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ABSTRACT

Earthquakes could have enormous destructive impacts on water distribution networks. Utility
managers are challenged to make proactive rehabilitation decisions under seismic and network
uncertainties. These utility managers have different risk appetites. However, existing seismic
rehabilitation decision-making models of water distribution networks do not consider decision-
makers’ attitudes toward risk making existing models practically limited. The objective of this
research is to formulate a risk-averse stochastic combinatorial optimization model to identify the
critical pipes of a water distribution network for proactive seismic rehabilitation with controllable
risk aversion levels. The functionality of the water distribution system is quantified by the post-
earthquake serviceability index, the expected value of which is maximized by the objective
function. A Value-at-Risk (VaR) constraint is used to control risk levels. This methodology
includes four steps: seismic repair rate calculations, integrated multi-physics modeling, Monte
Carlo simulation, and risk-averse stochastic combinatorial optimization. The repair rate of each
pipe subjected to seismic loads was calculated using empirical fragility curves. These curves were
generated based on the locations of the pipes, soil corrosivity in different locations, pipe diameters,
pipe materials, and pipe joint properties. Network’s hydraulic behavior and seismic vulnerability
assessment were simulated using an integrated multi-physics model. Monte Carlo simulations
were performed to consider the probabilistic nature of damages to the water distribution systems.
These damages were represented by leaks as well as breaks in the individual pipes. The model
used to ascertain the susceptibility of the water distribution system to earthquake hazard was fused
with a stochastic formulation of combinatorial optimization to maximize the serviceability index
of the distribution system while minimizing risk. The solution to the optimization problem of
detecting the critical pipes for a given resource constraint was obtained through a risk-averse
simulated annealing approach. The approach was implemented on a widely used benchmark
network to detect the critical pipelines of that water network. The introduction of risk-averse
stochastic combinatorial optimization models equips decision makers with a proper model to make
rehabilitation decisions at a controllable risk aversion level.

INTRODUCTION

The vulnerability of water distributions systems has been demonstrated by the Northridge,
Wenchuan, Kobe, and Christchurch earthquakes (O’Rourke et al. 1996; Guo et al., 2008; Hwang
et al. 1998; O’Rourke et al. 2014). Either direct damages (e.g., repairing cost of pipelines) or
indirect damages (e.g., water supply disruption) make up the destructive damages. Hence, it is
crucial to quantify the seismic vulnerability of water distribution pipelines to ensure satisfying



post-earthquake serviceability. Previous research conducted to determine the susceptibility of
water distribution systems to earthquakes took approaches focusing on hydraulic simulations (Shi
2006; Wang et al. 2010) or topological based analysis (Christodoulou and Fragiadakis 2014,
Adachi and Ellingwood 2008).

Previously, stochastic combinatorial optimization models have been proposed to select
rehabilitation policies in civil infrastructure systems. For example, stochastic combinatorial
optimization models have been created for maintenance planning of deteriorating water and
wastewater infrastructure systems (Wang and Chen 2015; Yazdi et al. 2014) and transportation
infrastructure (Frangopol and Liu 2007). Shahandashti and Pudasaini (2019) developed a method
to determine the susceptibility of water distribution systems to earthquake hazards given limited
budget constraint. More specifically, they developed a simulated annealing (SA)-based
optimization method to detect critical pipelines in a water distribution network (Shahandashti and
Pudasaini 2019).

Although stochastic combinatorial optimization models were used for selecting rehabilitation
policies in water supply systems, they lack mechanisms to assure that the risk of selecting a
rehabilitation policy is not too high. A risky decision may not be favorable for utilities even if it
provides the highest average post-disaster system serviceability. This research aims to develop a
risk-averse stochastic combinatorial optimization algorithm to assess the susceptibility of water
distribution networks subjected to seismic loads.

METHODOLOGY

The general expression of the objective function is as Equation 1.

maXpeP E[PSI(p)] ( 1 )
Subject to,

C(p) < Crnax
VaR, < Pr[PSI(p) < B]
where p represents a policy chosen by the decision-makers to reconstruct selected pipelines, P is
the set of all policies to choose, C(p) is the cost of rehabilitation policy p, and C,,,4 indicates
budget constraint of a rehabilitation policy. VaR, is the value at risk at a confidence level, and B
is a lower limit of the post-earthquake serviceability index (PSI). In order to demonstrate the

application, we assumed C,,5 to be 12.5 million USD, a to be 95% confidence level, and the
threshold value of VaRos to be less than 25% of the loss in PSI.

The methodology of this research contains four steps: seismic repair rate calculations, integrated
multi-physics modeling, Monte Carlo simulation, and risk-averse stochastic combinatorial (Figure

).
Risk-averse
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Figure 1. Step-by step diagram of the methodology




Post-earthquake serviceability index (PSI)

The ratio of the post-hazard to pre-hazard demands of a water distribution system is termed as the
post-earthquake serviceability index. Equation 2 presents the PSI’s formulation (Shi 2006; Wang
et al. 2010).

Y2, pj * D (2)
PSI = =7 5 —
j=1Dj

Subject to,
p;j = 0 if Pressure;< Pressurep,;,

pj = 1 if Pressure; > Pressurep;,

where M is the node count of the water distribution system, Pressure; is the existing hydraulic
pressure at node j, Pressure,,;, is the minimum hydraulic pressure mandatory for firefighting
water demand and at node j the demand for water is D;. Pressure,;, was assumed 0.14 MPa (20
psi) as recommended by Trautman et al. (2013).

Value at Risk (VaR)

Value at Risk (VaR) is borrowed from quantitative finance for quantifying the extent of possible
losses. It describes the peak loss on an investment given a fixed temporal limit and probability of
occurrence (Linsmeier et al. 1996, Duffie and Pan 1997, Jorion 1996, Jorion 2000). Although value
at risk is commonly used in the financial sector, it shows potential to conduct the risk assessment
in other industries (Kang et al. 2014, Jiménez-Rodriguez et al. 2018, Toumazis and Kwon 2013).
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Figure 2. VaR values when confidence level is 99%. (Source: Duffie and Pan 1997)

For a confidence level a and fixed time limit t, VaR, of an investment is the loss in value over the
time limit that has an exceedance probability of 1 — a. In Figure 2, VaR at 99% confidence level



measures the ‘0.01 critical value’ of the probability distribution of changes in market value over
two weeks. Equation 3 shows the general formulation of Value at Risk (VaR).

VaR,(S) = inf{seR: Pr(S >s) <1 —a} (3)

For a specified confidence level a, s is the smallest number such that the probability that the loss
S exceeds s is at most (1 - a). Hence, VaR, (S) is the level a-quantile, if S is the loss of an
investment value (Artzner et al., 1999).

A scenario earthquake is selected from a seismic deaggregation analysis (Adachi and Ellingwood
2008). Then, a peak ground velocity (PGV) field was constructed for the selected scenario
earthquake (Abrahamson and Silva 2007). Next, the seismic rate of repair, which is a count of the
repairs required for each one thousand feet of pipe, is calculated for the selected scenario
earthquake (ALA 2001). Then, an integrated multi-physics model (hydraulic model) of the water
distribution network is constructed (Shi 2006, Shahandashti and Pudasaini 2018). Finally, the post-
earthquake serviceability index (PSI) is calculated using Equation 2. The general expression to
determine the expected post-earthquake serviceability index is given by Equation 4, where M is
the number of Monte Carlo simulations. Then, post-earthquake serviceability index (PSI) values
of the Monte Carlo simulations were used to calculate VaRos of each rehabilitation policy using
Equation 3.

M
E[PSI] = — » z PSI.. (4)

Risk-averse Simulated Annealing

A simulated annealing approach integrated with a controllable risk aversion level was designed to
solve the optimization problem due to the objective function’s stochastic nature. This algorithm
mimics the physical annealing process of solid materials, a technique involving heating and
controlled cooling of a material to alter its physical properties (Kirkpatrick et al. 1983, Metropolis
et al. 2005). Susceptibility assessment of water network systems to earthquake hazards using risk-
averse simulated annealing algorithm followed is illustrated in Figure 3.

First, the objective function is evaluated for one rehabilitation policy. Then, another rehabilitation
policy is selected around the neighborhood of the first rehabilitation policy. This neighborhood
search is achieved by randomly mutating twenty percent of the binary strings representing the old
rehabilitation policy (Shahandashti and Pudasaini 2019). The expected post-earthquake
serviceability index (PSI) and VaRos of the old and new policies are calculated. It is an iterative
process where each step updates the rehabilitation policy depending on wether a condition is met
or not. At each step, the policy is updated based on two possible cases: whether the expected PSI
of the old policy is larger than the new policy or not.
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Figure 3. Susceptibility assessment of water network systems to earthquake hazards using
risk- averse simulated annealing

Case 1: E[PSI] ey = E[PSI]o1a

If the new policy’s expected PSI exceeds that of the old policy, and VaRgs is less than 25% of the
loss in PSI, then the old policy is replaced by the new one in the next risk-averse SA step. However,
if the new policy’s VaRgs is greater than 25% of the loss in PSI, then the state of energy A and a
random variable A which is uniformly distributed in the range zero to one are determined using
Equations 5 and 6.

A= exp <—(VaR95 (old)t)(e;[EVaRgs(new))) (5)
A = random [0,1] (6)

where ‘temp’ is the current temperature of the risk-averse SA. When A <A, the new policy is taken
to the next step. Otherwise, the old policy goes in the next iteration (Metropolis et al. 2005).



Case 2: E[PSI],cww < E[PSI]g1q

If the old policy’s expected PSI exceeds that of the new policy, the state of energy D and a random
variable R which is uniformly distributed in the range zero to one are calculated using Equations

7 and 8.
—(E[PSIg1q] — E[PSlhew
D=exp< (E[ li]emp[ ])) (7)
R = random [0,1] (8)

where ‘temp’ is the current temperature of the risk-averse SA. There can be two possible sub-cases
here:

Subcase A: When R <D and VaRg5 of the new policy is less than 25% of the loss in PSI, the new
policy replaces the old one in the next iteration. Otherwise, A and A are determined. [f A <A, a new
policy is selected for the next iteration of risk-averse SA. If not, the old policy goes in the following
step.

Subcase B: When R > D, and VaRgs of the old policy is less than 25% of the loss in PSI, it goes
to the next iteration. If that is not the case, A and A are determined. If L < A, then the old policy is
retained. If A > A, the new policy substitutes it.

APPLICATION AND RESULTS

The data for the Modena water distribution system which is a benchmark network for resilience
studies of water distribution systems, was obtained from the Center of Water Systems (2018) to
illustrate the application of the proposed approach. Figure 4. illustrates the water distribution
system. The center of the network was assumed to be located in Pasadena, California. An
earthquake originating at Raymond fault with a magnitude of 7.12 was selected as the scenario
earthquake after deaggregation analysis (Adachi and Ellingwood 2008).
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Figure 4. Map of Modena Network




The parameters used for the risk-averse simulated annealing are starting and final temperature,
cooling rate, iterations per temperature change, Monte Carlo simulations per iteration and the
threshold value of VaRos. The starting and final temperatures are 100 and 1 with a cooling rate of
2. Ten iterations are performed at each temperature decrement. Therefore, the total number of
iterations is five hundred. At each iteration, three thousand Monte Carlo simulations are performed
for evaluating the expected PSI of each rehabilitation policy. It was observed that three thousand
Monte Carlo simulations were enough for seismic assessment of the Modena network without any
rehabilitation subjected to chosen scenario earthquake (Shahandashti and Pudasaini 2019). The
cost data for the rehabilitation of Modena network pipes are recommended by Shahandashti and
Pudasaini 2019.

The optimum rehabilitation policy was identified for the specified budget constraint (12.5 million
USD) and risk-aversion level (VaRos < 25% of loss in PSI) using the risk-averse simulated
annealing approach. The optimum poicy’s cost predicted by the algorithm, expected PSI and VaRos
value are 12,476,528 USD, 0.94856 and 18.42% of the loss in PSI. Therefore, the proposed
approach could identify the optimum policy with a controllable risk aversion level. Table 1
contrasts these results against those of the SA-based approach developed by Shahandashti and
Pudasaini (2019).

Table 1. Results of Risk-averse SA-based approach in Modena Network

Cost predicted
Cost Constraint by the Total solution
(USD) algorithm Expected PSI VaRos time (hour)
(USD)
Risk- averse
SA-based 12,500,000 12,476,528 0.94856 18.42% 323.79
approach
SA-based 12,500,000 12,463,533 0.95095 - 284.05
Percentage
difference - 0.252 - 12.27
%) 0.104

The critical pipes detected by risk-averse SA-based and SA-based methods for the study network
are highlighted in red lines in Figure 4. Some of the detected critical pipes are different in risk-
averse SA-based method from SA- based method.

Value at Risk (VaR) of a system is dependent on its time-indexed values in the literature. In this
study, we used PSI values to evaluate VaRgs instead of a portfolio. Since these values are not time-
indexed, we randomly time-indexed PSI values. To see the effect of this assumption, the PSI values
of 3000 Monte Carlo simulations were shuffled three times to calculate VaRgy5 value. The results
are shown is Figure 5. The VaRos values for three shuffles are 23%, 22%, and 23% of the loss in
PSI. Therefore, time indexing did not have aconsiderable effect when it comes to calculating
VaRgs, using post-earthquake serviceability index (PSI).
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Figure 4. Critical pipes identified by Risk-averse SA-based method (left) and SA-based
method (right) for the network at Modena.
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Figure 5. Shuffling 3000 PSI values to illustrate the effect of time while evaluating VaRos of
a rehabilitation policy.

CONCLUSION

The developed risk-averse simulated annealing methodology was applied to detect the crucial
pipes in the network at Modena that must be rehabilitated. A comparison was made between the
results obtained against the rehabilitation measures recommended by a simulated annealing
process. The proposed approach could determine the optimum combinations for rehabilitation
assuming a constraint in the budget (12.5 million USD), with a controllable risk aversion level
(VaRos < 25% of loss in PSI). The recommended rehabilitation policy is different in the risk-
averse SA-based method from SA- based method. While selecting the optimum rehabilitation
policy, the expected PSI value decreased in risk-averse SA-based approach in comparison with
SA-based approach. This difference is because the risk aversion level of selecting that optimum
policy is controlled in the risk-averse SA-based approach. This decision may be favorable for
utilities even if it provides lower post-disaster system serviceability since it helps them limit risks.
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Further analysis is recommended to identify the best rehabilitation policies for different budget
constraints and risk aversion levels. A risk-averse stochastic algorithm for combinatorial
optimization can effectively enhance the post-earthquake serviceability of water supply networks
with controllable risk aversion level. This methodology is expected to help water utilities make
decisions that provide the maximum average post-earthquake system serviceability while control
the decision-making risk.
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