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Abstract

Self-training achieves enormous success
in various semi-supervised and weakly-
supervised learning tasks. The method can be
interpreted as a teacher-student framework,
where the teacher generates pseudo-labels,
and the student makes predictions. The two
models are updated alternatingly. However,
such a straightforward alternating update rule
leads to training instability. This is because a
small change in the teacher may result in a sig-
nificant change in the student. To address this
issue, we propose DRIFT, short for differen-
tiable self-training, that treats teacher-student
as a Stackelberg game. In this game, a leader
is always in a more advantageous position
than a follower. In self-training, the student
contributes to the prediction performance, and
the teacher controls the training process by
generating pseudo-labels. Therefore, we treat
the student as the leader and the teacher as the
follower. The leader procures its advantage
by acknowledging the follower’s strategy,
which involves differentiable pseudo-labels
and differentiable sample weights. Conse-
quently, the leader-follower interaction can be
effectively captured via Stackelberg gradient,
obtained by differentiating the follower’s
strategy. Experimental results on semi- and
weakly-supervised classification and named
entity recognition tasks show that our model
outperforms existing approaches by large
margins.

1 Introduction

Self-training is a classic method that was first pro-
posed for semi-supervised learning (Rosenberg
et al., 2005; Lee, 2013). It is also interpreted as a
regularization method (Mobabhi et al., 2020), and
is extended to weakly-supervised learning and do-
main adaptation (Meng et al., 2018). The approach
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has gain popularity in many applications. For ex-
ample, in conjunction with pre-trained language
models (Devlin et al., 2019), self-training has
demonstrated superior performance on tasks such
as natural language understanding (Du et al., 2021),
named entity recognition (Liang et al., 2020), and
question answering (Sachan and Xing, 2018).

Conventional self-training can be interpreted as
a teacher-student framework. Within this frame-
work, a teacher model generates pseudo-labels for
the unlabeled data. Then, a student model updates
its parameters by minimizing the discrepancy be-
tween its predictions and the pseudo-labels. The
teacher subsequently refines its parameters based
on the updated version of the student using pre-
defined rules. Such rules include minimizing a loss
function (Pham et al., 2020), copying the student’s
parameters (Rasmus et al., 2015), and integrating
models from previous iterations (Laine and Aila,
2017; Tarvainen and Valpola, 2017). The above
procedures are operated iteratively.

Computationally, the alternating update proce-
dure often causes training instability. Such insta-
bility comes from undesired interactions between
the teacher and the student. In practice, we often
use stochastic gradient descent to optimize the stu-
dent, and the noise of the stochastic gradient can
cause oscillation during training. This means in a
certain iteration, the student is optimized towards
a certain direction; while in the next iteration, it
may be optimized toward a drastically different di-
rection. Such a scenario renders the optimization
ill-conditioned. Moreover, the student model’s gra-
dient is determined by the pseudo-labels generated
by the teacher. Because of the training instability,
a small change in the pseudo-labels may result in a
substantial change in the student.

To resolve this issue, we propose DRIFT
(differentiable self-training), where we formulate
self-training as a Stackelberg game (Von Stackel-
berg, 2010). The concept arises from economics,



where there are two players, called the leader and
the follower. In a Stackelberg game, the leader is
always in an advantageous position by acknowledg-
ing the follower’s strategy. Within the self-training
framework, we grant the student a higher priority
than the teacher. This is because the teacher serves
the purpose of generating intermediate pseudo-
labels, such that the student can behave well on
the task. The student (i.e., the leader) procures its
advantage by considering what the response of the
teacher (i.e., the follower) will be, i.e., how will the
follower react after observing the leader’s move.
Then, the leader makes its move, in anticipation
of the predicted response of the follower. We re-
mark that the Stackelberg game formulation has
also been used in other domains such as adversarial
training (Zuo et al., 2021).

We highlight that in DRIFT, the student has a
higher priority than the teacher. In contrast, in con-
ventional self-training, the two models are treated
equally and have the same priority. When using
conventional self-training, the student only reacts
to what the teacher has generated. In differentiable
self-training, the student recognizes the teacher’s
strategy and reacts to what the teacher is antici-
pated to response. In this way, we can find a better
descent direction for the student, such that training
can be stabilized.

To facilitate the leader’s advantage, our frame-
work treats the follower’s strategy (i.e., pseudo-
labels generated by the teacher) as a function of the
leader’s decision (i.e., the student’s parameters). In
this way, differentiable self-training can be viewed
solely as a function of the student’s parameters.
Therefore, the problem can be efficiently solved
using gradient descent.

Besides pseudo-labels, the teacher can also gen-
erate sample weights (Freund and Schapire, 1997;
Kumar et al., 2010; Malisiewicz et al., 2011). Sam-
ple reweighting associates low-confidence sam-
ples with small weights, such that the influence
of noisy labels can be effectively reduced. Similar
to pseudo-labels, sample weights and the student
model are also updated iteratively. As such, we
can further equip DRIFT with differentiable sam-
ple weights. This can be achieved by integrating
the weights as a part of the follower’s strategy. We
remark that our method is flexible and can incorpo-
rate even more designs to the follower’s strategy.

We evaluate the performance of differentiable
self-training on a set of weakly- and semi-

supervised text classification and named entity
recognition tasks. In some weakly-supervised
learning tasks, our proposed method achieves com-
petitive performance in comparison with fully-
supervised models. For example, we obtain a
97.3% vs. 96.2% classification accuracy on Yelp,
and we do not use any labeled training data from
the Yelp dataset.

We highlight that our proposed differentiable
self-training approach is an efficient substitution
to existing self-training methods. Moreover, our
method does not introduce any additional tuning
parameter to the teacher-student framework. Addi-
tionally, DRIFT is flexible and can combine with
various neural architectures. We summarize our
contributions as the following: (1) We propose
a differentiable self-training framework DRIFT,
which employs a Stackelberg game formulation of
the teacher-student approach. (2) We employ dif-
ferentiable pseudo-labels and differentiable sample
weights as the follower’s strategy. Our method al-
leviates the training instability issue. (3) Extensive
experiments on semi-supervised node classifica-
tion, semi- and weakly-supervised text classifica-
tion and named entity recognition tasks verify the
efficacy of DRIFT.

2 Background

¢ Self-training for semi-supervised learning.
Self-training is one of the earliest and simplest
approaches to semi-supervised learning (Rosen-
berg et al., 2005; Lee, 2013). The method uses a
teacher model to generate new labels, on which a
student model is fitted. Similar methods such as
self-knowledge distillation (Furlanello et al., 2018)
are proposed for supervised learning. The major
drawback of self-training is that it is vulnerable to
label noise. A popular approach to tackle this is
sample reweighting (Freund and Schapire, 1997;
Kumar et al., 2010; Malisiewicz et al., 2011), where
high-confidence samples (Rosenberg et al., 2005;
Zhou et al., 2012) are assigned larger weights. Data
augmentation methods (Berthelot et al., 2019; Chen
et al., 2020) are also proposed to further enhance
self-training.

¢ Self-training for weakly-supervised learning.
Weak supervision sources, such as semantic rules
and knowledge bases, facilitate generating large
amounts of labeled data (Goh et al., 2018; Hoff-
mann et al., 2011). The weak supervision sources
have limited coverage, i.e., not all samples can



be matched by the rules, such that a consider-
able amount of samples are unlabeled. Moreover,
the generated weak labels usually contain exces-
sive noise. Recently, self-training techniques are
adopted to weakly-supervised learning. In con-
junction with pre-trained language models (Devlin
etal.,2019; Liu et al., 2019), the technique achieves
superior performance in various tasks (Meng et al.,
2018, 2020; Niu et al., 2020; Liang et al., 2020; Yu
et al., 2021).

3 Method

For both semi-supervised and weakly-supervised
learning problems, we have labeled samples
X = {(=, yl)}fvzll and unlabeled samples X, =
{z; }j\f:ul Here N is the number of labeled data,
and IV, is the number of unlabeled data. Note that
in weakly-supervised learning, we have unlabeled
data because of the limited coverage of weak su-
pervision sources. The difference between semi-
and weakly-supervised learning is that in the for-
mer case, the labels {y;}\, are assumed to be
accurate, whereas in the latter case, the labels are
noisy. The goal is to learn a classifier f : X — R,
where X = &7 U X, denotes all the data samples,
Y ={1,---,C} is the label set, and C' is the num-
ber of classes. The classifier f outputs a point in
the C'-dimensional probability simplex, where each
dimension denotes the probability that the input be-
longs to a specific class.

3.1 Differentiable Self-Training for
Semi-Supervised Learning

Self-training can be interpreted as a teacher-student
framework. Within this framework, the teacher
first generates pseudo-labels y (see (6)) for the
data samples. Then, the student updates itself by
minimizing a loss function (see (8)), subject to the
generated pseudo-labels. Such two procedures are
run iteratively.

We remark that self-training behaves poorly
when encountering unreliable pseudo-labels, which
will cause the student model to be updated towards
the wrong direction. To alleviate this issue, we
find a good initialization #™™ for the models. In
semi-supervised learning, " is found by fitting a
model on the labeled data A}. Concretely, we solve

. 1
Ineln ﬁsup(g) = ﬁ[ %l:gsup (f(xza 9)7%) . (1)

Here (x;,y;) € A7, and fgp(-, -) is the supervised

Algorithm 1: Differentiable Self-Training.

Input: A): labeled dataset; X,,: unlabeled
dataset; o: parameter of exponential
moving average; 6™': initialization;
Optimizer: optimizer to update 6°.

Initialize: 0] = 05 = o™i

fort=1,---,T—1do

Sample a labeled minibatch

B, = {xl}ﬁll‘ from AJ;

Sample an unlabeled minibatch

B, = {ml}li“ll from X,;

(07 (67)) « (6) on By;

w(OF (67)) < (7) on By;

L(07) + (8) on B, U B;;

g =dL(67)/d67 « 4);

07, = Optimizer(6;, g);

0L, = ab] + (1 — )07, 4;

end
Output: Student model 9% for prediction.

loss, e.g., the cross-entropy loss. (1) can be ef-
ficiently optimized using stochastic gradient-type
algorithms, such as Adam (Kingma and Ba, 2015).

At time ¢, denote the student’s parameters 67,
and the teacher’s parameters 6 (67). We set both
the student’s and the teacher’s initial parameters
to Ot e, 05 = 61(65) = ™. Note that the
teacher model depends on the student. We adopt an
exponential moving average (Laine and Aila, 2017;
Tarvainen and Valpola, 2017) approach to model
such a dependency:

07 (07) = b | + (1 — )by . )

Recall that in our differentiable self-training
framework, the student acknowledges the teacher’s
strategy. This meets the definition of a Stackelberg
game (Von Stackelberg, 2010), and we propose the
following formulation:

minﬁ(@f) = Esup(ef) 3)
67
1

st F (67 (07)) = [7(67(67)),w(67 (67))] -

Here recall that X, is the unlabeled data samples,
and N, is the size of X,. In (3), F(07(67)) is
the teacher’s strategy, which contains differentiable
pseudo-labels (i.e., y (#f) in (6)) and differentiable
sample weights (i.e., w(#]) in (7). The loss func-
tion £g is defined in (8). Note that we still include



the supervised loss L, in (1) in the objective func-
tion £. Following conventions, in (3), the mini-
mization problem solves for the leader, and we call
F(0F) the follower’s strategy. Note that the Stack-
elberg game formulation (3) has also been adopted
in adversarial training (Zuo et al., 2021).

The Stackelberg game formulation is fundamen-
tally different from conventional self-training ap-
proaches, where the teacher 67 is not treated as a
function of the student #°. In our differentiable self-
training framework, the leader takes the follower’s
strategy into account by considering F (67 (67)).
In this way, self-training can be viewed solely in
terms of the leader’s parameters 6} .

Consequently, the leader problem can be effi-
ciently solved using stochastic gradient-type algo-
rithms, where the gradient is

dces) 1 dlgup (67)
w5 TN 2 agy “
(wi,y:)€X]
1 ds i 9T 9 QS
oLy s o O 09),07)
Ny, do;
IEGXu
dﬁgup ('%5 xZ,F 0; )
Nl Z d@s N Z (993
leader

Ols (i, F(0](67)),67) dOF (67)
Z 26T (67) '

S
Y zieX, det

leader—follower interaction

In (4)!, we have d0](67)/d07 = 1 — a be-
cause of (2). Note that a conventional self-training
method only considers the “leader” term, and ig-
nores “leader-follower interaction”. This causes
training instabilities, which we demonstrate empir-
ically in Fig. 1 and Fig. 2.

The proposed differential self-training algorithm
is summarized in Algorithm 1. In the next two
sections, we spell out the two components of the
follower’s strategy, namely differentiable pseudo-
labels and differentiable sample weights.

We remark that Algorithm 1 adopts a Stackel-
berg game formulation of self-training. That is, the
loss terms in (3) (soft-labels and sample weights)
are well-established techniques, and the proposed
method is a novel optimization algorithm.

'The “leader” term is written as O¢s (v, F, 07 ) /903 in-
stead of Ols(x;, F(07 (67)),05)/065 because the partial
derivative is only taken with respect to the third argument

in £s(z;, F, 07). We drop the 8 (67) term in F(07 (65)) to
avoid causing confusion.

3.2 Differentiable Pseudo-Labels

In a self-training framework, the teacher model
labels the unlabeled data. Concretely, at time ¢, for
each sample z € &, in the unlabeled dataset, a
hard pseudo-label (Lee, 2013) is defined as

Yparg = ATGMAX [f(z, HtT)]j . (5)
JEY
Here f(x,0]) € R is in the probability simplex,
and [f(z,0])]; denotes its j-th entry.

There are two problems with the hard pseudo-
labels. First, differentiable self-training requires
every component of the follower’s strategy (3) to
be differentiable with respect to the leader’s param-
eters. However, (5) introduces a non-differentiable
argmax operation. Second, the hard pseudo-labels
exacerbates error accumulation. This is because
Y.;q ODly contains information about the most
likely class, such that statistics regarding the pre-
diction confidence f(z,6]) is lost. For example,
suppose in a two-class classification problem, we
obtain f(z,0]) = [0.51,0.49] for some z. This
prediction result indicates that the model is uncer-
tain to which class x belongs. However, under the
hard pseudo-label y,_ . = 0, the student model
becomes unaware of such uncertainty.

To resolve the above two issues, we propose to
employ soft pseudo-labels (Xie et al., 2016, 2020;
Meng et al., 2020). Concretely, for a data sample
x € Binabatch B, the j-th entry of its soft pseudo-
label y(07) € R is defined as

[f (@, 07 0507 /15
ey L@ 87O /1

where f; = S glf (2,07 (07)]Y/7, and 7 is a
temperature parameter that controls the “softness”
of the soft pseudo-label. Note that when the tem-
perature is low, i.e., 7 — 0, the soft pseudo-label
becomes sharper and eventually converges to the
hard pseudo-label (5).

In (6), the soft pseudo-label ¥ (6] ) is a function
of the teacher’s parameters 6] , which in turn is a
function of the student’s parameters Hts (2). There-
fore, y is differentiable with respect to 02, and fits
in the differentiable self-training framework. The
gradient of  with respect to #° can be efficiently
computed by a single back-propagation using deep
learning libraries.

Notice that (6) emphasizes the tendency of z
belonging to a specific class, instead of to which

y(61)]; = , (6)



class = belongs. Therefore, even when y, . is
wrong, the soft version of it is still informative.

3.3 Differentiable Sample Weights

Sample reweighting is an effective tool to tackle er-
roneous labels (Freund and Schapire, 1997; Kumar
et al., 2010; Malisiewicz et al., 2011; Liang et al.,
2020). Specifically, pseudo-labels that have domi-
nating entries are more likely to be accurate than
those with uniformly distributed entries. For exam-
ple, a sample labeled [0.9, 0.1] is more likely to be
classified correctly than a sample labeled [0.6, 0.4].
With this intuition, for a sample and its soft pseudo-
label y(67), we define its sample weight w as

H (y(67))

wlb]) =1 - e

(7
where H(y(0F)) = — E]-Czl y;log(y;) is the en-
tropy of y(67) that satisfies 0 < H(y(0})) <
log(C). Note that if the pseudo-label is uniformly
distributed, then the corresponding sample weight
is low, and vice versa. Similar to the pseudo-label
y (07, the sample weight w(6}) is a function of
the teacher’s parameters 6/ , and further a function
of the student’s parameters 6} .

With the differentiable pseudo-labels and the dif-
ferentiable sample weights, we define the student’s
loss function as

ls (2, F (67 (67)),67) = w (67 (67))
KL (607 (09)11f (3, 67)) , (8

where KL(p||q) = >_; pr log(px/qx) is the Kull-
back—Leibler (KL) divergence.

3.4 Weakly-Supervised Learning

Recall that in weakly-supervised learning, we have
both labeled data A} and unlabeled data X,. Note
that weak supervision sources often yield noisy
labels. This is because data are annotated automati-
cally by, for example, linguistic rules, which have
limited accuracy. As such, the supervised loss Lgp
in (3) only exacerbates the label noise issue.

We address this problem by discarding the noisy
weak labels in A after obtaining the initialization
6t (1). Accordingly, we adopt the following for-
mulation for weakly-supervised learning:

1
Z ls (xiaF79tS)7 )]

min L£(607) = N
0; T, €X UX]

st F (67(65)) = [3(67(69)), (67 (65))]
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Figure 1: Left: Learning curve. Right: The last epoch
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Figure 2: Demonstration of Self-training stuck at bad
optima. The solid diamonds are labeled samples.

Here N = N; 4+ N, is the total number of training
samples. Note that in comparison with (3), we drop
the supervised loss Lg,,. Moreover, the teacher
model now generates soft pseudo-labels for all the
data, instead of only the data in &,.

4 Experiments

We conduct two sets of experiments: weakly- and
semi-supervised text classification. We also exam-
ine semi-supervised node classification on graphs
(Appendix A). All the results have passed a paired
t-test with p < 0.05. When using pre-trained lan-
guage models, we employ a RoBERTa-base (Liu
et al., 2019) model obtained from the Hugging-
Face (Wolf et al., 2019) codebase. We implement
all the methods using PyTorch (Paszke et al., 2019),
and experiments are run on NVIDIA 2080Ti GPUs.
All the training details are deferred to the appendix.

4.1 Warmup: TwoMoon Experiments

To understand the efficacy of DRIFT, we conduct
a semi-supervised classification experiment on a
classic synthetic dataset “TwoMoon”. The dataset
contains two classes, and for each class we generate
12 labeled samples and 500 unlabeled ones.

We compare DRIFT with conventional Self-
training. The only difference between the two



Dataset | AGNews | IMDB | Yelp | MIT-R |

CoNLL-03 |

Webpage | BC5CDR | Wikigold

RoBERTa-Full | 91.41 | 9426 [97.27| 8851 |[90.11(89.14/91.10) | 72.39 (66.29/79.73) | 85.15 (83.74/86.61) | 86.43 (85.33/87.56)
RoBERTa-Weak| 82.25 72.60 |79.91| 70.95 |75.61 (83.76/68.90) | 59.11 (60.14/58.11) | 78.51 (74.96/82.42) | 51.55 (49.17/54.50)
WeSTClass 82.78 77.40 | 76.86 — - - - —

Self-training 86.07 85.72 |89.95| 73.59 |77.28(83.42/71.98)|56.90 (54.32/59.74) | 79.92 (74.73/85.90) | 56.90 (54.32/59.74)
UAST 86.28 84.56 |90.53 | 74.41 |77.92(83.30/73.20) | 58.18 (56.33/60.14) | 81.50 (80.09/82.98) | 57.79 (52.64/64.05)
BOND 86.19 88.36 | 93.18 | 75.90 |81.48(82.05/80.92)|65.74 (67.37/64.19) | 81.53 (79.54/83.63) | 60.07 (53.44/68.58)
DRIFT | 87.80 | 9156 |96.24| 77.15 |81.74 (81.45/82.02) | 66.04 (65.23/66.87) | 82.62 (82.57/82.68) | 60.66 (57.50/64.21)

Table 1: Accuracy (in %) of weakly-supervised text classification on various datasets. We report the mean over
three runs. DRIFT is initialized from RoBERTa-Weak. For text classification tasks, we report the accuracy; and
for NER tasks, we report I (precision/recall). The best results are shown in bold, except RoBERTa-Full, which is
a fully-supervised model and is included here as a reference.

methods is that DRIFT adopts the differentiable
strategies, while Self-training does not. In both
methods, the teacher/student model is a two-layer
feed-forward neural network, with hidden dimen-
sion 50 and tanh (hyperbolic tangent) as the non-
linearity. We first train the models for 50 epochs
using the labeled samples. We then conduct self-
training with learning rate 0.01 and Adam (Kingma
and Ba, 2015) as the optimizer. We adopt an expo-
nential moving average approach (2) with oo = 0.5,
and we set the temperature parameter 7 = 0.5 for
the soft pseudo-labels (6).

We conduct 10 trails, and Fig. 1 shows the ac-
curacy and the variance during training. We can
see that Self-training yields a much larger variance,
indicating an unstable training process. Note that
the performance gain of DRIFT to Self-training has
passed a paired-student t-test with p-value < 0.05.

Moreover, by examining the experimental re-
sults, we find that Self-training at times gets stuck
at subpotimal solutions. As an example, in Fig. 2,
notice that the two methods behave equally well at
epoch 20. However, Self-training gets stuck and
does not improve at epoch 150. This is because the
teacher generates hazardous labels that avert the
student from improving. Meanwhile, by incorpo-
rating differentiable strategies, the performance of
DRIFT improves at epoch 150 from epoch 20.

4.2 Weakly-Supervised Text Classification

We fine-tune a pre-trained RoBERTa model for
weakly-supervised learning. In addition, we
demonstrate that our method works well when
trained-from-scratch and when using different
backbones than the Transformer (Vaswani et al.,
2017). See Section 4.3 and Table 3 for details.

Settings. We use the following datasets: Topic
Classification on AGNews (Zhang et al., 2015);
Sentiment Analysis on IMDB (Maas et al., 2011)

and Yelp (Meng et al., 2018); Slot Filling on MIT-
R (Liu et al., 2013); and Named Entity Recognition
(NER) on CoNLL-03 (Tjong Kim Sang, 2002),
Webpage (Ratinov and Roth, 2009), Wikigold (Bal-
asuriya et al., 2009), and BC5CDR (Li et al., 2016).
The dataset statistics are summarized in Table 7.
For each dataset, we generate weak labels using
some pre-defined rules, after which the same data
and generated weak labels are used by all the meth-
ods. More details about the weak supervision
sources are in Appendix C.
We adopt several baselines:

* RoBERTa (Liu et al., 2019) uses the
RoBERTa-base model with task-specific clas-
sification heads.

* Self-training (Lee, 2013; Rosenberg et al.,
2005) uses the conventional teacher-student
framework, where a teacher generates pseudo-
labels, and a student makes predictions.

* WeSTClass (Meng et al., 2018) leverages
generated pseudo-documents and uses self-
training to bootstrap over all the samples.

* BOND (Liang et al., 2020) uses a teacher-
student framework for self-training. The
teacher model is periodically updated to gen-
erate pseudo-labels when training the student.

* UAST (Mukherjee and Awadallah, 2020) esti-
mates uncertainties of unlabeled data via MC-
dropout (Gal and Ghahramani, 2016) during
self-training, and then selects samples with
low uncertainties. It is the state-of-the-art self-
training method for text data with few labels.

Recall that for weakly-supervised learning, we
first fine-tune a ROBERTa model using the weakly-
labeled data, and then we discard the weak labels
and continue with self-training. This is an effective



strategy to reduce overfitting on label noise (Yu
et al., 2021). We follow this procedure for both
DRIFT and all the baseline methods.

Results. Experimental results are summarized
in Table 1. We can see that DRIFT achieves the
best performance in all the tasks. Notice that the
baselines that adopt self-training, e.g., WestClass,
Self-training, UAST, and BOND, outperform the
vanilla RoOBERTa-Weak method. This is because in
weakly-supervised learning, a noticeable amount
of labels are inaccurate. Therefore, without noise
suppressing approaches such as self-training, mod-
els cannot behave well. However, without taking
the teacher’s strategy into account, these methods
still suffer from training instabilities, such that they
are not as effective as DRIFT.

We highlight that on some datasets, performance
of our method is close to the fully-supervised
model RoBERTa-Full, even though we do not use
any clean labels. For example, DRIFT achieves
91.6% vs. 94.3% performance on IMDB, 96.2%
vs. 97.3% on Yelp, and 82.6 vs. 85.1 on BC5CDR.

4.3 Semi-Supervised Text Classification

Datasets. We adopt AGNews, IMDB, and Ama-
zon (McAuley and Leskovec, 2013) (see Table 7)
in this set of experiments. For each dataset, we
randomly sample N € {30,50,200,1000} data
points from each class and annotate them with
clean labels, while the other data are treated as
unlabeled. Note that for all the splits of a particular
dataset, we use the same development and test sets.

Settings. Our differentiable self-training frame-
work works well in both fine-tuning and training-
from-scratch regimes. Moreover, our approach is
flexible to accommodate different neural architec-
tures. We conduct two sets of experiments. In
the first set, we fine-tune a pre-trained RoBERTa
model, which uses the Transformer (Vaswani et al.,
2017) as its backbone. In the second set of exper-
iments, we train a TextCNN (Kim, 2014) model
from scratch, which employs a convolutional neu-
ral network as the foundation.

Baselines. Besides RoOBERTa, Self-training, and
UAST, which are used in weakly-supervised clas-
sification tasks, we adopt several new methods as
baseline approaches.

* VAMPIRE (Gururangan et al., 2019) pre-trains
a unigram document model on unlabeled data

using a variational auto-encoder, and then uses
its internal states as features for downstream
applications.

e UDA (Xie et al., 2020) uses back translation
and word replacement to augment unlabeled
data, and forces the model to make consistent
predictions on the augmented data to improve
model performance.

* MixText (Chen et al., 2020) augments the train-
ing data by interpolation in the hidden space,
and it exploits entropy and consistency reg-
ularization to further utilize unlabeled data
during training.

Results. Experimental results are summarized
in Table 2. We can see that DRIFT achieves the
best performance across the three datasets under
different setups. Notice that the performance of
VAMPIRE is not satisfactory. This is because it
does not use pre-trained models, unlike the other
baselines. Pre-trained language models contain
rich semantic knowledge, which can be effectively
transferred to the target task and boost model per-
formance. All the baselines do not explicitly con-
sider the teacher’s strategy, and thus, they suffer
from training instabilities.

We remark that UDA, UAST and MixText lever-
age external sources or data augmentation methods
to make full use of the unlabeled data. These meth-
ods can potentially combine with DRIFT, which is
of separate interests.

Fine-tuning vs. Training-from-scratch. Table 3
shows the results of training a TextCNN model
from scratch. We can see that the model trained
from scratch performs worse than fine-tuning a pre-
trained model (Table 2). This is because TextCNN
has significantly less parameters than ROBERTa,
and is not pre-trained on massive text corpora.
Therefore, we cannot take advantage of the seman-
tic information from pre-trained models.

Nevertheless, under both weakly-supervised and
semi-supervised learning settings, DRIFT consis-
tently outperforms the baseline methods. This indi-
cates that our method is architecture independent,
and does not rely on transferring existing semantic
information. As such, differentiable self-training
serves as an effective plug-in module for existing
models. We remark that DRIFT does not introduce
any additional tuning parameter in comparison with
conventional self-training.



Dataset AGNews IMDB Amazon
Labels/class 30 50 200 1000 30 50 200 1000 30 50 200 1000
RoBERTa-Semi| 83.98 87.44 88.01 9091 | 86.64 8837 89.25 90.54 | 8821 89.66 9231 93.65
VAMPIRE — — 83.90 85.80 — — 82.20 85.40 — — — —
UDA 8592 88.09 8833 91.22 | 89.30 89.42 89.72 90.87 - - - -
MixText 88.50 88.85 89.20 91.55 | 84.34 88.72 89.45 91.20 - — — —
Self-training 84.62 88.04 88.67 91.47 | 88.13 88.80 89.84 91.04 | 89.92 90.55 92.55 93.83
UAST 87.74 88.65 89.21 91.81 | 89.21 89.56 90.11 9148 | 91.27 91.50 92.68 93.97
DRIFT | 89.46 89.67 90.17 92.47 | 89.77 90.03 90.83 92.39 | 91.82 92.67 93.16 94.28

Table 2: Accuracy (in %) of semi-supervised text classification on various datasets. DRIFT is initialized from

RoBERTa-Semi. The best results are shown in bold.

Dataset AGNews IMDB

Labels per class | weak 30 50 200 1000 | weak 30 50 200 1000
TextCNN 7945 7881 7998 8546 86.78 | 82.44 63.32 66.61 7322 78.29
Self-training 81.69 8198 82.67 86.26 88.15 | 84.76 64.68 6526 73.60 79.04
UAST 81.48 82.05 8334 86.67 87.90 | 83.97 6423 6870 7395 79.13
DRIFT | 82.55 8334 85.01 87.38 88.66 | 86.44 65.65 69.86 74.61 79.38

Table 3: Results of DRIFT and self-training baselines on AGNews and IMDB. We use TextCNN as the backbone
and train the models from scratch. DRIFT is initialized from TextCNN. The best results are shown in bold. “Weak”

means the weak-supervision setting.

4.4 Ablation Study

o Components of DRIFT. We inspect differ-
ent components of DRIFT, including the differen-
tiable pseudo labels (DrPL), differentiable sample
weights (DrW), and the sample reweighting strat-
egy (SR)?. Experimental results are summarized in
Table 4. We observe that both differentiable pseudo-
labels and differentiable sample weights contribute
to model performance, as removing any of them
hurts the classification accuracy. Also, DRIFT ex-
cels when the labels are noisy. We can see that
our method brings 2.41% performance gain on av-
erage under the weakly-supervised setting, while
it only promotes 1.08% average gain under the
semi-supervised setting. Such results indicate that
differentiable pseudo-labels and sample weight are
effective in suppressing label noise.

< Sensitivity to hyper-parameters. We study
models’ sensitivity to the exponential moving av-
erage rate o and the soft pseudo-label’s tempera-
ture 7. Figure 3 shows the results. We can see
that model performance peaks when « is around
0.9. The teacher model updates too aggressively
with a smaller « (e.g., @ = 0.7), and too conserva-
tively with a larger alpha (e.g., @ = 0.99). In the

2For models without DrPL, we do not differentiate the
pseudo-labels. For models without DrW, we still use (7) to
perform sample rewriting, but we do not differentiate the
weights, i.e., w/o DrW equals to w/ SR. For models without
SR, we do not use sample reweighing.

Method | AGNews IMDB

#labels | 30 1000 weak| 30 1000 weak
DRIFT 89.46 92.47 87.80|89.77 92.39 91.56
w/o DrPL | 87.63 92.11 86.13|89.05 91.75 86.78
w/o DrW | 88.51 91.22 86.62|88.47 91.49 90.24
w/o SR 88.84 91.20 86.19|88.15 91.95 87.76

Table 4: Effects of different components of DRIFT.
Here “weak” means the weak-supervision setting.
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Figure 3: Parameter study. Here “semi” means the
semi-supervision setting with 30 labels per class, and
“weak” means the weak-supervision setting.

first case, the generated pseudo-labels are not reli-
able; and in the second case, model improves too
slow. Also notice that the semi-supervised model
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Figure 4: Sample predictions under weak supervision.
From inside to outside, the four rings correspond to
the results at iteration O (initialization using RoBERTa),
100, 200, 300, respectively.

is not sensitive to the temperature parameter. The
weakly-supervised model achieves the best perfor-
mance when 7 = 0.5. Note that a smaller 7 essen-
tially generates hard pseudo-labels, which drasti-
cally hurts model performance.

4.5 Case Study

Figure 4 demonstrates error reduction. Samples
are indicated by radii of the circle, and classifica-
tion correctness is indicated by color. For example,
if a radius has color orange, blue, blue, blue, then
it is mis-classified at iteration 0, and correctly clas-
sified at iteration 100, 200, and 300. We can see
that Self-training suffers from error accumulation,
as around 2% more samples are mis-classified be-
tween iteration 200 and 300. In contrast, in DRIFT,
a noticeable amount of incorrect predictions are
rectified, and the accuracy improves by more than
15% after 300 iterations.

5 Discussion and Conclusion

In this paper, we propose a differentiable self-
training framework, DRIFT, which formulates the
teacher-student framework in self-training as a
Stackelberg game. The formulation treats the stu-
dent as the leader, and the teacher as the follower.
In DRIFT, the student is in an advantageous posi-
tion by recognizing the follower’s strategy. In this
way, we can find a better descent direction for the
student and can stabilize training. Empirical results
on weakly- and semi-supervised natural language
processing tasks suggest the superiority of DRIFT
to conventional self-training.

Conventional self-training is a heuristic and does
not pose a well-defined optimization problem. In
conventional methods, the teacher optimizes an im-

plicit function through different components, e.g.,
pseudo-labels. We follow this convention and for-
mulate self-training as a Stackelberg game. Our
formulation is a principle that can motivate follow-
up works.

In our Stackelberg game formulation (3), the
student’s utility function is the objective function
of the minimization problem. The teacher’s util-
ity function is an implicit function, which can be
written as the following:

Utility(teacher) = D(teacher, student)
+ R (teacher, confidence)
+ Ra(teacher, uncertainty).

Here, the first term D is some divergence between
the teacher and the student (i.e., the KL-divergence
in (8)), and the two regularizers R1 and R are
defined implicitly. That is, R; regularizes model
confidence (realized by the soft pseudo-labels in
(6)), and R regularizes model uncertainty (real-
ized by the sample weights in (7)). Even though
the utility function of the teacher is implicit, the so-
lution of it is explicitly given, namely the teacher’s
strategy F'(67) in (3) is the solution to the teacher’s
implicit utility.

Because the strategy of the teacher is explicit (in
contrast to implicitly defined by an optimization
problem), the teacher’s utility is maximized with
such a strategy. Thus, equilibrium of the Stack-
elberg game exists, and every local optimum of
the minimization problem is an equilibrium. In
this work, we use off-the-shelf algorithms (Adam
and AdamW) to find local minima of (3) (a.k.a.
equilibria of the game).

We remark that in a Stackelberg game, the names
“leader” and “follower” indicate the relative im-
portance and priority of the two players. In our
framework, we use the student model for predic-
tion. Therefore, the student model is more impor-
tant than the teacher, so that we grant it a higher
priority and say it is the leader.

We remark that self-distillation (Furlanello et al.,
2018) is a special case of self-training, which is a
supervised learning method. We can also differen-
tiate the teacher model in self-distillation, such that
DRIFT can be extended to supervised learning.
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(DRIFT), a self-training framework for NLP tasks.
We demonstrate that the DRIFT framework can
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A Semi-Supervised Learning on Graphs

Datasets. We adopt three citation networks: Cora,
Citeseer, and Pubmed (Sen et al., 2008) as bench-
mark datasets. Their statistics are summarized in
Table 6. Similar to semi-supervised text classifi-
cation tasks, for each dataset, we randomly sam-
ple N € {10,20, 50,100} data points from each
class and annotate them with clean labels, while
the other data are treated as unlabeled. We use the
same development and test sets for all the splits of
a particular dataset.

Baselines. In addition to Self-training, we adopt
four graph neural network methods as baselines.
Note that Self-training uses GCN as its backbone.

¢ GCN (Kipf and Welling, 2017) adopts graph con-
volutions as an information propagation operator
on graphs. The operator smooths label information
over the graph, such that labeled nodes acknowl-
edge features of unlabeled ones, and predictions
are drawn accordingly.

© GraphVAT (Feng et al., 2019) leverages virtual
adversarial training on graphs. The method gener-
ates perturbations to each data point, and promotes
smooth predictions subject to the perturbations.

© GraphMix (Verma et al., 2019) is an interpolation-
based regularization method. It uses a manifold
mixup approach to learning more discriminative
node representations.

o GRAND (Feng et al., 2020) performs data aug-
mentation via a random propagation strategy. It
also leverages a consistency regularization to en-
courage prediction consistency across different aug-
mentations. GRAND uses a multi layer perception
(MLP) as its backbone.

Settings. To demonstrate that differentiable self-
training can be effectively combined with differ-
ent models, we adopt DRIFT to two architectures:
GCN, which is a graph convolution-based method;
and GRAND, which is a MLP-based method that
achieves state-of-the-art performance.

Results. Experimental results are summarized
in Table 5. Notice that Self-training outperforms
GCN. This is because while GCN only implic-
itly uses information of the unlabeled nodes, Self-
training directly utilizes such information via the
pseudo-labels. Furthermore, DRIFT+GCN en-
hances the performance of Self-training. The other
baselines (e.g., GraphVAT, Graphmix, GRAND),

which are refinements and substitutions to the
graph convolution operation, outperforms vanilla
GCN. By equipping GRAND with differentiable
self-training, DRIFT+GRAND achieves the best
performance in 10 out of 12 experiments. The per-
formance gain is more pronounced when there are
only a few labeled samples, e.g., DRIFT+GRAND
improves GRAND by more than 11% when there
are 10 labeled samples per class.

Visualization of learned representations. Fig-
ure 5 visualizes the learned representations of Self-
training and DRIFT. From Fig. Sa, we can see that
Self-training mixes the representations of the red
class and the blue class, as indicated in the red
box. Such erroneous classification is alleviated by
DRIFT (Fig. 5b). On Citeseer, notice that Self-
training generates a meaningless cluster (Fig. 5¢),
which is a sign that Self-training overfits on the
label noise.

(a) Self-training on Cora. (b) DRIFT on Cora.

(c) Self-training on Citeseer. (d) DRIFT on Citeseer.

Figure 5: t-SNE plots of Self-training and DRIFT on
Cora and Citeseer. Each color denotes a different class.

B Classification and Named Entity
Recognition Datasets

Dataset statistics for the classification and named
entity recognition tasks are presented in Table 7.

C Weak Supervision Sources

There are two types of semantic rules that we apply
as weak supervisions:

* Keyword Rule: HAS (x, L) — C. If z
matches one of the words in the list L, we
label it as C.



Dataset Cora Citeseer Pubmed

Labels per class 10 20 50 100 10 20 50 100 10 20 50 100
Baselines

GCN (Kipf and Welling, 2017) | 745 774 81.6 851 | 671 695 719 749 | 71.0 751 81.8 8438
Self-training (Lee, 2013) 744 79.1 835 851|705 731 751 762 | 71.8 752 825 84.6
GraphVAT (Feng et al., 2019) 752 78.6 831 853|676 705 726 758 | 71.8 755 821 85.0
GraphMix (Verma et al., 2019) | 77.3 823 848 860 | 67.1 739 745 769 | 729 76.1 819 844
GRAND (Feng et al., 2020) 765 843 865 872 | 628 733 750 778 | 774 785 839 862
Ours

DRIFT+GCN 80.4 81.8 846 856 | 744 754 759 774 | 728 781 833 853
DRIFT+GRAND 82.1 854 873 879 | 741 760 757 785 | 79.2 793 852 86.8

Table 5: Accuracy (in %) of semi-supervised node classification on graphs. For all the splits of a particular dataset,
we use the same development and test sets. We report the mean over ten runs. The best results are shown in bold.

Dataset ‘ #Nodes | #Edges | #Class ‘ #Dev ‘ #Test ‘ #Features

Cora 2,708 5,429 7 500 | 1,000 1,433
Citeseer | 3,327 4,732 6 500 | 1,000 3,703
Pubmed | 19,717 | 44,338 3 500 | 1,000 500

Table 6: Statistics of datasets used in semi-supervised learning on graphs.

Dataset Task  |#Class | #Train | #Dev | #Test
AGNews Topic 4 108k | 12k | 7.6k
IMDB Sentiment 2 20k | 2.5k | 2.5k
Yelp Sentiment 2 30.4k | 3.8k | 3.8k
Amazon Sentiment 2 25k | 2.5k | 2.5k
MIT-R Slot Filling 9 6.6k | 1.0k | 1.5k
CoNLL-03 NER 4 14.0k | 3.2k | 3.4k
Webpage NER 4 385 99 | 135

Wikigold NER 4 1.1k | 280 | 274

BC5CDR NER 2 45k | 4.5k | 4.7k

Table 7: Statistics of datasets used in text classification and named entity recognition tasks.

e Pattern Rule: MATCH(x, R) — C.If x
matches the regular expression R, we label
itas C.

Two examples of semantic rules on AGNews and
IMDB are given in Table 8 and Table 9.

All of the weak supervisions, i.e., linguistic rules,
are from existing literature. The details are listed
below:

* AGNews, IMDB, Yelp: We use the rules in Ren
et al. (2020).

e MIT-R: We use the rules in Awasthi et al.
(2020).

* CoNLL-03, WebPage, Wikigold: We use the
keywords in Liang et al. (2020).

* BC5CDR: We use the keywords in Shang et al.
(2018). Note that for simplicity, we do not
use AutoPhrase to extract external keywords.
Such an approach requires external corpus and
extra parameter-tuning.

D Training Details

We use a validation set to tune DRIFT as well as
all the baseline methods. We report the test result
of the best model on the validation set. All the
experimental results have passed a paired t-test
with p < 0.05.

D.1 Baseline Settings

We implement the GraphVAT method by ourselves.
For the other baselines, we follow the official
release:



Rule

[war, prime minister, president, commander, minister, military, militant,
kill, operator] — POLITICS

[baseball, basketball, soccer, football, boxing, swimming, world cup,
nba,olympics, final, fifa] — SPORTS

[delta, cola, toyota, costco, gucci, citibank, airlines] — BUSINESS
[technology, engineering, science, research, cpu, windows, unix, system,
computing, compute] — TECHNOLOGY

Table 8: Examples of semantic rules on AGNews.

Rule
[masterpiece, outstanding, perfect, great, good, nice, best, excellent,
worthy, awesome, enjoy, positive, pleasant, wonderful, amazing, superb,
fantastic, marvellous, fabulous] — POS
[bad, worst, horrible, awful, terrible, crap, shit, garbage, rubbish,
waste] — NEG
[beautiful, handsome, talented]— POS

[fast forward, n t finish] — NEG
[well written, absorbing,attractive, innovative, instructive, interesting,

touching, moving]— POS

[to sleep, fell asleep, boring, dull, plain]— NEG

[ than this, than the film, than the movie]— NEG

MATCH (x, *PRE+EXPx ) — POS PRE = [will, Il , would , can’t wait to ] EXP = [ next time, again,

rewatch, anymore, rewind]

PRE = [highly , do, would , definitely , certainly , strongly , i, we | EXP = [ recommend, nominate]

PRE = [high, timeless , priceless , has, great, of , real , instructive ] EXP = [ value, quality, meaning, significance]

Table 9: Examples of semantic rules on IMDB.

(1) MixText: https://github.com/
GT-SALT/MixText/;

) BOND: https://github.com/
cliangl453/BOND;

3) UAST: https://github.com/
microsoft/UST;

(4) WeSTClass: https://github.com/
yumeng5/WeSTClass;

(5) GCN: https://github.com/tkipf/
pygcn;

(6) GRAND:
THUDM/GRAND;
(7) GraphMix: https://github.com/
vikasvermalQ77/GraphMix.

https://github.com/

D.2 Weakly-Supervised Text Classification

Hyper-parameters are shown in Table 10.

D.3 Semi-Supervised Text Classification

We implement TextCNN with Pytorch (Paszke
etal., 2019). We use the pre-trained 300 dimension
FastText embeddings® as the input vectors. Then,
we set the filter window sizes to 2, 3, 4, 5 with 500

3We use the 1 million word vectors trained on Wikipedia
2017, UMBC webbase corpus and news dataset, which is

available online: https://fasttext.cc/docs/en/
english-vectors.html.

feature maps each. We train the model for 100 it-
erations as initialization, and set 7' = 1000 during
self-training. We use Stochastic Gradient Descent
(SGD) with momentum m = 0.9 and we set the
learning rate to 5 x 10~%. We set the dropout rate
to 0.5 for the linear layers after the CNN. We tune
the weight decay in [107%,107°,1075,1077].
Hyper-parameters are shown in Table 11.

D.4 Semi-Supervised Learning on Graphs

Our method serves as an efficient drop-in module
to existing methods. There are only two parameters
that we tune in the experiments: the exponential
moving average rate o and the temperature 7 of the
soft pseudo-labels. For all the three datasets, we
set = 0.99. For the temperature parameter, we
use the following settings.

* Cora: 1/7 = 3.0 for GRAND and 1/7 = 4.0
for GCN.

* Citeseer: 1/7 = 3.0 for GRAND and 1/7 =
3.5 for GCN.

* Pubmed: 1/7 = 3.0 for GRAND and 1/7 =
4.0 for GCN.



Hyper-parameter | AGNews | IMDB | Yelp | MIT-R | CoNLL-03 | Webpage | Wikigold | BCSCDR

Dropout Ratio 0.1
Maximum Tokens 128 256 512 64 128 128 128 128
Batch Size 32 16 16 64 32 32 32 32
Weight Decay 1077
Learning Rate 107°
Initialization Steps 160 160 200 150 900 300 3500 1500
T 3000 2500 | 2500 1000 1800 200 700 1000
e 0.95 0.9 0.95 0.9 0.9 0.95 0.9 0.9
T 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 10: Hyper-parameter configurations for weakly-supervised text classification.

Hyper-parameter | AGNews ‘ IMDB ‘ Amazon

Dropout Ratio 0.1
Maximum Tokens 128 256 256
Batch Size 32 16 16
Weight Decay 1074
Learning Rate 107
Initialization Steps 1200 1000 800
T 4000 3000 4000
o 0.95 0.99 0.9
T 0.6 0.5 0.5

Table 11: Hyper-parameter configurations for semi-supervised text classification

Other hyper-parameters and tricks used in training
follow the corresponding works.



