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Abstract

While pre-trained language model (PLM) fine-
tuning has achieved strong performance in
many NLP tasks, the fine-tuning stage can be
still demanding in labeled data. Recent works
have resorted to active fine-tuning to improve
the label efficiency of PLM fine-tuning, but
none of them investigate the potential of un-
labeled data. We propose ACTUNE, a new
framework that leverages unlabeled data to
improve the label efficiency of active PLM
fine-tuning. ACTUNE switches between data
annotation and model self-training based on
uncertainty: it selects high-uncertainty unla-
beled samples for active annotation and low-
uncertainty ones for model self-training. Un-
der this framework, we design (1) a region-
aware sampling strategy that reduces redun-
dancy when actively querying for annotations
and (2) a momentum-based memory bank that
dynamically aggregates the model’s pseudo la-
bels to suppress label noise in self-training.
Experiments on 6 text classification datasets
show that ACTUNE outperforms the strongest
active learning and self-training baselines and
improves the label efficiency of PLM fine-
tuning by 56.2% on average. Our imple-
mentation is available at https://github.
com/yueyu1030/actune.

1 Introduction

Fine-tuning pre-trained language models (PLMs)
has achieved much success in natural language
processing (NLP) (Devlin et al., 2019; Liu et al.,
2019; Brown et al., 2020). One benefit of PLM
fine-tuning is the promising performance it offers
when consuming only a few labeled data (Bansal
et al., 2020; Gao et al., 2021). However, there
are still significant gaps between few-shot and
fully-supervised PLM fine-tuning in many tasks.
Besides, the performance of few-shot PLM fine-
tuning can be sensitive to different sets of training
data (Bragg et al., 2021). Therefore, there is a

crucial need for approaches that make PLM fine-
tuning more label-efficient and robust to selection
of training data, especially for applications where
labeled data are scarce and expensive to obtain.

Towards this goal, researchers have recently re-
sorted to active fine-tuning of PLMs and achieved
comparable performance to fully-supervised meth-
ods with much less annotated samples (Ein-Dor
et al., 2020; Margatina et al., 2021a,b; Yuan et al.,
2020). Nevertheless, they usually neglect unlabeled
data, which can be useful for improving label effi-
ciency for PLM fine-tuning (Du et al., 2021). To
incorporate unlabeled data into active learning, ef-
forts have been made in the semi-supervised active
learning literature (Wang et al., 2016; Rottmann
et al., 2018; Siméoni et al., 2020). However, the
query strategies proposed in these works can return
highly redundant samples due to limited representa-
tion power, resulting in suboptimal label efficiency.
Moreover, they usually rely on pseudo-labeling
to utilize unlabeled data, which requires greater
(yet often absent) care to denoise the pseudo la-
bels, otherwise the errors could accumulate and
hurt model performance. This issue can be even
more severe for PLMs, as the fine-tuning process is
often sensitive to different weight initialization and
data orderings (Dodge et al., 2020). Thus, it still
remains open and challenging to design robust and
label efficient method for active PLM fine-tuning.

To tackle the above challenges, we propose AC-
TUNE, a new method that improves the label effi-
ciency and robustness of active PLM fine-tuning.
Based on the estimated model uncertainty, AC-
TUNE tightly couples active learning with self-

training in each learning round: (1) when the
average uncertainty of a region is low, we trust
the model’s predictions and select its most certain
predictions within the region for self-training; (2)
when the average uncertainty of a region is high,
indicating inadequate observations for parameter
learning, we actively annotate its most uncertain
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samples within the region to improve model per-
formance. Different from existing AL methods
that only leverage uncertainty for querying labels,
our uncertainty-driven self-training paradigm grad-
ually leverages unlabeled data with low uncertainty
via self-training, while reducing the chance of er-
ror propagation triggered by highly-uncertain mis-
labeled data.

To further boost model performance for AC-
TUNE, we design two techniques to improve the
query strategy and suppress label noise, namely
region-aware sampling (RS) and momentum-based
memory bank (MMB). Inspired by the fact that
existing uncertainty-based AL methods often end
up with choosing uncertain yet repetitive data (Ein-
Dor et al., 2020; Margatina et al., 2021b), we de-
sign the region-aware sampling technique to pro-
mote both diversity and representativeness by lever-
aging the representation power of PLMs. Specifi-
cally, we first estimate the uncertainties of the unla-
beled data with PLMs, then cluster the data using
their PLM representations and weigh the data by
the corresponding uncertainty. Such a clustering
scheme partitions the embedding space into small
sub-regions with an emphasis on highly-uncertain
samples. Finally, by sampling over multiple high-
uncertainty regions, our strategy selects data with
high uncertainty and low redundancy.

To rectify the erroneous pseudo labels derived
by self-training, we design a simple but effec-
tive way to select low-uncertainty data for self-
training. Our method is motivated by the fact that
fine-tuning PLMs suffer from instability issues —
different initializations and data orders can lead
to large variance in model performance (Dodge
et al., 2020; Zhang et al., 2020b; Mosbach et al.,
2021). However, previous approaches only select
pseudo-labeled data based on the prediction of the
current round and are thus less reliable. In con-
trast, we maintain a dynamic memory bank to save
the predictions of unlabeled samples for later use.
We propose a momentum updating method to dy-
namically aggregate the predictions from preced-
ing rounds (Laine and Aila, 2016) and select low-
uncertainty samples based on aggregated predic-
tion. As a result, only the samples with high predic-
tion confidence over multiple rounds will be used
for self-training, which mitigates the issue of label
noise. We highlight that our active self-training
approach is an efficient substitution to existing AL
methods, requiring little extra computational cost.

Our key contributions are: (1) an active self-
training paradigm ACTUNE that integrates self-
training and active learning to minimize the label-
ing cost for fine-tuning PLMs; (2) a region-aware
querying strategy to enforce both the informative-
ness and the diversity of queried samples during
AL; (3) a simple and effective momentum-based
method to leverage the predictions in preceding
rounds to alleviate the label noise in self-training
and (4) experiments on 6 benchmarks demonstrat-
ing ACTUNE improves the label efficiency over
existing self-training and active learning baselines
by 56.2%.

2 Uncertainty-aware Active Self-training

2.1 Problem Formulation

We study active fine-tuning of pre-trained lan-
guage models for text classification, formulated
as follows: Given a small number of labeled sam-
ples Xl = {(xi, yi)}

L
i=1 and unlabeled samples

Xu = {xj}
U
j=1 (|Xl| � |Xu|), we aim to fine-tune

a pre-trained language model f(x; θ) : X → Y in
an interactive way: we perform active self-training
for T rounds with the total labeling budget b. In
each round, we aim to query B = b/T samples
denoted as B from Xu to fine-tune a pre-trained
language model f(x; θ) with both Xl,B and Xu

to maximize the performance on downstream text
classification tasks. Here X = Xl ∪ Xu denotes
all samples, and Y = {1, 2, · · · , C} is the label set
where C is the number of classes.

2.2 Overview of ACTUNE Framework

We now present our active self-training paradigm
ACTUNE underpinned by estimated uncertainty.
We begin the active self-training loop by fine-
tuning a BERT f(θ(0)) on the initial labeled data
XL. Formally, we solve the following optimization
problem

min
θ

1

|XL|

∑

(xi,yi)∈XL

`CE

(
f(xi; θ

(0)), yi

)
. (1)

In round t (1 ≤ t ≤ T ) of active self-training, we
first calculate the uncertainty score based on a given

function a
(t)
i = a(xi, θ

(t)) 1 for all xi ∈ Xu. Then,
we query labeled samples and generate pseudo-
labels for unlabeled data Xu simultaneously to
facilitate self-training. For each sample xi, the
pseudo-label ỹ is calculated based on the current

1Note that ACTUNE is agnostic to the way uncertainty

score a
(t)
i is computed.
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Algorithm 1: Training Procedures of ACTUNE.

Input: Initial labeled samples Xl; Unlabeled samples
Xu; Pre-trained LM f(·; θ), number of active
self-training rounds T .

// Fine-tune the LM with initial labeled data.
1. Calculate θ(0) based on Eq. (1).
2. Initialize the memory bank g(x; θt) based on the

current prediction.
// Conduct active self-training with all data.
for t = 1, 2, · · · , T do

1. Run weighted K-Means (Eq. (3), (4)) until
convergence.

2. Select sample set Q(t) for AL and S(t) for
self-training from Xu based on Eq. (11) or (13).

3. Augment the labeled set XL = XL ∪Q(t).
4. Obtain θ(t) by finetuning f(·; θt) with LST (

Eq. (14)) using AdamW.
5. Update memory bank g(x; θt) with Eq. (10)
or (12).

Output: The final fine-tuned model f(·; θT ).

model’s output:

ỹ = argmax
j∈Y

[
f(x; θ(t))

]

j
, (2)

where f(x; θ(t)) ∈ R
C is a probability simplex

and [f(x; θ(t))]j is the j-th entry. The procedure
of ACTUNE is summarized in Algorithm 1.

2.3 Region-aware Sampling for Active

Learning on High-uncertainty Data

After obtaining the uncertainty for unlabeled data,
we aim to query annotation for high-uncertainty
samples. However, directly sampling the most un-
certain samples gives suboptimal results as it tends
to query repetitive data (Ein-Dor et al., 2020) that
represent the overall data distribution poorly.

To tackle this issue, we propose region-aware
sampling to capture both uncertainty and diversity

during active self-training. Specifically, in the t-
th round, we first conduct the weighted K-means
clustering (Huang et al., 2005), which weights sam-
ples based on their uncertainty. Denote by K the

number of clusters and v
(t)
i = BERT(xi) the repre-

sentation of xi from the penultimate layer of BERT.
The weighted K-means process first initializes the
center of each each cluster µi(1 ≤ i ≤ K) via
K-Means++ (Arthur and Vassilvitskii, 2007). Then,
it jointly updates the centroid of each cluster and
assigns each sample to cluster ci as

c
(t)
i = argmin

k=1,...,K
‖vi − µk‖

2 , (3)

µ
(t)
k =

∑
xi∈C

(t)
k

a(xi, θ
(t)) · v

(t)
i

∑
x∈C

(t)
k

a(xi, θ(t))
(4)

where C
(t)
k = {x

(t)
i |c

(t)
i = k}(k = 1, . . . ,K)

stands for the k-th cluster. The above two steps in
Eq. (3), (4) are repeated until convergence. Com-
pared with vanilla K-Means method, the weighting
scheme increases the density of the samples with
high uncertainty, thus enabling the K-Means meth-
ods to discover clusters with high uncertainty. After
obtaining K regions with the corresponding data

C
(t)
k , we calculate the uncertainty of each region as

u
(t)
k = U(C

(t)
k ) + βI(C

(t)
k ) (5)

where

U(C
(t)
k ) =

1

|C
(t)
k |

∑

xi∈C
(t)
k

a(xi, θ
(t)), (6)

is the average uncertainty of samples and

I(C
(t)
k ) = −

∑

j∈C

f
(t)
j log f

(t)
j (7)

is the inter-class diversity within cluster k and

f
(t)
j =

∑
i 1{ỹi=j}

|C
(t)
k

|
is the frequency of class j on

cluster k. Notably, the term U(C
(t)
k ) assigns higher

score for clusters with more uncertain samples, and

I(C
(t)
k ) grants higher scores for clusters containing

samples with more diverse predicted classes from
pseudo labels since such clusters would be closer
to the decision boundary.

Then, we rank the clusters in an ascending order

in u
(t)
k . A high score indicates high uncertainty of

the model in these regions, and we need to actively
annotate the member instances to reduce uncer-
tainty and improve the model’s performance. We
adopt a hierarchical sampling strategy: we first se-
lect the M clusters with the highest uncertainty,
and then sample b′ = b B

M
c data with the highest

uncertainty to form the batch Q(t).2

K(t)
a = top-M

k∈{1,...,K}

u
(t)
k ,

Q(t) =
⋃

k∈K
(t)
a

C
(t)
a,k where C

(t)
a,k = Top-b′

xi∈C
(t)
k

a(xi, θ
(t)).

(8)
We remark that such a hierarchical sampling strat-
egy queries most uncertain samples from differ-

ent regions, thus the uncertainty and diversity of
queried samples can be both achieved.

2If the number of samples in the i-th cluster Ci is smaller
than b′, then we sample all the data within Ci and increase the
budget for the (i+ 1)-th cluster by b′ − |Ci|.
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2.4 Self-training over Confident Samples

from Low-uncertainty Regions

For self-training, we aim to select unlabeled sam-
ples which are most likely to have been correctly
classified by the current model. This requires the
sample to have low uncertainty. Therefore, we
select the top k samples from the M lowest uncer-
tainty regions to form the acquired batch S(t):

C(t)
s =

⋃

k∈K
(t)
s

C
(t)
k where K(t)

s = bottom-M
k∈{1,...,K}

u
(t)
k ,

S(t) = bottom-k
xi∈C

(t)
s

a(xi, θ
(t)).

(9)

Momentum-based Memory Bank for Self-

training. As PLMs are sensitive to the stochas-
ticity involved in fine-tuning, the model suffers
from the instability issue — different weight ini-
tialization and data orders may result in different
predictions on the same dataset (Dodge et al., 2020).
Additionally, if the model gives inconsistent pre-
dictions in different rounds for a specific sample,
then it is potentially uncertain about the sample,
and adding it to the training set may harm the ac-
tive self-training process. For example, for a two-
class classification problem, suppose we obtain
f(x; θ(t−1)) = [0.65, 0.35] for sample x the round
(t−1) and f(x; θ(t)) = [0.05, 0.95] for the round t.
Although the model is quite ‘confident’ on the class
of x when we only consider the result of the round
t, it gives contradictory predictions over these two
consecutive rounds, which indicates that the model
is actually uncertain to which class x belongs.

To effectively mitigate the noise and stabilize the
active self-training process, we maintain a dynamic
memory bank to save the results from previous
rounds, and use momentum update (He et al., 2020;
Laine and Aila, 2016) to aggregate the results from
both the previous and current rounds. Then, during
active self-training, we will select samples with the
highest aggregated score. In this way, only those
samples that the model is certain about over all pre-

vious rounds will be selected for self-training. We
design two variants for the memory bank, namely
prediction-based and value-based aggregation.
Prediction based Momentum Update. We adopt
an exponential moving average approach to aggre-
gate the prediction g(x; θ(t)) on round t as

g(x; θ(t)) = mtf(x; θ
(t)) + (1−mt)g(x; θ

(t−1)),

(10)
where mt = (1 − t

T
)mL + t

T
mH (0 < mL ≤

mH ≤ 1) is a momentum coefficient. We gradu-
ally increase the weight for models on later rounds,

since they are trained with more labeled data
thus being able to provide more reliable predic-
tions. Then, we calculate the uncertainty based on
g(x; θ(t)) and rewrite Eq. (9) and (2) as

S(t) = bottom-k
xi∈C

(t)
s

a
(
xi, g(x; θ

(t)), θ(t)
)

ỹ = argmax
j∈Y

[
g(x; θ(t))

]

j
,

(11)

Value-based Momentum Update. For methods
that do not directly use prediction for uncertainty
estimation, we aggregate the uncertainty value as
g(x; θ(t)) = mta(x; θ

(t)) + (1−mt)g(x; θ
(t−1)). (12)

Then, we use Eq. (12) to sample low-uncertainty
data for self-training as3

S(t) = bottom-k
xi∈C

(t)
s

g(xi, θ
(t)),

ỹ = argmax
j∈Y

[
f(x; θ(t))

]

j
.

(13)

By aggregating the prediction results over previ-
ous rounds, we filter the sample with inconsistent
predictions to suppress noisy labels.

2.5 Model Learning and Update

After obtaining both the labeled data and pseudo-
labeled data, we fine-tune a new pre-trained BERT
model θ(t+1) on them. Although we only include
low-uncertainty samples during self-training, it is
difficult to eliminate all the wrong pseudo-labels,
and such mislabeled samples can still hurt model
performance. To suppress such label noise, we
use a threshold-based strategy to further remove
noisy labels by selecting samples that agree with
the corresponding pseudo labels. The loss objective
of optimizing θ(t+1) is

LST =
1

|L(t)|

∑

xi∈L(t)

`CE

(
f(xi; θ

(t+1)), yi
)

+
λ

|S(t)|

∑

x̃i∈S(t)

ωi`CE

(
f(x̃i; θ

(t+1)), ỹi
)
,

(14)

where L(t) = XL ∪ Q(t) is the labeled set,
λ is a hyper-parameter balancing the weight
between clean and pseudo labels, and ωi =
1{

[
f(xi; θ

(t+1))
]
ỹi

> γ} stands for the thresh-
olding function.
Complexity Analysis. The running time of AC-
TUNE is mainly consisted of two parts: the in-
ference time O(|Xu|) and the time for K-Means
clustering O(dK|Xu|), where d is the dimension
of the BERT feature v. For self-training, the size

3Other choices such as soft pseudo label (Xie et al., 2020;
Liang et al., 2020) is also applicable.
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Dataset Label Type # Class # Train # Dev #Test

SST-2 Sentiment 2 60.6k 0.8k 1.8k
AG News News Topic 4 119k 1k 7.6k
Pubmed Medical Abstract 5 180k 1k 30.1k
DBPedia Wikipedia Topic 14 280k 1k 70k

TREC Question 6 5.0k 0.5k 0.5k
Chemprot Medical Abstract 10 12.8k 0.5k 1.6k

Table 1: Dataset Statistics. For DBPedia, we randomly
sample 20k sample from each class due to the limited
computational resource.

of the memory bank g(x; θ) is proportional to |Xu|,
while the extra computation of maintaining this dic-
tionary is ignorable since we do not inference over
the unlabeled data for multiple times in each round
as BALD (Gal et al., 2017) does. The running time
of ACTUNE will be shown in section C.

3 Experiments

3.1 Experiment Setup

Tasks and Datasets. In our main experiments,
we use 4 datasets, including SST-2 (Socher et al.,
2013) for sentiment analysis, AGNews (Zhang
et al., 2015) for news topic classification, Pubmed-

RCT (Dernoncourt and Lee, 2017) for medical ab-
stract classification, and DBPedia (Zhang et al.,
2015) for wikipedia topic classification. For
weakly-supervised text classification, we choose
2 datasets, namely TREC (Li and Roth, 2002)
and Chemprot (Krallinger et al., 2017) from the
WRENCH benchmark (Zhang et al., 2021) for eval-
uation. The statistics are shown in Table 1.
Active Learning Setups. Following (Yuan et al.,
2020), we set the number of rounds T = 10, the
overall budget for all datasets b = 1000 and the ini-
tial size of the labeled |Xl| is set to 100. In each AL
round, we sample a batch of 100 samples from the
unlabeled set Xu and query their labels. Since large
development sets are impractical in low-resource
settings (Kann et al., 2019), we keep the size of
development set as 1000, which is the same as the
labeling budget4. For weakly-supervised text clas-
sification, since the datasets are much smaller, we
keep the labeling budget and the size of develop-
ment set to b = 500.
Implementation Details. We choose RoBERTa-
base (Liu et al., 2019) from the HuggingFace code-
base (Wolf et al., 2020) as the backbone for AC-
TUNE and all baselines except for Pubmed and
Chemprot, where we use SciBERT (Beltagy et al.,
2019), a BERT model pre-trained on scientific cor-

4This is often neglected in previous low-resource AL stud-
ies, and we highlight it to ensure the true low-resource setting.

pora. In each round, we train from scratch to avoid
overfitting the data collected in earlier rounds as
observed by Hu et al. (2019). More details are in
Appendix B.

Hyperparameters. The hyperparameters setting
is in Appendix B.5. In the t-th round of active
self-training, we increase the number of pseudo-
labeled samples by k, where k is 500 for TREC and
Chemprot, 3000 for SST-2 and Pubmed-RCT, and
5000 for others. For the momentum factor, we tune
mL from [0.6, 0.7, 0.8] and mH from [0.8, 0.9, 1.0]
and report the best {mL,mH} based on the perfor-
mance of the development set.

Baselines.

Self-training Methods: (1) Self-training (ST,

Lee (2013)): It is the vanilla self-training method
that generates pseudo labels for unlabeled data.
(2) UST (Mukherjee and Awadallah, 2020; Rizve
et al., 2021): It is an uncertainty-based self-training
method that only uses low-uncertainty data for self-
training. (3) COSINE (Yu et al., 2021): It uses
self-training to fine-tune LM with weakly-labeled
data, which achieves SOTA performance on vari-
ous text datasets in WRENCH benchmark (Zhang
et al., 2021). Note that for these two baselines, we
randomly sample b labeled data as the initialization.

Active Learning Methods: (1) Random: It ac-
quires annotation randomly, which serves as a base-
line for all methods. (2) Entropy (Holub et al.,
2008): It is an uncertainty-based method that ac-
quires annotations on samples with the highest pre-
dictive entropy. (3) BALD (Gal et al., 2017): It
is also an uncertainty-based method, which calcu-
lates model uncertainty using MC Dropout (Gal
and Ghahramani, 2015). (4) BADGE (Ash et al.,
2020): It first selects high uncertainty samples then
uses KMeans++ over the gradient embedding to
sample data. (5) ALPS (Yuan et al., 2020): It uses
the masked language model (MLM) loss of BERT
to query labels for samples. (6) CAL (Margatina
et al., 2021b) is the most recent AL method for pre-
trained LMs. It calculates the uncertainty of each
sample based on the KL divergence between the
prediction of itself and its neighbors’ prediction.
Semi-supervised Active Learning (SSAL) Meth-

ods: (1) ASST (Tomanek and Hahn, 2009;
Siméoni et al., 2020) is an active semi-supervised
learning method that jointly queries labels for AL
and samples pseudo labels for self-training. (2)
CEAL (Wang et al., 2016) acquires annotations
on informative samples, and uses high-confidence
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samples with predicted pseudo labels for weights
updating. (3) BASS (Rottmann et al., 2018) is sim-
ilar to CEAL, but use MC dropout for querying
labeled sample. (4) REVIVAL (Guo et al., 2021)
is the most recent SSAL method, which uses an
adversarial loss to query samples and leverage label
propagation to exploit adversarial examples.
Our Method: We experiment with both Entropy
and CAL as uncertainty measures for ACTUNE.
Note that when compared with active learning base-
lines, we do not augment the train set with pseudo-
labeled data (Eq. (9)) to ensure fair comparisons.

3.2 Main Result

Figure 1 reports the performance of ACTUNE and
the baselines on 4 benchmarks. From the results,
we have the following observations:
• ACTUNE consistently outperforms baselines in
most of the cases. Different from studies in the
computer vision (CV) domain (Siméoni et al.,
2020) where the model does not perform well in
the low-data regime, pre-trained LM has achieved
competitive performance with only a few labeled
data, which makes further improvements to the
vanilla fine-tuning challenging. Nevertheless, AC-
TUNE surpasses baselines in more than 90% of the
rounds and achieves 0.4%-0.7% and 0.3%-1.5%
absolute gain at the end of AL and SSAL respec-
tively. Figure 3 quantitatively measures the num-
ber of labels needed for the most advanced active
learning model and self-training model (UST) to
outperform ACTUNE with 1000 labels. These
baselines need >2000 clean labeled samples to
reach the performance as ours. ACTUNE saves
on average 56.2% and 57.0% of the labeled sam-
ples than most advanced active learning and self-
training baselines respectively, which justifies its
promising performance under low-resource scenar-
ios. Such improvements show the merits of two key
designs under our active self-training framework:
the region-aware sampling for active learning and
the momentum-based memory bank for robust self-
training, which will be discussed in the section 3.5.
• Compared with the previous AL baselines, AC-
TUNE can bring consistent performance gain, while
previous semi-supervised active learning methods
cannot. For instance, BASS is based on BALD
for active learning, but sometimes it performs even
worse than BALD with the same number of la-
beled data (see Fig. 1(b) and Fig. 1(f)). This is
mainly because previous methods simply combine
noisy pseudo labels with clean labels for training

without explicitly rectifying the wrongly-labeled
data, which will cause the LM to overfit these haz-
ardous labels. Moreover, previous methods do not
exploit momentum updates to stabilize the learning
process, as there are oscillations in the beginning
rounds. In contrast, ACTUNE achieves a more
stable learning process and enables an active self-
training process to benefit from more labeled data.
• The self-training methods (ST & UST) achieve
superior performance with limited labels. However,
they mainly focus on leveraging unlabeled data
for improving the performance, while our results
demonstrate that adaptive selecting the most useful
data for fine-tuning is also important for improving
the performance. With a powerful querying policy,
ACTUNE can improve these self-training baselines
by 1.05% in terms of accuracy on average.

3.3 Weakly-supervised Learning

ACTUNE can be naturally used for weakly-
supervised classification, where Xl is a set of noisy
labels derived from linguistic patterns or rules.
Since the initial label set is noisy, the model trained
with Eq. (1) can overfit the label noise (Zhang et al.,
2022a), and we can actively query labeled data to
refine the model. We conduct experiments on the
TREC and Chemprot dataset5, where we first use
Snorkel (Ratner et al., 2017) to obtain weak label
set Xl, then fine-tune the pre-trained LM f(θ(0))
on Xl. After that, we adopt ACTUNE for active
self-training.

Fig. 2 shows the results of these two datasets6.
When combining ACTUNE with CAL, the perfor-
mance is unsatisfactory. We believe it is because
CAL requires clean labels to calculate uncertain-
ties. When labels are inaccurate, it will prevent AC-
TUNE from querying informative samples. In con-
trast, ACTUNE achieves the best performance over
baselines when using Entropy as the uncertainty
measure. The performance gain is more notable
on the TREC dataset, where we achieve 96.68%
accuracy, close to the fully supervised performance
(96.80%) with only ∼6% of clean labels.

3.4 Combination with Other AL Methods

Fig. 5(a) demonstrates the performance of AC-
TUNE combined with other AL methods (e.g.
BADGE, ALPS) on SST-2 dataset. It is clear that
even if the AL methods are not uncertainty-based

5Details for labeling functions are in Zhang et al. (2021).
6We omit AL methods since they perform worse than

SSAL methods on these datasets in general.
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A Datasets Details

A.1 Data Source

The seven benchmarks in our experiments are all
publicly available. Below are the links to down-
loadable versions of these datasets.

� SST-2: We use the datasets from https://

huggingface.co/datasets/glue.

� AGNews: We use the datasets from https://

huggingface.co/datasets/ag_news.

� Pubmed-RCT: Dataset is available at https:
//github.com/Franck-Dernoncourt/

pubmed-rct.

� DBPedia: Dataset is available at
https://huggingface.co/datasets/

dbpedia_14.

For two weakly-supervised classification tasks,
we use the data from WRENCH benchmark (Zhang
et al., 2021).

� TREC: Dataset is available at https:

//drive.google.com/drive/u/1/

folders/1v55IKG2JN9fMtKJWU48B_5_

DcPWGnpTq.

� ChemProt: The raw dataset is avail-
able at http://www.cbs.dtu.dk/

services/ChemProt/ChemProt-2.0/.
The preprocessed dataset is available at
https://drive.google.com/drive/u/

1/folders/1v55IKG2JN9fMtKJWU48B_

5_DcPWGnpTq.

A.2 Train/Test Split

For all the datasets, we use the original
train/dev/test split from the web. To keep the size
of the development set small, we randomly sample
1000 data for SST-2, AGNews, Pubmed-RCT, DB-

Pedia and randomly sample 500 samples for TREC,

ChemProt.

B Details on Implementation and

Experiment Setups

B.1 Computing Infrastructure

System: Ubuntu 18.04.3 LTS; Python 3.6; Pytorch
1.6.
CPU: Intel(R) Core(TM) i7-5930K CPU @
3.50GHz.
GPU: NVIDIA 2080Ti.

B.2 Number of Parameters

ACTUNE and all baselines use Roberta-base (Liu
et al., 2019) with a task-specific classification head
on the top as the backbone, which contains 125M
trainable parameters. We do not introduce any
other parameters in our experiments.

B.3 Experiment Setups

Following (Ein-Dor et al., 2020; Yuan et al., 2020;
Margatina et al., 2021b), all of our methods and
baselines are run with 3 different random seed and
the result is based on the average performance
on them. This indeed creates 4 (the number of
datasets) × 3 (the number of random seeds) ×
11 (the number of methods) × 10 (the number of
fine-tuning rounds in AL) = 1320 experiments for
fine-tuning PLMs, which is almost the limit of our
computational resources, not to mention additional
experiments on weakly-supervised text classifica-
tion as well as different hyper-parameter tuning.
We have show both the mean and the standard de-
viation of the performance in our experiment sec-
tions. All the results have passed a paired t-test
with p < 0.05 (Dror et al., 2018).

B.4 Hyper-parameters for General

Experiments

We use AdamW as the optimizer, and the learning
rate is chosen from 1 × 10−5, 2 × 10−5}. A lin-
ear learning rate decay schedule with warm-up 0.1
is used, and the number of training epochs is 15
for fine-tuning. For active self-training & SSAL
baselines, we tune the model with 2000 steps, and
evaluate the performance on the development set in
every 50 steps. Finally, we use the model with best
performance on the development set for testing.

B.5 Hyper-parameters for ACTUNE

Although ACTUNE introduces several hyper-
parameters including K, M , mL, mH , β, γ, λ,
most of them are keep fixed during our experiments,
thus it does not require heavy hyper-parameter tun-
ing. All results are reported as the average over
three runs.

In our experiments, we keep β = 0.5, λ = 1 for
all datasets. For other parameters, we use a grid
search to find the optimal setting for each datasets.
Specifically, we search γ from [0.5, 0.6, 0.7], mL

from [0.6, 0.7, 0.8], mH from [0.8, 0.9, 1]. For AC-
TUNE with Entropy, we use probability based ag-
gregation and for ACTUNE with CAL, we use value
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Hyper-parameter SST-2 AG News Pubmed DBPedia TREC Chemprot

Dropout Ratio 0.1
Maximum Tokens 32 96 96 64 64 128
Batch Size for Xl 8

Batch Size for Xu in Self-training 32 48 48 32 16 24
Weight Decay 10−8

Learning Rate 2× 10−5

β 0.5
M 25 30 30 40 40 40
K 5 10
γ 0.7 0.6
mL 0.8 0.9 0.7 0.8 0.8 0.8
mH 0.9 0.9 0.8 0.9 0.9 1.0
λ 1

Table 2: Hyper-parameter configurations. Note that we only keep certain number of tokens.

Method
Dataset

Pubmed DBPedia
Finetune (Random) <0.1s <0.1s
Entropy (Holub et al., 2008) 461s 646s
BALD (Gal et al., 2017) 4595s 6451s
ALPS (Yuan et al., 2020) 488s 677s
BADGE (Ash et al., 2020) 554s 1140s
CAL (Margatina et al., 2021b) 493s 688s
REVIVAL (Guo et al., 2021) 3240s OOM
ACTUNE + Entropy 477s 733s

w/ RS for Active Learning 15.8s 44.9s
w/ MMB for Self-training 0.12s 0.18s

ACTUNE + CAL 510s 735s
w/ RS for Active Learning 16.6s 46.4s
w/ MMB for Self-training 0.12s 0.18s

Table 3: The running time of different baselines. Note
that for ASST, CEAL and BASS, they directly use ex-
isting active learning methods so we do not list the run-
ning time here.

based aggregation by default.

C Runtime Analysis

Table 3 shows the time in one active learning round
of ACTUNE and baselines. Here we highlight that
the additional time for region-aware sampling and
momentum-based memory bank is rather small

compared with the inference time. Also, we find
that BALD and REVIVAL are not so efficient. For
BALD, it needs to infer the uncertainty of the
model by passing the data to model with multit-
ple times. Such an operation will make the total
inference time for PLMs very long. For REVIVAL,
we find that calculating the adversarial gradient
needs extra forward passes and backward passes,
which could be time-consuming for PLMs with

millions of parameters8.

8The original model is proposed with CV tasks and they
use ResNet-18 as the backbone which only contains 11M
parameters (around 10% of the parameters of Roberta-base).
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