Fragiadakis et al. (2013) created an assessment method considering data of past  
112 non-seismic damage, the vulnerabilities of the network components against seismic loading, and  
113 the topology of a water pipe network. Farahmandfer et al. (2017) proposed a metric that quantifies  
114 resilience of water pipe networks. Networks' spatial distributions and correlations related to  
115 ground motion intensities were not taken into consideration in their analysis. Few recent studies  
116 considered these spatial distributions and correlations (Shahandashti and Pudasaini 2019;  
117 Pudasaini and Shahandashti 2018). Most recently, Boskabadi et al. (2020) developed a two-stage  
118 stochastic programming approach for enhancing seismic resilience of water pipe networks.  
119 Pudasaini and Shahandashti (2020a) identified topological surrogates for computationally efficient  
120 seismic robustness optimization of water pipe networks. Mazumder et al. (2020a) proposed a  
121 methodology to calculate seismic repair rate. This study proposed a renewal strategy addressing  
122 the vulnerability of pipelines from the topological viewpoint. Mazumder et al. (2020b) presented  
123 a framework to evaluate both component-level and system level seismic resilience of water pipe  
124 networks considering time-variant corrosion of pipeline. Despite all advancements in assessing the

125 vulnerability networks due to seismic events, the impacts of uncertainties on these seismic  
126 vulnerability assessments are not known.

127 Although the impacts of uncertainties on the seismic vulnerability assessments are unknown,  
128 uncertainty quantification and analysis have been applied to study the effects of water pipe network  
129 uncertainties on their no-hazard design and operation procedures. For example, Seifollahi-  
130 Aghmiuni et al. (2011) combined a shuffled frog algorithm with Monte Carlo simulation to  
131 examine water network efficiency considering the uncertainty of demand. Their study was  
132 primarily focused on identifying the effects of demand uncertainty on operation using a  
133 probabilistic normal distribution. They concluded that network efficiency decreases if demand  
134 uncertainty is not considered while operating a network. Seifollahi-Aghmiuni et al. (2013) used a  
135 similar methodology to examine water network performance in its operational period considering  
136 pipe roughness uncertainty. They concluded that if pipe roughness uncertainty increases, network  
137 performance decreases. Xu and Goulter (1998) proposed a methodology for assessing water pipe  
138 networks considering uncertainties in pipe capacity, nodal demands, and reservoir/tank levels.

139 Lansey et al. (1989) developed a methodology to determine an optimal design process for water  
140 pipe networks. They considered several network uncertainties, such as pressure head requirements,  
141 future demands, and pipe roughness. They illustrated that uncertainties in those parameters have  
142 substantial effects on the network design process. Kapelan et al. (2005) defined the water  
143 distribution design problem as a multi-objective optimization problem under uncertainty. They  
144 considered pipe roughness coefficient and water consumption as uncertain variables. Probability  
145 density functions were used to model the uncertain variables. The obtained results demonstrated  
146 that the proposed methodology could identify robust Pareto optimal solutions in spite of the  
147 considerably less calculation effort. Sabzkouhi and Haghghi (2016) introduced a methodology to  
148 analyze water pipe networks considering uncertainty based on fuzzy set theory. They showed that  
149 uncertainties in network input parameters lead to imprecise hydraulic responses. Implementing the  
150 method in a real-time network revealed that a 15% change in the nodal demand and pipes'  
151 roughness could result in -41.7% to +50.1% uncertainty in the pipe velocities and -11.2% to +6.4%  
152 uncertainty in the nodal pressures.

153 Existing methods for assessing the seismic vulnerability of water pipe networks did not consider  
154 the network uncertainties. Hence, a methodology was created in this study to investigate the effects  
155 of water pipe network uncertainties on the seismic vulnerability assessment of the networks.

## 156 **METHODOLOGY**

157 The methodology includes seven steps: uncertainty identification and quantification, design of  
158 experiments, integrated multi-physics modeling, seismic repair rate calculations, Monte Carlo  
159 simulation, statistical analysis of the data (ANOVA test and Tukey Test), and sensitivity analysis.

160 Figure 1 demonstrates the methodology adopted for this study.

### 161 **Uncertainty Identification and Quantification**

162 Sources of water pipe network uncertainties were identified and quantified based on the literature.  
163 Probability and possibility models were used to characterize pipe network uncertainties. Table 1  
164 summarizes the previous efforts to characterize the network uncertainties. Normal and uniform  
165 distributions were two widely used probability models (Seifollahi-Aghmiuni et al. 2013; Lansey  
166 et al. 2001). Alternatively, fuzzy logic was used as a possibility model (Sabzkouhi and Haghghi  
167 2016; Shibu and Janga Reddy 2011).

168 Through a thorough literature review, three water pipe network uncertainties were selected: nodal  
169 demand, pipe roughness coefficient, and reservoir head. These uncertainties are widely  
170 acknowledged in the literature as critical sources of uncertainties for performance modeling and  
171 analysis of the water pipe networks (Table 1). It is assumed nodal demands, pipe roughness  
172 coefficient, and reservoir head to be normally distributed. The coefficient of variation (CoV) was  
173 used to investigate the effect of uncertainty. CoV is the ratio between the mean and standard  
174 deviation. The mean value associated with the selected three network parameters were considered  
175 equals to the design value. The design value was collected from water distribution system research  
176 database. The value of standard deviation was calculated using the mean and the assumed CoV.  
177 The assumption of value of CoV was relaxed by conducting a sensitivity analysis to investigate  
178 and determine the minimum value of CoV to have a statistically significant impact. The value of  
179 CoV was initially assumed to be 0.2 (Seifollahi-Aghmiuni et al. 2013; Seifollahi-Aghmiuni et al.  
180 2011). The initial value of CoV was selected based on Seifollahi-Aghmiuni et al. (2013) and  
181 Seifollahi-Aghmiuni et al. (2011). Later, different values of CoV were used to conduct the  
182 sensitivity analysis.

183 **Design of Experiments**

184 The experiments were designed as a full factorial design. Each of the three parameters considered  
185 in this study was studied at two levels: including uncertainty and excluding uncertainty. The levels  
186 were coded as +1 (including uncertainties) and -1 (excluding uncertainties). The +1 (including  
187 uncertainties) were the experiments considering normal distribution using mean values plus one  
188 standard deviation and mean minus one standard deviation of uncertainties. The -1 (excluding  
189 uncertainties) were performed considering the mean values. Table 2 shows selected water pipe  
190 network uncertainties with their levels for the experiment.

191 It is essential to analyze all the two-factor interactions to identify the effects of all three selected  
192 water pipe network uncertainties. Therefore, a  $2^3$  full factorial design was chosen for this  
193 experiment. The coded design for the experiment is shown in Table 3.

194 **Seismic Repair Rate Calculation**

195 Figure 2 illustrates the steps to calculate the seismic repair rate for each pipe.

196 At the beginning of the seismic repair rate calculation, an earthquake scenario was identified based  
197 on deaggregation analysis using USGS (2018b) considering the spatial relationship among seismic  
198 intensities (Zanini et al. 2017; Zanini et al. 2016; Weatherill et al. 2013; Jayaram and Baker 2009;  
199 Adachi 2007). Deaggregation maps were generated using USGS (2018b). Deaggregation analysis  
200 was conducted using the spectral acceleration of 1.0-s. The earthquake that had the highest  
201 percentage of contribution was selected from the deaggregation analysis.

202 Next, for the selected earthquake scenario, peak ground velocity (PGV) was determined. PGV was  
203 used as the intensity parameter because of its direct relationship with the induced transient strains  
204 in the soil during a seismic event. These induced strains are major causes of underground pipe  
205 damages (Pineda-Porras and Najafi 2010).

206 A spatially correlated peak ground velocity field was produced using the ground motion prediction  
207 equation (GMPE) (Abrahamson and Silva 2007, Zanini et al. 2016, Zanini et al. 2017). The general  
208 equation is given by Eq. (1).

209  $\log_{10} (PGV_{ab}) = f(M_a, R_{ab}, \theta_a) + \sigma_B v_a + \sigma_w \varepsilon_{ab}$  (1)

210 where  $PGV_{ab}$  = value of peak ground velocity at location  $b$  from source  $a$ ;  $R_{ab}$  = distance between  
211 location  $a$  and location  $b$ ;  $M_a$  = earthquake magnitude;  $\theta_a$  = fault geological parameters at location

212 *a.*  $\sigma_B v_a$  is the interevent residual, and  $\sigma_w \varepsilon_{ab}$  is the intra-event residual. Initially, the peak ground  
 213 velocity map, i.e.,  $f(M_a, R_{ab}, \theta_a)$  was created based on Abrahamson and Silva (2007). A peak  
 214 ground velocity map was created using the scenario shake map calculator (Field et al. 2005). In  
 215 the following step, the interevent and intra-event variabilities were incorporated in this map.  $E_{ab}$   
 216 and  $v_a$  are random variables with normal distribution which has a mean value ( $K$ ) of 0 and standard  
 217 deviations of  $\sigma_B$  and  $\sigma_w$ . The value of  $\varepsilon_{ab}$  was calculated using Eq. (2) (Zanini et al. 2016;  
 218 Weatherill et al. 2013).

219 
$$\varepsilon = K + \mathbf{Z}^* \mathbf{L} \quad (2)$$

220 where  $K = 0$ ;  $\mathbf{L}$  = Lower triangular matrix;  $\mathbf{Z}$  = vector of random variables with normal distribution.  
 221 The value of  $\mathbf{L}$  was calculated by applying the Cholesky decomposition method, such that  $\mathbf{L} \mathbf{L}^T = \mathbf{P}$ .  $\mathbf{P}$  is the positive-definite covariance matrix. The value of  $\mathbf{P}$  can be calculated using Eq. (3).

223 
$$\mathbf{P} = \begin{bmatrix} 1 & 6(d_{1,2}) & \cdots & 6(d_{1,N}) \\ \vdots & 1 & \cdots & 6(d_{2,N}) \\ \vdots & \vdots & \ddots & \vdots \\ sym & \vdots & \cdots & 1 \end{bmatrix} \quad (3)$$

224 where  $6(d_{a,b})$  is a correlation coefficient between intra-event residuals for location  $a$  and location  
 225  $b$ .  $N$  is the total number of locations. The value of  $6(d_{a,b})$  can be calculated using Eq. (4) (Jayaram  
 226 and Baker 2009).

227 
$$6(d_{a,b}) = e^{\left(\frac{-3d_{a,b}}{h}\right)} \quad (4)$$

228 where  $d_{a,b}$  = distance between location  $a$  and location  $b$ .  $h$  is the intersite distance among which  
 229 spatial relationships can be neglected. According to Wang and Takada (2005), when peak ground  
 230 velocity is used to calculate spatial correlation, the value of  $h$  can be considered between 20 km to  
 231 40 km. For this study, the value of  $h$  was selected to be 30 km. This process was repeated for  $M$   
 232 times to create  $M$  random peak ground velocity fields (Zanini et al. 2017). The value of PGV for  
 233 each pipe was calculated. Seismic pipe repair rates were then determined based on ALA (2001)  
 234 using Eq. (5).

235 
$$RR_{k,m} = C * 0.00187 * PGV_{k,m} \quad (5)$$

236 where  $RR_{k,m}$  is the seismic repair rate per 1000 ft of pipe  $k$  for the  $m$ th seismic PGV field,  $C$  is the  
 237 modification factor, and  $PGV_{k,m}$  is the peak ground velocity at the location of pipe  $k$  for the  $m$ th

238 seismic PGV field (in./s). The modification factor ( $C$ ) adjusts the value of the repair rate  
239 considering the corrosivity of soil, pipe diameter, pipe material, and pipe joint characteristics.

240 **Integrated Multi-physics Modeling and Monte Carlo Simulation**

241 System Serviceability Index (SSI) database was created using Monte Carlo simulation. SSI is a  
242 post-earthquake serviceability indicator that measures the serviceability of a water network after a  
243 seismic event. SSI is the ratio between demand fulfilled after a seismic incident and the total  
244 demand of the network at the regular operational period (Wang et al. 2010; Shi 2006). For this  
245 study, it was assumed that the demand is fulfilled at a node if the pressure at that node is more than  
246 a threshold pressure. Using the definitions, SSI is formulated as Eq. (6).

247 
$$SSI = \frac{\sum_{n=1}^{TN} x_n * D_n}{\sum_{n=1}^{TN} D_n} \quad (6)$$

248 subject to

249 
$$x_n = 1 \text{ if } P_n \geq P_{threshold}$$

250 
$$x_n = 0 \text{ if } P_n < P_{threshold}$$

251 where SSI is the system serviceability index;  $D_n$  is the demand at node  $n$ ;  $TN$  is the nodes in the  
252 network;  $P_{threshold}$  is the minimum pressure required at the node, which is selected by the demand  
253 for firefighting, and  $P_n$  is the pressure at node  $n$ . Hydraulic pressure of 20 psi (0.14 MPa) was used  
254 as the  $P_{threshold}$  (Trautman et al. 2013).

255 Seismic damages (breaks and leaks) were modeled using the Poisson process. The location of the  
256  $p^{\text{th}}$  damage (break or leak) in a pipe  $k$  was determined by Eq. (7).

257 
$$l_{k,p} = l_{k,p-1} - \frac{1}{RR_{k,m}} * \ln(1 - Q1) \quad \text{where } l_{k,0} = 0 \quad (7)$$

258 where  $l_{k,p}$  is the distance of  $p^{\text{th}}$  damage (break or leak) in pipe  $k$  from its start node,  $RR_{k,m}$  is the  
259 seismic repair rate of pipe  $k$ , and  $Q1$  is a uniformly distributed random number. The value of  $Q1$   
260 ranges from 0 to 1. If the distance of initial damage (break or leak), i.e.,  $l_{k,1}$  was less than the total  
261 length of pipe  $k$ , then another random number ( $Q2$ ) between 0 and 1 was generated. The value of  
262  $Q2$  classifies the damage as either a leak or a break. If the value of  $Q2$  was not more than 0.8, it  
263 was considered a leak; otherwise, it was considered a break (Shi 2006). The diameter of each leak  
264 was determined by further classifying those leaks based on Shi (2006).

265 The process can be explained using the following numerical example. Let's assume a 300-feet  
266 ductile iron pipe (Pipe p) and a repair rate of 0.02 in/s. A uniformly distributed random number  
267 ( $Q1$ ) between 0 and 1 was generated. Let's assume the number is 0.001. The value of  $l_{k,p}$  for the  
268 first iteration ( $l_{k,1}$ ) is 50.01 feet using Eq. (7) ( $l_{k,0} = 0$ ). The value of  $l_{k,1}$  is less than the total  
269 length of the pipe. So, another uniformly distributed random number ( $Q2$ ) between 0 and 1 is  
270 generated. Let's assume 0.5 as the value of  $Q2$ . As the value of  $Q2$  is less than 0.8, this is a leak.  
271 To calculate the diameter of the leak, another uniformly distributed random number was generated  
272 between 0 and 1. The leak scenario was then classified into five categories based on the random  
273 number and pipe material: annular disengagement, round crack, longitudinal crack, local loss of  
274 pipe wall, and local tear of pipe wall. The diameter of the leaks was then calculated based on Shi  
275 (2006). This process was repeated until the value of  $l_{k,p}$  is more than the total length of the pipe.

276 After locating all the damages (breaks and leaks) and determining the diameters of all leaks for  
277 each pipe of the network for the present Monte Carlo simulation, the damages (breaks and leaks)  
278 were combined into the hydraulic model of the original network. Pressure at each node ( $P_n$ ) was  
279 determined. Pressure-driven steady-state hydraulic analysis was used to calculate the pressure at  
280 each node. The demand-driven analysis considers that the demand at every node is obtained, and  
281 this consideration is not a valid consideration for water networks disrupted by seismic events ( Shi  
282 2006; Cheung et al. 2005). To investigate the performance of actual networks after earthquakes,  
283 the following two assumptions are necessary according to Shi (2006):

- 284 • water demand at each node is not always met. In other words, immediately after the  
285 earthquake, demand of every node cannot be met fully due to leaks and breaks in the pipe.
- 286 • nodes cannot have negative pressure.

287 These two assumptions are necessary to investigate the performance of a water pipe network as  
288 they imitate the performance of actual networks after earthquakes (Shi 2006). An open-source  
289 package software, EPANET 2.0, was used for the pressure-driven steady-state hydraulic analysis.  
290 This software is recommended by Environmental Protection Agency (EPA) for hydraulic  
291 simulation of water networks. For every run of the Monte Carlo simulation, the following steps  
292 were followed:

- 293 1) Analyzing hydraulic model of the network including seismic damages (breaks and leaks)
- 294 2) Removing any nodes having negative pressure

295 3) Step 1 and step 2 were repeated if there is any node with negative pressure.

296 Hydraulic pressure at each node ( $P_n$ ) was calculated and recorded. SSI was calculated based on  
297 the demand at available nodes after removing all nodes with negative pressure for the predefined  
298 maximum Monte Carlo runs using Eq. (8):

299 
$$SSI_r = \frac{1}{M} * \sum_{m=1}^M SSI_m \quad (8)$$

300 where  $SSI_r$  is the average value of SSI for  $r^{th}$  Monte Carlo simulation;  $SSI_m$  is the value of SSI  
301 calculated using Eq. (6) for the  $m^{th}$  PGV field;  $M$  is the total number of PGV fields generated for  
302 the selected earthquake scenario.

303 The value of SSI for each Monte Carlo run was then recorded to create the SSI database. The SSI  
304 database was used for statistical analysis (ANOVA test and Tukey test). The steps of the Monte  
305 Carlo simulation to create the database are shown in Figure 3.

306 **Statistical Analysis of the SSI Database**

307 The one-way analysis of variance (ANOVA) and the Tukey test were used for statistical analysis  
308 of the SSI database. ANOVA is a statistical tool that determines any significant difference between  
309 the means of SSI of individual experiment groups. The following null hypothesis is tested:

310 
$$H_0: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_k \quad (9)$$

311 where  $\mu$  is the mean of the individual experiment group, and  $k$  is the total number of individual  
312 experiment groups. If the result is significant from the ANOVA test, the null hypothesis is rejected,  
313 which implies that a minimum of two individual experiment groups are statistically different from  
314 each other.

315 The one-way ANOVA cannot determine which specific experiment groups are statistically  
316 different from each other. A Tukey test was performed to determine which particular groups  
317 differed from each other.

318 **APPLICATION AND RESULTS**

319 Two different networks were selected to demonstrate the application of the methodology. The first  
320 network was the New York Tunnel network (Water Distribution System Research Database),  
321 having 42 pipes, 19 junctions, and one reservoir. The second network was the Oberlin network  
322 (Water Distribution System Research Database), having 289 pipes, 262 junctions, and one

323 reservoir. The Oberlin network is in Harrisburg, Pennsylvania. These two networks were available  
324 to download from an open-source website. These two networks were selected from two different  
325 classification of networks: medium size networks and large size networks. We demonstrated the  
326 application of the methodology on two different classifications of networks to identify the impacts  
327 of network uncertainties on seismic vulnerability assessment of different classification of  
328 networks.

329 The material of pipes having diameters less than 12 inches (300 mm) was assumed to be cast iron.  
330 The joint type for the cast-iron pipe was considered lead joints. If the diameter of the pipes were  
331 greater than 12 inches (300 mm), then the material was ductile iron. The joint type for the ductile  
332 iron pipe was considered rubber-gasketed joints. These assumptions were necessary to calculate  
333 the pipe repair rate based on ALA (2001). The pipe modification factor ( $C$ ) depends on the types  
334 of material and joint type. The mean value and standard deviation of the selected three normally  
335 distributed network uncertainties were not impacted by this assumption of pipe material. These  
336 values were selected based on network design values.

337 In order to select an earthquake scenario to thoroughly analyze the impact of uncertainties on the  
338 seismic vulnerability assessment, networks' centroid was presumed to be in Pasadena, California  
339 (34.146267° N, 118.144040° W) for the deaggregation analysis. Deaggregation analysis was  
340 conducted using USGS (2018b). For the deaggregation analysis, the return period was selected to  
341 be 2,475 years. From the deaggregation results conducted in Pasadena, California, an earthquake  
342 at the Raymond fault was selected as the scenario earthquake (magnitude 7.13) for this study as it  
343 had the highest contribution ratio (13.96%).

344 In the following step, a peak ground velocity field was generated using scenario shake-map  
345 calculator (Abrahamson and Silva 2007; Field et al. 2005). Inter-event and intra-event residuals  
346 were not considered in the shake-map calculator. The generated peak ground velocity field is  
347 shown in Figure 5. Figure 6 shows the same peak ground velocity field magnified to the scale of  
348 the network for New York Tunnel network. Figure 7 shows the peak ground velocity field  
349 magnified to the scale of the network for Oberlin network.

350 Each junction and four equally spaced nodes along the length of each pipe were chosen to generate  
351 the intra-event and inter-event residuals. These residual vectors were combined with a peak ground  
352 velocity field to generate twenty random PGVs ( $M=20$ ). The value of  $M$  was selected based on

353 literature (Zanini et al. 2016; Zanini et al. 2017; Shahandashti and Pudasaini 2019). The average  
354 PGV was quantified for each pipe using the PGV determined at the start junction of the pipe, at  
355 the end junction of the pipe, and four intermediate points along the pipe. The average PGV of each  
356 pipe was then used to measure the SSI of the network.

357 A convergence study was conducted to determine the suitable number of Monte Carlo runs (Figure  
358 8). Oberlin network (Water Distribution System Operations) was selected to conduct the  
359 convergence study. Experiment 8, for the selected earthquake, was selected for the convergence  
360 study. The same number of Monte Carlo runs that was found from the convergence study was used  
361 both for both New York Tunnel network and the Oberlin network (Water Distribution System  
362 Operations). From the convergence study result shown in Figure 8, it was concluded that 3000  
363 Monte Carlo runs were sufficient for this study.

364 A one-way ANOVA test was conducted (considering a 5% level of significance) to determine if  
365 the experimental results were statistically significant. Table 4 and Table 5 summarize the mean  
366 and variance of SSI for each experiment for the New York Tunnel network and Oberlin network,  
367 respectively.

368 For the ANOVA test, a null hypothesis ( $H_0$ ) and an alternative hypothesis ( $H_1$ ) were selected.

369 Null hypothesis,  $H_0: \mu_1 = \mu_2 = \dots = \mu_8$

370 Alternative hypothesis,  $H_1$ : Not all  $\mu$  are equal

371 Level of Significance: 5%

372 From the ANOVA test results, the  $p$ -values for New York Tunnel and Oberlin networks were  
373 much less than 0.05. Therefore, there were significant differences between the means of SSI in  
374 different groups or different experiments. The ANOVA test could not determine which specific  
375 experiments were statistically different from each other. It only implies that at least two  
376 experiments were. The Tukey test that is often used for multiple pairwise comparisons was  
377 conducted to determine which experiments have significantly different means. As this study was  
378 only considering the effects of uncertainty, the Tukey test was conducted only for seven pairs,  
379 comparing no-uncertainty experiment (Com\_Exp 1) with the other experiments: (Com\_Exp 1,  
380 Com\_Exp 2); (Com\_Exp 1, Com\_Exp 3); (Com\_Exp 1, Cop\_Exp 4); (Com\_Exp 1, Com\_Exp 5);  
381 (Com\_Exp 1, Com\_Exp 6); (Com\_Exp 1, Com\_Exp 7); (Com\_Exp 1, Com\_Exp 8). Table 6 and

382 Table 7 summarize the results of the Tukey test for the New York Tunnel network and Oberlin  
383 network, respectively.

384 The Tukey test results of both the New York Tunnel network and Oberlin network show that  
385 demand uncertainty (Com\_Exp 2) and pipe roughness coefficient uncertainty (Com\_Exp 3) do not  
386 have statistically significant individual effects; the null hypothesis could not be rejected. For all  
387 other pairwise comparisons, the null hypothesis was rejected, and it was concluded that the effects  
388 of uncertainty are significant considering a 5% level of significance.

389 From the ANOVA and Tukey test results, it can be concluded that uncertainty of demand and pipe  
390 roughness coefficient uncertainty do not have statistically significant effects. On the other hand,  
391 the effects of reservoir head uncertainty are statistically significant. The combined effect of the  
392 three selected water pipe network uncertainties is statistically significant for the selected value of  
393 CoV. In the next part of the study, sensitivity analysis was conducted to find the minimum value  
394 of CoV to create a statistically significant effect.

### 395 **SENSITIVITY ANALYSIS**

396 Sensitivity analysis was conducted to find the minimum value of the coefficient of variation (CoV)  
397 for which water pipe network uncertainties were statistically significant. Sensitivity analysis was  
398 divided into three major parts based on the effect of water pipe network uncertainties:

- 399 (i) Effect of uncertainties in demand, pipe roughness coefficient, and reservoir head  
400 individually
- 401 (ii) Combined effects of uncertainties in
  - 402 (a) demand and pipe roughness coefficient;
  - 403 (b) pipe roughness coefficient and reservoir head;
  - 404 (c) demand and reservoir head
- 405 (iii) Combined effect of uncertainties in demand, reservoir head, and pipe roughness  
406 coefficient

### 407 **Effect of Individual Water Pipe Network Uncertainties**

408 All three water pipe network uncertainties were studied individually for both networks. The results  
409 for both the networks are shown graphically in Table 8.

410 From the sensitivity test result of both the networks, the minimum value of CoV for reservoir head  
411 uncertainty is 0.01, indicating that a small uncertainty in reservoir head results in a statistically  
412 significant SSI change in both networks. By contrast, the CoV value for uncertainties in nodal  
413 demand and pipe roughness has to be quite large, more than the 0.2 value assumed in the literature  
414 (Seifollahi-Aghmiuni et al. 2013), to significantly affect mean SSI.

#### 415 **Joint Effect of Water Pipe Network Uncertainties**

416 Two water pipe network uncertainties were considered together here:

417 (i) Joint effect of uncertainties in demand and pipe roughness coefficient  
418 (ii) Joint effect of uncertainties in pipe roughness coefficient and reservoir head  
419 (iii) Joint effect of uncertainties in demand and reservoir head

420 While considering the joint effect of water pipe network uncertainties, the selected two parameters  
421 (among demand, pipe roughness coefficient, and reservoir head) were considered normally  
422 distributed. The other parameter was considered equal to the mean value associated with that. The  
423 The analysis result of all three sections for both the networks are shown graphically from Figure  
424 9(a) to Figure 9(f). The marked zone indicates the area inside which the joint effect of the water  
425 pipe network uncertainties is not statistically significant.

426 Figure 9(a) and Figure 9(b) show that the minimum value of CoV for either uncertainty of demand  
427 or uncertainty of pipe roughness coefficient has to be high to results in a statistically significant  
428 change in SSI for both networks. By contrast, while checking the combined effects with reservoir  
429 head, the minimum value of CoV does not depend on the pipe roughness coefficient or demand to  
430 result in statistically significant SSI change for both networks as the value of SSI changes for any  
431 uncertainty in reservoir head.

#### 432 **Combined Effect of Three Water Pipe Network Uncertainties**

433 All three water pipe network uncertainties were considered here. The results of the sensitivity  
434 analysis for both the networks are shown in Figure 10(a) and Figure 10(b). The marked zone  
435 indicates the zone inside which the combined effect of the water pipe network uncertainties is not  
436 statistically significant.

437 Figure 10(a) and Figure 10(b) show that the minimum value of CoV to have a statistically  
438 significant effect on the value of SSI does not depend on the uncertainty of demand and pipe

439 roughness coefficient. A small uncertainty in reservoir head results in a statistically significant  
440 change in SSI for both networks.

## 441 CONCLUSIONS

442 A methodology has been proposed to identify the effects of water pipe network uncertainties on  
443 seismic vulnerability assessment of networks. Three water pipe network uncertainties were  
444 selected: uncertainties in nodal demand, reservoir head, pipe roughness coefficient. Two different  
445 networks were used to apply the proposed methodology.

446 The statistical analysis results show that the individual effect of uncertainty of demand and  
447 uncertainty of pipe roughness coefficient on seismic vulnerability assessment of water pipe  
448 networks can be ignored for the fixed value of coefficient of variation ( $CoV = 0.2$ ). On the contrary,  
449 the individual effect of uncertainty of reservoir head is statistically significant for the selected  
450 value of  $CoV$  ( $CoV = 0.2$ ). The combined effect of uncertainty of the selected water pipe network  
451 uncertainties on the post-earthquake serviceability is statistically significant.

452 Based on the results from sensitivity analysis, the individual effect of uncertainty of reservoir head  
453 on seismic vulnerability assessment is found to be statically significant, even at low levels of  
454 uncertainty (minimum value of  $CoV = 0.01$ ). By contrast, the individual effects of demand and  
455 pipe roughness coefficient uncertainties are statistically significant for higher levels of  
456 uncertainties ( $CoV$  ranges from 0.03 to 1).

457 Based on the results of statistical analysis and sensitivity analysis, it can be concluded that selected  
458 water pipe network uncertainties have statistically significant effects on the post-earthquake  
459 serviceability. Therefore, it is highly recommended that water pipe network uncertainties be  
460 integrated with seismic vulnerability assessment of water pipe networks. Future studies are  
461 recommended to investigate the impact of other water pipe network uncertainties that were not  
462 considered in this study.

463 The results correspond to a single high-intensity scenario selected based on deaggregation analysis.  
464 Further analysis is recommended to identify whether these parameters remain statistically  
465 significant in case the earthquake randomness is considered.

## 466 DATA AVAILABILITY STATEMENT

467 Some or all data, models, or code that support the findings of this study are available from the  
468 corresponding author upon reasonable request.

469 **ACKNOWLEDGEMENT**

470 This material is based upon work supported by the National Science Foundation under Grant  
471 CMMI-1926792. Hence, the authors are grateful to the National Science Foundation for this  
472 support.

473 **REFERENCES**

474 Abrahamson, N. A., & Silva, W. J. (2007). "Abrahamson-Silva NGA ground motion relations for  
475 the geometric mean horizontal component of peak and spectral ground motion  
476 parameters." *Berkeley, CA: Pacific Earthquake Engineering Research Center, Univ. of California*.

477 Adachi, T. (2007). *Impact of cascading failures on performance assessment of civil infrastructure*  
478 *systems* (Doctoral dissertation, Georgia Institute of Technology).

479 ALA (American Lifelines Alliance). (2001). *Seismic fragility formulations for water*  
480 *systems*. Washington, DC: ALA.

481 Bargiela, A., & Hainsworth, G. D. (1989). "Pressure and flow uncertainty in  
482 water systems." *Journal of Water Resources Planning and Management*, 115(2), 212-229.

483 Boskabadi, A., Rosenberger, J. M., & Shahandashti, M. (2020). A Two-Stage Stochastic  
484 Programming Approach for Enhancing Seismic Resilience of Water Pipe Networks. In IIE Annual  
485 Conference. Proceedings (pp. 495-500). Institute of Industrial and Systems Engineers (IISE).

486 Braun, M., Piller, O., Deuerlein, J., Mortazavi, I., & Iollo, A. (2020). "Uncertainty quantification  
487 of water age in water supply systems by use of spectral propagation." *Journal*  
488 *of Hydroinformatics*, 22(1), 111-120.

489 Cheung, P., J. E. Van Zyl, and R. L. F. Reis. (2005). "Extension of EPANET for pressure driven  
490 demand modeling in water distribution system." In Vol. 1 of Proc., Int. Conf. Computer and  
491 Control in Water Industry, 203–208. Exeter, UK: Univ. of Exeter.

492 Christodoulou, S. E., and Fragiadakis, M. (2015). "Vulnerability assessment of water distribution  
493 networks considering performance data." *Journal of Infrastructure Systems*, 21(2), 04014040.

494 Cubrinovski, M., Bradley, B., Wotherspoon, L., Green, R., Bray, J., Wood, C., & Taylor, M.  
495 (2011). "Geotechnical aspects of the 22 February 2011 Christchurch earthquake." *Bulletin of the*  
496 *New Zealand Society for Earthquake Engineering*, 44(4), 205-226.

497 Datta, S. K., Shah, A. H., & Wong, K. C. (1984). "Dynamic stresses and displacements in buried  
498 pipe." *Journal of engineering mechanics*, 110(10), 1451-1466.

499 Dongre, S. R., & Gupta, R. (2017). "Optimal design of water distribution network under hydraulic  
500 uncertainties." *ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering*, 3(3), G4017001.

502 Eidinger, J. M., & Avila, E. A. (Eds.). (1999). *Guidelines for the seismic evaluation and upgrade*  
503 *of water transmission facilities* (Vol. 15). ASCE Publications.

504 Farahmandfar, Z., Piratla, K. R., and Andrus, R. D. (2017). "Resilience evaluation of water supply  
505 networks against seismic hazards." *Journal of Pipeline Systems Engineering and Practice*, 8(1),  
506 04016014.

507 Field, E. H., Seligson, H. A., Gupta, N., Gupta, V., Jordan, T. H., and Campbell, K. W.  
508 (2005). "Loss estimates for a Puente Hills blind-thrust earthquake in Los  
509 Angeles, California." *Earthquake Spectra*, 21(2), 329–338.

510 Fragiadakis, M., and Christodoulou, S. E. (2014). "Seismic reliability assessment of urban water  
511 networks." *Earthquake Engineering and Structural Dynamics*, 43, 357-374.

512 Fragiadakis, M., Christodoulou, S. E., and Vamvatsikos, D. (2013). "Reliability assessment of  
513 urban water distribution networks under seismic loads." *Water Resources Management*, 27(10),  
514 3739-3764.

515 Haghghi, A., & Asl, A. Z. (2014). "Uncertainty analysis of water supply networks using the fuzzy  
516 set theory and NSGA-II." *Engineering Applications of Artificial Intelligence*, 32, 270-282.

517 Honegger, D. G., and R. T. Eguchi. (1992). "Determination of the relative vulnerabilities to  
518 seismic damage for San Diego County Water Authority (SDCWA) water transmission pipelines."  
519 Washington, DC: FEMA.

520 Hosseini, M. and Tahamouli Roudsari, M. (2010). "A study on the effects of surface transverse  
521 waves on buried steel pipelines considering the nonlinear behavior of soil and pipes." *Proc. of the*  
522 *ASCE Pipelines 2010 Conference*, Keystone, Colorado, pp.1078-1087.

523 Huang, J. J., McBean, E. A., & James, W. (2008). Multi-objective optimization for monitoring  
524 sensor placement in water distribution systems. In *Water Distribution Systems Analysis*  
525 *Symposium 2006* (pp. 1-14).

526 Jayaram, N., and J. W. Baker. (2009). "Correlation model for spatially distributed ground-motion  
527 intensities." *Earthquake Eng. Struct. Dyn.* 38 (15): 1687–1708.

528 Kang, D., & Lansey, K. (2009). "Real-time demand estimation and confidence limit  
529 analysis for water distribution systems." *Journal of Hydraulic Engineering*, 135(10), 825-837.

530 Kapelan, Z. S., Savic, D. A., & Walters, G. A. (2005). "Multi objective design of water distribution  
531 systems under uncertainty." *Water Resources Research*, 41(11).

532 Knight, B. (2017). Mexico City earthquake reconnaissance – day 3. *What's Happening*.  
533 Retrieved from <http://www.wrkengrs.com/mexico-city-earthquake-reconnaissance-day-4/>

534 Lansey, K. E., Duan, N., Mays, L. W., & Tung, Y. K. (1989). "Water distribution system  
535 design under uncertainties." *Journal of Water Resources Planning and Management*, 115(5), 630-  
536 645.

537 Lansey, K. E., El-Shorbagy, W., Ahmed, I., Araujo, J., & Haan, C. T. (2001). "Calibration  
538 assessment and data collection for water distribution networks." *Journal of Hydraulic  
539 Engineering*, 127(4), 270-279.

540 Liu, A. W., Hu, Y. X., Zhao, F. X., Li, X. J., Takada, S., & Zhao, L. (2004). "An equivalent-  
541 boundary method for the shell analysis of buried pipelines under fault movement." *Acta  
542 Seismologica Sinica*, 17(1), 150-156.

543 Luco, J. E., & De Barros, F. C. P. (1994). "Seismic response of a cylindrical shell embedded in a  
544 layered viscoelastic half-space. I: Formulation." *Earthquake engineering & structural  
545 dynamics*, 23(5), 553-567.

546 Maruyama, Y., K. Kimishima, and F. Yamazaki. (2011). "Damage assessment of buried pipes due  
547 to the 2007 Niigata Chuetsu-Oki earthquake in Japan." *J. Earthquake Tsunami* 5 (1): 57–70.

548 Mazumder, R. K., Fan, X., Salman, A. M., Li, Y., and Yu, X. (2020a). "Framework for seismic  
549 damage and renewal cost analysis of buried water pipelines." *Journal of Pipeline Systems  
550 Engineering and Practice*, 11(4), 04020038.

551

552 Mazumder, R. K., Salman, A. M., Li, Y., and Yu, X. (2020b). "Seismic functionality and resilience  
553 analysis of water distribution systems." *Journal of Pipeline Systems Engineering and Practice*,  
554 11(1), 04019045.

555 Melissianos, V. E., Korakitis, G. P., Gantes, C. J., & Bouckovalas, G. D. (2016). "Numerical  
556 evaluation of the effectiveness of flexible joints in buried pipelines subjected to strike-slip fault  
557 rupture." *Soil Dynamics and Earthquake Engineering*, 90, 395-410.

558 Newmark, N. M., & Rosenblueth, E. (1971). "Fundamentals of Earthquake Engineering. Prentice-  
559 Hall, Inc." *Englewood Cliffs, New Jersey*.

560 O'Rourke, T.D. (1996). "Lessons learned for lifeline engineering from major urban earthquakes."  
561 In *Proc., 11th World Conf. of Earthquake Engineering*. Tokyo: International Association for  
562 Earthquake Engineering.

563 O'Rourke, T. D., S. S. Jeon, S. Toprak, M. Cubrinovski, M. Hughes, S. Van Ballegooij, and  
564 D. Bouziou. (2014). "Earthquake response of underground pipeline networks in Christchurch,  
565 NZ." *Earthquake Spectra* 30 (1): 183–204.

566 Pandey, P., Dongre, S., & Gupta, R. (2020). "Probabilistic and fuzzy approaches for uncertainty  
567 consideration in water distribution networks—a review." *Water Supply*, 20(1), 13-27.

568 Pineda-Porras, O., and Najafi, M. (2010). "Seismic Damage Estimation for Buried  
569 Pipelines: Challenges after Three Decades of Progress." *Journal of Pipeline Systems Engineering  
570 and Practice*, 1(1), 19–24.

571 Piratla, K. R., Yerri, S. R., Yazdekhasti, S., Cho, J., Koo, D., & Matthews, J.C. (2015).  
572 "Empirical analysis of water-main failure consequences." *Procedia Engineering*, 118, 727–734.

573 Pudasaini, B., & Shahandashti, S. M. (2018). "Identification of critical pipes for  
574 proactive resource-constrained seismic rehabilitation of water pipe networks." *Journal of  
575 Infrastructure Systems*, 24(4), 04018024.

576 Pudasaini, B., & Shahandashti, M. (2020a). Topological surrogates for computationally efficient  
577 seismic robustness optimization of water pipe networks. *Computer-Aided Civil and Infrastructure  
578 Engineering*, 35(10), 1101-1114.

579 Pudasaini, B., & Shahandashti, S. M. (2020b). Seismic Resilience Enhancement of Water Pipe  
580 Networks Using Hybrid Metaheuristic Optimization. In *Pipelines 2020* (pp. 428-436). Reston,  
581 VA: American Society of Civil Engineers.

582 Pudasaini, B., Shahandashti, S. M., & Razavi, M. (2017). "Identifying critical links in  
583 water supply systems subject to various earthquakes to support inspection and renewal decision  
584 making." *Computing in Civil Engineering*, 2017, 231– 238.

585 Saberi, M., Halabian, A. M., & Vafaian, M. (2011). "Numerical analysis of buried steel pipelines  
586 under earthquake excitations." In *Pan-Am CGS Geotechnical Conference*.

587 Sabzkouhi, A. M., & Haghghi, A. (2016). "Uncertainty analysis of pipe-network hydraulics  
588 using a many-objective particle swarm optimization". *Journal of Hydraulic Engineering*, 142(9),  
589 04016030.

590 Scawthorn, C., Eidinger, J. M., & Schiff, A. (Eds.). (2005). *Fire following earthquake* (Vol. 26).  
591 ASCE Publications.

592 Seifollahi-Aghmiuni, S., Haddad, O. B., Omid, M. H., & Mariño, M. A. (2013). "Effects of  
593 pipe roughness uncertainty on water distribution network performance during its operational  
594 period." *Water resources management*, 27(5), 1581-1599.

595 Seifollahi-Aghmiuni, S., Haddad, O. B., Omid, M. H., & Mariño, M. A. (2011). "Long-term  
596 efficiency of water networks with demand uncertainty." In *Proceedings of the Institution of Civil  
597 Engineers-Water Management* (Vol. 164, No. 3, pp. 147-159). Thomas Telford Ltd.

598 Shahandashti, S. M., & Pudasaini, B. (2019). "Proactive seismic rehabilitation decision-  
599 making for water pipe networks using simulated annealing." *Natural Hazards Review*, 20(2),  
600 04019003.

601 Shi, P. (2006). *Seismic response modeling of water supply systems*. Ithaca, NY:  
602 Cornell University.

603 Shibu, A., & Reddy, M. J. (2011). "Uncertainty analysis of water distribution networks by fuzzy-  
604 cross entropy approach." *World Academy of Science, Engineering and Technology*, 59, 494-502.

605 Singhal, A. C., & Zuroff, M. S. (1990). "Analysis of underground and underwater space frames  
606 with slip joints." *Computers & structures*, 35(3), 227-237.

607 Sivakumar, P., Prasad, R. K., & Chandramouli, S. (2016). "Uncertainty analysis of looped water  
608 distribution networks using linked EPANET-GA method." *Water resources management*, 30(1),  
609 331-358.

610 Thapa, B. R., H. Ishidaira, V. P. Pandey, and N. M. Shakya. (2016). "Impact assessment of Gorkha  
611 earthquake 2015 on potable water supply in Kathmandu valley: Preliminary analysis." *J. Jpn. Soc.  
612 Civ. Eng., Ser. B1 (Hydraul. Eng.)* 72 (4): I\_61–I\_66.

613 Trautman, C. H., M. M. Khater, T. D. O'Rourke, and M. D. Grigoriu. (2013). "Modeling  
614 water supply systems for earthquake response analysis." In *Structures and stochastic methods*,  
615 215. New York: Elsevier.

616 USGS. (2018a). "U.S. quaternary faults and folds database." Accessed May 10, 2020.  
617 <https://usgs.maps.arcgis.com/apps/webappviewer/index.html?id=5a6038b3a1684561a9b0aadf88412fcf>.

619 USGS. (2018b). "Unified hazard tool." Earthquake Hazards Program.  
620 Accessed May 10, 2020. <https://earthquake.usgs.gov/hazards/interactive>.

621 Vazouras, P., Karamanos, S. A., & Dakoulas, P. (2010). "Finite element analysis of buried steel  
622 pipelines under strike-slip fault displacements." *Soil Dynamics and Earthquake  
623 Engineering*, 30(11), 1361-1376.

624 Wang, L. R., Pikul, R. R., & O'Rourke, M. J. (1982). "Imposed ground strain and buried  
625 pipelines." *Journal of the Technical Councils of ASCE*, 108(2), 259-263.

626 Wang, M., and T. Takada. (2005). "Macrospatial correlation model of seismic ground motions."  
627 *Earthquake Spectra* 21 (4): 1137–1156.

628 Wang, Y., Au, S.-K., & Fu, Q. (2010). "Seismic risk assessment and mitigation of water  
629 supply systems." *Earthquake Spectra*, 26(1), 257–274.

630 Water Distribution System Operations. (2013). "Database." Accessed September 1, 2019.  
631 <http://www.uky.edu/WDST/database.html>.

632 Weatherill, G., V. Silva, H. Crowley, and P. Bazzurro. (2013). "Exploring strategies for portfolio  
633 analysis in probabilistic seismic loss estimation." In Proc., Vienna Congress on Recent Advances  
634 in Earthquake Engineering and Structural Dynamics, 28–30. Vienna, Austria: Vienna Univ. of  
635 Technology.

636 Xu, C., & Goulter, I. C. (1998). "Probabilistic model for water distribution reliability." *Journal*  
637 *of Water Resources Planning and Management*, 124(4), 218-228.

638 Yerri, S. R., Piratla, K. R., Matthews, J. C., Yazdekhasti, S., Cho, J., & Koo, D. (2017).  
639 "Empirical analysis of large diameter water main break consequences." *Resources, Conservation,* and Recycling, 123, 242– 248.

640 *and Recycling*, 123, 242– 248.

641 Yoo, D. G., Jung, D., Kang, D., Kim, J. H., & Lansey, K. (2016). "Seismic hazard assessment  
642 model for urban water supply networks." *Journal of Water Resources Planning and*  
643 *Management*, 142(2), 04015055.

644 Zanini, M. A., C. Vianello, F. Faleschini, L. Hofer, and G. Maschio. (2016). "A framework for  
645 probabilistic seismic risk assessment of NG distribution networks." *Chem. Eng. Trans.* 53: 163–  
646 168.

647 Zanini, M. A., F. Faleschini, and C. Pellegrino. (2017). "Probabilistic seismic risk  
648 forecasting of aging bridge networks." *Eng. Struct.* 136: 219–232.