
Self-Training with Differentiable Teacher

Simiao Zuo�∗, Yue Yu�∗, Chen Liang�, Haoming Jiang2†, Siawpeng Er�,

Chao Zhang�, Tuo Zhao� and Hongyuan Zha‡

�Georgia Institute of Technology 2Amazon
‡The Chinese University of Hong Kong, Shenzhen

{simiaozuo,yueyu,cliang73,ser8,chaozhang,tourzhao}@gatech.edu

jhaoming@amazon.com zhahy@cuhk.edu.cn

Abstract

Self-training achieves enormous success

in various semi-supervised and weakly-

supervised learning tasks. The method can be

interpreted as a teacher-student framework,

where the teacher generates pseudo-labels,

and the student makes predictions. The two

models are updated alternatingly. However,

such a straightforward alternating update rule

leads to training instability. This is because a

small change in the teacher may result in a sig-

nificant change in the student. To address this

issue, we propose DRIFT, short for differen-

tiable self-training, that treats teacher-student

as a Stackelberg game. In this game, a leader

is always in a more advantageous position

than a follower. In self-training, the student

contributes to the prediction performance, and

the teacher controls the training process by

generating pseudo-labels. Therefore, we treat

the student as the leader and the teacher as the

follower. The leader procures its advantage

by acknowledging the follower’s strategy,

which involves differentiable pseudo-labels

and differentiable sample weights. Conse-

quently, the leader-follower interaction can be

effectively captured via Stackelberg gradient,

obtained by differentiating the follower’s

strategy. Experimental results on semi- and

weakly-supervised classification and named

entity recognition tasks show that our model

outperforms existing approaches by large

margins.

1 Introduction

Self-training is a classic method that was first pro-

posed for semi-supervised learning (Rosenberg

et al., 2005; Lee, 2013). It is also interpreted as a

regularization method (Mobahi et al., 2020), and

is extended to weakly-supervised learning and do-

main adaptation (Meng et al., 2018). The approach

∗Equal contribution. Corresponding authors.
†Work was done at Georgia Institute of Technology.

has gain popularity in many applications. For ex-

ample, in conjunction with pre-trained language

models (Devlin et al., 2019), self-training has

demonstrated superior performance on tasks such

as natural language understanding (Du et al., 2021),

named entity recognition (Liang et al., 2020), and

question answering (Sachan and Xing, 2018).

Conventional self-training can be interpreted as

a teacher-student framework. Within this frame-

work, a teacher model generates pseudo-labels for

the unlabeled data. Then, a student model updates

its parameters by minimizing the discrepancy be-

tween its predictions and the pseudo-labels. The

teacher subsequently refines its parameters based

on the updated version of the student using pre-

defined rules. Such rules include minimizing a loss

function (Pham et al., 2020), copying the student’s

parameters (Rasmus et al., 2015), and integrating

models from previous iterations (Laine and Aila,

2017; Tarvainen and Valpola, 2017). The above

procedures are operated iteratively.

Computationally, the alternating update proce-

dure often causes training instability. Such insta-

bility comes from undesired interactions between

the teacher and the student. In practice, we often

use stochastic gradient descent to optimize the stu-

dent, and the noise of the stochastic gradient can

cause oscillation during training. This means in a

certain iteration, the student is optimized towards

a certain direction; while in the next iteration, it

may be optimized toward a drastically different di-

rection. Such a scenario renders the optimization

ill-conditioned. Moreover, the student model’s gra-

dient is determined by the pseudo-labels generated

by the teacher. Because of the training instability,

a small change in the pseudo-labels may result in a

substantial change in the student.

To resolve this issue, we propose DRIFT

(differentiable self-training), where we formulate

self-training as a Stackelberg game (Von Stackel-

berg, 2010). The concept arises from economics,

ar
X

iv
:2

1
0
9
.0

7
0
4
9
v
2

[c

s.
C

L
]

 3
 M

ay
 2

0
2
2

where there are two players, called the leader and

the follower. In a Stackelberg game, the leader is

always in an advantageous position by acknowledg-

ing the follower’s strategy. Within the self-training

framework, we grant the student a higher priority

than the teacher. This is because the teacher serves

the purpose of generating intermediate pseudo-

labels, such that the student can behave well on

the task. The student (i.e., the leader) procures its

advantage by considering what the response of the

teacher (i.e., the follower) will be, i.e., how will the

follower react after observing the leader’s move.

Then, the leader makes its move, in anticipation

of the predicted response of the follower. We re-

mark that the Stackelberg game formulation has

also been used in other domains such as adversarial

training (Zuo et al., 2021).

We highlight that in DRIFT, the student has a

higher priority than the teacher. In contrast, in con-

ventional self-training, the two models are treated

equally and have the same priority. When using

conventional self-training, the student only reacts

to what the teacher has generated. In differentiable

self-training, the student recognizes the teacher’s

strategy and reacts to what the teacher is antici-

pated to response. In this way, we can find a better

descent direction for the student, such that training

can be stabilized.

To facilitate the leader’s advantage, our frame-

work treats the follower’s strategy (i.e., pseudo-

labels generated by the teacher) as a function of the

leader’s decision (i.e., the student’s parameters). In

this way, differentiable self-training can be viewed

solely as a function of the student’s parameters.

Therefore, the problem can be efficiently solved

using gradient descent.

Besides pseudo-labels, the teacher can also gen-

erate sample weights (Freund and Schapire, 1997;

Kumar et al., 2010; Malisiewicz et al., 2011). Sam-

ple reweighting associates low-confidence sam-

ples with small weights, such that the influence

of noisy labels can be effectively reduced. Similar

to pseudo-labels, sample weights and the student

model are also updated iteratively. As such, we

can further equip DRIFT with differentiable sam-

ple weights. This can be achieved by integrating

the weights as a part of the follower’s strategy. We

remark that our method is flexible and can incorpo-

rate even more designs to the follower’s strategy.

We evaluate the performance of differentiable

self-training on a set of weakly- and semi-

supervised text classification and named entity

recognition tasks. In some weakly-supervised

learning tasks, our proposed method achieves com-

petitive performance in comparison with fully-

supervised models. For example, we obtain a

97.3% vs. 96.2% classification accuracy on Yelp,

and we do not use any labeled training data from

the Yelp dataset.

We highlight that our proposed differentiable

self-training approach is an efficient substitution

to existing self-training methods. Moreover, our

method does not introduce any additional tuning

parameter to the teacher-student framework. Addi-

tionally, DRIFT is flexible and can combine with

various neural architectures. We summarize our

contributions as the following: (1) We propose

a differentiable self-training framework DRIFT,

which employs a Stackelberg game formulation of

the teacher-student approach. (2) We employ dif-

ferentiable pseudo-labels and differentiable sample

weights as the follower’s strategy. Our method al-

leviates the training instability issue. (3) Extensive

experiments on semi-supervised node classifica-

tion, semi- and weakly-supervised text classifica-

tion and named entity recognition tasks verify the

efficacy of DRIFT.

2 Background

� Self-training for semi-supervised learning.

Self-training is one of the earliest and simplest

approaches to semi-supervised learning (Rosen-

berg et al., 2005; Lee, 2013). The method uses a

teacher model to generate new labels, on which a

student model is fitted. Similar methods such as

self-knowledge distillation (Furlanello et al., 2018)

are proposed for supervised learning. The major

drawback of self-training is that it is vulnerable to

label noise. A popular approach to tackle this is

sample reweighting (Freund and Schapire, 1997;

Kumar et al., 2010; Malisiewicz et al., 2011), where

high-confidence samples (Rosenberg et al., 2005;

Zhou et al., 2012) are assigned larger weights. Data

augmentation methods (Berthelot et al., 2019; Chen

et al., 2020) are also proposed to further enhance

self-training.

� Self-training for weakly-supervised learning.

Weak supervision sources, such as semantic rules

and knowledge bases, facilitate generating large

amounts of labeled data (Goh et al., 2018; Hoff-

mann et al., 2011). The weak supervision sources

have limited coverage, i.e., not all samples can

be matched by the rules, such that a consider-

able amount of samples are unlabeled. Moreover,

the generated weak labels usually contain exces-

sive noise. Recently, self-training techniques are

adopted to weakly-supervised learning. In con-

junction with pre-trained language models (Devlin

et al., 2019; Liu et al., 2019), the technique achieves

superior performance in various tasks (Meng et al.,

2018, 2020; Niu et al., 2020; Liang et al., 2020; Yu

et al., 2021).

3 Method

For both semi-supervised and weakly-supervised

learning problems, we have labeled samples

Xl = {(xi, yi)}
Nl

i=1 and unlabeled samples Xu =
{xj}

Nu

j=1. Here Nl is the number of labeled data,

and Nu is the number of unlabeled data. Note that

in weakly-supervised learning, we have unlabeled

data because of the limited coverage of weak su-

pervision sources. The difference between semi-

and weakly-supervised learning is that in the for-

mer case, the labels {yi}
Nl

i=1 are assumed to be

accurate, whereas in the latter case, the labels are

noisy. The goal is to learn a classifier f : X → R
C ,

where X = Xl ∪ Xu denotes all the data samples,

Y = {1, · · · , C} is the label set, and C is the num-

ber of classes. The classifier f outputs a point in

the C-dimensional probability simplex, where each

dimension denotes the probability that the input be-

longs to a specific class.

3.1 Differentiable Self-Training for

Semi-Supervised Learning

Self-training can be interpreted as a teacher-student

framework. Within this framework, the teacher

first generates pseudo-labels ỹ (see (6)) for the

data samples. Then, the student updates itself by

minimizing a loss function (see (8)), subject to the

generated pseudo-labels. Such two procedures are

run iteratively.

We remark that self-training behaves poorly

when encountering unreliable pseudo-labels, which

will cause the student model to be updated towards

the wrong direction. To alleviate this issue, we

find a good initialization θinit for the models. In

semi-supervised learning, θinit is found by fitting a

model on the labeled data Xl. Concretely, we solve

min
θ
Lsup(θ) =

1

Nl

∑

Xl

`sup (f(xi, θ), yi) . (1)

Here (xi, yi) ∈ Xl, and `sup(·, ·) is the supervised

Algorithm 1: Differentiable Self-Training.

Input: Xl: labeled dataset; Xu: unlabeled

dataset; α: parameter of exponential

moving average; θinit: initialization;

Optimizer: optimizer to update θS .

Initialize: θT0 = θS0 = θinit;

for t = 1, · · · , T − 1 do
Sample a labeled minibatch

Bl = {xi}
|Bl|
i=1 from Xl;

Sample an unlabeled minibatch

Bu = {xi}
|Bu|
i=1 from Xu;

ỹ(θTt (θ
S
t))← (6) on Bu;

ω(θTt (θ
S
t))← (7) on Bu;

L(θSt)← (8) on Bu ∪ Bl;
g = dL(θSt)/dθ

S
t ← (4);

θSt+1 = Optimizer(θSt , g);
θTt+1 = αθTt + (1− α)θSt+1;

end

Output: Student model θST for prediction.

loss, e.g., the cross-entropy loss. (1) can be ef-

ficiently optimized using stochastic gradient-type

algorithms, such as Adam (Kingma and Ba, 2015).

At time t, denote the student’s parameters θSt ,

and the teacher’s parameters θTt (θ
S
t). We set both

the student’s and the teacher’s initial parameters

to θinit, i.e., θS0 = θT0 (θ
S
0) = θinit. Note that the

teacher model depends on the student. We adopt an

exponential moving average (Laine and Aila, 2017;

Tarvainen and Valpola, 2017) approach to model

such a dependency:

θTt (θ
S
t) = αθTt−1 + (1− α)θSt . (2)

Recall that in our differentiable self-training

framework, the student acknowledges the teacher’s

strategy. This meets the definition of a Stackelberg

game (Von Stackelberg, 2010), and we propose the

following formulation:

min
θS
t

L(θSt) = Lsup(θ
S
t) (3)

+
1

Nu

∑

xi∈Xu

`S
(
xi, F (θTt (θ

S
t)), θ

S
t

)
,

s.t. F
(
θTt (θ

S
t)
)
=

[
ỹ(θTt (θ

S
t)), ω(θ

T
t (θ

S
t))

]
.

Here recall that Xu is the unlabeled data samples,

and Nu is the size of Xu. In (3), F (θTt (θ
S
t)) is

the teacher’s strategy, which contains differentiable

pseudo-labels (i.e., ỹ(θTt) in (6)) and differentiable

sample weights (i.e., ω(θTt) in (7)). The loss func-

tion `S is defined in (8). Note that we still include

the supervised loss Lsup in (1) in the objective func-

tion L. Following conventions, in (3), the mini-

mization problem solves for the leader, and we call

F (θTt) the follower’s strategy. Note that the Stack-

elberg game formulation (3) has also been adopted

in adversarial training (Zuo et al., 2021).

The Stackelberg game formulation is fundamen-

tally different from conventional self-training ap-

proaches, where the teacher θT is not treated as a

function of the student θS . In our differentiable self-

training framework, the leader takes the follower’s

strategy into account by considering F (θTt (θ
S
t)).

In this way, self-training can be viewed solely in

terms of the leader’s parameters θSt .

Consequently, the leader problem can be effi-

ciently solved using stochastic gradient-type algo-

rithms, where the gradient is

dL(θSt)

dθSt
=

1

Nl

∑

(xi,yi)∈Xl

d`sup(θ
S
t)

dθSt
(4)

+
1

Nu

∑

xi∈Xu

d`S
(
xi, F (θTt (θ

S
t)), θ

S
t

)

dθSt

=
1

Nl

∑

Xl

d`sup(θ
S
t)

dθSt
+

1

Nu

∑

Xu

∂`S
(
xi, F, θ

S
t

)

∂θSt
︸ ︷︷ ︸

leader

+
1

Nu

∑

xi∈Xu

∂`S
(
xi, F (θTt (θ

S
t)), θ

S
t

)

∂θTt (θ
S
t)

dθTt (θ
S
t)

dθSt
︸ ︷︷ ︸

leader-follower interaction

.

In (4)1, we have dθTt (θ
S
t)/dθ

S
t = 1 − α be-

cause of (2). Note that a conventional self-training

method only considers the “leader” term, and ig-

nores “leader-follower interaction”. This causes

training instabilities, which we demonstrate empir-

ically in Fig. 1 and Fig. 2.

The proposed differential self-training algorithm

is summarized in Algorithm 1. In the next two

sections, we spell out the two components of the

follower’s strategy, namely differentiable pseudo-

labels and differentiable sample weights.

We remark that Algorithm 1 adopts a Stackel-

berg game formulation of self-training. That is, the

loss terms in (3) (soft-labels and sample weights)

are well-established techniques, and the proposed

method is a novel optimization algorithm.

1The “leader” term is written as ∂`S(xi, F, θ
S
t)/∂θ

S
t in-

stead of ∂`S(xi, F (θTt (θ
S
t)), θ

S
t)/∂θ

S
t because the partial

derivative is only taken with respect to the third argument
in `S(xi, F, θ

S
t). We drop the θTt (θ

S
t) term in F (θTt (θ

S
t)) to

avoid causing confusion.

3.2 Differentiable Pseudo-Labels

In a self-training framework, the teacher model

labels the unlabeled data. Concretely, at time t, for

each sample x ∈ Xu in the unlabeled dataset, a

hard pseudo-label (Lee, 2013) is defined as

ỹ
hard

= argmax
j∈Y

[
f(x, θTt)

]
j
. (5)

Here f(x, θTt) ∈ R
C is in the probability simplex,

and [f(x, θTt)]j denotes its j-th entry.

There are two problems with the hard pseudo-

labels. First, differentiable self-training requires

every component of the follower’s strategy (3) to

be differentiable with respect to the leader’s param-

eters. However, (5) introduces a non-differentiable

argmax operation. Second, the hard pseudo-labels

exacerbates error accumulation. This is because

ỹ
hard

only contains information about the most

likely class, such that statistics regarding the pre-

diction confidence f(x, θTt) is lost. For example,

suppose in a two-class classification problem, we

obtain f(x, θTt) = [0.51, 0.49] for some x. This

prediction result indicates that the model is uncer-

tain to which class x belongs. However, under the

hard pseudo-label ỹ
hard

= 0, the student model

becomes unaware of such uncertainty.

To resolve the above two issues, we propose to

employ soft pseudo-labels (Xie et al., 2016, 2020;

Meng et al., 2020). Concretely, for a data sample

x ∈ B in a batch B, the j-th entry of its soft pseudo-

label ỹ(θTt) ∈ R
C is defined as

[
ỹ(θTt)

]
j
=

[
f(x, θTt (θ

S
t))

]1/τ
/fj

∑
j′∈Y

[
f(x, θTt (θ

S
t))

]1/τ
/fj′

, (6)

where fj =
∑

x′∈B[f(x
′, θTt (θ

S
t))]

1/τ , and τ is a

temperature parameter that controls the “softness”

of the soft pseudo-label. Note that when the tem-

perature is low, i.e., τ → 0, the soft pseudo-label

becomes sharper and eventually converges to the

hard pseudo-label (5).

In (6), the soft pseudo-label ỹ(θTt) is a function

of the teacher’s parameters θTt , which in turn is a

function of the student’s parameters θSt (2). There-

fore, ỹ is differentiable with respect to θSt , and fits

in the differentiable self-training framework. The

gradient of ỹ with respect to θS can be efficiently

computed by a single back-propagation using deep

learning libraries.

Notice that (6) emphasizes the tendency of x
belonging to a specific class, instead of to which

Dataset AGNews IMDB Yelp MIT-R CoNLL-03 Webpage BC5CDR Wikigold

RoBERTa-Full 91.41 94.26 97.27 88.51 90.11 (89.14/91.10) 72.39 (66.29/79.73) 85.15 (83.74/86.61) 86.43 (85.33/87.56)

RoBERTa-Weak 82.25 72.60 79.91 70.95 75.61 (83.76/68.90) 59.11 (60.14/58.11) 78.51 (74.96/82.42) 51.55 (49.17/54.50)
WeSTClass 82.78 77.40 76.86 --- --- --- --- ---
Self-training 86.07 85.72 89.95 73.59 77.28 (83.42/71.98) 56.90 (54.32/59.74) 79.92 (74.73/85.90) 56.90 (54.32/59.74)
UAST 86.28 84.56 90.53 74.41 77.92 (83.30/73.20) 58.18 (56.33/60.14) 81.50 (80.09/82.98) 57.79 (52.64/64.05)
BOND 86.19 88.36 93.18 75.90 81.48 (82.05/80.92) 65.74 (67.37/64.19) 81.53 (79.54/83.63) 60.07 (53.44/68.58)

DRIFT 87.80 91.56 96.24 77.15 81.74 (81.45/82.02) 66.04 (65.23/66.87) 82.62 (82.57/82.68) 60.66 (57.50/64.21)

Table 1: Accuracy (in %) of weakly-supervised text classification on various datasets. We report the mean over

three runs. DRIFT is initialized from RoBERTa-Weak. For text classification tasks, we report the accuracy; and

for NER tasks, we report F1 (precision/recall). The best results are shown in bold, except RoBERTa-Full, which is

a fully-supervised model and is included here as a reference.

methods is that DRIFT adopts the differentiable

strategies, while Self-training does not. In both

methods, the teacher/student model is a two-layer

feed-forward neural network, with hidden dimen-

sion 50 and tanh (hyperbolic tangent) as the non-

linearity. We first train the models for 50 epochs

using the labeled samples. We then conduct self-

training with learning rate 0.01 and Adam (Kingma

and Ba, 2015) as the optimizer. We adopt an expo-

nential moving average approach (2) with α = 0.5,

and we set the temperature parameter τ = 0.5 for

the soft pseudo-labels (6).

We conduct 10 trails, and Fig. 1 shows the ac-

curacy and the variance during training. We can

see that Self-training yields a much larger variance,

indicating an unstable training process. Note that

the performance gain of DRIFT to Self-training has

passed a paired-student t-test with p-value < 0.05.

Moreover, by examining the experimental re-

sults, we find that Self-training at times gets stuck

at subpotimal solutions. As an example, in Fig. 2,

notice that the two methods behave equally well at

epoch 20. However, Self-training gets stuck and

does not improve at epoch 150. This is because the

teacher generates hazardous labels that avert the

student from improving. Meanwhile, by incorpo-

rating differentiable strategies, the performance of

DRIFT improves at epoch 150 from epoch 20.

4.2 Weakly-Supervised Text Classification

We fine-tune a pre-trained RoBERTa model for

weakly-supervised learning. In addition, we

demonstrate that our method works well when

trained-from-scratch and when using different

backbones than the Transformer (Vaswani et al.,

2017). See Section 4.3 and Table 3 for details.

Settings. We use the following datasets: Topic

Classification on AGNews (Zhang et al., 2015);

Sentiment Analysis on IMDB (Maas et al., 2011)

and Yelp (Meng et al., 2018); Slot Filling on MIT-

R (Liu et al., 2013); and Named Entity Recognition

(NER) on CoNLL-03 (Tjong Kim Sang, 2002),

Webpage (Ratinov and Roth, 2009), Wikigold (Bal-

asuriya et al., 2009), and BC5CDR (Li et al., 2016).

The dataset statistics are summarized in Table 7.

For each dataset, we generate weak labels using

some pre-defined rules, after which the same data

and generated weak labels are used by all the meth-

ods. More details about the weak supervision

sources are in Appendix C.

We adopt several baselines:

• RoBERTa (Liu et al., 2019) uses the

RoBERTa-base model with task-specific clas-

sification heads.

• Self-training (Lee, 2013; Rosenberg et al.,

2005) uses the conventional teacher-student

framework, where a teacher generates pseudo-

labels, and a student makes predictions.

• WeSTClass (Meng et al., 2018) leverages

generated pseudo-documents and uses self-

training to bootstrap over all the samples.

• BOND (Liang et al., 2020) uses a teacher-

student framework for self-training. The

teacher model is periodically updated to gen-

erate pseudo-labels when training the student.

• UAST (Mukherjee and Awadallah, 2020) esti-

mates uncertainties of unlabeled data via MC-

dropout (Gal and Ghahramani, 2016) during

self-training, and then selects samples with

low uncertainties. It is the state-of-the-art self-

training method for text data with few labels.

Recall that for weakly-supervised learning, we

first fine-tune a RoBERTa model using the weakly-

labeled data, and then we discard the weak labels

and continue with self-training. This is an effective

strategy to reduce overfitting on label noise (Yu

et al., 2021). We follow this procedure for both

DRIFT and all the baseline methods.

Results. Experimental results are summarized

in Table 1. We can see that DRIFT achieves the

best performance in all the tasks. Notice that the

baselines that adopt self-training, e.g., WestClass,

Self-training, UAST, and BOND, outperform the

vanilla RoBERTa-Weak method. This is because in

weakly-supervised learning, a noticeable amount

of labels are inaccurate. Therefore, without noise

suppressing approaches such as self-training, mod-

els cannot behave well. However, without taking

the teacher’s strategy into account, these methods

still suffer from training instabilities, such that they

are not as effective as DRIFT.

We highlight that on some datasets, performance

of our method is close to the fully-supervised

model RoBERTa-Full, even though we do not use

any clean labels. For example, DRIFT achieves

91.6% vs. 94.3% performance on IMDB, 96.2%

vs. 97.3% on Yelp, and 82.6 vs. 85.1 on BC5CDR.

4.3 Semi-Supervised Text Classification

Datasets. We adopt AGNews, IMDB, and Ama-

zon (McAuley and Leskovec, 2013) (see Table 7)

in this set of experiments. For each dataset, we

randomly sample N ∈ {30, 50, 200, 1000} data

points from each class and annotate them with

clean labels, while the other data are treated as

unlabeled. Note that for all the splits of a particular

dataset, we use the same development and test sets.

Settings. Our differentiable self-training frame-

work works well in both fine-tuning and training-

from-scratch regimes. Moreover, our approach is

flexible to accommodate different neural architec-

tures. We conduct two sets of experiments. In

the first set, we fine-tune a pre-trained RoBERTa

model, which uses the Transformer (Vaswani et al.,

2017) as its backbone. In the second set of exper-

iments, we train a TextCNN (Kim, 2014) model

from scratch, which employs a convolutional neu-

ral network as the foundation.

Baselines. Besides RoBERTa, Self-training, and

UAST, which are used in weakly-supervised clas-

sification tasks, we adopt several new methods as

baseline approaches.

• VAMPIRE (Gururangan et al., 2019) pre-trains

a unigram document model on unlabeled data

using a variational auto-encoder, and then uses

its internal states as features for downstream

applications.

• UDA (Xie et al., 2020) uses back translation

and word replacement to augment unlabeled

data, and forces the model to make consistent

predictions on the augmented data to improve

model performance.

• MixText (Chen et al., 2020) augments the train-

ing data by interpolation in the hidden space,

and it exploits entropy and consistency reg-

ularization to further utilize unlabeled data

during training.

Results. Experimental results are summarized

in Table 2. We can see that DRIFT achieves the

best performance across the three datasets under

different setups. Notice that the performance of

VAMPIRE is not satisfactory. This is because it

does not use pre-trained models, unlike the other

baselines. Pre-trained language models contain

rich semantic knowledge, which can be effectively

transferred to the target task and boost model per-

formance. All the baselines do not explicitly con-

sider the teacher’s strategy, and thus, they suffer

from training instabilities.

We remark that UDA, UAST and MixText lever-

age external sources or data augmentation methods

to make full use of the unlabeled data. These meth-

ods can potentially combine with DRIFT, which is

of separate interests.

Fine-tuning vs. Training-from-scratch. Table 3

shows the results of training a TextCNN model

from scratch. We can see that the model trained

from scratch performs worse than fine-tuning a pre-

trained model (Table 2). This is because TextCNN

has significantly less parameters than RoBERTa,

and is not pre-trained on massive text corpora.

Therefore, we cannot take advantage of the seman-

tic information from pre-trained models.

Nevertheless, under both weakly-supervised and

semi-supervised learning settings, DRIFT consis-

tently outperforms the baseline methods. This indi-

cates that our method is architecture independent,

and does not rely on transferring existing semantic

information. As such, differentiable self-training

serves as an effective plug-in module for existing

models. We remark that DRIFT does not introduce

any additional tuning parameter in comparison with

conventional self-training.

Ethical Statement

This paper proposes Differentiable Self-Training

(DRIFT), a self-training framework for NLP tasks.

We demonstrate that the DRIFT framework can

be used for text classification and named entity

recognition tasks. Moreover, the framework is also

demonstrated to be effective for semi-supervised

classification on graphs. We use publicly available

datasets to conduct all the experiments. And the

proposed method is built using public code bases.

We do not find any ethical concerns.

References

Abhijeet Awasthi, Sabyasachi Ghosh, Rasna Goyal,
and Sunita Sarawagi. 2020. Learning from rules
generalizing labeled exemplars. In 8th International
Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.

Dominic Balasuriya, Nicky Ringland, Joel Nothman,
Tara Murphy, and James R. Curran. 2009. Named
entity recognition in Wikipedia. In Proceedings of
the 2009 Workshop on The People’s Web Meets NLP:
Collaboratively Constructed Semantic Resources
(People’s Web), pages 10–18, Suntec, Singapore. As-
sociation for Computational Linguistics.

David Berthelot, Nicholas Carlini, Ian J. Goodfellow,
Nicolas Papernot, Avital Oliver, and Colin Raffel.
2019. Mixmatch: A holistic approach to semi-
supervised learning. In Advances in Neural Infor-
mation Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 5050–5060.

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mix-
Text: Linguistically-informed interpolation of hid-
den space for semi-supervised text classification. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2147–
2157, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav
Chaudhary, Onur Celebi, Michael Auli, Veselin
Stoyanov, and Alexis Conneau. 2021. Self-training
improves pre-training for natural language under-
standing. In Proceedings of the 2021 Conference of

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5408–5418, Online. Association for
Computational Linguistics.

Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua.
2019. Graph adversarial training: Dynamically reg-
ularizing based on graph structure. TKDE.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han,
Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Khar-
lamov, and Jie Tang. 2020. Graph random neural
networks for semi-supervised learning on graphs. In
Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual.

Yoav Freund and Robert E Schapire. 1997. A decision-
theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci, 55(1).

Tommaso Furlanello, Zachary Chase Lipton, Michael
Tschannen, Laurent Itti, and Anima Anandkumar.
2018. Born-again neural networks. In Proceedings
of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pages
1602–1611. PMLR.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a bayesian approximation: Representing model un-
certainty in deep learning. In Proceedings of the
33nd International Conference on Machine Learn-
ing, ICML 2016, New York City, NY, USA, June 19-
24, 2016, volume 48 of JMLR Workshop and Con-
ference Proceedings, pages 1050–1059. JMLR.org.

Garrett B. Goh, Charles Siegel, Abhinav Vishnu, and
Nathan Oken Hodas. 2018. Using rule-based labels
for weak supervised learning: A chemnet for trans-
ferable chemical property prediction. In Proceed-
ings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, KDD
2018, London, UK, August 19-23, 2018, pages 302–
310. ACM.

Suchin Gururangan, Tam Dang, Dallas Card, and
Noah A. Smith. 2019. Variational pretraining for
semi-supervised text classification. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5880–5894, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S. Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 541–550, Portland, Oregon, USA. Associa-
tion for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

M. Pawan Kumar, Benjamin Packer, and Daphne
Koller. 2010. Self-paced learning for latent variable
models. In Advances in Neural Information Process-
ing Systems 23: 24th Annual Conference on Neural
Information Processing Systems 2010. Proceedings
of a meeting held 6-9 December 2010, Vancouver,
British Columbia, Canada, pages 1189–1197. Cur-
ran Associates, Inc.

Samuli Laine and Timo Aila. 2017. Temporal ensem-
bling for semi-supervised learning. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Dong-Hyun Lee. 2013. Pseudo-label: The simple and
efficient semi-supervised learning method for deep
neural networks. In ICML Workshop, volume 3,
page 2.

Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J Mattingly, Thomas C Wiegers, and
Zhiyong Lu. 2016. Biocreative v cdr task corpus:
a resource for chemical disease relation extraction.
Database, 2016.

Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er,
Ruijia Wang, Tuo Zhao, and Chao Zhang. 2020.
BOND: bert-assisted open-domain named entity
recognition with distant supervision. In KDD ’20:
The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA,
August 23-27, 2020, pages 1054–1064. ACM.

Jingjing Liu, Panupong Pasupat, Yining Wang, Scott
Cyphers, and Jim Glass. 2013. Query understand-
ing enhanced by hierarchical parsing structures. In
IEEE ASRU Workshop. IEEE.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv preprint, abs/1907.11692.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Tomasz Malisiewicz, Abhinav Gupta, and Alexei A.
Efros. 2011. Ensemble of exemplar-svms for object
detection and beyond. In IEEE International Con-
ference on Computer Vision, ICCV 2011, Barcelona,
Spain, November 6-13, 2011, pages 89–96. IEEE
Computer Society.

Julian J. McAuley and Jure Leskovec. 2013. Hidden
factors and hidden topics: understanding rating di-
mensions with review text. In Seventh ACM Confer-
ence on Recommender Systems, RecSys ’13, Hong
Kong, China, October 12-16, 2013, pages 165–172.
ACM.

Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei
Han. 2018. Weakly-supervised neural text classifi-
cation. In Proceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge
Management, CIKM 2018, Torino, Italy, October 22-
26, 2018, pages 983–992. ACM.

Yu Meng, Yunyi Zhang, Jiaxin Huang, Chenyan Xiong,
Heng Ji, Chao Zhang, and Jiawei Han. 2020. Text
classification using label names only: A language
model self-training approach. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9006–9017,
Online. Association for Computational Linguistics.

Hossein Mobahi, Mehrdad Farajtabar, and Peter L.
Bartlett. 2020. Self-distillation amplifies regular-
ization in hilbert space. In Advances in Neural
Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Subhabrata Mukherjee and Ahmed Hassan Awadallah.
2020. Uncertainty-aware self-training for few-shot
text classification. In Advances in Neural Infor-
mation Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Yilin Niu, Fangkai Jiao, Mantong Zhou, Ting Yao, Jing-
fang Xu, and Minlie Huang. 2020. A self-training
method for machine reading comprehension with
soft evidence extraction. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3916–3927, Online. Asso-
ciation for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 8024–8035.

Hieu Pham, Qizhe Xie, Zihang Dai, and Quoc V
Le. 2020. Meta pseudo labels. ArXiv preprint,
abs/2003.10580.

Antti Rasmus, Mathias Berglund, Mikko Honkala,
Harri Valpola, and Tapani Raiko. 2015. Semi-
supervised learning with ladder networks. In Ad-
vances in Neural Information Processing Systems
28: Annual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015, Mon-
treal, Quebec, Canada, pages 3546–3554.

Lev Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 147–155, Boulder, Colorado.
Association for Computational Linguistics.

Wendi Ren, Yinghao Li, Hanting Su, David Kartchner,
Cassie Mitchell, and Chao Zhang. 2020. Denoising
multi-source weak supervision for neural text classi-
fication. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3739–3754,
Online. Association for Computational Linguistics.

Chuck Rosenberg, Martial Hebert, and Henry Schnei-
derman. 2005. Semi-supervised self-training of ob-
ject detection models. In WACV/MOTION, pages
29–36.

Mrinmaya Sachan and Eric Xing. 2018. Self-training
for jointly learning to ask and answer questions. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 629–640, New
Orleans, Louisiana. Association for Computational
Linguistics.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Galligher, and Tina Eliassi-Rad. 2008.
Collective classification in network data. AI maga-
zine, 29(3).

Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren,
Teng Ren, and Jiawei Han. 2018. Learning named
entity tagger using domain-specific dictionary. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
2054–2064, Brussels, Belgium. Association for
Computational Linguistics.

Antti Tarvainen and Harri Valpola. 2017. Mean teach-
ers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning

results. In Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 1195–1204.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The
6th Conference on Natural Language Learning 2002
(CoNLL-2002).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Vikas Verma, Meng Qu, Alex Lamb, Yoshua Ben-
gio, Juho Kannala, and Jian Tang. 2019. Graph-
mix: Regularized training of graph neural net-
works for semi-supervised learning. ArXiv preprint,
abs/1909.11715.

Heinrich Von Stackelberg. 2010. Market structure and
equilibrium. Springer Science & Business Media.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv
preprint, abs/1910.03771.

Junyuan Xie, Ross B. Girshick, and Ali Farhadi. 2016.
Unsupervised deep embedding for clustering analy-
sis. In Proceedings of the 33nd International Con-
ference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, volume 48
of JMLR Workshop and Conference Proceedings,
pages 478–487. JMLR.org.

Qizhe Xie, Zihang Dai, Eduard H. Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. In Advances in Neural
Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo
Zhao, and Chao Zhang. 2021. Fine-tuning pre-
trained language model with weak supervision: A
contrastive-regularized self-training approach. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1063–1077, Online. Association for Compu-
tational Linguistics.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural

Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 649–
657.

Yan Zhou, Murat Kantarcioglu, and Bhavani Thu-
raisingham. 2012. Self-training with selection-by-
rejection. In ICDM.

Simiao Zuo, Chen Liang, Haoming Jiang, Xiaodong
Liu, Pengcheng He, Jianfeng Gao, Weizhu Chen,
and Tuo Zhao. 2021. Adversarial training as stackel-
berg game: An unrolled optimization approach. In
EMNLP.

A Semi-Supervised Learning on Graphs

Datasets. We adopt three citation networks: Cora,

Citeseer, and Pubmed (Sen et al., 2008) as bench-

mark datasets. Their statistics are summarized in

Table 6. Similar to semi-supervised text classifi-

cation tasks, for each dataset, we randomly sam-

ple N ∈ {10, 20, 50, 100} data points from each

class and annotate them with clean labels, while

the other data are treated as unlabeled. We use the

same development and test sets for all the splits of

a particular dataset.

Baselines. In addition to Self-training, we adopt

four graph neural network methods as baselines.

Note that Self-training uses GCN as its backbone.

� GCN (Kipf and Welling, 2017) adopts graph con-

volutions as an information propagation operator

on graphs. The operator smooths label information

over the graph, such that labeled nodes acknowl-

edge features of unlabeled ones, and predictions

are drawn accordingly.

� GraphVAT (Feng et al., 2019) leverages virtual

adversarial training on graphs. The method gener-

ates perturbations to each data point, and promotes

smooth predictions subject to the perturbations.

�GraphMix (Verma et al., 2019) is an interpolation-

based regularization method. It uses a manifold

mixup approach to learning more discriminative

node representations.

� GRAND (Feng et al., 2020) performs data aug-

mentation via a random propagation strategy. It

also leverages a consistency regularization to en-

courage prediction consistency across different aug-

mentations. GRAND uses a multi layer perception

(MLP) as its backbone.

Settings. To demonstrate that differentiable self-

training can be effectively combined with differ-

ent models, we adopt DRIFT to two architectures:

GCN, which is a graph convolution-based method;

and GRAND, which is a MLP-based method that

achieves state-of-the-art performance.

Results. Experimental results are summarized

in Table 5. Notice that Self-training outperforms

GCN. This is because while GCN only implic-

itly uses information of the unlabeled nodes, Self-

training directly utilizes such information via the

pseudo-labels. Furthermore, DRIFT+GCN en-

hances the performance of Self-training. The other

baselines (e.g., GraphVAT, Graphmix, GRAND),

which are refinements and substitutions to the

graph convolution operation, outperforms vanilla

GCN. By equipping GRAND with differentiable

self-training, DRIFT+GRAND achieves the best

performance in 10 out of 12 experiments. The per-

formance gain is more pronounced when there are

only a few labeled samples, e.g., DRIFT+GRAND

improves GRAND by more than 11% when there

are 10 labeled samples per class.

Visualization of learned representations. Fig-

ure 5 visualizes the learned representations of Self-

training and DRIFT. From Fig. 5a, we can see that

Self-training mixes the representations of the red

class and the blue class, as indicated in the red

box. Such erroneous classification is alleviated by

DRIFT (Fig. 5b). On Citeseer, notice that Self-

training generates a meaningless cluster (Fig. 5c),

which is a sign that Self-training overfits on the

label noise.

(a) Self-training on Cora. (b) DRIFT on Cora.

(c) Self-training on Citeseer. (d) DRIFT on Citeseer.

Figure 5: t-SNE plots of Self-training and DRIFT on

Cora and Citeseer. Each color denotes a different class.

B Classification and Named Entity

Recognition Datasets

Dataset statistics for the classification and named

entity recognition tasks are presented in Table 7.

C Weak Supervision Sources

There are two types of semantic rules that we apply

as weak supervisions:

• Keyword Rule: HAS(x, L) → C. If x
matches one of the words in the list L, we

label it as C.

Dataset Cora Citeseer Pubmed
Labels per class 10 20 50 100 10 20 50 100 10 20 50 100

Baselines
GCN (Kipf and Welling, 2017) 74.5 77.4 81.6 85.1 67.1 69.5 71.9 74.9 71.0 75.1 81.8 84.8
Self-training (Lee, 2013) 74.4 79.1 83.5 85.1 70.5 73.1 75.1 76.2 71.8 75.2 82.5 84.6
GraphVAT (Feng et al., 2019) 75.2 78.6 83.1 85.3 67.6 70.5 72.6 75.8 71.8 75.5 82.1 85.0
GraphMix (Verma et al., 2019) 77.3 82.3 84.8 86.0 67.1 73.9 74.5 76.9 72.9 76.1 81.9 84.4
GRAND (Feng et al., 2020) 76.5 84.3 86.5 87.2 62.8 73.3 75.0 77.8 77.4 78.5 83.9 86.2

Ours
DRIFT+GCN 80.4 81.8 84.6 85.6 74.4 75.4 75.9 77.4 72.8 78.1 83.3 85.3
DRIFT+GRAND 82.1 85.4 87.3 87.9 74.1 76.0 75.7 78.5 79.2 79.3 85.2 86.8

Table 5: Accuracy (in %) of semi-supervised node classification on graphs. For all the splits of a particular dataset,

we use the same development and test sets. We report the mean over ten runs. The best results are shown in bold.

Dataset #Nodes #Edges #Class #Dev #Test #Features

Cora 2,708 5,429 7 500 1,000 1,433

Citeseer 3,327 4,732 6 500 1,000 3,703

Pubmed 19,717 44,338 3 500 1,000 500

Table 6: Statistics of datasets used in semi-supervised learning on graphs.

Dataset Task #Class #Train #Dev #Test

AGNews Topic 4 108k 12k 7.6k

IMDB Sentiment 2 20k 2.5k 2.5k

Yelp Sentiment 2 30.4k 3.8k 3.8k

Amazon Sentiment 2 25k 2.5k 2.5k

MIT-R Slot Filling 9 6.6k 1.0k 1.5k

CoNLL-03 NER 4 14.0k 3.2k 3.4k

Webpage NER 4 385 99 135

Wikigold NER 4 1.1k 280 274

BC5CDR NER 2 4.5k 4.5k 4.7k

Table 7: Statistics of datasets used in text classification and named entity recognition tasks.

• Pattern Rule: MATCH(x, R) → C. If x
matches the regular expression R, we label

it as C.

Two examples of semantic rules on AGNews and

IMDB are given in Table 8 and Table 9.

All of the weak supervisions, i.e., linguistic rules,

are from existing literature. The details are listed

below:

• AGNews, IMDB, Yelp: We use the rules in Ren

et al. (2020).

• MIT-R: We use the rules in Awasthi et al.

(2020).

• CoNLL-03, WebPage, Wikigold: We use the

keywords in Liang et al. (2020).

• BC5CDR: We use the keywords in Shang et al.

(2018). Note that for simplicity, we do not

use AutoPhrase to extract external keywords.

Such an approach requires external corpus and

extra parameter-tuning.

D Training Details

We use a validation set to tune DRIFT as well as

all the baseline methods. We report the test result

of the best model on the validation set. All the

experimental results have passed a paired t-test

with p < 0.05.

D.1 Baseline Settings

We implement the GraphVAT method by ourselves.

For the other baselines, we follow the official

release:

Rule

[war, prime minister, president, commander, minister, military, militant,

kill, operator] → POLITICS

[baseball, basketball, soccer, football, boxing, swimming, world cup,

nba,olympics,final, fifa] → SPORTS

[delta, cola, toyota, costco, gucci, citibank, airlines] → BUSINESS

[technology, engineering, science, research, cpu, windows, unix, system,

computing, compute] → TECHNOLOGY

Table 8: Examples of semantic rules on AGNews.

Rule

[masterpiece, outstanding, perfect, great, good, nice, best, excellent,

worthy, awesome, enjoy, positive, pleasant, wonderful, amazing, superb,

fantastic, marvellous, fabulous] → POS

[bad, worst, horrible, awful, terrible, crap, shit, garbage, rubbish,

waste] → NEG

[beautiful, handsome, talented]→ POS

[fast forward, n t finish] → NEG

[well written, absorbing,attractive, innovative, instructive,interesting,

touching, moving]→ POS

[to sleep, fell asleep, boring, dull, plain]→ NEG

[than this, than the film, than the movie]→ NEG

MATCH(x, *PRE*EXP*) → POS PRE = [will , ll , would , can’t wait to] EXP = [next time, again,
rewatch, anymore, rewind]

PRE = [highly , do , would , definitely , certainly , strongly , i , we] EXP = [recommend, nominate]

PRE = [high , timeless , priceless , has , great , of , real , instructive] EXP = [value, quality, meaning, significance]

Table 9: Examples of semantic rules on IMDB.

(1) MixText: https://github.com/

GT-SALT/MixText/;

(2) BOND: https://github.com/

cliang1453/BOND;

(3) UAST: https://github.com/

microsoft/UST;

(4) WeSTClass: https://github.com/

yumeng5/WeSTClass;

(5) GCN: https://github.com/tkipf/

pygcn;

(6) GRAND: https://github.com/

THUDM/GRAND;

(7) GraphMix: https://github.com/

vikasverma1077/GraphMix.

D.2 Weakly-Supervised Text Classification

Hyper-parameters are shown in Table 10.

D.3 Semi-Supervised Text Classification

We implement TextCNN with Pytorch (Paszke

et al., 2019). We use the pre-trained 300 dimension

FastText embeddings3 as the input vectors. Then,

we set the filter window sizes to 2, 3, 4, 5 with 500

3We use the 1 million word vectors trained on Wikipedia
2017, UMBC webbase corpus and news dataset, which is
available online: https://fasttext.cc/docs/en/

english-vectors.html.

feature maps each. We train the model for 100 it-

erations as initialization, and set T = 1000 during

self-training. We use Stochastic Gradient Descent

(SGD) with momentum m = 0.9 and we set the

learning rate to 5× 10−4. We set the dropout rate

to 0.5 for the linear layers after the CNN. We tune

the weight decay in
[
10−4, 10−5, 10−6, 10−7

]
.

Hyper-parameters are shown in Table 11.

D.4 Semi-Supervised Learning on Graphs

Our method serves as an efficient drop-in module

to existing methods. There are only two parameters

that we tune in the experiments: the exponential

moving average rate α and the temperature τ of the

soft pseudo-labels. For all the three datasets, we

set α = 0.99. For the temperature parameter, we

use the following settings.

• Cora: 1/τ = 3.0 for GRAND and 1/τ = 4.0
for GCN.

• Citeseer: 1/τ = 3.0 for GRAND and 1/τ =
3.5 for GCN.

• Pubmed: 1/τ = 3.0 for GRAND and 1/τ =
4.0 for GCN.

Hyper-parameter AGNews IMDB Yelp MIT-R CoNLL-03 Webpage Wikigold BC5CDR

Dropout Ratio 0.1

Maximum Tokens 128 256 512 64 128 128 128 128

Batch Size 32 16 16 64 32 32 32 32

Weight Decay 10−4

Learning Rate 10−5

Initialization Steps 160 160 200 150 900 300 3500 1500

T 3000 2500 2500 1000 1800 200 700 1000

α 0.95 0.9 0.95 0.9 0.9 0.95 0.9 0.9

τ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 10: Hyper-parameter configurations for weakly-supervised text classification.

Hyper-parameter AGNews IMDB Amazon

Dropout Ratio 0.1

Maximum Tokens 128 256 256

Batch Size 32 16 16

Weight Decay 10−4

Learning Rate 10−5

Initialization Steps 1200 1000 800

T 4000 3000 4000

α 0.95 0.99 0.9

τ 0.6 0.5 0.5

Table 11: Hyper-parameter configurations for semi-supervised text classification.

Other hyper-parameters and tricks used in training

follow the corresponding works.

