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ABSTRACT 

Earthquakes could have enormous destructive impacts on water distribution networks. Utility 
managers are challenged to make proactive rehabilitation decisions under seismic and network 
uncertainties. These utility managers have different risk appetites. However, existing seismic 
rehabilitation decision-making models of water distribution networks do not consider decision-
makers’ attitudes toward risk making existing models practically limited. The objective of this 
research is to formulate a risk-averse stochastic combinatorial optimization model to identify the 
critical pipes of a water distribution network for proactive seismic rehabilitation with controllable 
risk aversion levels. The functionality of the water distribution system is quantified by the post-
earthquake serviceability index, the expected value of which is maximized by the objective 
function. A Value-at-Risk (VaR) constraint is used to control risk levels. This methodology 
includes four steps: seismic repair rate calculations, integrated multi-physics modeling, Monte 
Carlo simulation, and risk-averse stochastic combinatorial optimization. The repair rate of each 
pipe subjected to seismic loads was calculated using empirical fragility curves. These curves were 
generated based on the locations of the pipes, soil corrosivity in different locations, pipe diameters, 
pipe materials, and pipe joint properties. Network’s hydraulic behavior and seismic vulnerability 
assessment were simulated using an integrated multi-physics model. Monte Carlo simulations 
were performed to consider the probabilistic nature of damages to the water distribution systems. 
These damages were represented by leaks as well as breaks in the individual pipes. The model 
used to ascertain the susceptibility of the water distribution system to earthquake hazard was fused 
with a stochastic formulation of combinatorial optimization to maximize the serviceability index 
of the distribution system while minimizing risk. The solution to the optimization problem of 
detecting the critical pipes for a given resource constraint was obtained through a risk-averse 
simulated annealing approach. The approach was implemented on a widely used benchmark 
network to detect the critical pipelines of that water network. The introduction of risk-averse 
stochastic combinatorial optimization models equips decision makers with a proper model to make 
rehabilitation decisions at a controllable risk aversion level. 

INTRODUCTION 

The vulnerability of water distributions systems has been demonstrated by the Northridge, 
Wenchuan, Kobe, and Christchurch earthquakes (O’Rourke et al. 1996; Guo et al., 2008; Hwang 
et al. 1998; O’Rourke et al. 2014). Either direct damages (e.g., repairing cost of pipelines) or 
indirect damages (e.g., water supply disruption) make up the destructive damages. Hence, it is 
crucial to quantify the seismic vulnerability of water distribution pipelines to ensure satisfying 
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post-earthquake serviceability. Previous research conducted to determine the susceptibility of 
water distribution systems to earthquakes took approaches focusing on hydraulic simulations (Shi 
2006; Wang et al. 2010) or topological based analysis (Christodoulou and Fragiadakis 2014, 
Adachi and Ellingwood 2008). 

Previously, stochastic combinatorial optimization models have been proposed to select 
rehabilitation policies in civil infrastructure systems. For example, stochastic combinatorial 
optimization models have been created for maintenance planning of deteriorating water and 
wastewater infrastructure systems (Wang and Chen 2015; Yazdi et al. 2014) and transportation 
infrastructure (Frangopol and Liu 2007). Shahandashti and Pudasaini (2019) developed a method 
to determine the susceptibility of water distribution systems to earthquake hazards given limited 
budget constraint. More specifically, they developed a simulated annealing (SA)-based 
optimization method to detect critical pipelines in a water distribution network (Shahandashti and 
Pudasaini 2019).  

Although stochastic combinatorial optimization models were used for selecting rehabilitation 
policies in water supply systems, they lack mechanisms to assure that the risk of selecting a 
rehabilitation policy is not too high. A risky decision may not be favorable for utilities even if it 
provides the highest average post-disaster system serviceability. This research aims to develop a 
risk-averse stochastic combinatorial optimization algorithm to assess the susceptibility of water 
distribution networks subjected to seismic loads. 
 
METHODOLOGY 
 
The general expression of the objective function is as Equation 1. 
 maxpϵP E[PSI(p)] ( 1 ) 

Subject to, 

C(p) ≤ Cmax 

VaRα ≤ Pr[PSI(p) < B] 
where p represents a policy chosen by the decision-makers to reconstruct selected pipelines, P is 
the set of all policies to choose, C(p) is the cost of rehabilitation policy p, and Cmax indicates 
budget constraint of a rehabilitation policy. VaRα is the value at risk at α confidence level, and B 
is a lower limit of the post-earthquake serviceability index (PSI). In order to demonstrate the 
application, we assumed Cmax to be 12.5 million USD, α to be 95% confidence level, and the 
threshold value of VaR95 to be less than 25% of the loss in PSI. 
The methodology of this research contains four steps: seismic repair rate calculations, integrated 
multi-physics modeling, Monte Carlo simulation, and risk-averse stochastic combinatorial (Figure 
1).  

 
Figure 1. Step-by step diagram of the methodology  



3 
 

Post-earthquake serviceability index (PSI) 
The ratio of the post-hazard to pre-hazard demands of a water distribution system is termed as the 
post-earthquake serviceability index. Equation 2 presents the PSI’s formulation (Shi 2006; Wang 
et al. 2010). 
 
 

PSI =  
∑ pj ∗ Dj

M
j=1

∑ Dj
M
j=1

 
( 2 ) 

 
Subject to, 

pj = 0 if Pressurej< Pressuremin 
 pj = 1 if Pressurej ≥ Pressuremin 

 
where M is the node count of the water distribution system, Pressurej is the existing hydraulic 
pressure at node j, Pressuremin is the minimum hydraulic pressure mandatory for firefighting 
water demand and at node j the demand for water is Dj. Pressuremin was assumed 0.14 MPa (20 
psi) as recommended by Trautman et al. (2013). 
 
Value at Risk (VaR) 
 
Value at Risk (VaR) is borrowed from quantitative finance for quantifying the extent of possible 
losses. It describes the peak loss on an investment given a fixed temporal limit and probability of 
occurrence (Linsmeier et al. 1996, Duffie and Pan 1997, Jorion 1996, Jorion 2000). Although value 
at risk is commonly used in the financial sector, it shows potential to conduct the risk assessment 
in other industries (Kang et al. 2014, Jiménez-Rodríguez et al. 2018, Toumazis and Kwon 2013). 
 

 
  Figure 2. 𝐕𝐚𝐑 values when confidence level is 99%. (Source: Duffie and Pan 1997) 

For a confidence level α and fixed time limit t, VaRα of an investment is the loss in value over the 
time limit that has an exceedance probability of 1 − α. In Figure 2, VaR at 99% confidence level 
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measures the ‘0.01 critical value’ of the probability distribution of changes in market value over 
two weeks. Equation 3 shows the general formulation of Value at Risk (VaR). 
 
 VaRα(S) = inf{sϵℝ: Pr(S > s) ≤ 1 − α} ( 3 ) 

 
For a specified confidence level α, s is the smallest number such that the probability that the loss 
S exceeds s is at most (1 - α). Hence, VaRα (S) is the level -quantile, if S is the loss of an 
investment value (Artzner et al., 1999).  
 
A scenario earthquake is selected from a seismic deaggregation analysis (Adachi and Ellingwood 
2008). Then, a peak ground velocity (PGV) field was constructed for the selected scenario 
earthquake (Abrahamson and Silva 2007). Next, the seismic rate of repair, which is a count of the 
repairs required for each one thousand feet of pipe, is calculated for the selected scenario 
earthquake (ALA 2001). Then, an integrated multi-physics model (hydraulic model) of the water 
distribution network is constructed (Shi 2006, Shahandashti and Pudasaini 2018). Finally, the post-
earthquake serviceability index (PSI) is calculated using Equation 2. The general expression to 
determine the expected post-earthquake serviceability index is given by Equation 4, where M is 
the number of Monte Carlo simulations. Then, post-earthquake serviceability index (PSI) values 
of the Monte Carlo simulations were used to calculate VaR95 of each rehabilitation policy using 
Equation 3. 
 
 

E[PSI] =
1

M
∗ ∑ PSIm

M

m=1

 ( 4 ) 

 
 
Risk-averse Simulated Annealing 
 
A simulated annealing approach integrated with a controllable risk aversion level was designed to 
solve the optimization problem due to the objective function’s stochastic nature. This algorithm 
mimics the physical annealing process of solid materials, a technique involving heating and 
controlled cooling of a material to alter its physical properties (Kirkpatrick et al. 1983, Metropolis 
et al. 2005). Susceptibility assessment of water network systems to earthquake hazards using risk-
averse simulated annealing algorithm followed is illustrated in Figure 3. 
  
First, the objective function is evaluated for one rehabilitation policy. Then, another rehabilitation 
policy is selected around the neighborhood of the first rehabilitation policy. This neighborhood 
search is achieved by randomly mutating twenty percent of the binary strings representing the old 
rehabilitation policy (Shahandashti and Pudasaini 2019). The expected post-earthquake 
serviceability index (PSI) and VaR95 of the old and new policies are calculated. It is an iterative 
process where each step updates the rehabilitation policy depending on wether a condition is met 
or not. At each step, the policy is updated based on two possible cases: whether the expected PSI 
of the old policy is larger than the new policy or not. 
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Figure 3. Susceptibility assessment of water network systems to earthquake hazards using 

risk- averse simulated annealing 

 
Case 1: 𝐄[𝐏𝐒𝐈]𝐧𝐞𝐰 ≥ 𝐄[𝐏𝐒𝐈]𝐨𝐥𝐝 

 
If the new policy’s expected PSI exceeds that of the old policy, and VaR95 is less than 25% of the 
loss in PSI, then the old policy is replaced by the new one in the next risk-averse SA step. However, 
if the new policy’s VaR95 is greater than 25% of the loss in PSI, then the state of energy Δ and a 
random variable λ which is uniformly distributed in the range zero to one are determined using 
Equations 5 and 6. 
 
 

∆= exp (
−(VaR95(old)) − (VaR95(new))

temp
) ( 5 ) 

 λ =  random [0,1] ( 6 ) 
   

where ‘temp’ is the current temperature of the risk-averse SA. When λ < Δ, the new policy is taken 
to the next step. Otherwise, the old policy goes in the next iteration (Metropolis et al. 2005). 
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Case 2: 𝐄[𝐏𝐒𝐈]𝐧𝐞𝐰 < 𝐄[𝐏𝐒𝐈]𝐨𝐥𝐝 

 

If the old policy’s expected PSI exceeds that of the new policy, the state of energy D and a random 
variable R which is uniformly distributed in the range zero to one are calculated using Equations 
7 and 8. 
 
 

D = exp (
−(E[PSIold] − E[PSInew])

temp
) ( 7 ) 

 R =  random [0,1] ( 8 ) 
 
where ‘temp’ is the current temperature of the risk-averse SA. There can be two possible sub-cases 
here: 
 
Subcase A: When R < D and VaR95 of the new policy is less than 25% of the loss in PSI, the new 
policy replaces the old one in the next iteration. Otherwise, Δ and λ are determined. If λ < Δ, a new 
policy is selected for the next iteration of risk-averse SA. If not, the old policy goes in the following 
step. 
 
Subcase B: When R ≥ D, and VaR95 of the old policy is less than 25% of the loss in PSI, it goes 
to the next iteration. If that is not the case, Δ and λ are determined. If λ < Δ, then the old policy is 
retained. If λ ≥ Δ, the new policy substitutes it. 
 
APPLICATION AND RESULTS 

The data for the Modena water distribution system which is a benchmark network for resilience 
studies of water distribution systems, was obtained from the Center of Water Systems (2018) to 
illustrate the application of the proposed approach. Figure 4. illustrates the water distribution 
system. The center of the network was assumed to be located in Pasadena, California. An 
earthquake originating at Raymond fault with a magnitude of 7.12 was selected as the scenario 
earthquake after deaggregation analysis (Adachi and Ellingwood 2008).  
 

 
Figure 4. Map of Modena Network 
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The parameters used for the risk-averse simulated annealing are starting and final temperature, 
cooling rate, iterations per temperature change, Monte Carlo simulations per iteration and the 
threshold value of VaR95. The starting and final temperatures are 100 and 1 with a cooling rate of 
2. Ten iterations are performed at each temperature decrement. Therefore, the total number of 
iterations is five hundred. At each iteration, three thousand Monte Carlo simulations are performed 
for evaluating the expected PSI of each rehabilitation policy. It was observed that three thousand 
Monte Carlo simulations were enough for seismic assessment of the Modena network without any 
rehabilitation subjected to chosen scenario earthquake (Shahandashti and Pudasaini 2019). The 
cost data for the rehabilitation of Modena network pipes are recommended by Shahandashti and 
Pudasaini 2019.  
 
The optimum rehabilitation policy was identified for the specified budget constraint (12.5 million 
USD) and risk-aversion level (VaR95 ≤ 25% of loss in PSI) using the risk-averse simulated 
annealing approach. The optimum poicy’s cost predicted by the algorithm, expected PSI and VaR95 
value  are 12,476,528 USD, 0.94856 and 18.42% of the loss in PSI. Therefore, the proposed 
approach could identify the optimum policy  with a controllable risk aversion level. Table 1 
contrasts these results against those of the SA-based approach developed by Shahandashti and 
Pudasaini (2019). 

Table 1. Results of Risk-averse SA-based approach in Modena Network  

 Cost Constraint 
(USD) 

Cost predicted 
by the 

algorithm 
(USD) 

Expected PSI 𝑉𝑎𝑅95 Total solution 
time (hour) 

Risk- averse 
SA-based 
approach 

12,500,000 12,476,528 0.94856 18.42% 323.79 

SA-based 12,500,000 12,463,533 0.95095 - 284.05 

Percentage 
difference 

(%) 
-  

0.104 0.252 - 12.27 

 
The critical pipes detected by risk-averse SA-based and SA-based methods for the study network 
are highlighted in red lines in Figure 4. Some of the detected critical pipes are different in risk-
averse SA-based method from  SA- based method. 
 
Value at Risk (VaR) of a system is dependent on its time-indexed values in the literature. In this 
study, we used PSI values to evaluate VaR95 instead of a portfolio. Since these values are not time-
indexed, we randomly time-indexed PSI values. To see the effect of this assumption, the PSI values 
of 3000 Monte Carlo simulations were shuffled three times to calculate VaR95 value. The results 
are shown is Figure 5. The VaR95 values for three shuffles are 23%, 22%, and 23% of the loss in 
PSI. Therefore, time indexing did not have aconsiderable effect when it comes to calculating 
VaR95,  using post-earthquake serviceability index (PSI). 
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Figure 4. Critical pipes identified by Risk-averse SA-based method (left) and SA-based 
method (right) for the network at Modena. 

 
 
 

 
 

Figure 5. Shuffling 3000 PSI values to illustrate the effect of time while evaluating VaR95 of 
a rehabilitation policy. 

 
CONCLUSION 
 
The developed risk-averse simulated annealing methodology was applied to detect the crucial 
pipes in the network at Modena that must be rehabilitated. A comparison was made between the 
results obtained against the rehabilitation measures recommended by a simulated annealing 
process.  The proposed approach could determine the optimum combinations for rehabilitation 
assuming a constraint in the budget (12.5 million USD), with a controllable risk aversion level 
(VaR95  ≤  25% of loss in PSI). The recommended rehabilitation policy is different in the risk-
averse SA-based method from SA- based method. While selecting the optimum rehabilitation 
policy, the expected PSI value decreased in risk-averse SA-based approach in comparison with 
SA-based approach. This difference is because the risk aversion level of selecting that optimum 
policy is controlled in the risk-averse SA-based approach. This decision may be favorable for 
utilities even if it provides lower post-disaster system serviceability since it helps them limit risks.  
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Further analysis is recommended to identify the best rehabilitation policies for different budget 
constraints and risk aversion levels. A risk-averse stochastic algorithm for combinatorial 
optimization can effectively enhance the post-earthquake serviceability of water supply networks 
with controllable risk aversion level. This methodology is expected to help water utilities  make 
decisions that provide the maximum average post-earthquake system serviceability while control 
the decision-making risk. 
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