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ABSTRACT 12 

Past earthquakes revealed that earthquakes disrupt operations of underground water infrastructure 13 

systems. Assessment of the seismic vulnerability of underground water pipe networks plays a 14 

critical role in formulating preventive rehabilitation decision making to avoid high repair costs. 15 

Although existing seismic vulnerability assessment methods are sensitive to water pipe network 16 

uncertainties (e.g., uncertainties in nodal demand, reservoir head, pipe roughness coefficient), the 17 

extent of the effects of these uncertainties on the post-earthquake serviceability of the networks 18 

has not been examined. This research investigates the effects of water pipe network uncertainties 19 

on the seismic vulnerability assessment of networks. Transient ground displacements due to 20 

seismic wave propagation are considered for this investigation. The methodology includes seven 21 

steps: uncertainty identification and quantification, design of experiments, integrated multi-22 

physics modeling, seismic repair rate calculations, Monte Carlo simulation, statistical analysis of 23 

the data (Analysis of Variance (ANOVA), and Tukey tests), and sensitivity analysis. Uncertainties 24 

in nodal demand, reservoir head, and pipe roughness coefficient were examined in this study. An 25 

integrated multi-physics model was created to simulate hydraulic network behavior and seismic 26 

vulnerability assessment. The approach was tested on two networks (New York Tunnel Network 27 

and Oberlin Network). The statistical analysis results indicate that the combined impact of the 28 

three selected water pipe network uncertainties on the seismic vulnerability assessment of 29 

networks is statistically significant. Nodal demand and pipe roughness coefficient uncertainties do 30 

not individually have a statistically significant effect. The individual effect of reservoir head 31 
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uncertainty is statistically significant. Sensitivity analysis determined the minimum value of the 32 

coefficient of variation to have a statistically significant effect. Sensitivity analysis was divided 33 

into three parts to investigate the individual and combined effects of network uncertainties. The 34 

results from sensitivity analysis show that small uncertainty in reservoir head results in a 35 

statistically significant effect on seismic vulnerability assessment. By contrast, the coefficient of 36 

variation for uncertainties in nodal demand and pipe roughness has to be quite large to significantly 37 

affect seismic vulnerability assessment. Statistical analysis and sensitivity analysis results show 38 

that water pipe network uncertainties have a statistically significant impact on seismic 39 

vulnerability assessment of networks. Hence, it is recommended to integrate water pipe network 40 

uncertainties with existing methods for assessing seismic vulnerabilities.  41 

INTRODUCTION  42 

Water pipe networks are among the lifelines of modern cities (Eidinger and Avila 1999). Past 43 

earthquakes (e.g., the San Fernando earthquake of 1971, the Northridge earthquake of 1994, the 44 

Kobe earthquake of 1995) and some recent earthquakes (e.g., the Christchurch earthquake of 2011, 45 

the East Japan earthquake of 2011, the Gorkha earthquake of 2015, and the Central Mexico 46 

earthquake of 2017) have divulged the vulnerability of the underground water pipe networks 47 

(Knight 2017; Thapa et al. 2016; O' Rourke et al. 2014; Maruyama et al. 2011; Cubrinovski et al. 48 

2011; O’Rourke 1996). Residential, industrial, and commercial activities get disrupted due to the 49 

damages to the water pipe networks. Any disruption in such networks can cause extensive direct 50 

and indirect losses such as repair costs or disturbance in water distribution (Yerri et al. 2017; Piratla 51 

et al. 2015). In the Northridge earthquake of 1994, utilities performed around 1400 repairs in water 52 

pipes, of which approximately 100 repairs were carried out in pipes with large diameters 53 

(O’Rourke 1996). About 50,000 people were disconnected from the drinkable water supply for 54 

over seven days after the Northridge earthquake (Scawthorn et al. 2005). The Kobe earthquake 55 

caused damages at 23 locations of the water pipeline (Yoo et al. 2016). Although an earthquake is 56 

a rare event, it can significantly degrade the performance of water supply networks. Therefore, 57 

assessing seismic vulnerability underground water pipe networks is crucial to ensure acceptable 58 

post-earthquake serviceability.  59 

In the current practice of vulnerability assessment of underground water pipe networks subjected 60 

to seismic events, it is implicitly assumed that currently established hydraulic network analysis 61 

models can accurately estimate reliability and serviceability measures. However, several studies 62 
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have identified significant shortcomings of the hydraulic models representing actual networks 63 

(Sabzkouhi and Haghighi 2016; Seifollahi-Aghmiuni et al. 2013; Lansey et al. 2001; Bargiela and 64 

Hainsworth 1989). These shortcomings are mostly due to the high sensitivity of hydraulic models 65 

to their input variables. The bottleneck is the highly limited knowledge about the actual input 66 

values, which drive the hydraulic models. These values include nodal demands, pipe roughness 67 

coefficients, reservoir head, pipe material, pipe age, and pipe diameter (Kang and Lansey 2009, 68 

Shibu and Janga Reddy 2011). Sabzkouhi and Haghighi (2016) showed that a slight 15% 69 

uncertainty in a demand and pipe’s roughness coefficient could cause around 11% deviation in 70 

predicted nodal pressures and 50% deviation in flow velocities. These results represent the high 71 

sensitivity of network hydraulic analysis models to uncertainties. Therefore, it is crucial to 72 

investigate the effects of water pipe network uncertainties on seismic vulnerability assessment of 73 

the networks. This study investigates the effects of network uncertainties on seismic vulnerability 74 

assessment considering transient ground displacements due to seismic wave propagation. 75 

RESEARCH BACKGROUND 76 

Component-level and system-level seismic vulnerability assessments are two broadly classified 77 

categories of the methods for assessing the vulnerability of water pipe networks subjected to 78 

seismic events. Individual components can be evaluated by component-level assessment models. 79 

The seismic performance of an entire network can be evaluated by system-level assessment 80 

models. The methods for assessing the vulnerability of individual pipes can be further divided into 81 

two categories: analytical and empirical. Newmark and Rosenblueth (1971) proposed an analytical 82 

method to investigate the response of an underground pipeline assuming negligible soil-pipe 83 

interaction. Since then, these interactions have been studied using quasi-static analysis (Singhal 84 

and Zuroff 1990; Wang et al. 1982), shell theory (Liu et al. 2004; Luco and De Barros 1994), 85 

dynamic plain-strain modeling (Datta et al. 1984), finite element analysis (Saberi et al. 2014; 86 

Vazouras et al. 2010), probabilistic fault displacement hazard analysis and beam-type finite 87 

element modeling (Melissianos et al. 2016), and nonlinear modeling of seismic response (Hosseini 88 

and Tahamouli Roudsari 2010). Honegger and Eguchi (1992) estimated the failure rate of brittle 89 

pipes subjected to permanent ground deformation. American Lifeline Airlines (ALA 2001) 90 

formulated seismic fragility relations for a wide range of pipes based on 81 data points from 12 91 

earthquakes. Christodoulou and Fragiadakis (2015) investigated the effects of a network’s 92 

historical performance on seismic vulnerability through the introduction of the number of observed 93 
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previous breaks (NOPB) risk factor. Although these component-level models are useful to gain a 94 

good insight into failure mechanisms of small-scale cases, they are impractical for large-scale 95 

vulnerability assessment (Hosseini and Tahamouli Roudsari 2010). 96 

While it is necessary to understand the performance of individual pipes, their network resilience 97 

depends on these pipes’ dynamic interactions. Advancements in network simulation, probabilistic 98 

modeling, and computational engineering have helped researchers to conduct system-level seismic 99 

vulnerability assessments of networks (Pudasaini et al. 2017; Wang et al. 2010; Shi 2006). 100 

Individual pipe failure probabilities are used to generate damages in pipes for system-level 101 

vulnerability assessment (Pudasaini and Shahandashti 2020b). Damages were integrated with 102 

hydraulic models using Monte Carlo simulation. Shi (2006) combined fragility relations with 103 

hydraulic principles to model the seismic response of water networks. Shi’s methodology was 104 

further expanded to generate various system serviceability and reliability indices (Wang et al. 105 

2010; Huang et al. 2008). System serviceability index (SSI) was used by Wang et al. (2010) to 106 

measure the performance of a water pipe network susceptible to seismic damages. SSI was used 107 

to locate the critical pipes of the network and rank them accordingly. Fragiadakis and 108 

Christodoulou (2013) proposed a methodology for assessing the reliability of water pipe networks 109 

combining data of past non-seismic damage and the vulnerability of network’s components against 110 

seismic loading. Fragiadakis et al. (2013) created an assessment method considering data of past 111 

non-seismic damage, the vulnerabilities of the network components against seismic loading, and 112 

the topology of a water pipe network. Farahmandfer et al. (2017) proposed a metric that quantifies 113 

resilience of water pipe networks. Networks’ spatial distributions and correlations related to 114 

ground motion intensities were not taken into consideration in their analysis. Few recent studies 115 

considered these spatial distributions and correlations (Shahandashti and Pudasaini 2019; 116 

Pudasaini and Shahandashti 2018). Most recently, Boskabadi et al. (2020) developed a two-stage 117 

stochastic programming approach for enhancing seismic resilience of water pipe networks. 118 

Pudasaini and Shahandashti (2020a) identified topological surrogates for computationally efficient 119 

seismic robustness optimization of water pipe networks. Mazumder et al. (2020a) proposed a 120 

methodology to calculate seismic repair rate.  This study proposed a renewal strategy addressing 121 

the vulnerability of pipelines from the topological viewpoint. Mazumder et al. (2020b) presented 122 

a framework to evaluate both component-level and system level seismic resilience of water pipe 123 

networks considering time-variant corrosion of pipeline. Despite all advancements in assessing the 124 
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vulnerability networks due to seismic events, the impacts of uncertainties on these seismic 125 

vulnerability assessments are not known. 126 

Although the impacts of uncertainties on the seismic vulnerability assessments are unknown, 127 

uncertainty quantification and analysis have been applied to study the effects of water pipe network 128 

uncertainties on their no-hazard design and operation procedures. For example, Seifollahi-129 

Aghmiuni et al. (2011) combined a shuffled frog algorithm with Monte Carlo simulation to 130 

examine water network efficiency considering the uncertainty of demand. Their study was 131 

primarily focused on identifying the effects of demand uncertainty on operation using a 132 

probabilistic normal distribution. They concluded that network efficiency decreases if demand 133 

uncertainty is not considered while operating a network. Seifollahi-Aghmiuni et al. (2013) used a 134 

similar methodology to examine water network performance in its operational period considering 135 

pipe roughness uncertainty. They concluded that if pipe roughness uncertainty increases, network 136 

performance decreases. Xu and Goulter (1998) proposed a methodology for assessing water pipe 137 

networks considering uncertainties in pipe capacity, nodal demands, and reservoir/tank levels.  138 

Lansey et al. (1989) developed a methodology to determine an optimal design process for water 139 

pipe networks. They considered several network uncertainties, such as pressure head requirements, 140 

future demands, and pipe roughness. They illustrated that uncertainties in those parameters have 141 

substantial effects on the network design process. Kapelan et al. (2005) defined the water 142 

distribution design problem as a multi-objective optimization problem under uncertainty. They 143 

considered pipe roughness coefficient and water consumption as uncertain variables. Probability 144 

density functions were used to model the uncertain variables. The obtained results demonstrated 145 

that the proposed methodology could identify robust Pareto optimal solutions in spite of the 146 

considerably less calculation effort. Sabzkouhi and Haghighi (2016) introduced a methodology to 147 

analyze water pipe networks considering uncertainty based on fuzzy set theory. They showed that 148 

uncertainties in network input parameters lead to imprecise hydraulic responses. Implementing the 149 

method in a real-time network revealed that a 15% change in the nodal demand and pipes’ 150 

roughness could result in -41.7% to +50.1% uncertainty in the pipe velocities and -11.2% to +6.4% 151 

uncertainty in the nodal pressures.  152 
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Existing methods for assessing the seismic vulnerability of water pipe networks did not consider 153 

the network uncertainties. Hence, a methodology was created in this study to investigate the effects 154 

of water pipe network uncertainties on the seismic vulnerability assessment of the networks.  155 

METHODOLOGY 156 

The methodology includes seven steps: uncertainty identification and quantification, design of 157 

experiments, integrated multi-physics modeling, seismic repair rate calculations, Monte Carlo 158 

simulation, statistical analysis of the data (ANOVA test and Tukey Test), and sensitivity analysis.  159 

Figure 1 demonstrates the methodology adopted for this study.  160 

Uncertainty Identification and Quantification 161 

Sources of water pipe network uncertainties were identified and quantified based on the literature. 162 

Probability and possibility models were used to characterize pipe network uncertainties. Table 1 163 

summarizes the previous efforts to characterize the network uncertainties. Normal and uniform 164 

distributions were two widely used probability models (Seifollahi-Aghmiuni et al. 2013; Lansey 165 

et al. 2001). Alternatively, fuzzy logic was used as a possibility model (Sabzkouhi and Haghighi 166 

2016; Shibu and Janga Reddy 2011).  167 

Through a thorough literature review, three water pipe network uncertainties were selected: nodal 168 

demand, pipe roughness coefficient, and reservoir head. These uncertainties are widely 169 

acknowledged in the literature as critical sources of uncertainties for performance modeling and 170 

analysis of the water pipe networks (Table 1). It is assumed nodal demands, pipe roughness 171 

coefficient, and reservoir head to be normally distributed. The coefficient of variation (CoV) was 172 

used to investigate the effect of uncertainty. CoV is the ratio between the mean and standard 173 

deviation. The mean value associated with the selected three network parameters were considered 174 

equals to the design value. The design value was collected from water distribution system research 175 

database. The value of standard deviation was calculated using the mean and the assumed CoV. 176 

The assumption of value of CoV was relaxed by conducting a sensitivity analysis to investigate 177 

and determine the minimum value of CoV to have a statistically significant impact. The value of 178 

CoV was initially assumed to be 0.2 (Seifollahi-Aghmiuni et al. 2013; Seifollahi-Aghmiuni et al. 179 

2011). The initial value of CoV was selected based on Seifollahi-Aghmiuni et al. (2013) and 180 

Seifollahi-Agmiuni et al. (2011). Later, different values of CoV were used to conduct the 181 

sensitivity analysis. 182 
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Design of Experiments 183 

The experiments were designed as a full factorial design. Each of the three parameters considered 184 

in this study was studied at two levels: including uncertainty and excluding uncertainty. The levels 185 

were coded as +1 (including uncertainties) and –1 (excluding uncertainties). The +1 (including 186 

uncertainties) were the experiments considering normal distribution using mean values plus one 187 

standard deviation and mean minus one standard deviation of uncertainties. The -1 (excluding 188 

uncertainties) were performed considering the mean values. Table 2 shows selected water pipe 189 

network uncertainties with their levels for the experiment. 190 

It is essential to analyze all the two-factor interactions to identify the effects of all three selected 191 

water pipe network uncertainties. Therefore, a 23 full factorial design was chosen for this 192 

experiment. The coded design for the experiment is shown in Table 3. 193 

Seismic Repair Rate Calculation 194 

Figure 2 illustrates the steps to calculate the seismic repair rate for each pipe. 195 

At the beginning of the seismic repair rate calculation, an earthquake scenario was identified based 196 

on deaggregation analysis using USGS (2018b) considering the spatial relationship among seismic 197 

intensities (Zanini et al. 2017; Zanini et al. 2016; Weatherill et al. 2013; Jayaram and Baker 2009; 198 

Adachi 2007). Deaggregation maps were generated using USGS (2018b). Deaggregation analysis 199 

was conducted using the spectral acceleration of 1.0-s. The earthquake that had the highest 200 

percentage of contribution was selected from the deaggregation analysis. 201 

Next, for the selected earthquake scenario, peak ground velocity (PGV) was determined. PGV was 202 

used as the intensity parameter because of its direct relationship with the induced transient strains 203 

in the soil during a seismic event. These induced strains are major causes of underground pipe 204 

damages (Pineda-Porras and Najafi 2010).  205 

A spatially correlated peak ground velocity field was produced using the ground motion prediction 206 

equation (GMPE) (Abrahamson and Silva 2007, Zanini et al. 2016, Zanini et al. 2017). The general 207 

equation is given by Eq. (1). 208 

log10 (PGVab) = f (Ma, Rab, θa) + ϬB va + Ϭwεab      (1) 209 

where PGVab = value of peak ground velocity at location b  from source a; Rab = distance between 210 

location a and location b; Ma  = earthquake magnitude; θa = fault geological parameters at location 211 
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a. ϬB va is the interevent residual, and Ϭwεab is the intra-event residual. Initially, the peak ground 212 

velocity map, i.e., f (Ma, Rab, θa) was created based on Abrahamson and Silva (2007). A peak 213 

ground velocity map was created using the scenario shake map calculator (Field et al. 2005). In 214 

the following step, the interevent and intra-event variabilities were incorporated in this map. Εab 215 

and va are random variables with normal distribution which has a mean value (K) of 0 and standard 216 

deviations of ϬB and Ϭw. The value of εab was calculated using Eq. (2) (Zanini et al. 2016; 217 

Weatherill et al. 2013).  218 

ε =K+ Z*L           (2) 219 

where K = 0; L = Lower triangular matrix; Z = vector of random variables with normal distribution. 220 

The value of L was calculated by applying the Cholesky decomposition method, such that LLT = 221 

P. P is the positive-definite covariance matrix. The value of P can be calculated  using Eq. (3).  222 

𝐏 = [

1 Ϭ(d1,2) ⋯ Ϭ(d1,N)
⋮ 1 ⋯ Ϭ(d2,N)
⋮ ⋮ ⋱ ⋮

𝑠𝑦𝑚 ⋮ ⋯ 1

]        (3) 223 

where Ϭ(da,b) is a correlation coefficient between intra-event residuals for location a and location 224 

b. N is the total number of locations. The value of Ϭ(da,b) can be calculated using Eq. (4) (Jayaram 225 

and Baker 2009). 226 

Ϭ(da,b) = 𝑒(
−3𝑑𝑎,𝑏

ℎ
)          (4) 227 

where da,b = distance between location a and location b. h is the intersite distance among which 228 

spatial relationships can be neglected. According to Wang and Takada (2005), when peak ground 229 

velocity is used to calculate spatial correlation, the value of h can be considered between 20 km to 230 

40 km. For this study, the value of h was selected to be 30 km. This process was repeated for M 231 

times to create M random peak ground velocity fields (Zanini et al. 2017). The value of PGV for 232 

each pipe was calculated. Seismic pipe repair rates were then determined based on ALA (2001) 233 

using Eq. (5). 234 

RRk,m = C * 0.00187 * PGVk,m         (5) 235 

where RRk,m is the seismic repair rate per 1000 ft of pipe k for the mth seismic PGV field, C is the 236 

modification factor, and PGVk,m is the peak ground velocity at the location of pipe k for the mth 237 
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seismic PGV field (in./s). The modification factor (C) adjusts the value of the repair rate 238 

considering the corrosivity of soil, pipe diameter, pipe material, and pipe joint characteristics. 239 

Integrated Multi-physics Modeling and Monte Carlo Simulation 240 

System Serviceability Index (SSI) database was created using Monte Carlo simulation. SSI is a 241 

post-earthquake serviceability indicator that measures the serviceability of a water network after a 242 

seismic event. SSI is the ratio between demand fulfilled after a seismic incident and the total 243 

demand of the network at the regular operational period (Wang et al. 2010; Shi 2006). For this 244 

study, it was assumed that the demand is fulfilled at a node if the pressure at that node is more than 245 

a threshold pressure. Using the definitions, SSI is formulated as Eq. (6). 246 

                                                                SSI = ∑ 𝑥𝑛∗𝐷𝑛𝑇𝑁
𝑛=1

∑ 𝐷𝑛𝑇𝑁
𝑛=1

     (6) 247 

subject to 248 

xn = 1 if Pn ≥ Pthreshold 249 

xn = 0 if Pn < Pthreshold 250 

where SSI is the system serviceability index; Dn is the demand at node n; TN is the nodes in the 251 

network; Pthreshold is the minimum pressure required at the node, which is selected by the demand 252 

for firefighting, and Pn is the pressure at node n. Hydraulic pressure of 20 psi (0.14 MPa) was used 253 

as the Pthreshold (Trautman et al. 2013). 254 

Seismic damages (breaks and leaks) were modeled using the Poisson process. The location of the 255 

pth damage (break or leak) in a pipe k was determined by Eq. (7).  256 

𝑙𝑘,𝑝 = 𝑙𝑘,𝑝−1 −
1

𝑅𝑅𝑘,𝑚  
∗ ln(1 − 𝑄1)    𝑤ℎ𝑒𝑟𝑒   𝑙𝑘,0 = 0       (7)                                                       257 

where 𝑙𝑘,𝑝 is the distance of pth damage (break or leak) in pipe k from its start node, RRk,m  is the 258 

seismic repair rate of pipe k, and Q1 is a uniformly distributed random number. The value of Q1 259 

ranges from 0 to 1. If the distance of initial damage (break or leak), i.e., 𝑙𝑘,1  was less than the total 260 

length of pipe k, then another random number (Q2) between 0 and 1 was generated. The value of 261 

Q2 classifies the damage as either a leak or a break.  If the value of Q2 was not more than 0.8, it 262 

was considered a leak; otherwise, it was considered a break (Shi 2006). The diameter of each leak 263 

was determined by further classifying those leaks based on Shi (2006).  264 
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The process can be explained using the following numerical example. Let’s assume a 300-feet 265 

ductile iron pipe (Pipe p) and a repair rate of 0.02 in/s. A uniformly distributed random number 266 

(Q1) between 0 and 1 was generated. Let’s assume the number is 0.001. The value of 𝑙𝑘,𝑝 for the 267 

first iteration (𝑙𝑘,1) is 50.01 feet using Eq. (7) (𝑙𝑘,0 = 0). The value of  𝑙𝑘,1 is less than the total 268 

length of the pipe. So, another uniformly distributed random number (Q2) between 0 and 1 is 269 

generated. Let’s assume 0.5 as the value of Q2. As the value of Q2 is less than 0.8, this is a leak. 270 

To calculate the diameter of the leak, another uniformly distributed random number was generated 271 

between 0 and 1. The leak scenario was then classified into five categories based on the random 272 

number and pipe material: annular disengagement, round crack, longitudinal crack, local loss of 273 

pipe wall, and local tear of pipe wall. The diameter of the leaks was then calculated based on Shi 274 

(2006). This process was repeated until the value of 𝑙𝑘,𝑝 is more than the total length of the pipe. 275 

After locating all the damages (breaks and leaks) and determining the diameters of all leaks for 276 

each pipe of the network for the present Monte Carlo simulation, the damages (breaks and leaks) 277 

were combined into the hydraulic model of the original network. Pressure at each node (Pn) was 278 

determined. Pressure-driven steady-state hydraulic analysis was used to calculate the pressure at 279 

each node. The demand-driven analysis considers that the demand at every node is obtained, and 280 

this consideration is not a valid consideration for water networks disrupted by seismic events ( Shi 281 

2006; Cheung et al. 2005). To investigate the performance of actual networks after earthquakes, 282 

the following two assumptions are necessary according to Shi (2006): 283 

• water demand at each node is not always met. In other words, immediately after the 284 

earthquake, demand of every node cannot be met fully due to leaks and breaks in the pipe. 285 

• nodes cannot have negative pressure. 286 

These two assumptions are necessary to investigate the performance of a water pipe network as 287 

they imitate the performance of actual networks after earthquakes (Shi 2006). An open-source 288 

package software, EPANET 2.0, was used for the pressure-driven steady-state hydraulic analysis.  289 

This software is recommended by Environmental Protection Agency (EPA) for hydraulic 290 

simulation of water networks. For every run of the Monte Carlo simulation, the following steps 291 

were followed: 292 

1) Analyzing hydraulic model of the network including seismic damages (breaks and leaks) 293 

2) Removing any nodes having negative pressure 294 
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3) Step 1 and step 2 were repeated if there is any node with negative pressure.  295 

Hydraulic pressure at each node (Pn) was calculated and recorded. SSI was calculated based on 296 

the demand at available nodes after removing all nodes with negative pressure for the predefined 297 

maximum Monte Carlo runs using Eq. (8): 298 

𝑆𝑆𝐼𝑟 = 1

𝑀
∗  ∑ 𝑆𝑆𝐼𝑚

𝑀
𝑚=1           (8) 299 

where 𝑆𝑆𝐼𝑟 is the average value of SSI for rth Monte Carlo simulation; 𝑆𝑆𝐼𝑚 is the value of SSI 300 

calculated using Eq. (6) for the mth PGV field; M is the total number of PGV fields generated for 301 

the selected earthquake scenario.  302 

The value of SSI for each Monte Carlo run was then recorded to create the SSI database. The SSI 303 

database was used for statistical analysis (ANOVA test and Tukey test). The steps of the Monte 304 

Carlo simulation to create the database are shown in Figure 3. 305 

Statistical Analysis of the SSI Database 306 

The one-way analysis of variance (ANOVA) and the Tukey test were used for statistical analysis 307 

of the SSI database. ANOVA is a statistical tool that determines any significant difference between 308 

the means of SSI of individual experiment groups. The following null hypothesis is tested: 309 

H0: µ1 = µ2 = µ3 =………… = µk        (9) 310 

where µ is the mean of the individual experiment group, and k is the total number of individual 311 

experiment groups. If the result is significant from the ANOVA test, the null hypothesis is rejected, 312 

which implies that a minimum of two individual experiment groups are statistically different from 313 

each other. 314 

The one-way ANOVA cannot determine which specific experiment groups are statistically 315 

different from each other. A Tukey test was performed to determine which particular groups 316 

differed from each other.  317 

APPLICATION AND RESULTS 318 

Two different networks were selected to demonstrate the application of the methodology. The first 319 

network was the New York Tunnel network (Water Distribution System Research Database), 320 

having 42 pipes,19 junctions, and one reservoir. The second network was the Oberlin network 321 

(Water Distribution System Research Database), having 289 pipes, 262 junctions, and one 322 
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reservoir. The Oberlin network is in Harrisburg, Pennsylvania. These two networks were available 323 

to download from an open-source website. These two networks were selected from two different 324 

classification of networks: medium size networks and large size networks. We demonstrated the 325 

application of the methodology on two different classifications of networks to identify the impacts 326 

of network uncertainties on seismic vulnerability assessment  of different classification of 327 

networks. 328 

The material of pipes having diameters less than 12 inches (300 mm) was assumed to be cast iron. 329 

The joint type for the cast-iron pipe was considered lead joints. If the diameter of the pipes were 330 

greater than 12 inches (300 mm), then the material was ductile iron. The joint type for the ductile 331 

iron pipe was considered rubber-gasketed joints. These assumptions were necessary to calculate 332 

the pipe repair rate based on ALA (2001). The pipe modification factor (C) depends on the types 333 

of material and joint type. The mean value and standard deviation of the selected three normally 334 

distributed network uncertainties were not impacted by this assumption of pipe material. These 335 

values were selected based on network design values. 336 

In order to select an earthquake scenario to thoroughly analyze the impact of uncertainties on the 337 

seismic vulnerability assessment, networks’ centroid was presumed to be in Pasadena, California 338 

(34.146267ᵒ N, 118.144040ᵒ W) for the deaggregation analysis. Deaggregation analysis was 339 

conducted using USGS (2018b). For the deaggregation analysis, the return period was selected to 340 

be 2,475 years. From the deaggregation results conducted in Pasadena, California, an earthquake 341 

at the Raymond fault was selected as the scenario earthquake (magnitude 7.13) for this study as it 342 

had the highest contribution ratio (13.96%). 343 

In the following step, a peak ground velocity field was generated using scenario shake-map 344 

calculator (Abrahamson and Silva 2007; Field et al. 2005). Inter-event and intra-event residuals 345 

were not considered in the shake-map calculator. The generated peak ground velocity field is 346 

shown in Figure 5. Figure 6 shows the same peak ground velocity filed magnified to the scale of 347 

the network for New York Tunnel network. Figure 7 shows the peak ground velocity field 348 

magnified to the scale of the network for Oberlin network. 349 

Each junction and four equally spaced nodes along the length of each pipe were chosen to generate 350 

the intra-event and inter-event residuals. These residual vectors were combined with a peak ground 351 

velocity field to generate twenty random PGVs (M=20). The value of M was selected based on 352 
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literature (Zanini et al. 2016; Zanini et al. 2017; Shahandashti and Pudasaini 2019). The average 353 

PGV was quantified for each pipe using the PGV determined at the start junction of the pipe, at 354 

the end junction of the pipe, and four intermediate points along the pipe. The average PGV of each 355 

pipe was then used to measure the SSI of the network. 356 

A convergence study was conducted to determine the suitable number of Monte Carlo runs (Figure 357 

8). Oberlin network (Water Distribution System Operations) was selected to conduct the 358 

convergence study. Experiment 8, for the selected earthquake, was selected for the convergence 359 

study. The same number of Monte Carlo runs that was found from the convergence study was used 360 

both for both New York Tunnel network and the Oberlin network (Water Distribution System 361 

Operations). From the convergence study result shown in Figure 8, it was concluded that 3000 362 

Monte Carlo runs were sufficient for this study.  363 

A one-way ANOVA test was conducted (considering a 5% level of significance) to determine if 364 

the experimental results were statistically significant. Table 4 and Table 5 summarize the mean 365 

and variance of SSI for each experiment for the New York Tunnel network and Oberlin network, 366 

respectively.  367 

For the ANOVA test, a null hypothesis (H0) and an alternative hypothesis (H1) were selected.   368 

Null hypothesis, H0: µ1 = µ2= …  …  …= µ8  369 

Alternative hypothesis, H1: Not all µ are equal 370 

Level of Significance: 5% 371 

From the ANOVA test results, the p-values for New York Tunnel and Oberlin networks were 372 

much less than 0.05. Therefore, there were significant differences between the means of SSI in 373 

different groups or different experiments. The ANOVA test could not determine which specific 374 

experiments were statistically different from each other. It only implies that at least two 375 

experiments were. The Tukey test that is often used for multiple pairwise comparisons was 376 

conducted to determine which experiments have significantly different means.  As this study was 377 

only considering the effects of uncertainty, the Tukey test was conducted only for seven pairs, 378 

comparing no-uncertainty experiment (Com_Exp 1) with the other experiments: (Com_Exp 1, 379 

Com_Exp 2); (Com_Exp 1, Com_Exp 3); (Com_Exp 1, Cop_Exp 4); (Com_Exp 1, Com_Exp 5); 380 

(Com_Exp 1, Com_Exp 6); (Com_Exp 1, Com_Exp 7); (Com_Exp 1, Com_Exp 8). Table 6 and 381 
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Table 7 summarize the results of the Tukey test for the New York Tunnel network and Oberlin 382 

network, respectively. 383 

The Tukey test results of both the New York Tunnel network and Oberlin network show that 384 

demand uncertainty (Com_Exp 2) and pipe roughness coefficient uncertainty (Com_Exp 3) do not 385 

have statistically significant individual effects; the null hypothesis could not be rejected. For all 386 

other pairwise comparisons, the null hypothesis was rejected, and it was concluded that the effects 387 

of uncertainty are significant considering a 5% level of significance. 388 

From the ANOVA and Tukey test results, it can be concluded that uncertainty of demand and pipe 389 

roughness coefficient uncertainty do not have statistically significant effects. On the other hand, 390 

the effects of reservoir head uncertainty are statistically significant. The combined effect of the 391 

three selected water pipe network uncertainties is statistically significant for the selected value of 392 

CoV. In the next part of the study, sensitivity analysis was conducted to find the minimum value 393 

of CoV to create a statistically significant effect.         394 

SENSITIVITY ANALYSIS 395 

Sensitivity analysis was conducted to find the minimum value of the coefficient of variation (CoV) 396 

for which water pipe network uncertainties were statistically significant. Sensitivity analysis was 397 

divided into three major parts based on the effect of water pipe network uncertainties: 398 

(i) Effect of uncertainties in demand, pipe roughness coefficient, and reservoir head 399 

individually 400 

(ii) Combined effects of uncertainties in 401 

(a) demand and pipe roughness coefficient;  402 

(b) pipe roughness coefficient and reservoir head; 403 

(c) demand and reservoir head 404 

(iii) Combined effect of uncertainties in demand, reservoir head, and pipe roughness 405 

coefficient 406 

Effect of Individual Water Pipe Network Uncertainties 407 

All three water pipe network uncertainties were studied individually for both networks. The results 408 

for both the networks are shown graphically in Table 8. 409 
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From the sensitivity test result of both the networks, the minimum value of CoV for reservoir head 410 

uncertainty is 0.01, indicating that a small uncertainty in reservoir head results in a statistically 411 

significant SSI change in both networks. By contrast, the CoV value for uncertainties in nodal 412 

demand and pipe roughness has to be quite large, more than the 0.2 value assumed in the literature 413 

(Seifollahi-Aghmiuni et al. 2013), to significantly affect mean SSI.  414 

Joint Effect of Water Pipe Network Uncertainties 415 

Two water pipe network uncertainties were considered together here: 416 

(i) Joint effect of uncertainties in demand and pipe roughness coefficient 417 

(ii) Joint effect of uncertainties in pipe roughness coefficient and reservoir head 418 

(iii) Joint effect of uncertainties in demand and reservoir head 419 

While considering the joint effect of water pipe network uncertainties, the selected two parameters 420 

(among demand, pipe roughness coefficient, and reservoir head) were considered normally 421 

distributed. The other parameter was considered equal to the mean value associated with that. The 422 

The analysis result of all three sections for both the networks are shown graphically from Figure 423 

9(a) to Figure 9(f). The marked zone indicates the area inside which the joint effect of the water 424 

pipe network uncertainties is not statistically significant.  425 

Figure 9(a) and Figure 9(b) show that the minimum value of CoV for either uncertainty of demand 426 

or uncertainty of pipe roughness coefficient has to be high to results in a statistically significant 427 

change in SSI for both networks. By contrast, while checking the combined effects with reservoir 428 

head, the minimum value of CoV does not depend on the pipe roughness coefficient or demand to 429 

result in statistically significant SSI change for both networks as the value of SSI changes for any 430 

uncertainty in reservoir head.    431 

Combined Effect of Three Water Pipe Network Uncertainties 432 

All three water pipe network uncertainties were considered here. The results of the sensitivity 433 

analysis for both the networks are shown in Figure 10(a) and Figure 10(b). The marked zone 434 

indicates the zone inside which the combined effect of the water pipe network uncertainties is not 435 

statistically significant.  436 

Figure 10(a) and Figure 10(b) show that the minimum value of CoV to have a statistically 437 

significant effect on the value of SSI does not depend on the uncertainty of demand and pipe 438 
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roughness coefficient. A small uncertainty in reservoir head results in a statistically significant 439 

change in SSI for both networks. 440 

CONCLUSIONS 441 

A methodology has been proposed to identify the effects of water pipe network uncertainties on 442 

seismic vulnerability assessment of networks. Three water pipe network uncertainties were 443 

selected: uncertainties in nodal demand, reservoir head, pipe roughness coefficient. Two different 444 

networks were used to apply the proposed methodology.  445 

The statistical analysis results show that the individual effect of uncertainty of demand and 446 

uncertainty of pipe roughness coefficient on seismic vulnerability assessment of water pipe 447 

networks can be ignored for the fixed value of coefficient of variation (CoV = 0.2). On the contrary, 448 

the individual effect of uncertainty of reservoir head is statistically significant for the selected 449 

value of CoV (CoV = 0.2). The combined effect of uncertainty of the selected water pipe network 450 

uncertainties on the post-earthquake serviceability is statistically significant. 451 

Based on the results from sensitivity analysis, the individual effect of uncertainty of reservoir head 452 

on seismic vulnerability assessment is found to be statically significant, even at low levels of 453 

uncertainty (minimum value of CoV = 0.01). By contrast, the individual effects of demand and 454 

pipe roughness coefficient uncertainties are statistically significant for higher levels of 455 

uncertainties (CoV ranges from 0.03 to 1).  456 

Based on the results of statistical analysis and sensitivity analysis, it can be concluded that selected 457 

water pipe network uncertainties have statistically significant effects on the post-earthquake 458 

serviceability. Therefore, it is highly recommended that water pipe network uncertainties be 459 

integrated with seismic vulnerability assessment of water pipe networks. Future studies are 460 

recommended to investigate the impact of other water pipe network uncertainties that were not 461 

considered in this study. 462 

The results correspond to a single high-intensity scenario selected based on deaggregation analysis. 463 

Further analysis is recommended to identify whether these parameters remain statistically 464 

significant in case the earthquake randomness is considered. 465 
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