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essentially the latent states we want to predict, this uni�es the

physical meaning of ]̃ and the emission matrix �.

3.2.3 Emission Matrix Sampling. Instead of using the deterministic

priors � and � directly, we choose to sample the latent emission

variables from the Dirichlet distribution parameterized by the priors.

This is a common practice in graphical models considering that

proper latent distributions are more representative and robust to

noise than the deterministic priors [3, 10]. The random sampling

helps the model escape the saddle points or local optima. In addition,

Dirichlet distribution samples from probability simplex without

requiring its concentration parameters to sum up to one, which

makes the parameters selection more �exible.

To construct the concentration parameters 
 ∈ Rć×Ĉ×Ĉ+ , we add

the base prior and the addon prior together and scale the results:


 = aexpan × (� + �) + abase .

abase ∈ R+ and aexpan ∈ R+ controls the minimum concentration

value and the concentration range, respectively. Larger aexpan re-

sults in smaller sampling variance. Each row of the emission matrix

�ġ of LF : is sampled independently from the distribution:

�ġ,Ģ ∼ Dir(
ġ,Ģ ) .

We use pathwise derivative estimators developed by Jankowiak and

Obermeyer [8] to push the gradient back through the Dirichlet.

Notice that we only apply Dirichlet sampling when it requires

backpropagation. On other occasions, such as validation and test,

the samples are substituted by the mean of the Dirichlet distribution.

3.3 Model Training

Sparse-CHMM is an unsupervised model whose optimization does

not leverage any ground-truth labels ~ but only the weak labels

x . Section 3.3.1–3.3.3 describe Sparse-CHMM’s training strategy,

whereas section 3.3.4 analyzes the inference complexity.

3.3.1 Model Pre-training. A good initialization is critical for HMMs

to gain good performance. However, as Sparse-CHMM contains

several NNs, assigning proper initial values to model parameters

is unrealistic. Thus, we adopt the approach used by Li et al. [14],

which pre-trains the neural networks by minimizing the Euclidean

distances between the predicted transitions and emissions and the

initial matrices 	∗ and �
∗ that are from the observation statistics.

The objective is the mean squared error (MSE) loss:

ℓMSE =

1

 

ć∑

ġ=1

∥�ġ − �
∗∥2Ă +

1

)

Đ∑

Ī=1

∥	(Ī ) − 	
∗∥2Ă , (7)

where ∥ · ∥Ă is the Frobenius norm. Di�erent from [14] or [16], we

require no prior knowledge of LF performance.

3.3.2 Training Objective. Same as CHMM [14], Sparse-CHMM is

trained using the generalized EM algorithm. Speci�cally, we lever-

age the gradient ascent method in the M step to optimize the ex-

pected complete data log likelihood computed in the E step:

& () , )old) ≜ Eİ [ℓę () ) |x, )
old] . (8)

The expectation is de�ned over the hidden states given LF obser-

vations and the current model parameters ? (z (1:Đ ) |x (1:Đ ) , )old).
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Figure 5: Sparse-CHMM training procedure. The model pa-

rameters of the dotted squares are frozen. MSE and EM

are optimization approaches associated with the model pre-

training and training steps.

The data log likelihood ℓę () ) is de�ned as:

ℓę () ) ≜ log ? (z (0:Đ ) , x (1:Đ ) |) , e (0:Đ ) ) = log ? (I (0) )+

Đ∑

Ī=1

log ? (I (Ī ) |I (Ī−1) , e (Ī ) ) +

Đ∑

Ī=1

log ? (x (Ī ) |I (Ī ) , e (0) ),
(9)

of which the conditional independency comes from the Markov

assumption. The computation of (8) largely aligns with CHMM.

One di�erence is the dependency of the emission evidence:

i
(Ī )

Ģ
≜ ? (x (Ī ) |I (Ī ) = ;, e (0) ) =

ć∏

ġ=1

Ĉ∑

Ġ=1

¨ġ,Ģ, ĠGġ,Ġ , (10)

which in our case is sentence-level e (0) , whereas in CHMM is token-

level e (Ī ) . This essentially is attributed to the di�erent approaches

to obtain the emission matrix � (section 3.2). The computation of

(8) and other forward inference details are in appendix A.

3.3.3 Training Procedure. As the computation of the emission is

complicated and inter-dependent, we adopt a three-stage train-

ing strategy to allow su�cient training of each model component,

as shown in Figure 5. It decouples the optimization of the model

components while keeping the training e�cient.

Stage 1 is focused on optimizing the transition matrix 	 and

the emission base prior �, excluding the addon prior by setting

� = 0. The reason is straightforward: calculating the WXOR scores

]̃ requires high-quality reliability scores G̃, which are obtained by

optimizing � (section 3.3). Stage 2 trains the addon prior �, leaving

	 and � frozen. This stage aims to search for the best scaling factors

I for ]̃ , and freezing the irrelevant parameters relieves the training

pressure. ]̃ is calculated right after stage 1 with all training and

validation instances and remains constant for stages 2 and 3.

Stage 3 is inspired by our empirical discovery about HMMs. We

�nd that if we only optimize the transition matrix 	 with the emis-

sion �xed, generally to the true values, the model performance can

be improved. The true emission is the statistics of the annotations

xġ of LF : given ground-truth labels ~:

¨
true
ġ,ğ, Ġ

= ? (xġ |~) ≜

∑ĉ
ģ=1

∑Đģ
Ī=1 I(G

(Ī )

ģ,ġ,Ġ
= 1, ~

(Ī )
ģ = 8)

∑ĉ
ģ=1

∑Đģ
Ī=1 I(~

(Ī )
ģ = 8)

,

where I(·) is the indicator function. Consequently, we believe that

continuing training the transition of Sparse-CHMM for several
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Table 1: Emission complexity of each epoch.

CHMM Sparse-CHMM

# NN PRM Ěemb ×ć × Ĉ2 2 × Ěemb ×ć × Ĉ

NN CPL O(ĉ ×Đ × Ěemb ×ć × Ĉ2) O (ĉ × Ěemb ×ć × Ĉ)

PRM is short for “parameters”; CPL is short for “complexity”.
ĉ is the number of training sentences,Đ is the average of sentence lengths, and

Ěemb is the dimension of the BERT embeddings.

more epochs with the emission frozen would lead to a similar

performance improvement.

In addition, stages 1, 2, and 3 use di�erent pre-training strategies.

The pre-training of stage 1 is the same as section 3.3.1. Stage 2’s pre-

training is to initialize the NN parameters associated with the addon

prior � only, so we drop the transition part of the MSE loss and

substitute the target emission by �
′
= _�∗ +

(1−Č)
ĉ

∑ĉ
ģ=1 �

(ą )
ģ to

take advantage of stage 1’s results. Here _ ∈ [0, 1] is the weight of

observation statistics, which is �xed to 0.2 in our experiments.�
(ą )
ģ

is the optimized emission from stage 1. Stage 3 successes all model

parameters from the previous stage and thus has no pre-training.

3.3.4 Complexity Analysis. Comparedwith CHMM, Sparse-CHMM

signi�cantly reduces the training resource consumption by predict-

ing sparse emission elements. The emission NN parameter number

and computation complexity are shown in Table 1, where the transi-

tion attributes are not presented because they are the same for both

models. The factor 2 for Sparse-CHMM comes from matrices G̃

and I . We can see that Sparse-CHMM reduces the emission NN pa-

rameter number to 2/! of CHMM and the complexity to 1/() × !),

which are substantial when the number of entity labels ! is large.

The complexity of other emission elements, i.e., (2)–(5), is negligible

because they do not contain the embedding dimension 3emb, which

is much larger than other terms. Calculating the WXOR scores can

be as complex as O(" ×) × 2 × !2), but they are calculated only

once at stage 2 and stay �xed henceforth.

4 EXPERIMENTS

4.1 Experiment Setup

4.1.1 Datasets. We consider 5 NER datasets from the generic do-

mains to the biomedical and chemical domains: 1) CoNLL 2003

(English subset) [27] labels 22,137 sentences from the Reuters news

stories with 4 entity types, including PER, LOC, ORG and MISC. 2)

The LaptopReview dataset [20] consists of 3,845 sentences of

laptop reviews. The laptop-related Terms are regarded as named

entities. 3) The NCBI-Disease dataset [6] contains 793 PubMed

abstracts annotated with Disease mentions. 4) BC5CDR [13] con-

sists of 1,500 PubMed articles with Chemical and Disease entities.

5) OntoNotes 5.0 [29] is a very large dataset containing 143,709

sentences labeled with 18 �ne-grained entity types.

We use the LFs included in the Wrench benchmark platform [31]

for all datasets. Table 2 shows the dataset statistics, including the

number of entities and labeling functions. The performance of the

LFs on the test dataset is listed in appendix B.

4.1.2 Baselines. We compare ourmodel with the followingWrench

baselines: 1)Majority Voting (MV) returns the label that has been

Table 2: Dataset statistics.

CoNLL NCBI BC5CDR Laptop OntoNotes

# Instance 22,137 793 1,500 3,845 143,709

# Training 14,041 593 500 2,436 115,812

# Validation 3,250 100 500 609 5,000

# Test 3,453 100 500 800 22,897

# Entities 4 1 2 1 18

# LFs 16 5 9 3 17

observed by most LFs and chooses randomly from the tie if it ex-

ists. 2) Snorkel [21] is a context-free token-based simple graphical

model which assumes the tokens are independent. 3) HMM, used

in [16, 18, 25], is a popular weakly-supervised NER label model

with certain context representation ability. 4) Conditional HMM

(CHMM, 14) augments HMM by predicting the token-wise transi-

tion and emission probabilities from the BERT token embeddings

through NNs. 5) ConNet [11] uses the context-aware attention

mechanism to aggregate the CRF representations of di�erent LFs.3

We also include 3 supervised methods as references: 1) a fully

supervised BERT-NER model trained with human annotations,

2) the best consensus of LFs, which is an oracle that always selects

the correct token annotations from the LFs; and 3) CHMM-FE,

which is CHMMwith the �xed ground-truth emissions as described

in section 3.3.3. Every supervised method accesses the true labels

in one way or another during training.

4.1.3 Evaluation Metrics. The NER label models are evaluated us-

ing the micro-averaged entity-level precision, recall, and F1 scores.

We calculate the metrics with the seqeval Python package.4 The

results come from the average of 5 random trials.

4.1.4 Implementation Details. Following Li et al. [14], we apply dif-

ferent BERT variants to di�erent datasets. Speci�cally, we use bert-

base-uncased [5] on CoNLL 2003, LaptopReview and OntoNotes

5.0, bioBERT [12] on NCBI-Disease and SciBERT [1] on BC5CDR.

In alignment with Zhang et al. [31], we evaluate Sparse-CHMM

inductively. The model is trained on the training dataset and tested

on the test dataset. The validation set is for early stopping and

hyper-parameter �ne-tuning. In addition, the WXOR scores are

calculated on the combination of training and validation datasets.

Please refer to appendix C for more implementation details and the

model hyper-parameters that lead to the presented results.

4.2 Main Results

Table 3 shows the performance comparison of Sparse-CHMM and

the baselines in the Wrench benchmark. Sparse-CHMM outper-

forms all other label models, achieving 3.01 average F1 improve-

ment over the strongest baselines. In general, the increment in recall

contributes to most of Sparse-CHMM’s performance gain. This is

accredited to the well-founded emission structure, which prevents

the correct annotations of inferior LFs from being neglected. On

3 out of 5 datasets, Sparse-CHMM has larger recall than the best

consensus. This situation indicates that Sparse-CHMM is capable

3DWS [19] is similar to CHMM but has no open-source implementation.
4https://github.com/chakki-works/seqeval
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rules to model whether consecutive tokens belong to the same en-

tity. Other works [14, 19] improve HMM’s context representation

with BERT embeddings and alleviate the Markov assumption.

In the data programming framework, people also train end mod-

els, which are deep supervised neural networks, with the label

model outputs in seek of re�ning the results with the power of

deep networks. One exception is the Consensus Network [11] that

trains the label model and the end model jointly within a two-stage

framework [31]. Another is ALT [14], which treats the end model

as an additional LF and optimizes it alternately with the label model.

Zhang et al. [31], however, show that the end model does not nec-

essarily outperform the label model. Therefore, we focus on the

label models here and leave end models to future works.

Our work is also related to the neuralized graphical models.

Many e�orts seek to inject neural networks into graphical models,

especially for variational inference, such as the variational autoen-

coder (VAE) [10]. Other works include [28], which neuralizes the

HMMwith one observation set for the unsupervised part-of-speech

tagging. Dai et al. [4] and Liu et al. [17] incorporate recurrent

units into the hidden semi-Markov model to segment and label

high-dimensional time series; Wiseman et al. [30] learn discrete

template structures for conditional text generation also with neural-

ized graphical models. CHMM and DWS also fall into this category

by predicting graphical models components through NNs.

6 CONCLUSION

We presented Sparse-CHMM, a label model that aggregates the

weak annotations from multiple noisy NER labeling functions. In

contrast to CHMM, Sparse-CHMM constructs the sentence-level

sparse emission probabilities from the LF reliabilities predicted

using the BERT sentence embeddings. The o�-diagonal emission

elements are further augmented by the weighted XOR scores, which

estimate the possibilities of an LF observing incorrect entity labels.

Wrapped in a three-stage training process with Dirichlet sampling,

Sparse-CHMM outperforms all baseline label models on �ve repre-

sentative datasets with di�erent statistics and attributes. In addition,

the approximated LF reliability scores strongly correlate with the

true LF performance, making it eligible to contribute to other tasks

such as automated LF generation and evaluation. In the future, we

will consider leveraging prior heuristic knowledge to strengthen

Sparse-CHMM’s ability to distill clean NER labels from noisy LF

annotations. In addition, we also plan to extend this technique to

other sequence labeling tasks.
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A TRAINING DETAILS

A.1 Training Objective

In this section, we focus on the computation of the expected com-

plete data log likelihood & de�ned in (8) as well as the training

objective. The derivation largely aligns with [14], so we will skip

some trivial steps and explanations.

By inserting (9) into (8) and specifying the expectation of I, we

can write (8) as:

& () , )old) =

Ĉ∑

ğ=1

? (I (0) = 8 |x (1:Đ ) , e (0:Đ ) ) log ? (I (0) = 8)+

Đ∑

Ī=1

Ĉ∑

ğ=1

Ĉ∑

Ġ=1

? (I (Ī−1) = 8, I (Ī ) = 9 |x (1:Đ ) , e (0:Đ ) ) log«
(Ī )
ğ, Ġ +

Đ∑

Ī=1

Ĉ∑

ğ=1

? (I (Ī ) = 8 |x (1:Đ ) , e (0:Đ ) ) logi
(Ī )
ğ ,

(11)

where 	 is the transition matrix and i
(Ī )
ğ is de�ned in (10). ? (I (0) )

is the probability of the initial hidden state without any correspond-

ing observations. Aswe can predict the token-wise transitionmatrix

from the embeddings, we can simply set it to Uniform or, as Li et al.

[14] proposed, set ? (I (0) = 1) to 1 and ? (I (0) = 8),∀8 ∈ 2 : ! to 0.

To calculate (11), we de�ne the smoothedmarginal$ (Ī ) ∈ [0, 1]Ĉ

as:

W
(Ī )
ğ ≜ ? (I (Ī ) = 8 |x (1:Đ ) , e (0:Đ ) ),

and the expected number of transitions / (Ī ) ∈ [0, 1]Ĉ×Ĉ as:

b
(Ī )
ğ, Ġ ≜ ? (I

(Ī−1)
= 8, I (Ī ) = 9 |x (1:Đ ) , e (0:Đ ) ) .

These two variables are acquired using the forward-backward algo-

rithm.

First, we de�ne the �ltered marginal " ∈ [0, 1]Ĉ as:

U
(Ī )
ğ ≜ ? (I (Ī ) = 8 |x (1:Ī ) , e (0:Đ ) ),

and the conditional future evidence # ∈ [0, 1]Ĉ as:

V
(Ī )
ğ ≜ ? (x (Ī+1:Đ ) |I (Ī ) = 8, e (0:Đ ) ) .

In the forward pass, U
(Ī )
ğ is computed iteratively:

U
(Ī )
ğ ∝ ? (x (Ī ) |I (Ī ) = 8, e (0) )? (I (Ī ) = 8 |x (1:Ī−1) , e (0:Ī ) )

=

Ĉ∑

Ġ=1

i
(Ī )
ğ «

(Ī )
Ġ,ğ U

(Ī−1)
Ġ ,

which can be written in the matrix form:

" (Ī ) ∝ > (Ī ) » (	(Ī )T" (Ī−1) ),

where » is the element-wise product. We initialize " with U
(0)

Ģ
=

? (I (0) = ;),∀; ∈ 1 : ! since we have no observation at time step 0.

Similarly, we do the backward pass and compute # :

V
(Ī−1)
ğ =

Ĉ∑

Ġ=1

? (I (Ī ) = 9, x (Ī ) , x (Ī+1:Đ ) |I (Ī−1) = 8, e (0,Ī :Đ ) )

=

Ĉ∑

Ġ=1

V
(Ī )
Ġ i

(Ī )
Ġ «

(Ī )
ğ, Ġ .

In the matrix form, it becomes:

# (Ī−1)
= 	

(Ī ) (> (Ī ) » # (Ī ) ),

with base case:

V
(Đ )
ğ = ? (x (Đ+1:Đ ) |I (Đ ) = 8) = 1,∀8 ∈ 1 : !.

With " and # calculated, W
(Ī )
ğ and b

(Ī )
ğ, Ġ can be written as:

W
(Ī )
ğ ∝ ? (I (Ī ) = 8 |x (1:Ī ) , e0:Ī )? (x (Ī+1:Đ ) |I (Ī ) = 8, e (0,Ī+1:Đ ) )

= U
(Ī )
ğ V

(Ī )
ğ ,

b
(Ī )
ğ, Ġ ∝ ? (I (Ī−1) = 8 |x (1:Ī−1) e (0:Ī−1) )? (x (Ī ) |I (Ī ) = 9, e (0) )

? (x (Ī+1:Đ ) |I (Ī ) = 9, e (0,Ī+1:Đ ) )? (I (Ī ) = 9 |I (Ī−1) = 8, e (Ī ) )

= U
(Ī−1)
ğ i

(Ī )
Ġ V

(Ī )
Ġ «

(Ī )
ğ, Ġ .

Written in the matrix form, they become:

$ (Ī ) ∝ " (Ī ) » # (Ī ) ,

/ (Ī ) ∝ 	
(Ī ) » (" (Ī−1) (> (Ī ) » # (Ī ) )T) .

Eventually, we insert$ and / into (11) to compute the value of& .

The training objective is to maximize & , which can be readily done

using the gradient ascend. Please refer to [14] for more details.

A.2 Inference

Same as Li et al. [14], we use the Viterbi algorithm to �nd the

sequence of latent variables ẑ (1:Đ ) that maximize the posterior:

ẑ (1:Đ ) = argmax
İ
(1:Đ )

? (z (1:Đ ) |x (1:Đ ) , e (0:Đ ) ) .

This sequence of latent variables ẑ (1:Đ ) is considered as Sparse-

CHMM’s approximation of the true labels ~.

B LABELING FUNCTION METRICS

Table 6–10 present the performance of each labeling function on

the test set.

Table 6: LF performance on CoNLL 2003.

LF name Precision Recall F1

BTC 67.26 44.56 53.61

core_web_md 70.52 58.27 63.81

crunchbase_cased 37.76 6.69 11.37

crunchbase_uncased 32.75 7.31 11.96

full_name_detector 84.63 11.60 20.40

geo_cased 67.99 16.63 26.72

geo_uncased 64.35 20.20 30.75

misc_detector 85.26 20.68 33.29

multitoken_crunchbase_cased 72.73 3.40 6.50

multitoken_crunchbase_uncased 71.22 3.51 6.68

multitoken_geo_cased 72.06 1.74 3.39

multitoken_geo_uncased 66.83 2.35 4.55

multitoken_wiki_cased 94.36 16.01 27.37

multitoken_wiki_uncased 90.55 16.63 28.09

wiki_cased 75.62 35.48 48.30

wiki_uncased 71.50 38.95 50.43
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Table 7: LF performance on NCBI-Disease.

LF name Precision Recall F1

tag-CoreDictionaryUncased 80.99 41.39 54.79

tag-CoreDictionaryExact 80.69 17.21 28.37

tag-CancerLike 34.88 1.58 3.03

tag-BodyTerms 68.52 3.91 7.39

link-ExtractedPhrase 96.88 36.11 52.62

Table 8: LF performance on BC5CDR.

LF name Precision Recall F1

tag-DictCore-Chemical 93.24 29.68 45.03

tag-DictCore-Chemical-Exact 89.55 3.26 6.29

tag-DictCore-Disease 84.19 26.91 40.78

tag-DictCore-Disease-Exact 81.40 1.08 2.13

tag-Organic Chemical 94.06 30.17 45.68

tag-Antibiotic 97.88 2.38 4.64

tag-Disease or Syndrome 79.01 11.81 20.55

link-PostHyphen 86.24 7.93 14.53

link-ExtractedPhrase 87.21 17.88 29.68

Table 9: LF performance on LaptopReview.

LF name Precision Recall F1

tag-CoreDictionary 72.63 51.61 60.34

link-ExtractedPhrase 97.46 29.40 45.18

link-ConsecutiveCapitals 35.29 0.92 1.79

Table 10: LF performance on OntoNotes 5.0.

LF name Precision Recall F1

Core_Keywords 51.25 8.01 13.86

Regex_Patterns 75.08 3.44 6.58

Numeric_Patterns 60.58 10.71 18.21

wiki_�ne 77.24 53.15 62.97

money_detector 47.37 1.40 2.72

date_detector 66.74 4.34 8.15

number_detector 39.71 5.70 9.97

company_type_detector 65.14 1.43 2.80

full_name_detector 53.62 4.54 8.37

misc_detector 61.75 10.84 18.44

crunchbase_cased 23.07 4.80 7.94

crunchbase_uncased 22.63 4.84 7.97

geo_cased 62.87 9.03 15.79

geo_uncased 62.73 9.05 15.82

Multitoken_wiki 87.38 13.06 22.72

wiki_cased 48.61 15.62 23.64

wiki_uncased 48.24 15.68 23.67

C HYPER-PARAMETERS

The experiments are conducted on one GeForce RTX 2080 Ti GPU.

The selected model hyper-parameters are presented in Table 11.

Table 11: Hyper-parameters.

CoNLL NCBI BC5CDR Laptop OntoNotes

Training hyper-parameters

Batch size 256 128 128 256 32

PT LR 5e-4 5e-4 5e-4 5e-4 1e-4

LR (S1) 2e-4 1e-3 1e-3 1e-4 1e-4

LR (S2) 4e-5 2e-4 2e-4 2e-5 2e-5

LR (S3) 2e-4 1e-3 1e-3 1e-4 1e-4

Use MV1 false true false true false

Model hyper-parameters

Reliab LV ENT LB ENT LB ENT

Ďbase 10 2 2 2 2

Ďexpan 1,000 1,500 1,500 1,000 1,000

ℎ

Ĥ 1.2 1.2 0.9 0.8 1.1

ĩ 1.5 3 1.1 1.5 1

Ĩ 1
ć

ĝ
Ĥ 4

Ĩ (S1) 1
2Ĉ

1
20Ĉ

1
10Ĉ

1
20Ĉ

1
5Ĉ

Ĩ (S2,3) 1
20Ĉ

1
20Ĉ

1
10Ĉ

1
20Ĉ

1
5Ĉ

“PT” is “pre-training”; “Reliab LV” is short for the “reliability level”; “LB” and
“ENT” indicate “label”-level reliability (one score per label) and “entity”-level
reliability (one score per entity).
“Sğ” represents “stage ğ”; paramters with no speci�ed stage remain constant for
all training stages.
Ĉ and ć are the numbers of labels and LFs, respectively (section 2).
ℎ is de�ned in (2); ĝ is de�ned in (4).
1 On some datasets, we add an additional majority voting LF to balance the anno-
tations from existing LFs. The majority voting is only deployed in training but
not involved in inference or evaluation.

To increase the training speed on the OntoNotes 5.0 dataset, the

WXOR scores are calculated only on the validation set instead of

the combination of training and validation sets.

D FUNCTION DESIGN CRITERIA

Here we introduce the design criteria for the reliability scaling

function (2) and the reliability expansion function (4). There are

in�nite solutions that meet the criteria. We select the simplest

polynomials for better interpretability and calculation e�ciency.

D.1 Reliability Scaling Function

Function 5Ĥ,ĩ,Ĩ , illustrated in Figure 3, is 1) continuous, smooth and

monotonic; 2) passing through coordinates (0, 0) and (1, 1); and 3)

having zero gradient at (0, 0) and (1, 1). It is designed such that its

shape is controllable without making the function complicated.

D.2 Reliability Expansion Function

As shown in Figure 4, 6Ĥ,Ĩ is 1) continuous, smooth and monotonic;

2) passing through (0, 1) and (1, 0); and 3) ∇ė6(0) |ė=0 =
1
Ĉ−1 . We

want the emission from non-O latent state to non-O observation

�ġ,ğ, Ġg2 to be close to Uniform when �̃ġ,ğ is small, which indicates

that LF : may equally observe anything when the latent label is

8 . This builds the constraint of ∇ė
1−ė−ĝ (ė)
Ĉ−2 |ė=0 = ∇ė0 |ė=0 = 1,

which leads to the third feature de�ned above. The hyperparam-

eter A controls the threshold where we trust LF : enough to stop

increasing the o�-diagonal emissions.


