

ANALYSIS OF GAS TRANSPORT IN MOLECULARLY-MIXED COMPOSITE MEMBRANES

3 Matthew P. Rivera and Ryan P. Lively*

4

5 School of Chemical and Biomolecular Engineering, Georgia Institute of Technology,
6 Atlanta, GA

7

⁸ Corresponding author: Ryan P. Lively; ryan.lively@chbe.gatech.edu

9 Permanent address: Ford Environment Science and Technology Building, 311 Ferst Dr
10 NW, Atlanta, GA 30332

11

12 Abstract

13 Individual molecules with intrinsic porosity, such as porous organic cages (POCs), have
14 significant potential to improve the performance of a variety of separations media. An
15 exemplar application is the blending of POCs with polymers to make molecularly mixed
16 composite membranes (MMCMs). The intimate interaction between individual cage
17 molecules and polymer chains results in a “solid-solution” that avoids longstanding
18 interfacial issues associated with mixed matrix membranes. Moreover, as the cages are
19 soluble in polymer solutions, the processing of these composites can be easily adapted to
20 established polymer-based technologies as concerns with two-phase processing systems
21 are avoided. MMCMs are still a relatively new development, and underlying transport
22 processes within the membrane are not well understood. Here, we offer a detailed
23 interpretation of guest transport through these solid solutions. We demonstrate how the

24 presence of cage molecules affects polymer chain motions that can impact guest transport
25 through the polymer phase. We also show how cage loading affects membrane free volume.
26 We find that gas permeation deviates significantly from predictions made with the Maxwell
27 model for mixed matrix membranes. POCs were found to significantly alter membrane
28 properties in the polymer phase because of intimate molecular interactions between the
29 POC and polymer, violating one of the Maxwell models underlying assumptions. This
30 work provides preliminary information on the nature of guest transport in MMCMs to aid
31 their future adaptation to industrially-relevant separation units.

32 **Keywords**

33 Molecularly-mixed composite membrane; Porous organic cage; Free volume; Polyimide;
34 Gas separations

35

36 **1. Introduction**

37 One of the most active areas of separations science is the development of new
38 microporous materials for challenging molecular separations. A recent development in this
39 field is the creation of porous organic cages (POCs).[1] Exemplar microporous material
40 classes include zeolites,[2] metal-organic frameworks,[3] or similar three-dimensional
41 network structures. In these materials, the porosity is derived from the formation of
42 extended network structures. In contrast, POCs form self-supported, intrinsic porosity that
43 does not require any higher-order structure; in essence, they are permanently microporous
44 molecules. Moreover, they are solution-processable. This characteristic can significantly
45 streamline the deployment of these materials into existing manufacturing networks as they
46 are unlikely to significantly disrupt existing solution processing techniques. Other classes

47 of organic molecules also have been noted to show intrinsic porosity.[4, 5] Notable
48 examples include pillar[n]arenes,[6] calix[n]arenes,[5] and urea-macrocycles.[7] In these
49 molecules, the opening into the guest-accessible cavity is often as wide as the cavity itself.
50 Therefore, the adsorption of guest molecules is controlled solely by the geometry and
51 chemistry of the cavity. On the other hand, cage molecules typically have windows that are
52 smaller than the internal cavity and can be used to control guest diffusion. Also, the cage
53 structure of POCs allows BET surface areas previously unobtainable (in some cases >2,000
54 m²/g) in non-network molecular solids.[1, 8, 9] Thus, POCs and similar cage molecules
55 allow much greater control over guest transport than other intrinsically porous molecules.
56 POCs can be formed by several different mechanisms such as boronic acid condensation
57 and alkyne metathesis but are most commonly formed via an imine condensation of amines
58 and aldehydes with complementary geometry.[10, 11] Since their creation, several studies
59 have demonstrated the ability of these materials to perform challenging separations.[12-
60 14]

61 As noted earlier, POCs are solution-processable individual molecules, which
62 provides many possibilities for the type of separation media and modality that these
63 materials can be integrated into. A notable advance is the development of thin film
64 composite (TFC) membranes from POCs by Cooper and co-workers.[15] Solutions of
65 CC3, CC13, and CC3 derivatives were processed onto porous substrates via spincoating to
66 create thin topcoats with only cage molecules. SEM images showed that the topcoats
67 created uniform, apparently non-defective membranes. Separation performance for several
68 gas pairs was tested and shown to have performance approaching Robeson's 2008 H₂/N₂
69 upper bound.

70 An application that we find to be especially intriguing is the potential for POCs to
71 be used in polymer-based composite materials. Several examples of this have already been
72 reported in the literature.[16-19] Most of these studies have focused on using POCs to
73 make mixed matrix membranes (MMMs) in which POC *crystals* are dispersed throughout
74 a polymer matrix. Niu and co-workers have created water purification membranes using
75 the POC Noria to interfacially synthesize polyarylate and polyamide MMMs. They
76 demonstrated that the presence of Noria in the membrane improved both water permeance
77 and salt rejection over the membranes without Noria.[17, 19] Computational work by
78 Doonan et al. further supports the ability of POC composite materials to improve
79 performance over their pure polymer counterparts.[20] An exciting application in using
80 POCs in composite membranes is the formation of molecularly-mixed composite
81 membranes (MMCMs).[21, 22] MMCMs take full advantage of the solubility of POCs to
82 make membranes that are “solid solutions” in which the POC *molecules* are
83 homogeneously dispersed throughout the polymer matrix. MMCMs have the benefit of
84 overcoming the compatibility issues seen in many composite materials[23] because the
85 filler phase is intertwined with the polymer matrix at a molecular level.[24] For this
86 application, POC derivatives, termed amorphous scrambled porous organic cage
87 (ASPOCs), may be more appropriate. ASPOCs are made by using a mixture of diamine
88 linkers in the cage synthesis to make different but isoreticular POCs. The steric hindrance
89 from the different linkers prevents efficient packing of the cages into coordinated structures
90 in the solid-state and leaves them as an amorphous powder.[25] The lack of long-range
91 order benefits both solubility and BET surface area compared to crystalline POCs.
92 MMCMs using ASPOCs and a commercial polyimide (Matrimid) have previously

93 demonstrated membrane homogeneity via Raman mapping, differential scanning
94 calorimetry, and other techniques. The composites also had both higher permeance and
95 rejection of polystyrene oligomers in a variety of solvents compared to native
96 Matrimid.[16]

97 Since ASPOC-based MMCMs are a relatively new type of composite material, we
98 believe that it is important to describe in detail our interpretation of molecular transport
99 processes through these membranes. In this work, we attempt to shed light on this
100 phenomenon by analyzing the results of gas permeation experiments through the lens of
101 plasticization/antiplasticization effects. We have previously shown that at low
102 concentrations, ASPOCs can act as antiplasticizers in glassy polymers; we believe this
103 occurs via the POCs wedging themselves between polymer chains and subsequently
104 inhibiting segmental motion.[16] Unlike a traditional free-volume occupying antiplasticizer,
105 the POC has a permanent void due to its internal cavity. Thus, the POC can potentially
106 affect both chain mobility (by reducing it) and increase the fractional free volume of the
107 resulting matrix. Hence, the approach to characterizing transport must be altered from
108 traditional antiplasticization methods. We will also show that conventional models for
109 estimating the permeability of composites, namely the Maxwell model, are not at all
110 suitable for MMCMs.

111 **2. Theory**

112 *2.1 The Sorption-Diffusion Model*

113 To study transport through MMCMs, it is necessary to start with the well-known
114 sorption-diffusion model.[26] Conceptually, the sorption-diffusion model states that for a
115 species to permeate through a membrane, it must adsorb to the upstream side of the

116 membrane, diffuse through the length of the membrane, and then desorb from the
117 downstream side, with the driving force provided by a chemical potential gradient across
118 the membrane. Mathematically, it is given by Equation 1,

$$\mathbb{P} = \mathbb{S} * D \quad (1)$$

119 where \mathbb{P} is permeability and is the product of \mathbb{S} , the solubility coefficient, and D , the
120 diffusion coefficient. Solubility and diffusion coefficients can be determined by
121 experiment. They can also be decomposed further to gain insight into the energetics of
122 transport. Since permeation is an activated process, it follows an Arrhenius-type
123 relationship with temperature, given in Equation 2.

$$\mathbb{P} = \mathbb{P}_0 \exp \left(-\frac{E_{\mathbb{P}}}{RT} \right) \quad (2)$$

124 In Equation 2, \mathbb{P}_0 is the permeation pre-exponential term and $E_{\mathbb{P}}$ is the activation energy
125 of permeation. By measuring permeation over a range of temperatures, we can calculate
126 the activation energy from plots of the natural log of the permeability vs. inverse
127 temperature. This information provides a useful metric for understanding the underlying
128 mechanisms of membrane transport for different penetrants.

129 Another important metric of membrane performance is selectivity. Selectivity is the
130 ratio of the respective permeabilities of two components. By combining this ratio with
131 Equation 1, Equation 3 is derived.

$$\alpha_{\frac{A}{B}} = \frac{\mathbb{P}_A}{\mathbb{P}_B} = \left(\frac{\mathbb{S}_A}{\mathbb{S}_B} \right) * \left(\frac{D_A}{D_B} \right) \quad (3)$$

132 Here, $\alpha_{\frac{A}{B}}$ is the permeation selectivity between component A and component B. From
133 Equation 3, it is clear that the separation of two components is ultimately driven by
134 differences in their sorption and diffusive behavior in the membrane. Hence, a thorough

135 understanding of sorption and diffusion behavior is necessary to understand membrane
136 transport fully.

137 *2.2 Molecular Fillers Influence on Membrane Free Volume*

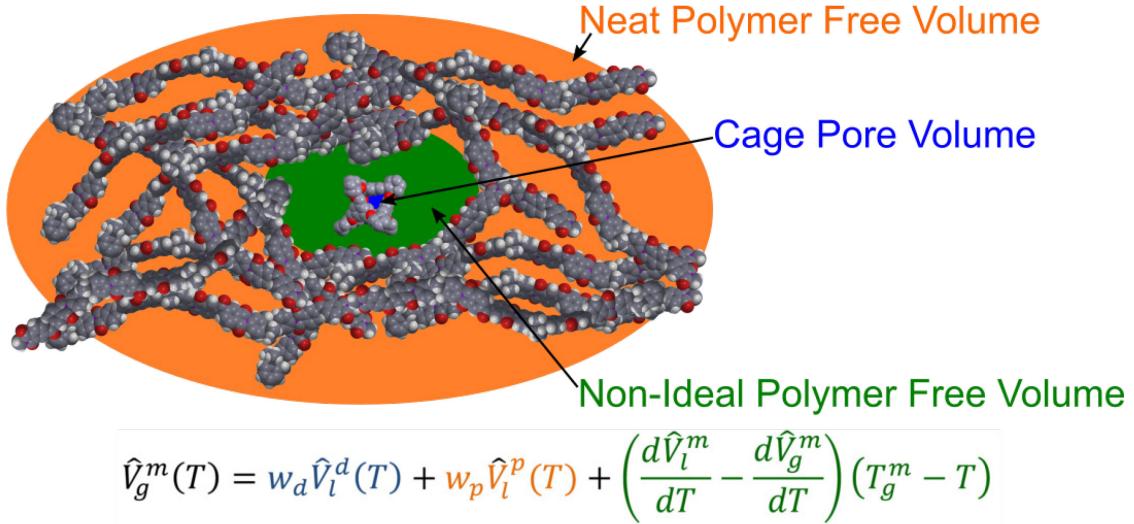
138 We hypothesize that the incorporation of molecular cage fillers into polymeric
139 membranes affects transport by two primary mechanisms commonly discussed in the
140 antiplasticization literature. Whereas plasticization indicates that a component present in a
141 membrane has increased chain mobility, elasticity, and permeability, antiplasticization
142 occurs when a diluent causes a reduction in chain mobility and permeability, thus
143 effectively “hardening” the polymer.[27, 28] The first antiplasticization effect of interest
144 is on the fractional free volume of the membrane. The generally accepted definition for the
145 fractional free volume is given by Equation 4.[29-31]

$$V_{FFV} = \frac{\hat{V} - \hat{V}_0}{\hat{V}} \quad (4)$$

146 Here, V_{FFV} is the fractional free volume of the native polymer, \hat{V} is the experimentally
147 measured specific volume, and \hat{V}_0 is the specific volume of the material at 0 K, in other
148 words, its theoretical minimum specific volume. \hat{V}_0 is determined from group contribution
149 methods. The most commonly used method is proposed by Bondi [32] and given in
150 Equation 5, although alternative methods by Sugden and van Krevelen are also commonly
151 employed.[33, 34]

$$\hat{V}_0 = 1.3 \sum_{k=1}^n (V_W)_k \quad (5)$$

152 Here, V_W is the van der Waals volume of various constituent groups on the polymer repeat
153 unit. From Equations 4 and 5 and some experimental observations, we can estimate the


154 fractional free volume of native polymers; however, this problem quickly becomes more
155 complex when the effects of diluents are considered.

156 It is useful to consider an estimation of the \hat{V} term in Equation 4, both for cases
157 when experimental observations may be unavailable and for understanding how low
158 molecular weight diluents affect polymer free volume. Some examples are equations
159 proposed by Vrentas[35] or a simplified version later proposed by Ruiz-Treviño and Paul
160 given in Equation 6.[36]

$$\hat{V}_g^m(T) = w_d \hat{V}_l^d(T) + w_p \hat{V}_l^p(T) + \left(\frac{d\hat{V}_l^m}{dT} - \frac{d\hat{V}_g^m}{dT} \right) (T_g^m - T) \quad (6)$$

161 Here, $\hat{V}_g^m(T)$ is the specific volume of the glassy mixture at a temperature, T , below the
162 mixture glass transition temperature, T_g^m , w_d is the weight fraction of diluent, $\hat{V}_l^d(T)$ is the
163 specific volume of the pure diluent in the equilibrium liquid state, w_p is the weight fraction
164 of polymer, $\hat{V}_l^p(T)$ is the specific volume of the pure polymer in the equilibrium liquid
165 state, and $\left(\frac{d\hat{V}_l^m}{dT} - \frac{d\hat{V}_g^m}{dT} \right)$ is the difference in the thermal expansion coefficients of the
166 mixture in the equilibrium liquid and glassy states, respectively. An illustration of how
167 Equation 6 is applied to the free volume of an MMCM system is shown in Figure 1. In
168 Figure 1, the orange highlighted area corresponds to regions of the polymer relatively
169 distant from a cage molecule. The free volume in these regions is assumed to be unchanged
170 from that of the neat polymer. The blue highlighted area is the pore volume of the cage
171 molecule. The green highlight area corresponds to polymer regions immediately

172 surrounding cage molecules. The free volume in these regions will deviate from that of the
 173 neat polymer due to non-ideal mixing between the cage and polymer.

174

175 Figure 1: Application of Equation 6 to the three “zones” of free volume in an MMCM
 176 system. We note that Equation 6 was originally formulated for describing specific
 177 volume but can be considered analogous for our description of free volume. The
 178 orange area represents the free volume of the neat polymer, assumed to be
 179 unchanged in polymer regions far away from a cage molecule. The blue area is
 180 the cage pore volume. The green area is polymer regions immediately surrounding
 181 cage molecules, which will be distorted from the neat polymer regions due to non-
 182 ideal mixing between the cage and polymer.

183

184 When utilizing Equation 6 in cases in which $\hat{V}_l^p(T)$ is not already known, it can be
 185 readily estimated from Equations 7, [36] 8, and 9.[34]

$$\hat{V}_l^p(T) = \hat{V}_g^p(T) + \left(\frac{d\hat{V}_g^p}{dT} - \frac{d\hat{V}_l^p}{dT} \right) (T_g^p - T) \quad (7)$$

$$\frac{d\hat{V}_l^p}{dT} = 1 * \frac{10^{-3} \hat{V}_W}{M} \quad (8)$$

$$\frac{d\hat{V}_g^p}{dT} = 0.45 * \frac{10^{-3}\hat{V}_W}{M} \quad (9)$$

186 M is the molecular weight of the polymer repeat unit. Equation 7 can also be applied to
 187 diluents, although it was originally in the context of low molecular weight diluents like
 188 polymer oligomers. It is unclear whether the concepts of “glassy” or “equilibrium liquid”
 189 states can be applied to ASPOC diluents, given their relatively rigid structures. Therefore,
 190 we propose Equation 10 for the estimation of the \hat{V}_l^d term in Equation 6.

$$\hat{V}_l^d(T) \cong \hat{V}_{c,s}(T) \cong \hat{V}_c(T) - \hat{V}_{c,p}(T) \quad (10)$$

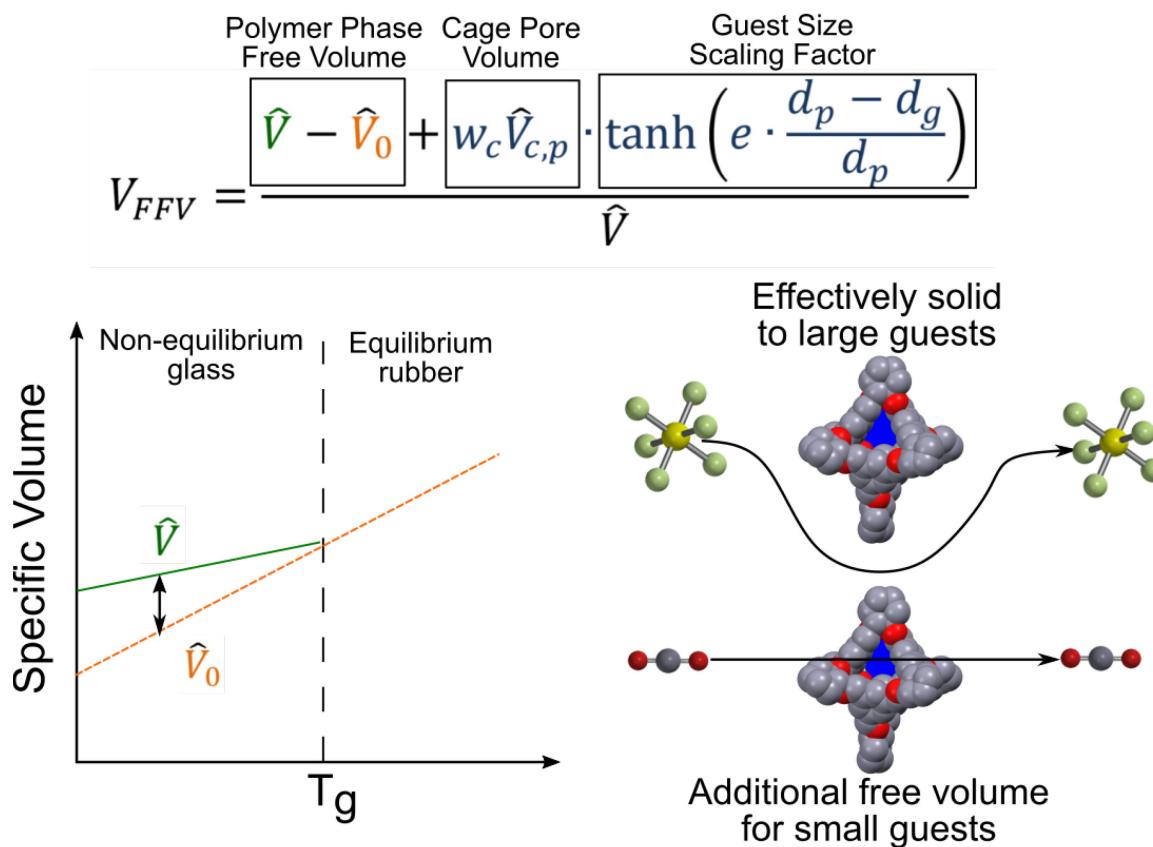
191 In Equation 10, $\hat{V}_{c,s}(T)$ is specific volume occupied by the cage skeleton at temperature T ,
 192 $\hat{V}_c(T)$ is the total molecular volume of the cage at T , and $\hat{V}_{c,p}(T)$ is the volume of the
 193 internal cage pore (easily determined from diffraction and sorption measurements). \hat{V}_c and
 194 $\hat{V}_{c,p}$ are both commonly reported parameters in computational studies of POC structures
 195 that should provide a reasonable estimation of the skeletal cage volume, or $\hat{V}_{c,s}$ can be
 196 measured directly from density measurements. To complete our calculation of Equation 6,
 197 we make the assumption that the thermal expansion of the mixture is approximately equal
 198 to that of the polymer so that we arrive at the same approximation used by Ruiz-Treviño
 199 and Paul.

$$\left(\frac{d\hat{V}_l^m}{dT} - \frac{d\hat{V}_g^m}{dT} \right) \cong \left(\frac{d\hat{V}_l^p}{dT} - \frac{d\hat{V}_g^p}{dT} \right) \quad (11)$$

200 With the use of Equation 6 to estimate \hat{V} and by taking a weighted average of the
 201 \hat{V}_0 values for the diluent and polymer, we can nearly estimate the fractional free volume
 202 with Equation 4; however, Equation 4 does not consider the effects of diluents with
 203 intrinsic porosity. Direct use would underestimate the FFV of ASPOC-filled MMCMs

204 because the pore volume of the cage is neglected. Hence we propose a slightly modified
 205 version of Equation 4 that accounts for the pore volume and the fact that the rigidity of the
 206 cage will exhibit some sieving effect on guest molecules.

$$V_{FFV} = \frac{\hat{V} - \hat{V}_0 + w_c \hat{V}_{c,p} \cdot \tanh\left(e \cdot \frac{d_p - d_g}{d_p}\right)}{\hat{V}} \quad (12)$$


207 Here, d_p is the diameter of the cage window, d_g is the kinetic diameter of the guest, and
 208 w_c is the weight fraction of the cage present in the membrane. Although FFV is usually not
 209 calculated in the context of the specific guest molecule under investigation, Park and
 210 Paul[37] have previously demonstrated how consideration of guest effects can be useful
 211 for interpreting permeability data. We believe that it will be particularly important in this
 212 context due to potential sieving properties of the cage molecules. Figure 2 illustrates our
 213 hypothesis of how free volume should be considered for intrinsically porous molecular
 214 fillers. The $\tanh\left(e \cdot \frac{d_p - d_g}{d_p}\right)$ term in the numerator of Equation 12 provides a simple scaling
 215 factor to account for the relative sizes of the guest and cage windows. This term of course
 216 converges to unity in the limit of no guest and approaches zero as the size of the guest and
 217 window approach each other. As the guest size surpasses the window size, the term
 218 approaches negative one because the pore volume is now mostly inaccessible to the guest,
 219 and the cage is effectively a solid sphere that is occupying otherwise available free volume
 220 elements. We note that the proposed functional form was not derived on any theoretical
 221 basis but should empirically capture the relationship between the accessible free volume of
 222 the cage and guest molecule size. The tanh function was selected instead of a step function
 223 because it smoothly passes through zero instead of considering the cage pore volume in a
 224 binary manner of accessible or inaccessible. This distinction is likely unimportant for guest

225 molecules that are either much smaller or much larger than the cage window but should
226 better represent the accessible free volume available to guests that are close in size to the
227 cage window. Guests that are slightly smaller than the pore window are still considered
228 able to access the free volume, but it will be more challenging because the activated process
229 of jumping through the window will become more difficult than for a much smaller guest.
230 Conversely, if guests are slightly larger than the nominal window size, they may still
231 occasionally access the pore interior due to cage flexibility, so it would be incorrect to
232 assume the cage is completely inaccessible.[13, 38, 39]

233

234

235

236

237 Figure 2: Illustration of the molecular sieving free volume considerations expressed
238 in Equation 12. $\hat{V} - \hat{V}_0$ represents the total free volume of the polymer phase,
239 which is the result of thermal expansion of the polymer from its ideal specific
240 volume at 0 K, as shown in the image in the lower left. The image on the lower
241 right illustrates how the cage will exhibit a sieving effect on guest molecules, so
242 molecular size must be considered to determine in the cage pore volume should
243 be included in free volume calculations or not. The cage will effectively act as a
244 solid impediment to large guests but can be easily accessed by smaller guests.

245

246 2.3 Molecular Fillers Effects on Polymer Chain Mobility

247 While the free volume effect will be important in characterizing the transport effects of
248 molecular fillers, we believe that it alone will be insufficient.[40] The second mechanism

249 by which ASPOC fillers influence transport is by affecting the mobility of polymer chains.
250 For a permeate to diffuse through a polymer membrane, elements of the chain must have
251 sufficient mobility to allow permeates sufficient space to make a diffusive jump.[30, 41]
252 Antiplasticizers, in addition to their free volume effects, can also lower the energy barriers
253 of secondary relaxations through attractive interactions with the polymer chains.[42-44]
254 This mechanism allows the chains to settle into configurations that are closer to their
255 equilibrium configurations, which of course, raises the energy penalty for shifts to
256 configurations that facilitate penetrant transport. Polymer relaxations are typically referred
257 to as α , β , γ , etc. in order of decreasing temperature. The α relaxation is indicative of large-
258 scale chain movement that is typical of the glass to rubber transition. β relaxations in glassy
259 polymers typically correspond to the relaxation of non-equilibrium packing defects. The γ
260 and lower order relaxations are attributed to motions of single repeat units or various
261 functional groups on repeat units.[45, 46] Clearly, for operation below the glass transition
262 temperature, the nature of the β and lower-order relaxations will be of primary importance.
263 We can measure the onset of these various relaxations with dynamic mechanical analysis

264 *2.4 Net Effect of Molecular Fillers on Transport*

265 Now that we have established the tools with which to study the effects on membrane
266 transport of adding molecular fillers and their effects on free volume and chain mobility,
267 we will hypothesize how these changes affect membrane sorption and diffusivity. We first
268 consider how these hypotheses would affect sorption with the well-known dual-mode
269 adsorption model, shown in Equation 13.

$$\mathbb{S} = k_D p + \frac{C'_H bp}{1 + bp} \quad (13)$$

270 Here, k_D is the Henry's law constant, p is sorbate pressure (or equivalently concentration),
271 C'_H is the Langmuir capacity constant, and b is the Langmuir affinity constant. The dual-
272 mode model assumes that sorption takes place by two mechanisms, one in which the
273 sorbate is dissolved and governed by Henry's law, and one which occurs in microvoids and
274 is governed by the Langmuir isotherm.[47] Since the Langmuir capacity is the maximum
275 amount of sorbate that can sorb in the microvoids, it should be positively correlated with
276 the free volume.[48] Similarly, we expect the Henry's and affinity terms to be positively
277 correlated with chain mobility, as more mobile chains should be able to better position
278 themselves for favorable sorbate interactions. This is borne out in previous work, where all
279 dual-mode parameters were found to decrease at low antiplasticizer loadings.[49] In our
280 case of using an intrinsically porous antiplasticizer, we expect that the porosity of the filler
281 will counteract this reduction at low loadings to increase net solubility. We note we will
282 not be able to decouple the individual Henry's and Langmuir coefficients of the polymer
283 and filler. We will only be able to observe the overall coefficients of the composite.

284 We now consider the effects of the ASPOC filler on diffusion. Estimation of the
285 permeability and diffusion coefficient through a polymer membrane is well-established in
286 the literature and usually takes an exponential form, as shown in Equation 14.[29, 50-52]

$$D = A * \exp\left(-\frac{B}{FFV}\right) \quad (14)$$

287 Although Equation 14 provides a useful correlation for many polymer-penetrant
288 combinations, free volume alone has been shown to be insufficient for correlating
289 permeation and diffusion in some cases.[45, 53] In these cases, we believe that the
290 dynamics of chain mobility may not be adequately considered. Koros and co-workers have
291 noted a higher diffusivity of oxygen in PET compared to PEF, even though PEF has a

292 higher FFV. They attribute this to the higher mobility of the phenyl ring-flipping in PET
293 compared to the furan moiety in PEF.[30] Relating this general concept back to the current
294 work, we predict that diffusion through the polymer phase will be initially retarded at low
295 ASPOC loadings due to increasing chain rigidity, but may increase at higher cage loadings
296 due to net free volume increases.

297 **3. Materials and Methods**

298 *3.1 Materials*

299 Matrimid 5218 was purchased from Ribelin. Commercially-available reagents were
300 used as received: 1,3,5-benzenetricarbaldehyde (Manchester Organics); (1R,2R)-1,2-
301 cyclohexanediamine, ethylenediamine, and trifluoroacetic acid (TFA) (Sigma Aldrich).

302 *3.2 CC3 Synthesis*

303 CC3 was prepared as previously reported in its homochiral form.[54] Dichloromethane
304 (100 ml) was layered slowly onto solid triformylbenzene (TFB, 5 g, 30.86 mmol) without
305 stirring at room temperature. Trifluoroacetic acid (1 mL) was added directly to this solution
306 as a catalyst for the imine bond formation. Finally, a solution of (R,R)-1,2-
307 diaminocyclohexane (5 g, 44.64 mmol) in dichloromethane (100 mL) was added to this,
308 again without mixing. The reaction was covered and left to stand. Over 5 days, all of the
309 solid triformylbenzene was used up, and octahedral crystals of CC3 grew on the sides of
310 the glass reaction vessel. The crystalline product was removed by filtration and washed
311 with 95 % ethanol / 5 % dichloromethane.

312 *3.3 ASPOC Synthesis*

313 ASPOC was prepared using a procedure described previously.[10] As-synthesized CC3
314 (1 g, 0.894 mmol) was dissolved in 100 mL DCM. Ethylenediamine (EDA) (0.269 g, 4.47

315 mmol) was dissolved into a separate container of 100 mL DCM. A catalytic amount (0.02
316 g, 2 mole % relative to the number of imine bonds in the original CC3)[55] of TFA was
317 added to the EDA solution as a catalyst. The two solutions were combined into a round
318 bottom flask and stirred at room temperature for seven days. After seven days, the product
319 was isolated by rotary evaporation. The product was immersed in ethyl acetate for three
320 days, replacing with fresh solvent each day, and then dried at 100 °C under a vacuum
321 overnight.

322 *3.4 Scanning Electron Microscopy (SEM)*

323 SEM was performed on a Hitachi SU8010. Cross-sections of membranes were
324 prepared by cryo-fracturing. A small portion of the membrane was soaked in hexane for
325 approximately 15 min then submerged in liquid nitrogen for 5-10 minutes. The membrane
326 portion was broken in two, and the broken edge was placed facing upward on the sample
327 stub. Samples were sputtered with gold using a Quorum Q-150T ES prior to imaging.
328 Images were taken at a working voltage of 5 kV and a current of 10 mA.

329 *3.5 X-ray Diffraction*

330 X-ray diffraction was performed with PANalytical X’Pert PRO Alpha-1 at 40kV and
331 40 mA with Cu-K α radiation of 1.54184 Å over a 2 θ range of 3° to 50°. Samples were
332 mounted onto a silicon zero background holder. The step size was 0.0041778°, and the
333 scan time was 10.160 s/step.

334 *3.6 Pycnometry*

335 Membrane density was measured via pycnometry and performed by Micromeritics on
336 an AccuPyc II 1340 at room temperature with nitrogen. Fractional free volume was
337 calculated using Eqs. 12 and 5. A weighted average of polymer and cage specific volumes

338 was used to determine the \hat{V}_0 term in Eq. 12. The cage volume was determined from a
339 weighted average of the conformations in the cage mixture based on previous results.[10]

340 *3.7 Thermoelastic Properties*

341 Young's modulus measurement and dynamic mechanical analysis (DMA) were
342 performed on a TA Q800. For both experiments, a strip of membrane approximately 3 cm
343 x 0.3 cm was used. For determining Young's modulus, a static force of 0.001 N and ramp
344 force of 0.1 N/min at 25 °C was used. For DMA, a constant frequency of 1 Hz and
345 temperature ramp method was used with a 0.1% strain over the temperature range -135-
346 400 °C with a 3 °C/min ramp rate. Dynamic scanning calorimetry was performed on a
347 Netzsch STA 449F3 under nitrogen. Samples were cycled from 50-350 °C at 10 °C/min
348 under nitrogen three times. Data from the second ramp to 350 °C was used to determine
349 the glass transition temperature.

350 *3.8 Gas Sorption Measurements*

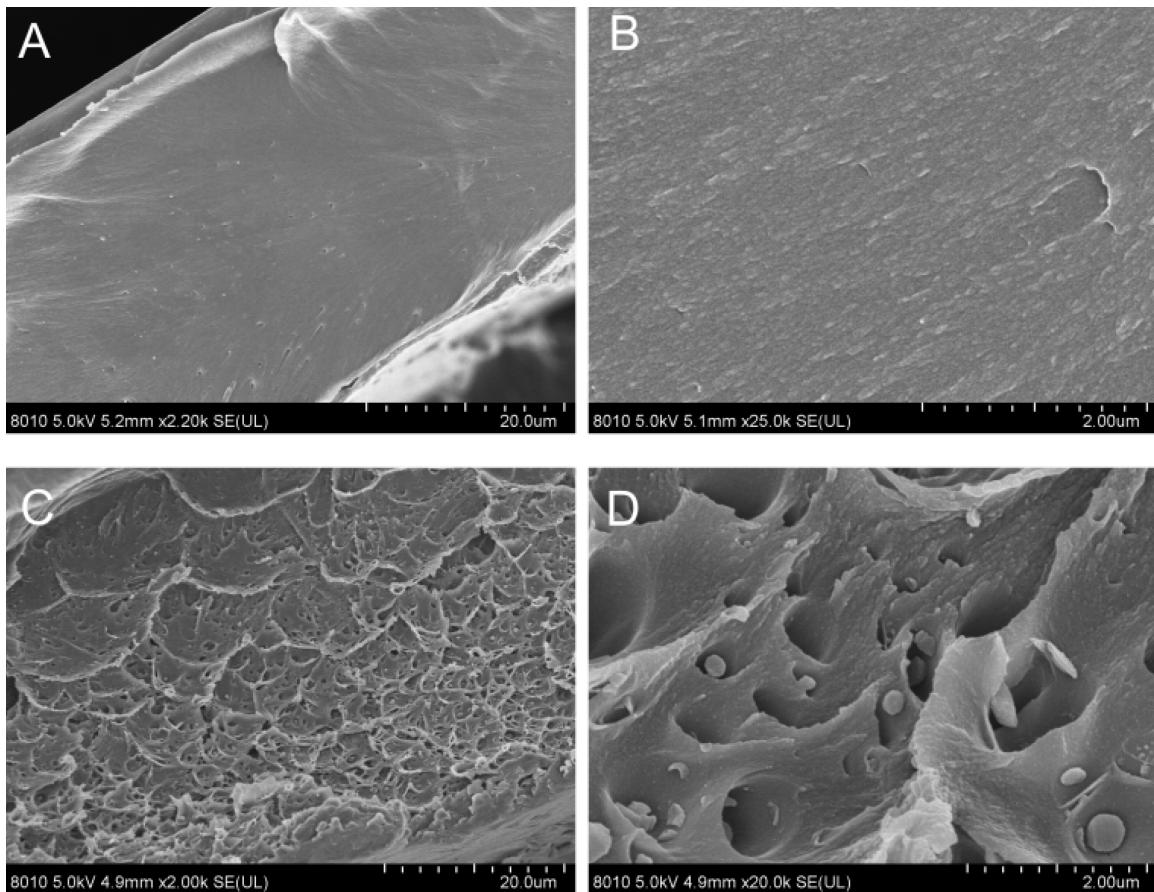
351 Equilibrium and kinetic gas sorption measurements of carbon dioxide and nitrogen
352 were measured between 0 and ~75 psi in a pressure decay sorption apparatus at 35 °C using
353 approximately 20 mg of membrane samples. A constant testing temperature was obtained
354 by submerging the sample cell in an oil bath. Sample densities measured from helium
355 pycnometry were used in calculations. All gases were assumed to be ideal for the purposes
356 of calculation.

357 *3.9 Gas Permeation Measurements*

358 Permeation of nitrogen, helium, sulfur hexafluoride, and carbon dioxide was measured
359 in a constant volume, variable pressure permeation system at 25, 35, and 45 °C.
360 Permeability was calculated with the slope (after ten lag times) of the permeate pressure

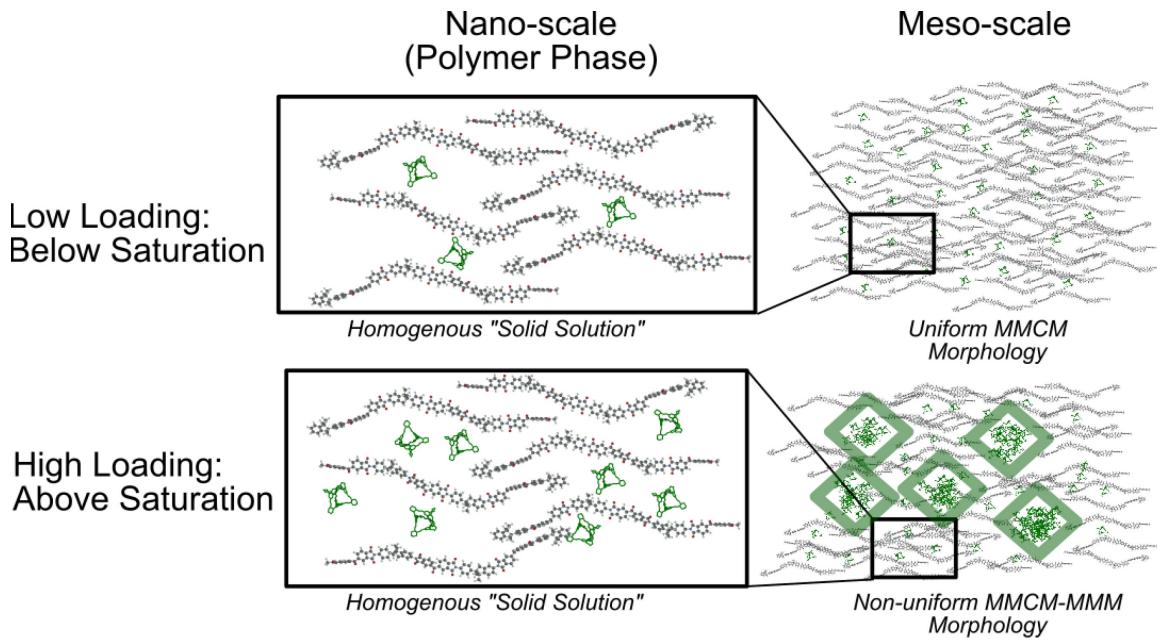
361 vs. time, $\frac{dp}{dt}$, membrane thickness, ℓ , downstream volume, V , membrane area, A ,
362 temperature, T , and transmembrane pressure difference, Δp using Equation 14:

$$\mathbb{P} = \frac{\frac{dp}{dt} \cdot \ell \cdot V}{A \cdot T \cdot \Delta p} \quad (14)$$


363 An upstream pressure of approximately 75 psi was applied for all measurements.

364 4. Results and Discussion

365 4.1 Membrane Morphology


366 The morphology of the membranes was first investigated to determine if aggregates of
367 cage particles were forming in the membranes. The membranes were visually inspected
368 with SEM as shown in Figure 3. As seen in Figure 3B, the membrane morphology is
369 apparently homogenous up to a magnification of 25,000x at cage loadings of up 5 wt%.
370 Above this loading, globules, presumably of agglomerated cage molecules, are observed
371 in Figure 3C-D. The images suggest that there is a *precipitation point* of the cage within
372 the polymer, above which any additional cage will “crash out” upon membrane
373 vitrification. This observation agrees with previous observations in which the
374 agglomeration of cages at high loadings was hypothesized.[22] In Figure 3C, it appears
375 that there may also be some settling of cage particles during the vitrification process. Based
376 on additional experimental work to be described later in the article, we hypothesize that
377 membranes above the saturation loading form a combined MMCM-MMM morphology in
378 which some ASPOC remains homogeneously dispersed within the polymer phase at the
379 nano-scale but agglomerates from the addition of cage above the saturation loading create
380 a more traditional MMM morphology at the meso-scale (i.e., the cage “precipitates out”).
381 An illustration of this hypothesis is provided in Figure 4. As shown in the figure, when

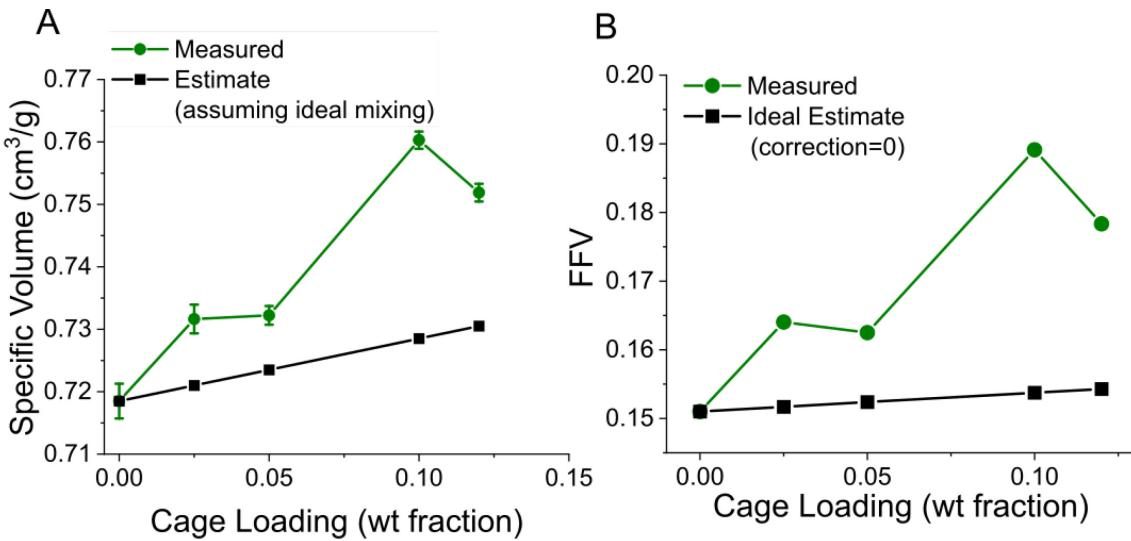
382 considering the polymer phase at the nano-scale, the ASPOCs (green) are homogeneously
383 dispersed and maintain a “solid solution” morphology at all loadings, although the amount
384 of cage dispersed throughout the polymer obviously increases. At the meso-scale, the
385 membrane maintains a uniform MMCM morphology at low loadings; however, as the cage
386 loading passes the saturation point within the polymer, agglomerates form throughout the
387 membrane. The result is a more traditional MMM morphology. The MMCM-MMM may
388 or may not exhibit some of the classical interfacial issues commonly associated with
389 MMMs.[56] Based on the images in Figure 3B, it appears that our system leads to a “sieve
390 in a cage” defect around the cage agglomerates, which we expect will lead to a decline in
391 membrane selectivity.

392

393 Figure 3: SEM images of membranes with incorporated ASPOCs. A) and B)
394 Membrane that is 5 wt% ASPOC. C) and D) Membrane that is 10 wt% ASPOC

395

396 Figure 4: Graphic illustrating the dispersion of ASPOCs in the membrane at
 397 different scales and loadings. Polymer chains are in gray and ASPOCs in green.
 398 In the upper part of the figure, the MMCM maintains a homogeneous morphology
 399 at both the meso- and nano-scales at low loadings. Once the cage “saturation
 400 point” is passed in the lower part of the figure, cage agglomerates precipitate out.
 401 Cages are hypothesized to remain homogeneously dispersed throughout the
 402 polymer phase at the nano-scale (lower left). At the meso-scale, cage aggregates
 403 form a combined “MMCM-MMM” morphology. Note that the relative sizes of cages
 404 and polymer chains are not to scale.
 405


406 There is also the possibility that the presence of cages might affect polymer chain
 407 packing at higher loadings.[22] This hypothesis was further probed with wide-angle X-ray
 408 diffraction, shown in Figure S1. The primary reflection at approximately 15° corresponds
 409 to an average interchain spacing of $\sim 7.5 \text{ \AA}$, relatively close to the spacing measured for
 410 similar polyimides.[57] The spacing varies little across the membranes regardless of
 411 loading, suggesting that cages do not impact the average interchain spacing. We speculate
 412 that this spacing is apparently close enough to the cage molecular diameter ($\sim 10 \text{ \AA}$)[54]
 413 that the cages can sit between chains without increasing their average spacing.

414 *4.2 Membrane Free Volume*

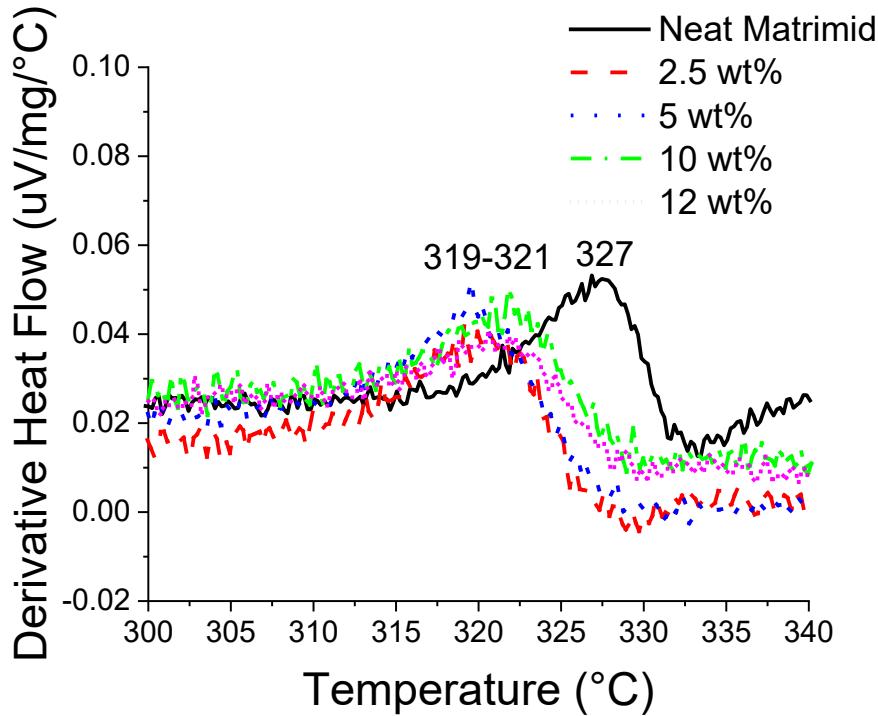
415 Free volume is an important parameter for understanding guest transport in dense
416 membranes. Therefore, we investigated the specific volumes and fractional free volumes
417 of several membranes of varying ASPOC loadings with nitrogen pycnometry. The results
418 are shown in Figure 5. Estimates that assume ideal mixing between the two phases were
419 calculated using Equation 15.

$$\hat{V}_{ideal} = w_c \hat{V}_{c,s} + (1 - w_c) \hat{V}_p \quad (15)$$

420 Equation 15 represents a weighted average of the experimental, individual specific
421 volumes of the ASPOC and neat Matrimid (and thereby assuming ideal mixing between
422 the two phases) for the specific volume. As seen in Figure 5A, all membranes present a
423 large, positive deviation from ideal mixing behavior. This result is unexpected as previous
424 work with similar, although not the same, POCs has found that they behave like traditional
425 antiplasticizers.[16, 58] The enhanced specific volume effect carries over to the FFV
426 results in Figure 5B. The data reported in Figure 5B were calculated using Equation 12.
427 FFV follows the same trend as specific volume, leading to much higher FFVs than
428 expected. The cages apparently create more free volume within the membrane than
429 expected from a simple weighted average of the neat polymer and cage FFVs. The large
430 discrepancy between the experimental and ideal mixing FFV scenarios also demonstrates
431 how the cages add little additional volume at the low loadings investigated. Instead, their
432 primary mechanism of altering membrane properties seems to be through their effects on
433 the bulk polymer phase.

434

435 Figure 5: ASPOC-MMCM free volume measurements. A) MMCM specific volume.
 436 Experimentally-measured values are indicated with green circles. Estimates using
 437 a weighted average of the experimental specific volumes of the ASPOC and neat
 438 Matrimid and assuming ideal volume additivity are indicated with black squares.
 439 B) Fractional free volume calculated with Equations 5 and 12 using results in A.
 440 Green circles represent FFV calculated using the experimentally-measured
 441 specific volume and black squares represent estimates that assume ideal mixing
 442 and use Equation 15.

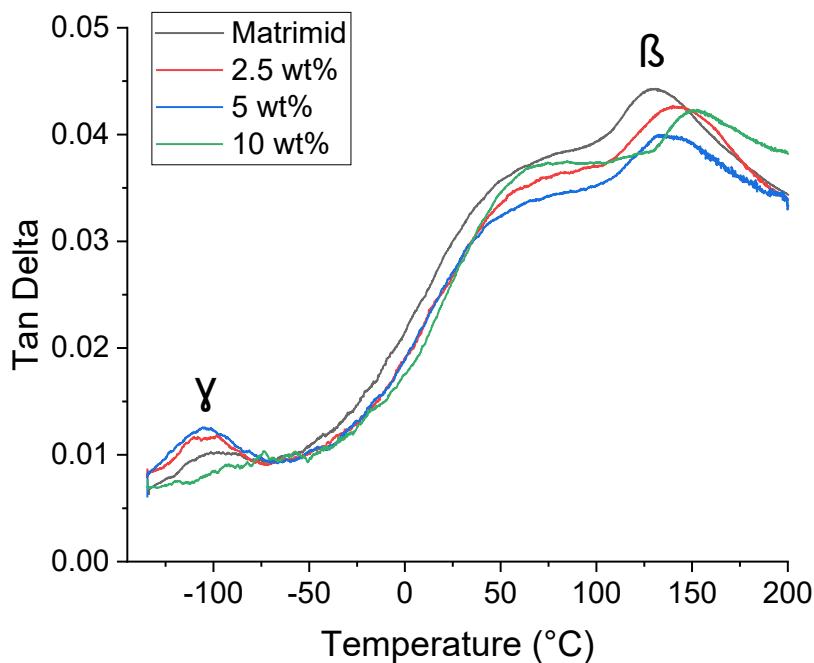

443

444 *4.3 Mechanical/Thermoelastic Properties*

445 The thermoelastic properties of the membrane can provide some insight into its
 446 transport behavior. Therefore, we investigate the stress-strain behavior, glass transition
 447 temperature, and lower order chain motions with DSC and DMA. The stress-strain
 448 behavior and corresponding Young's modulus of several membranes of varying ASPOC
 449 loading are shown in Figure S2. In Figure S2, we observe that adding a small amount of
 450 ASPOC to the polymer initially makes the membrane less rigid, as evidenced by the more
 451 gradual stress-strain response and lower Young's modulus. As the cage loading increases
 452 above 2.5 wt%, the membrane apparently becomes more rigid. Although not enough to
 453 affect the average interchain spacing, it appears that the addition of a small amount of cage

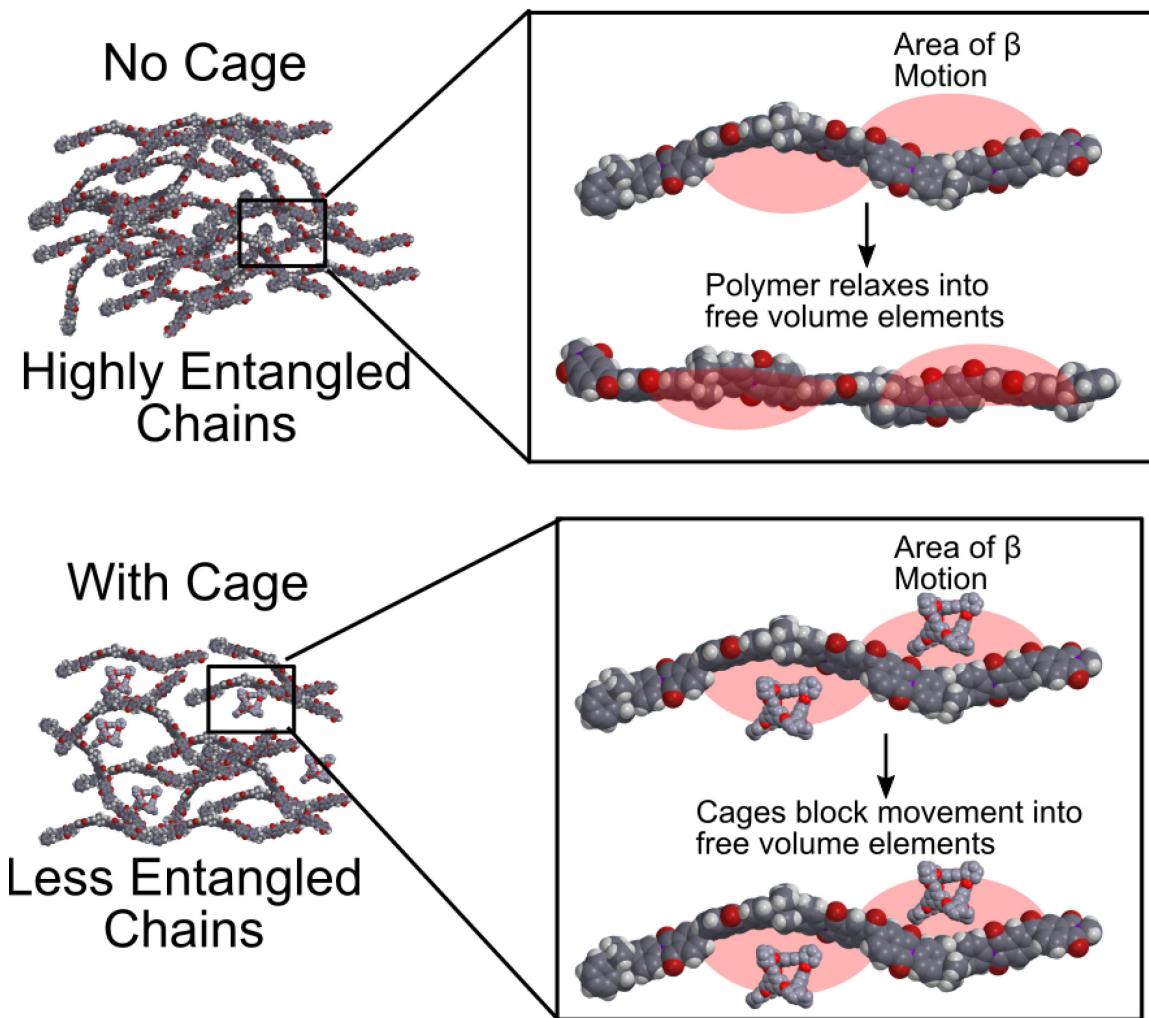
454 filler disrupts interactions between polymer chains to make them more mobile. As more
455 cage is added, we hypothesize that attractive interactions between the cage and polymer
456 re-constrict bulk chain mobility to close to original levels.

457 Increased mobility in the polymer phase is further supported by the measurement
458 of the glass transition temperature (T_g) with dynamic scanning calorimetry, shown in
459 Figure 6. Neat Matrimid exhibits a T_g of 327 °C. Once ASPOC is added, the T_g shifts 6-8
460 °C downwards for all membranes, indicating that the cages are indeed acting as plasticizers.
461 This result was unexpected since previous work from our lab suggests that POCs typically
462 act as antiplasticizers that restrict chain mobility when incorporated into membranes.[16]
463 Recent computational work has illustrated how variations in cage chemistry can lead to
464 significant differences in membrane properties and performance,[58] so the difference is
465 likely due to the different ASPOC formulation used in this work. This discrepancy
466 underscores the impact of cage chemistry on the final membrane properties. The large-
467 scale increases in chain mobility caused by plasticization are also likely responsible for the
468 “softening” behavior observed in Figure S2. Interestingly, the T_g does not follow the
469 pattern of an initial reduction followed by a gradual increase observed in the Young’s
470 modulus, or if it does, it is much more subtle.


471

472 Figure 6: Dynamic scanning calorimetry curves of MMCMs of various weight
 473 loadings. Note that the derivative of heat flow with respect to temperature is shown
 474 to highlight where the inflection point indicating the glass transition occurs.

475

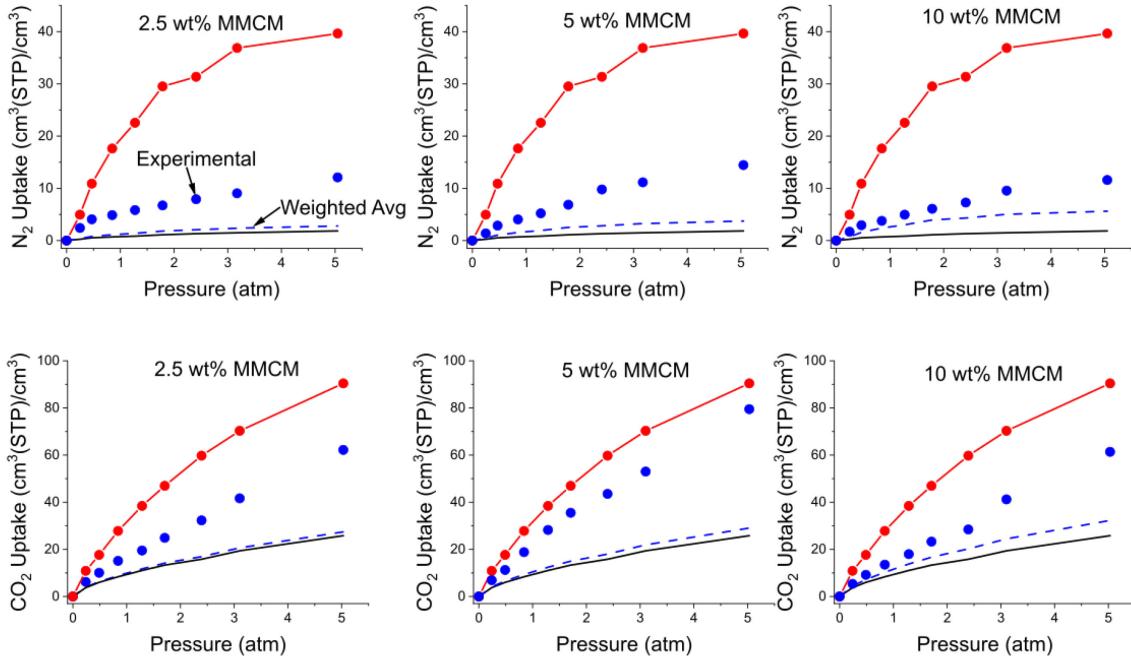

476 We are also interested in chain mobility at smaller scales relevant to the diffusion
 477 of guest molecules through the membrane. We probed the mobility of β and γ chain
 478 motions with dynamic mechanical analysis at 1 Hz, shown in Figure 7. First, looking at the
 479 β motion around 140 °C, we observe that the peak of the neat Matrimid curve occurs at
 480 131 °C. When a small amount of ASPOC is added, the transition shifts upward to 4-19
 481 depending on the cage loading. In the γ transition range, there appears to be a slight
 482 decrease in the transition temperature in the MMCMs relative to neat Matrimid, although
 483 the experiments are not sensitive enough to be definitive. The increase in the β transition
 484 temperature with cage loading is surprising since it displays the opposite trend observed
 485 for the T_g . A hypothesis for this contradictory behavior is shown in Figure 8. The top part

486 of the figure illustrates the neat polymer scenario where chains are highly entangled at the
487 macro-scale, leading to more rigid viscoelastic properties, as observed in Figure S2 and
488 Figure 6. At the nano-scale, chain segments are able to easily relax into free volume
489 elements via the β transition. The bottom part of the figure illustrates our hypothesis when
490 molecular fillers are introduced into the polymer. At the macro-scale, we hypothesize that
491 attractive interactions with the cages partially “untangle” chains relative to the neat
492 polymer. Less entangled chains would presumably have more freedom for the large-scale
493 movements associated with the glass transition, resulting in a lower T_g . We emphasize that
494 the degree of order imposed by the cages is highly exaggerated for clarity in the figure and
495 does not reflect physical reality. At the nano-scale, the molecular fillers block chain
496 movements and prevent relaxation into free volume elements.

497

498 Figure 7: MMCM elastic behavior from DMA at 1 Hz

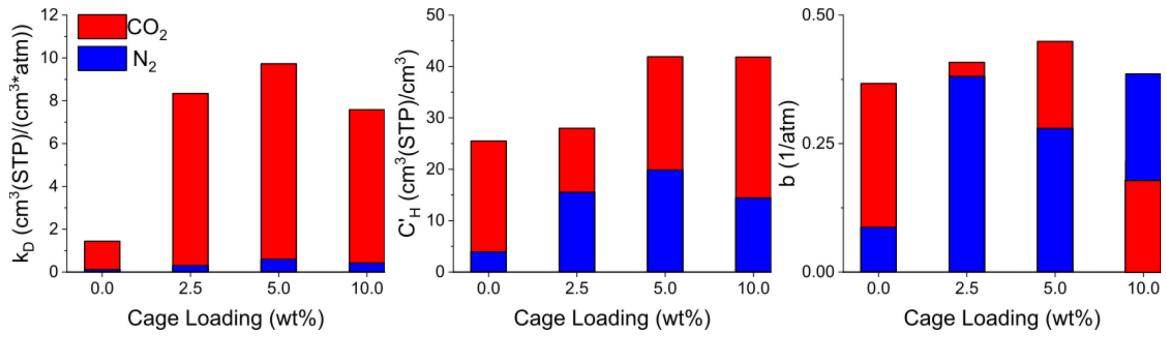
499


500 Figure 8: Hypothesis of the effects that molecular fillers have on polymer chain
 501 dynamics at varying length scales. (Top) The no cage scenario with highly
 502 entangled chains at the macro-scale that can freely relax into free volume elements
 503 via β chain motions. (Bottom) Cage presence resulting in less entangled chains at
 504 the macro-scale and cages blocking movements into free volume elements at the
 505 nano-scale. We emphasize that the “untangling” effect is highly exaggerated in the
 506 figure to more effectively illustrate the hypothesis.

507

508 *4.4 Gas Sorption*

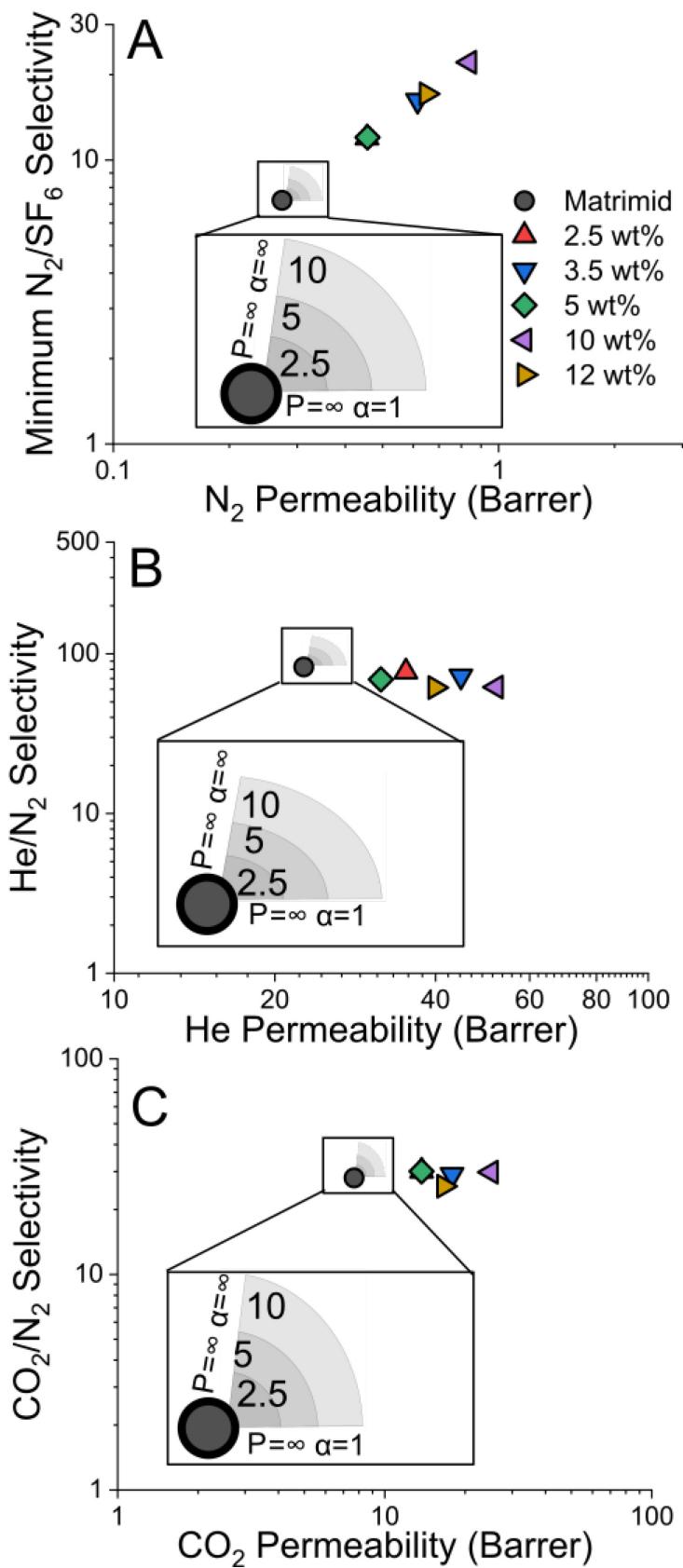
509 As stated earlier, it is important to understand the nature of guest sorption to
 510 characterize membrane transport. Isotherms of nitrogen and carbon dioxide at 35 °C are


511 shown in Figure 9 (top and bottom, respectively). For both gases, we observe that the
512 experimental sorption is far above the weighted average estimate. The excess sorption is
513 likely a result of the enhanced FFV observed earlier, creating more sorption sites. Another
514 interesting aspect is the degree of sorption increase in the MMCMs relative to Matrimid.
515 MMCM N₂ sorption increases by a factor of 5-7. CO₂ only increases by a factor of 2-3,
516 although total sorption remains much higher than N₂. This can partially be explained by
517 guest sorption in the cage sites. The ASPOC exhibits a relatively low CO₂/N₂ sorption
518 selectivity at 5 atm of approximately 2.25, while Matrimid has a much higher selectivity
519 of about 12. Hence, the cages appear to add a significant amount of non-selective sorption
520 capacity to the membrane, both within the cages themselves and by creating additional
521 sorption sites throughout the polymer. In all of these membranes, the ASPOC only
522 comprises a small amount of the total material (< 3 vol%). Even though the cage may be
523 able to adsorb more sorbate per unit mass, the polymer comprises such a large fraction of
524 the membrane that contributions of the ASPOC are negligible in comparison. Therefore,
525 we must focus on how the cage affects the interaction between the sorbate and polymer to
526 understand the implications of the sorption results.

529 Figure 9: Gas sorption isotherms of nitrogen (top) and carbon dioxide (bottom)
 530 from 0 to 5 atm at 35 °C. Points indicate experimental measurements. The blue
 531 dotted line denotes the estimated adsorption based on a weighted average of the
 532 adsorption of Matrimid (solid black line) and ASPOC (splined red circles).

534 To gain more insight into the gas-membrane sorption interactions, we fit the isotherms
 535 in Figure 9 to Equation 13. The results are presented in Figure 10. For the Henry's constant,
 536 we observe a large increase in the case of CO₂. This increase is likely due to the "softening"
 537 of the polymer observed in Figure S2 and the lowering of the T_g, resulting in a more rubbery
 538 polymer. Sorption in rubbery polymers is well documented to follow Henry-type
 539 sorption,[48] so it is sensible that this term would increase relative to the neat polymer. The
 540 Langmuir capacity is observed to greatly increase for both N₂ and CO₂, although more for
 541 nitrogen relative to the neat polymer value. This result suggests that more micropore
 542 sorption sites of lower selectivity are available. The value of C'_H has been shown to be

543 highly correlated to membrane free volume,[59] so the increase for both gases is likely
 544 caused by the large increases in FFV seen in Figure 5. The Langmuir interaction parameter
 545 of N₂ significantly increases in the MMCMs relative to the neat polymer, likely due to
 546 much stronger sorption inside the cages. The Langmuir capacity term of CO₂ does not vary
 547 much between the MMCMs and the neat polymer since both Matrimid and the cages
 548 exhibit a high affinity for CO₂.


549
 550 **Figure 10: Dual-mode parameter values for CO₂ and N₂ of MMCMs at various cage
 551 loadings.**
 552

553 4.5 Gas Permeation

554 Finally, we investigated the gas transport properties of MMCMs at various weight
 555 loadings. Graphs showing the permeability and selectivity of several gas pairs are shown
 556 in Figure 11. All measurements in Figure 11 were performed at 35 °C in a constant volume
 557 permeation system on pure gases. Permeability error bars were made with three
 558 measurements on the same membrane, and propagation of error was used to calculate
 559 selectivity error. We also include grayscale cones indicating the range of predictions by the
 560 well-known Maxwell model (Equation 16) for mixed matrix membranes.[56]

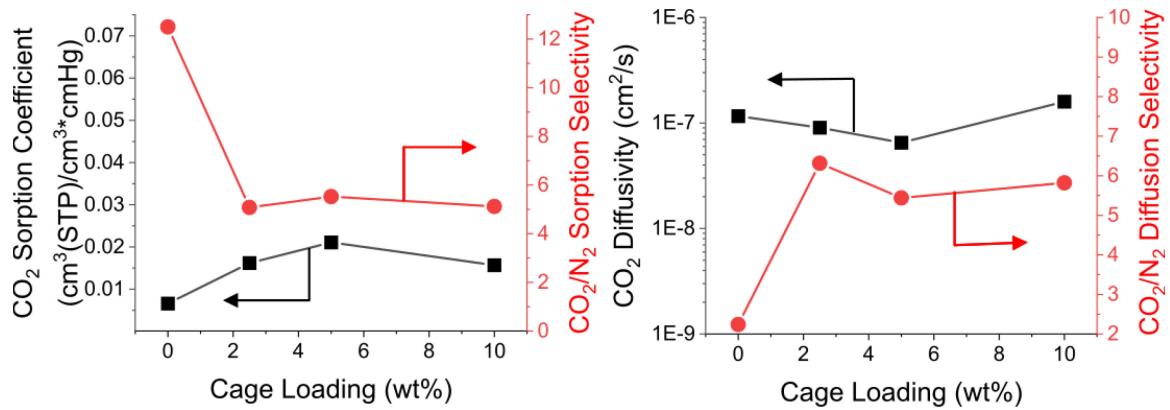
$$\mathbb{P}_{eff} = P_c \left[\frac{P_f + 2P_c - 2\phi_f(P_c - P_f)}{P_f + 2P_c + \phi_f(P_c - P_f)} \right] \quad (16)$$

561 Here, \mathbb{P}_{eff} is the effective permeability of the composite, P_c is the permeability of the
562 continuous polymer phase, P_f is the permeability of the filler, and ϕ_f is the volume fraction
563 of the filler. The cones are bounded by lines predicting composite permeability and
564 selectivity assuming the filler has infinite permeability and selectivity (the near-vertical
565 edge) and infinite permeability and selectivity of unity (the horizontal edge). In all three
566 graphs, we can clearly observe that the actual MMCM performance falls far outside the
567 predictions of traditional MMM theory. This result is to be expected because one of the
568 underlying assumptions of the Maxwell model is that both the filler and polymer remain
569 unchanged from their pure component properties. This is not the case, as we have shown
570 with an array of experimental techniques. Thus it is sensible that the Maxwell model would
571 be incapable of predicting MMCM performance.

573 Figure 11: Gas permeation measurements on MMCMs at various loadings at 35
574 °C. Measurements were made with pure gases in a constant volume measurement
575 system. Permeability error bars were made with three measurements on the same
576 membrane and propagation of error was used to calculate selectivity error. Error
577 bars are present but are smaller than the points on the graphs. Insets with gray
578 scale cones show the range of predictions from the Maxwell model at the indicated
579 weight loadings (which were converted to volume loadings for calculations).
580 Calculations assuming the filler had infinite permeability and either infinite
581 selectivity (indicated by the near vertical edge of the cones) or a selectivity of unity
582 (indicated by the horizontal edge of the cones) were used to calculate a range of
583 predictions for possible filler selectivities. A) Pure component permeability and
584 selectivity of He over N₂. Note that the point denoting the 2.5 wt% MMCM is
585 obscured by the 5 wt% membrane. B) Pure component permeability and selectivity
586 of N₂ and SF₆. Note that for all membranes, the rate of SF₆ permeation was
587 indistinguishable from the system leak rate and was taken to be 0.038 Barrer as
588 an upper bound. C) Pure component permeability and selectivity of N₂ and CO₂.
589 Note that the point denoting the 2.5 wt% MMCM is obscured by the 5 wt%
590 membrane.

591

592 Starting with Figure 11A, we compare the helium permeability and helium/nitrogen
593 selectivity of several MMCMs of increasing cage loading. Although helium permeability
594 varies between membranes, it shows a general increasing trend with cage loading while
595 selectivity steadily decreases. Both helium (kinetic diameter 2.6 Å) and nitrogen (kinetic
596 diameter 3.64 Å) are much smaller than the nominal diameter of the cage window (5-6 Å),
597 so there should be no sieving effect from the cage. They both apparently also benefit from
598 the enhanced free volume and macro-scale chain mobility while not being hindered by the
599 smaller-scale rigidification described previously.


600 In the case of N₂/SF₆ separation in Figure 11B, we instead observe steady increases in
601 both nitrogen permeability and selectivity. We note that SF₆ permeation was
602 indistinguishable from the leak rate in our system for all membranes. Its permeability was
603 conservatively taken to be equal to the leak rate at 0.038 Barrer. We report only a minimum
604 selectivity based on the upper limit SF₆ permeability. Therefore, the selectivity increase is

605 driven solely by the increases in nitrogen permeability; however, the actual selectivities are
606 almost certainly higher than those we report. SF₆ (kinetic diameter 5.5 Å) is much larger
607 than nitrogen. Although it may be able to enter the cage cavity due to structural flexibility,
608 it is probably mostly rejected from the cages, unlike nitrogen. Additionally, SF₆ likely faces
609 considerable diffusive resistance in the polymer phase due to smaller-scale rigidification
610 that we have observed via DMA measurements. While we cannot report actual selectivities,
611 it is still impressive that ASPOCs can increase nitrogen permeability up to 3x without
612 sacrificing selectivity towards a component that is only 2 Å larger.

613 In Figure 11C, we compare the permeabilities of nitrogen and carbon dioxide.
614 Surprisingly, we observe increases in both CO₂ permeability and CO₂/N₂ selectivity up to
615 10 wt% cage loading. Both N₂ and CO₂ are significantly smaller than the cage pore
616 window, so it is unlikely they experience an appreciable degree of molecular sieving from
617 the cage. Instead, we will examine these results with the assistance of the sorption
618 isotherms in Figure 9. Figure 12 compares the CO₂ and sorption coefficients (left) and
619 diffusivities (right) and their respective selectivities towards nitrogen under the same
620 conditions as the permeation measurements. Diffusion coefficients were calculated by
621 dividing the permeability by the sorption coefficient as in Equation 1. On the left side of
622 Figure 12, we observe the same CO₂ sorption trend as before. CO₂ sorption initially
623 experiences a boost at low cage loadings that becomes less pronounced as the matrix
624 tightens under the influence of restrictive interactions with the cages at higher loadings.
625 The permeability boost in Figure 11C is apparently the result of enhanced sorption capacity
626 in the membrane. Conversely, the sorptive selectivity steadily decreases. It appears that the

627 cages impart a significant amount of sorption capacity, but this additional capacity is
628 increasingly non-selective.

629 On the right side of Figure 12, we observe that the CO_2 diffusivity changes little with
630 cage loading; however, the diffusive selectivity dramatically increases from 2 to around 6.
631 Importantly, diffusivity plays such a significant role in overall transport that the increase
632 in diffusive selectivity is enough to offset the decrease in sorption selectivity and result in
633 a net permeation selectivity increase. The enhancement in diffusion selectivity is
634 unexpected considering the results presented earlier that indicate that the polymer is largely
635 less rigid as a result of the cages. The diffusion selectivity enhancement is likely due to the
636 restriction in the β chain motions reducing the transient movements that enable diffusive
637 jumps through the membrane.

639 Figure 12: MMCM transport parameters. (Left) Sorption coefficients and sorption
640 selectivities, (Right) diffusivities and diffusion selectivities

641

642 Examining the energetics of transport can also provide useful information on how the
643 cages affect permeation properties. Figure S3 shows how the permeation activation
644 energies ($E_{\text{A},\text{P}}$) of nitrogen, helium, and carbon dioxide change with cage loading.
645 Activation energies were calculated from least-squares fitting of Arrhenius plots made

646 using Equation 2. Gas permeation was measured at 25, 35, and 45 °C. The permeation
647 results used to generate the data in Figure S3 are given in Table S1. The $E_{A,P}$ of helium
648 varies little with cage loading. This observation indicates that either the changes in sorption
649 and diffusion energetics balance each other out or, more likely, the presence of the cage
650 does not have an appreciable effect on the helium transport energetics. Helium is, in
651 general, such a weakly sorbing species that it is unlikely that the presence of cages would
652 have an appreciable effect on the sorption behavior.[60] Similarly, helium diffusion is
653 already among the least sensitive to polymer motions due to its small size that neither the
654 cages nor their effects on the bulk polymer would not have much effect. The permeation
655 activation energy of CO_2 shows a little more variation than helium, with the $E_{A,P}$ increasing
656 from 10.6 kJ/mol in neat Matrimid to 15.2 in the 2.5 wt% MMCM. The $E_{A,P}$ of CO_2 then
657 drops off somewhat and rises again. These small variations are probably the result of the
658 competing effects of enhanced sorption capacity facilitating permeation and increased
659 chain rigidity hindering it or perhaps experimental error. This hypothesis cannot be
660 confirmed without more information on the sorption and diffusion energetics but would be
661 in agreement with the results in Figure 12, where the sorption and diffusion coefficients
662 were observed to be non-monotonic with respect to cage loading. Interestingly, the nitrogen
663 $E_{A,P}$ declines significantly with cage loading. N_2 's greatly increased sorption capacity with
664 cage loading apparently lowers the energy barrier of permeation to a much greater degree
665 than any impediment from chain rigidification raises it, so that the net effect is a lowering
666 of the $E_{A,P}$.

667

668

669 **5. Conclusions**

670 In this work, we have thoroughly characterized the effects of intrinsically porous
671 molecular fillers on membrane physical and transport properties. We found that there is a
672 saturation loading of cages within polymers and that past this loading, excess cages will
673 agglomerate and form an “MMCM-MMM” morphology. We also found that MMCM
674 “solid solutions” are highly non-ideal. Interactions between the filler and polymer lead to
675 positive deviations in specific volume from what would be expected in an ideal mixing
676 scenario. These interactions also significantly affect polymer chain rigidity. Curiously, the
677 cages have the opposite effect depending on the scale of observation. MMCM T_g ’s were
678 found to be depressed from the neat polymer, indicating plasticization and reduced chain
679 rigidity at the macro-scale, but the onset of the β transition increased, indicating increased
680 chain rigidity at the molecular scale. In the separation of CO₂ and N₂, the presence of cages
681 was found to increase both permeability and selectivity. The permeability enhancement
682 was driven by increased sorption throughout the membrane polymer phase. The selectivity
683 enhancement was found to result from increased diffusion selectivity, likely caused by
684 rigidification of the β motions. The permeation activation energy was observed to vary
685 little with cage loading in the cases of helium and carbon dioxide but decreased
686 significantly for nitrogen.

687 When porous, molecular fillers are incorporated into polymeric membranes to make
688 MMCMs, several membrane properties change. These properties are often competing with
689 respect to their effects on gas transport, making a fundamental understanding of structure-
690 property relationships difficult. In this work, we attempt to decouple some of these
691 competing effects so that we can further develop our understanding of this exciting new

692 membrane class. Based on the results presented earlier, we propose some guiding
693 principles for future work in this area:

- 694 1. We often refer to MMCMs as “solid solutions.” Like any solution, there is a
695 saturation loading, in this case, the maximum amount of cage that can be
696 considered to be “dissolved” in the polymer. Any cage added past this threshold
697 will precipitate out and form an “MMCM-MMM” morphology that will be
698 subject to the interfacial issues commonly observed in traditional MMMs. This
699 threshold is relatively low (below 10 wt% for the system studied here) but may
700 be able to be raised with appropriate polymer-filler matching or filler
701 functionalization.
- 702 2. MMCMs are a completely distinct membrane class from traditional MMMs and
703 should be analyzed as such. Traditional MMM permeation theory (i.e., the
704 Maxwell model) is not appropriate for MMCMs because they violate the
705 assumption that the continuous and filler phases do not interact.
- 706 3. Molecular fillers significantly alter bulk polymer properties, altering the
707 membrane transport properties. Any attempt to estimate the performance of a
708 polymer/molecular filler matching *a priori*, like with the Maxwell model for
709 MMMs, will likely need to start with molecular simulations to investigate the
710 composite physical properties, namely the free volume and chain mobility.
711 Performance estimates may be able to be made from there based on the
712 performance of the neat polymer.
- 713 4. Molecular fillers primarily alter transport properties through their effects on the
714 bulk polymer, especially when present at the low loadings investigated here.

715 Therefore, the relationship between cage external functionality and transport
716 properties should be heavily investigated when optimizing a given
717 polymer/molecular filler matching for a given separation.

718 5. Like MMMs, MMCMs' separation performance will ultimately be limited by the
719 performance of the neat polymer. They are a method to make a good polymer
720 better but cannot enable a low-performing polymer to compete with the state-of-
721 the-art.

722 We note some key limitations in our development of these guidelines. These
723 guidelines are based on extensive characterization of only one polymer/filler system. Given
724 the importance of intermolecular interactions between the filler and polymer on the final
725 membrane performance, alterations to these guidelines may be required based on the
726 specific system under investigation. As the field matures and our understanding of the
727 relationship between cage chemistry and membrane performance grows, this point will
728 become more evident. Additionally, gas permeation measurements, while encouraging,
729 were performed on pure gases. Mixed gas performance, especially the sorption and
730 diffusion behavior, will almost certainly vary from the results presented here and may
731 require alteration to our analysis as given. However, we believe that our interpretation of
732 the available data thus far will provide an important foundation for future researchers who
733 choose to study this promising membrane class.

734 **Acknowledgements**

735 The authors thank the National Science Foundation (CAREER) for funding this
736 research. This work was performed in part at the Georgia Tech Institute for Electronics and
737 Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure
738 (NNCI), which is supported by the National Science Foundation (Grant ECCS-2025462).

739 **Notes**

740 The authors declare no competing financial interest.

742 [1] T. Tozawa, J.T. Jones, S.I. Swamy, S. Jiang, D.J. Adams, S. Shakespeare, R. Clowes,
743 D. Bradshaw, T. Hasell, S.Y. Chong, C. Tang, S. Thompson, J. Parker, A. Trewin, J. Bacsa,
744 A.M. Slawin, A. Steiner, A.I. Cooper, Porous organic cages, *Nature Materials*, 8 (2009)
745 973-978.

746 [2] P. Kumar, D.W. Kim, N. Rangnekar, H. Xu, E.O. Fetisov, S. Ghosh, H. Zhang, Q. Xiao,
747 M. Shete, J.I. Siepmann, T. Dumitrica, B. McCool, M. Tsapatsis, K.A. Mkhoyan, One-
748 dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-
749 selective transport, *Nature Materials*, 19 (2020) 443-449.

750 [3] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keefe, O.M. Yaghi,
751 High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO₂
752 Capture, *Science*, 319 (2008) 939.

753 [4] R.M. Barrer, V.H. Shanson, Dianin's compound as a zeolitic sorbent, *Journal of the*
754 *Chemical Society, Chemical Communications*, (1976) 333-334.

755 [5] J.L. Atwood, L.J. Barbour, A. Jerga, A New Type of Material for the Recovery of
756 Hydrogen from Gas Mixtures, *Angewandte Chemie International Edition*, 43 (2004) 2948-
757 2950.

758 [6] K. Jie, M. Liu, Y. Zhou, M.A. Little, A. Pulido, S.Y. Chong, A. Stephenson, A.R.
759 Hughes, F. Sakakibara, T. Ogoshi, F. Blanc, G.M. Day, F. Huang, A.I. Cooper, Near-Ideal
760 Xylene Selectivity in Adaptive Molecular Pillar[n]arene Crystals, *Journal of the American*
761 *Chemical Society*, 140 (2018) 6921-6930.

762 [7] M.B. Dewal, M.W. Lufaso, A.D. Hughes, S.A. Samuel, P. Pellechia, L.S. Shimizu,
763 Absorption Properties of a Porous Organic Crystalline Apohost Formed by a Self-
764 Assembled Bis-Urea Macrocycle, *Chemistry of Materials*, 18 (2006) 4855-4864.

765 [8] M.W. Schneider, H.-J. Siegfried Hauswald, R. Stoll, M. Mastalerz, A shape-persistent
766 exo-functionalized [4 + 6] imine cage compound with a very high specific surface area,
767 *Chemical Communications*, 48 (2012) 9861-9863.

768 [9] G. Zhang, O. Presly, F. White, I.M. Oppel, M. Mastalerz, A Permanent Mesoporous
769 Organic Cage with an Exceptionally High Surface Area, *Angewandte Chemie International*
770 *Edition*, 53 (2014) 1516-1520.

771 [10] M.P. Rivera, M. Liu, D. He, R.P. Lively, Tuning Material Properties of Porous
772 Organic Cage CC3 with Postsynthetic Dynamic Covalent Chemistry, *European Journal of*
773 *Organic Chemistry*, 2022 (2022) e202101507.

774 [11] S.Y. Chong, A.I. Cooper, 6.07 - Porous Organic Cages, in: J.L. Atwood (Ed.)
775 Comprehensive Supramolecular Chemistry II, Elsevier, Oxford, 2017, pp. 139-197.

776 [12] L. Chen, P.S. Reiss, S.Y. Chong, D. Holden, K.E. Jelfs, T. Hasell, M.A. Little, A.
777 Kewley, M.E. Briggs, A. Stephenson, K.M. Thomas, J.A. Armstrong, J. Bell, J. Busto, R.
778 Noel, J. Liu, D.M. Strachan, P.K. Thallapally, A.I. Cooper, Separation of rare gases and
779 chiral molecules by selective binding in porous organic cages, *Nature Materials*, 13 (2014)
780 954.

781 [13] E. Jackson, M. Miklitz, Q. Song, G.A. Tribello, K.E. Jelfs, A Computational
782 Evaluation of the Diffusion Mechanisms for C8 Aromatics in Porous Organic Cages, *The
783 Journal of Physical Chemistry C*, (2019).

784 [14] G. Zhu, J.-M.Y. Carrillo, A. Sujan, Claudia N. Okonkwo, S. Park, B.G. Sumpter, C.W.
785 Jones, R.P. Lively, Molecular blends of methylated-poly(ethylenimine) and amorphous
786 porous organic cages for SO₂ adsorption, *Journal of Materials Chemistry A*, (2018).

787 [15] Q. Song, S. Jiang, T. Hasell, M. Liu, S. Sun, A.K. Cheetham, E. Sivaniah, A.I. Cooper,
788 Porous Organic Cage Thin Films and Molecular-Sieving Membranes, *Advanced Materials*,
789 28 (2016) 2629-2637.

790 [16] G. Zhu, F. Zhang, M.P. Rivera, X. Hu, G. Zhang, C.W. Jones, R.P. Lively,
791 Molecularly Mixed Composite Membranes for Advanced Separation Processes,
792 *Angewandte Chemie International Edition*, 58 (2019) 2638-2643.

793 [17] Z. Zhai, C. Jiang, N. Zhao, W. Dong, P. Li, H. Sun, Q.J. Niu, Polyarylate membrane
794 constructed from porous organic cage for high-performance organic solvent nanofiltration,
795 *Journal of Membrane Science*, 595 (2020) 117505.

796 [18] A.F. Bushell, P.M. Budd, M.P. Attfield, J.T. Jones, T. Hasell, A.I. Cooper, P.
797 Bernardo, F. Bazzarelli, G. Clarizia, J.C. Jansen, Nanoporous organic polymer/cage
798 composite membranes, *Angewandte Chemie International Edition English*, 52 (2013)
799 1253-1256.

800 [19] Z. Zhai, N. Zhao, J. Liu, W. Dong, P. Li, H. Sun, Q. Jason Niu, Advanced
801 nanofiltration membrane fabricated on the porous organic cage tailored support for water
802 purification application, *Separation and Purification Technology*, 230 (2020) 115845.

803 [20] J.D. Evans, D.M. Huang, M.R. Hill, C.J. Sumby, A.W. Thornton, C.J. Doonan,
804 Feasibility of Mixed Matrix Membrane Gas Separations Employing Porous Organic Cages,
805 *The Journal of Physical Chemistry C*, 118 (2014) 1523-1529.

806 [21] G. Zhu, D. O'Nolan, R.P. Lively, Molecularly Mixed Composite Membranes:
807 Challenges and Opportunities, *Chemistry – A European Journal*, 26 (2020) 3464-3473.

808 [22] M.P. Rivera, N.C. Bruno, M.G. Finn, R.P. Lively, Organic solvent reverse osmosis
809 using CuAAC-crosslinked molecularly-mixed composite membranes, *Journal of
810 Membrane Science*, 638 (2021) 119700.

811 [23] T.T. Moore, W.J. Koros, Non-ideal effects in organic–inorganic materials for gas
812 separation membranes, *Journal of Molecular Structure*, 739 (2005) 87-98.

813 [24] S. Jiang, L. Chen, M.E. Briggs, T. Hasell, A.I. Cooper, Functional porous composites
814 by blending with solution-processable molecular pores, *Chemical Communications*
815 (Cambridge), 52 (2016) 6895-6898.

816 [25] S. Jiang, J.T.A. Jones, T. Hasell, C.E. Blythe, D.J. Adams, A. Trewin, A.I. Cooper,
817 Porous organic molecular solids by dynamic covalent scrambling, *Nature
818 Communications*, 2 (2011) 207.

819 [26] J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, *Journal of
820 Membrane Science*, 107 (1995) 1-21.

821 [27] W.J. Jackson Jr., J.R. Caldwell, Antiplasticization. II. Characteristics of
822 antiplasticizers, *Journal of Applied Polymer Science*, 11 (1967) 211-226.

823 [28] W.J. Jackson Jr., J.R. Caldwell, Antiplasticization. III. Characteristics and properties
824 of antiplasticizable polymers, *Journal of Applied Polymer Science*, 11 (1967) 227-244.

825 [29] Y. Maeda, D.R. Paul, Effect of antiplasticization on gas sorption and transport. III.
826 Free volume interpretation, *Journal of Polymer Science Part B: Polymer Physics*, 25 (1987)
827 1005-1016.

828 [30] S.K. Burgess, J.E. Leisen, B.E. Kraftschik, C.R. Mubarak, R.M. Kriegel, W.J. Koros,
829 Chain Mobility, Thermal, and Mechanical Properties of Poly(ethylene furanoate)
830 Compared to Poly(ethylene terephthalate), *Macromolecules*, 47 (2014) 1383-1391.

831 [31] J.S. Lee, W. Madden, W.J. Koros, Antiplasticization and plasticization of Matrimid®
832 asymmetric hollow fiber membranes. Part B. Modeling, *Journal of Membrane Science*, 350
833 (2010) 242-251.

834 [32] A.A. Bondi, Physical properties of molecular crystals liquids, and glasses, (1968).

835 [33] S. Sugden, CCXXXIV.—Molecular volumes at absolute zero. Part II. Zero volumes
836 and chemical composition, *Journal of the Chemical Society (Resumed)*, (1927) 1786-1798.

837 [34] D.W. Van Krevelen, K. Te Nijenhuis, Properties of polymers: their correlation with
838 chemical structure; their numerical estimation and prediction from additive group
839 contributions, Elsevier, 2009.

840 [35] J. Vrentas, J. Duda, H. Ling, Antiplasticization and volumetric behavior in glassy
841 polymers, *Macromolecules*, 21 (1988) 1470-1475.

842 [36] F.A. Ruiz-Treviño, D.R. Paul, A quantitative model for the specific volume of
843 polymer-diluent mixtures in the glassy state, *Journal of Polymer Science Part B: Polymer
844 Physics*, 36 (1998) 1037-1050.

845 [37] J.Y. Park, D.R. Paul, Correlation and prediction of gas permeability in glassy polymer
846 membrane materials via a modified free volume based group contribution method, *Journal
847 of Membrane Science*, 125 (1997) 23-39.

848 [38] T. Mitra, X. Wu, R. Clowes, J.T.A. Jones, K.E. Jelfs, D.J. Adams, A. Trewin, J. Bacsa,
849 A. Steiner, A.I. Cooper, A Soft Porous Organic Cage Crystal with Complex Gas Sorption
850 Behavior, *Chemistry – A European Journal*, 17 (2011) 10235-10240.

851 [39] T. Mitra, K.E. Jelfs, M. Schmidtmann, A. Ahmed, S.Y. Chong, D.J. Adams, A.I.
852 Cooper, Molecular shape sorting using molecular organic cages, *Nature Chemistry*, 5
853 (2013) 276-281.

854 [40] S.K. Burgess, O. Karvan, J.R. Johnson, R.M. Kriegel, W.J. Koros, Oxygen sorption
855 and transport in amorphous poly(ethylene furanoate), *Polymer*, 55 (2014) 4748-4756.

856 [41] S. Zekriardehani, S.A. Jabarin, D.R. Gidley, M.R. Coleman, Effect of Chain
857 Dynamics, Crystallinity, and Free Volume on the Barrier Properties of Poly(ethylene
858 terephthalate) Biaxially Oriented Films, *Macromolecules*, 50 (2017) 2845-2855.

859 [42] L.M. Robeson, J.A. Faucher, Secondary loss transitions in antiplasticized polymers,
860 *Journal of Polymer Science Part B: Polymer Letters*, 7 (1969) 35-40.

861 [43] A.S. Maxwell, L. Monnerie, I.M. Ward, Secondary relaxation processes in
862 polyethylene terephthalate–additive blends: 2. Dynamic mechanical and dielectric
863 investigations, *Polymer*, 39 (1998) 6851-6859.

864 [44] R.A. Riggleman, J.F. Douglas, J.J. de Pablo, Characterization of the potential energy
865 landscape of an antiplasticized polymer, *Physical Review E*, 76 (2007) 011504.

866 [45] S. Singla, H.W. Beckham, M.E. Rezac, Localized chain mobility and gas transport
867 properties of thermoplastic aromatic polymers, *Journal of Membrane Science*, 208 (2002)
868 257-267.

869 [46] A.C. Comer, D.S. Kalika, B.W. Rowe, B.D. Freeman, D.R. Paul, Dynamic relaxation
870 characteristics of Matrimid® polyimide, *Polymer*, 50 (2009) 891-897.

871 [47] D.R. Paul, Dual Mode Sorption Model, *Encyclopedia of Membranes*, (2016) 1-2.

872 [48] G.K. Fleming, W.J. Koros, Dilatation of polymers by sorption of carbon dioxide at
873 elevated pressures. 1. Silicone rubber and unconditioned polycarbonate, *Macromolecules*,
874 19 (1986) 2285-2291.

875 [49] S.K. Burgess, J.S. Lee, C.R. Mubarak, R.M. Kriegel, W.J. Koros, Caffeine
876 antiplasticization of amorphous poly(ethylene terephthalate): Effects on gas transport,
877 thermal, and mechanical properties, *Polymer*, 65 (2015) 34-44.

878 [50] M.H. Cohen, D. Turnbull, Molecular Transport in Liquids and Glasses, *The Journal
879 of Chemical Physics*, 31 (1959) 1164-1169.

880 [51] J.L. Duda, I. Hadj Romdhane, R.P. Danner, Diffusion in glassy polymers — relaxation
881 and antiplasticization, *Journal of Non-Crystalline Solids*, 172-174 (1994) 715-720.

882 [52] J.S. Vrentas, J.L. Duda, H.C. Ling, Free-volume equations for polymer-penetrant
883 diffusion, *Journal of Membrane Science*, 40 (1989) 101-107.

884 [53] J.D. Moon, M. Galizia, H. Borjigin, R. Liu, J.S. Riffle, B.D. Freeman, D.R. Paul,
885 Modeling water diffusion in polybenzimidazole membranes using partial immobilization
886 and free volume theory, *Polymer*, 189 (2020) 122170.

887 [54] J.T.A. Jones, T. Hasell, X. Wu, J. Bacsa, K.E. Jelfs, M. Schmidtmann, S.Y. Chong,
888 D.J. Adams, A. Trewin, F. Schiffman, F. Cora, B. Slater, A. Steiner, G.M. Day, A.I.
889 Cooper, Modular and predictable assembly of porous organic molecular crystals, *Nature*,
890 474 (2011) 367-371.

891 [55] T.H.G. Schick, F. Rominger, M. Mastalerz, Examination of the Dynamic Covalent
892 Chemistry of [2+3]-Imine Cages, *The Journal of Organic Chemistry*, 85 (2020) 13757-
893 13771.

894 [56] R. Mahajan, W.J. Koros, Factors Controlling Successful Formation of Mixed-Matrix
895 Gas Separation Materials, *Industrial & Engineering Chemistry Research*, 39 (2000) 2692-
896 2696.

897 [57] C. Bas, C. Tamagna, T. Pascal, N. Dominique Alberola, On the dynamic mechanical
898 behavior of polyimides based on aromatic and alicyclic dianhydrides, *Polymer Engineering
& Science*, 43 (2003) 344-355.

900 [58] W. Wei, M. Wang, J. Jiang, Molecular Simulation Study on Molecularly Mixed
901 Porous Organic Cage/Polymer Composite Membranes for Water Desalination and Solvent
902 Recovery, *ACS Applied Nano Materials*, (2021).

903 [59] W.J. Koros, A.H. Chan, D.R. Paul, Sorption and transport of various gases in
904 polycarbonate, *Journal of Membrane Science*, 2 (1977) 165-190.

905 [60] C.A. Scholes, W.X. Tao, G.W. Stevens, S.E. Kentish, Sorption of methane, nitrogen,
906 carbon dioxide, and water in Matrimid 5218, *Journal of Applied Polymer Science*, 117
907 (2010) 2284-2289.

908