

2
3 **Title**4

- Microporous polymers with cascaded cavities for controlled transport of small gas
5 molecules

6
7 **Authors**8 Jong Geun Seong,^{1,†‡} Won Hee Lee,^{1,2,†} Jongmyeong Lee,^{1,†§} So Young Lee,^{1,3} Yu Seong
9 Do,¹ Joon Yong Bae,¹ Sun Ju Moon,¹ Chi Hoon Park,^{1,4} Hye Jin Jo,¹ Ju Sung Kim,¹ Kueir-Rarn
10 Lee,⁵ Wei-Song Hung,^{5,6} Juin-Yih Lai,^{5,6} Yi Ren,² Conrad J. Roos,² Ryan P. Lively,² Young Moo
11 Lee^{1*}12
13 **Affiliations**14 ¹Department of Energy Engineering, College of Engineering, Hanyang University, 222,
15 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea.16 ²School of Chemical & Biomolecular Engineering, Georgia Institute of Technology,
17 Atlanta, GA 30332, United States.18 ³Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 5,
19 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, South Korea.20 ⁴Department of Energy Engineering, Future Convergence Technology Research Institute,
21 Gyeongsang National University, 33, Dongjin-ro, Jinju 52725, South Korea.22 ⁵R&D Center for Membrane Technology, Department of Chemical Engineering, Chung
23 Yuan University, Taoyuan, 32023, Taiwan.24 ⁶Graduate Institute of Applied Science and Technology, National Taiwan University of
25 Science and Technology, Taipei 10607, Taiwan.

26 *Correspondence to: ymlee@hanyang.ac.kr (Y.M.L.).

27 †These authors contributed equally to this work.

28 ‡Present address: Los Alamos National Laboratory, Los Alamos, NM 87545, United
29 States.30 §Present address: C1 Gas & Carbon Convergent Research Center, Korea Research
31 Institute of Chemical Technology, Daejeon 34114, South Korea.32
33 **Abstract**34 In membrane-based separation, molecular size differences relative to membrane pore sizes
35 govern mass flux and separation efficiency. In applications requiring complex molecular
36 differentiation, such as in natural gas processing, cascaded pore size distributions in
37 membranes allow different permeate molecules to be separated without a reduction in
38 throughput. Here, we report the decoration of microporous polymer membrane surfaces
39 with molecular fluorine. Molecular fluorine penetrates through the microporous interface
40 and reacts with rigid polymeric backbones, resulting in membrane micropores with multi-
41 modal pore size distributions. The fluorine acts as ångström-scale apertures that can be
42 controlled for molecular transport. We achieved an unprecedented gas separation
43 performance in several industrially-relevant hollow-fibrous modular platform with stable
44 responses over one year.

47 Cascaded microporosity localized on membrane surfaces dramatically improved selective
 48 transport of small molecules.

49
 50 **MAIN TEXT**
 51

52 **Introduction**

53 The regulation of mass transport at interfaces via molecular engineering of membrane
 54 pores is crucial for improving product separation efficiency and productivity (1-3). Recent
 55 advances in microporous membrane materials, including polymers (1, 4, 5), graphene (6),
 56 zeolites (7), and metal-organic frameworks (MOFs) (8) have been made to meet the
 57 growing demands for energy-efficient molecular transport applications. However, the
 58 available pore sizes are still discrete, and thus limited. As an alternative, the exploitation
 59 of hybrid microporous materials using a multi-step approach has also been reported (9). In
 60 this case, the introduction of microporous materials into ultrathin membranes requires
 61 sophisticated techniques for production (10).

62 We streamlined the refinement and organization of pore size distributions, particularly
 63 broad or multi-modal distributions typically found at membrane surfaces, via direct
 64 fluorination of polymer precursors. The fluorination process has been mainly applied for
 65 “nonporous” polymers like poly(phenylene oxide)s (11), polysulfones (12, 13), and
 66 polyimides (14), however these attempts were unsuccessful to allow the hierarchical
 67 refinement of surface pores. There have also been reports on direct fluorination of typical
 68 microporous polymers like poly[1-(trimethylsilyl)-1-propyne] (PTMSP) (15-17), but
 69 never on newer microporous materials developed during the last two decades, including
 70 thermally rearranged (TR) polymers (1) and polymers with intrinsic microporosity (PIMs)
 71 (18). We specifically targeted several TR polymers and PIMs (Figs. 1A-1C; Figs. S1-S3,
 72 and Table S1, hereafter denoted c-TR and c-PIM, respectively). One representative
 73 nonporous polymer, a polyimide (PI), was also introduced for comparison. We
 74 hypothesized that the surface pore size and its distribution in ready-made microporous
 75 membranes can be tailored via substitution of atoms bonded toward the interiors of the
 76 micropores, i.e., components of the inner rim of the pore walls. TR and PIM-1 backbones
 77 were considered due to their rigid aromatic segments that were directly connected with
 78 stiff heterocyclic rings, which hinder intra-chain rotation and thus help permanently
 79 maintain the desired microporous structures (4).

80 **Results**

81 During the fluorine exposure, hydrogen atoms with kinetic diameters of 2.89 Ångströms
 82 (\AA) (19) linked to the TR and PIM-1 aromatic polymer backbones were gradually replaced
 83 with larger fluorine atoms (3.65 \AA) (19). Control over pore sizes and distributions by
 84 elemental fluorine resulted in ångström-scale ‘apertures’ that can be manipulated to
 85 regulate mass transport, which is reminiscent of iris diaphragms in the eyes and in
 86 microscopes. Note that iris diaphragms in the eyes adjust the amount of light reaching the
 87 retina in response to environmental conditions by controlling the diameter of the pupil,
 88 from the completely “open” position of the aperture down to the target aperture size. A
 89 smaller pupil diameter means that less light passes through the pupils. We demonstrated
 90 that, after fluorination, the pore size (τ_3) and pore population (I_3) (Fig. 1A; and Fig. S3)
 91 were continuously engineered, particularly at the uppermost TR membrane surface, for
 92 example, with radii from $3.36 \pm 0.06 \text{ \AA}$ down to $\sim 2.48 \pm 0.07 \text{ \AA}$ and I_3 from $17.22 \pm 1.36\%$ to

93 ~7.81±1.39%, respectively, from slow beam positron annihilation lifetime spectroscopy
94 (sb-PALS) (20).

95 Pore size and its distributions in polymers are correlated with fractional free volume
96 (*FFV*) and thus changes in *S* parameter (the ratio of the integrated counts between energies
97 of 510.3 and 511.7 keV (*S* width) to the total counts in Doppler broadening energy
98 spectroscopy (DBES), proportional to *FFV*) (20) for the fluorinated, microporous and
99 nonporous membranes are investigated (**Fig. 1B**; and **Figs. S4** and **S5**). After exposure, all
100 fluorinated membranes show a decrease in *S* parameters near surfaces down to ~1 μ m,
101 which agrees well with the observed decrease in τ_3 and I_3 . Apparently, the fluorinated
102 membrane surface domains are composed of two different sub-layers: a deposition layer
103 (L_D) at membrane top-surfaces, and a pore-regulated layer (L_R) at sub-surfaces,
104 respectively. Differences in *S* parameters in L_D and L_R for the fluorinated membranes were
105 ascribed to differences in the probability of fluorine substitution reaction in polymers at
106 the surface of membranes. Molecular fluorine has facile reactions with polymers at the
107 membrane top-surfaces, whereas only fluorine that penetrates through the membrane
108 participates in the substitution reaction at the sub-surface. This latter process experiences
109 strong mass transfer limitations compared to the external surface reactions, indicating that
110 there is a “cascading” effect on the pore size and distribution from the top-surface through
111 the membrane.

112 Note that pore regulation using molecular fluorine has not yet been realized in the
113 literature due to the poor accessibility of the membrane sub-surfaces L_R to fluorine vapor.
114 The kinetic diameter of molecular fluorine is comparable to or slightly larger than the
115 average nanospatial dimensions in conventional nonporous polymers (21). This fact means
116 that molecular fluorine cannot viably penetrate into nonporous matrices before self-
117 limiting fluorine layers form on the top-surface of the membrane (L_D). For example,
118 nonporous P84® PI membranes had a L_R thickness (92 nm) ~3.8-fold thinner than
119 microporous polymers (c-TR of 351 nm and c-PIM-1 of 234 nm, respectively, **Fig. S5**).

120 Our pore engineering approach is particularly well-suited for microporous TR and PIM-1
121 polymers due to their peculiar structural features. Specifically, these polymers retain a
122 microporous τ_3 larger than molecular fluorine, thereby enabling fluorine penetration into
123 the membrane sub-surface where C-H to C-F substitution occurs. However, the surface-
124 localized molecular fluorine does not appreciably change the physicochemical
125 characteristics of the underlying bulk membrane (e.g., scattering patterns, thermal
126 stability, mechanical toughness, and optical properties, **Fig. S6**). Consequently, c-TR and
127 c-PIM-1 membranes show cascading characteristics in terms of the pore size over a
128 thickness of ~1 μ m from the surface into the film (**Fig. 1C**).

129 The thickness window of L_R in c-TR gradually changes from 311 nm (30 min exposure) to
130 874 nm (300 min exposure), while that in c-PIM varies from 209 nm (30 min) to 683 nm
131 (300 min) (**Fig. S4**). In particular, the increment in thickness of the cascaded L_R is more
132 evident with increasing exposure time, which is ascribed to another unique feature of
133 pristine TR and PIM-1 membranes, namely, bottleneck-shaped bimodal pore size
134 distributions consisting of τ_3 and τ_4 ($\tau_3 < \tau_4$) (**Table S2**). During fluorine exposure, τ_4
135 cavities adjacent to τ_3 “throats” in TR and PIM-1 membranes can facilitate molecular
136 fluorine penetration farther into the matrices.

137 More importantly, after sub-nanopore control by fluorination, the reductions in τ , I and the
138 FFV are amplified in the “throat-like” pores (τ_3) relative to the “cavity-like” pores (τ_4)
139 (**Fig. 1D**), ultimately reducing the average micropore size on the membrane surface.

140 Computational studies reveal that collisions of TR polymers with molecular fluorine in
141 throat-like pores are more probable than in cavity-like pores (**Fig. 1E**). These selectively-
142 tuned bottlenecks, which are connected to the intact cavity-like pores in the cascaded
143 microporous membranes, block transport of relatively large molecules and do not affect
144 the mass flux of smaller molecules. This phenomenon leads to a remarkable improvement
145 in molecular differentiation without a loss of mass throughput of the smaller species.

146 To conceptually elucidate the efficacy of the fluorine-manipulated pore structure in
147 practical molecular separation problems, a molecular dynamics (MD) simulation was
148 conducted based on the pore size information revealed by sb-PALS (**Fig. 1F**). The
149 unprecedented permeation capability of the membrane was first benchmarked by taking
150 helium recovery from natural gas wells as an example. This separation has global
151 importance as helium is a strategic resource (22, 23). **Figure 1F** presents ~9-fold increases
152 in He/CH₄ diffusion selectivities for c-TR membranes, resulting from the significant
153 decline in diffusion of methane molecules by 95.4% (from 6.01×10^{-7} cm²/sec to $2.8 \times$
154 10^{-8} cm²/sec) due to the shrunken throat-like pores.

155 We further demonstrated that the membranes showed molecular cutoff behaviors by
156 examining single gas permeation of He, H₂, CO₂, N₂, and CH₄ (**Fig. 2**). Upper-bounds for
157 perfluoropolymers (24) and non-perfluoropolymers (25), which represent a trade-off
158 relationship between gas permeability and gas selectivity for intrinsic polymeric
159 membrane materials (26), were also provided to guide the eye. This pore tuning approach
160 evidently enhanced the separation properties of all polymers in this study. However,
161 tailororable separation performances can be achieved specifically in microporous TR and
162 PIM-1 polymers: ~70-fold enhancement in natural gas processing applications (c-PIM-1)
163 and ~38-fold (c-TR) vs. ~1.7-fold (P84[®]) but no critical decrease of more than 15% in He
164 permeability for all polymers (**Fig. 2B**; and **Table S3**). Note that the enhanced sieving
165 properties of c-TR and c-PIM-1 membranes for other gas separation applications,
166 including H₂/CH₄, CO₂/CH₄, N₂/CH₄, H₂/CO₂, H₂/N₂, or O₂/N₂, were obtained simply by
167 adjusting the reaction conditions (**Fig. 2C** to **2F**; and **Table S3**). Based on the series-
168 resistance model (27), these results were ascribed to the prevailed enhancement in
169 molecular cutoff behaviors in L_R compared to L_D (Supplementary Note; and **Table S4**).
170 For example, H₂/CH₄ selectivity values of L_D and L_R for c-TR-A2-F60 were 102 and
171 1,945, respectively. L_R for c-TR-A2-F60, whose H₂/CH₄ selectivity was 19-fold higher
172 than L_D , significantly contributed to the enhancement in H₂/CH₄ selectivity of c-TR-A2 by
173 271 from 68. Likewise, H₂/CH₄ selectivity of L_R for the direct fluorinated P84[®]
174 membranes, 973 rendered that of the resulting membrane to be 158 from 94, however, the
175 increment (1.7-fold) was less noticeable than c-TR-A2 (4.0-fold). The difference in the
176 increment was attributed to the shrunken throat-like pores in L_R , which can be only
177 observed in the microporous polymer membranes after sub-nanopore control by
178 fluorination.

179 In addition, different types of TR membranes derived from diverse precursors (polyamides
180 (28), poly(imide-*co*-pyrrolone)s (29), polyimides (30) and crosslinked polyimides (31))
181 were considered to assess their feasibility in our sub-nanopore control technique (**Fig. 2B**).
182 The resulting TR analogues have different pore size distributions depending on the pore
183 size in the precursor membranes (28, 31): crosslinked polyimides > polyimides >

184 poly(imide-*co*-pyrrolone)s > polyamides. In particular, TR membranes from polyamides
 185 were deliberately investigated because their throat-like pores were even smaller than
 186 molecular fluorine. Our concept was successfully realized for all microporous TR
 187 membranes after exposure. However, the impact of the pore regulation approach on the
 188 tailored transport and separation performance was evidenced for the TR derivatives with
 189 larger pore sizes. For example, the highest He/CH₄ selectivity of ~790 (3,733%) was
 190 obtained for TR-crosslinked PI derivatives compared to 21 for the unmodified pristine
 191 sample. TR-amide derivatives showed a He/CH₄ selectivity of 312 (198%), compared to
 192 70 for the pristine sample, implying the importance of polymer selection. At the same
 193 time, an apparent decrease in He permeability for TR-crosslinked PI derivatives (~17%)
 194 compared with TR-amide derivatives (~1%) was observed. Likewise, a more modest
 195 increase in He/CH₄ was observed in PIM-1, in which the throat-like pores are larger than
 196 TR polymers (**Table S2**). These results suggest that sophisticated size control over throat-
 197 like pores in parent materials can directly regulate molecular differentiation behavior.

198 Polymer membranes can be fabricated into modules (32, 33), and the pores in TR and
 199 PIM-1 hollow fibers are obviously modified for thicknesses of the effective selective
 200 layers down to 300 nm (**Figs. 3A and 3B**). Their multi-modal pore size distributions can
 201 be also observed as those in flat sheet membranes (**Figs. S7 and S8**). Accordingly, c-TR
 202 and c-PIM-1 hollow fiber membranes still presented enhancement in separation
 203 performances for all of the applications in which we also considered with a flat sheet
 204 geometry (**Fig. 3C; Fig. S9 and Table S5**). In particular, c-TR hollow fiber modules
 205 exhibit orders-of-magnitude higher helium selectivities compared to the same modules
 206 made of commercially available PIs (34) and perfluoropolymers (35). We estimated the
 207 practical applicability of the c-TR modules, focusing on evaluating helium purity
 208 dependence with recovery in a He/CH₄ mixture fed with 1% helium and then comparing
 209 the experimental results to the calculated ones from a predictive process model based on a
 210 numerical method (**Figs. 3D and 3E; Fig. S10 and Table S6**), and we successfully
 211 achieved reliable and long-term operation until ~9,000 h (or one year) without failure
 212 (**Fig. S9c**).

213 We extend this pore-reorganizing concept in other fields including energy-related
 214 applications like fuel cells, reverse electrodialyzers or water splitting where external water
 215 management systems are required (36). Focusing on difference in kinetic diameters of
 216 water vapor (2.65 Å) vs. hydrogen (2.89 Å) or nitrogen (3.64 Å) can be poised to provide
 217 impactful technical solution to major concerns on hydrogen purity by regulation of water
 218 content at cathode (H₂O/H₂) or on air dehydration (H₂O/N₂). Preliminarily practical
 219 feasibility in H₂O/H₂ for c-TR and c-PIM-1 hollow fiber membranes was assessed and
 220 they exhibited a selectivity improvement by ~2.9-fold and ~3.2-fold, respectively (**Table**
 221 **S7**), also indicating a universal tool for efficient molecular differentiations.

222 Discussion

223 We demonstrated here that tailoring the membrane surface architecture with elemental
 224 fluorine provides a clear approach to address performance trade-off relationships between
 225 productivity and separation efficiency, especially in natural gas processing and other
 226 important gas separation applications as well. Experimental data from pore size
 227 distribution results and gas separation performance evaluation works were successfully
 228 demonstrated with conceptual molecular dynamics simulations as well as the simplified
 229 series-resistance models for heterogeneous membrane surfaces. Toward practical
 230 applications, our approach can additionally provide two more benefits in the fabrication

231 steps: i) scalable production with membrane uniformity due to precise control of the
232 reactive domain and ii) no need to utilize expensive perfluoropolymers and to recover
233 expensive perfluorinated solvents after fabrications. It can also be applied to absorptive
234 materials, catalysts, and interfaces to control mass transport. Future efforts using this
235 approach can be extended to microporous materials/absorptive materials, sensing
236 materials or catalysts with monolithic or hybrid polycrystalline moieties (such as the
237 zeolitic imidazole framework and covalent organic frameworks or their mixed matrix
238 membranes).

239 Materials and Methods

240 **Materials:** 2,2'-Bis(3-amino-4-hydroxylphenyl) hexafluoropropane (bisAPAF) was
241 purchased from Central Glass Co. Ltd. (Tokyo, Japan), and 3,3'-dihydroxyl-4,4'-
242 diaminobiphenyl (HAB) was obtained from Wakayama Seika Kogyo Co., Ltd.
243 (Wakayama, Japan). 2,4,6-Trimethyl-*m*-phylenediamine (DAM) was obtained from
244 Chemtec (China, sublimed twice and stored under argon). 3,5-Diaminobenzoic acid
245 (DABA, Aldrich) was recrystallized from oxygen-free water and sublimed before use. All
246 diamines in this study were stored in a vacuum oven at 40°C before preparation. 3,3'-
247 Diaminobenzidine (DAB) was purchased from Aldrich and purified by vacuum
248 sublimation at 85–90°C. Isophthaloyl dichloride (IPC) and terephthaloyl dichloride (TPC)
249 were purchased from Aldrich. After sublimation, DAB, IPC and TPC were stored in a
250 glove box purged with argon. 4,4'-(Hexafluoroisopropylidene) diphthalic anhydride
251 (6FDA) and 2,2-bis [4-(3,4dicarboxyphenoxy) phenyl] propane dianhydride (BPADA)
252 were purchased from Daikin Industries, Ltd. (Osaka, Japan). 4,4'-Oxydiphthalic anhydride
253 (ODPA) was purchased from Chemtec. 6FDA, BPADA and ODPA were dried in a
254 vacuum oven at 100°C for 24 h to remove the absorbed water. 5,5',6,6'-tetrahydroxy-
255 3,3,3'3'-tetramethyl-1,1'-spirobisindane (TTSBI, Alfa Aesar) was purified by
256 crystallization from methanol. 2,3,5,6-tetrafluoroterephthalonitrile (TFTPN, Aldrich) was
257 purified by vacuum sublimation at 150°C under an inert atmosphere before use. For
258 synthesis of PIM-1 for hollow fiber spinning, TTSBI was purified by crystallization from
259 methanol and TFTPN (from Sung Young Chemical Technology) was purified by vacuum
260 sublimation at 140°C. *N*-methyl-2-pyrrolidinone (NMP), chloroform, *o*-xylene, ethylene
261 glycol (EG), propionic acid (PA), tetrahydrofuran (THF), dimethylformamide (DMF),
262 dimethylacetamide (DMAC), methanol, ethanol and butanol were purchased from
263 Aldrich. The reactants and solvents used in this study were of reagent-grade quality and
264 were used without further purification. Commercially available P84® polyimides were
265 purchased from Lenzing.
266

267 **Synthesis of poly(*o*-hydroxylamide)s (PHAs) for the TR-A series:** Synthesis of three
268 PHA precursors was performed for this study: HAB-IPC (TR-A0) (37), APAF-IPC (TR-
269 A1) (28, 38) and APAF-TPC (TR-A2) (28, 38). TR-A1 is used as a representative
270 example for the TR-A series. TR-A1 was synthesized by dissolving 3.66 g (10 mmol) of
271 bisAPAF in 20 ml of NMP in a three-necked round-bottomed flask under a nitrogen
272 atmosphere. Then, 2.03 g (10 mmol) of IPC was poured into the solution and stirred
273 vigorously in an ice bath for 4 h, resulting in a viscous and pale yellowish solution. After
274 termination of the reaction, the solution was precipitated in distilled water, filtered
275 repeatedly and dried at 100°C under vacuum.
276

277 **Synthesis of poly(hydroxyl amic acid)-*co*-(amine-containing amic acid)s (HPAA-*co*-
278 APAA) for the TR-P series:** TR-P denotes equimolar TR poly(benzoxazole-*co*-
279 pyrrolone) (TR-PBO-*co*-PPL) polymers from copolymers containing hydroxyl poly(amic

acid) (HPAA) and amine-containing poly(amic acid) (APAA) moieties. In this study, HAB, DAB and 6FDA were used, and the solution imidization method (39) was adopted for the preparation instead of thermal imidization as in the previous study (29).

Synthesis of hydroxyl copolyimides for the TR-I series: TR-I denotes equimolar TR poly(benzoxazole-*co*-imide)s (TR-PBOIs) from precursor hydroxyl copolyimides. Two types of TR-I polymers were synthesized according to the procedure detailed in the previous literature (30, 40), including [HAB-DAM]-6FDA (TR-I1) and [APAF-DAM]-6FDA (TR-I2). For comparison, HAB-BPADA (TR-I0) homopolymers that do not contain elemental fluorine in the polymeric backbones were intentionally prepared.

Synthesis of hydroxyl cross-linkable copolyimides for the TR-X series: TR-X denotes TR-PBOI polymers from precursor hydroxyl copolyimides. In particular, TR-X is confined to those polymers that have crosslinked sites induced by cross-linkable diamines such as DABA. Two types of TR-X polymers were synthesized: [HAB-DAM-DABA]-ODPA (TR-X0) and [HAB-DAM-DABA]-6FDA (TR-X1). The molar ratios of HAB, DAM and DABA amines for these syntheses were 0.50, 0.45, and 0.05, respectively, according to the procedure detailed in the previous literature (31, 32, 41).

Synthesis of polymers of intrinsic microporosity (PIM-1): A reference (42) provides background on the general synthesis of PIM-1. PIM-1 was synthesized by a polycondensation reaction of TTSBI and TFTPN. After the reaction, the solution was cooled and washed with methanol, water, and a 0.1 wt% HCl aqueous solution to remove residual catalyst and reactant.

Fabrication of flat sheet dense membranes: Each TR precursor film was formed by slow evaporation from a 15 wt% polymer solution in NMP. For the case of PIM-1 and P84[®] polymers, the concentration was 5 wt% in chloroform and NMP, respectively. The solution was filtered with a 1.0 μ m polytetrafluoroethylene (PTFE) filter cartridge, degassed and cast onto a well-cleaned glass plate. All TR precursors and P84[®] solutions were kept at 80°C overnight in a vacuum oven and then steadily heated up to 100, 150, 200, and 250°C in the oven. The resulting film was washed in distilled water and dried again at 120°C. For PIM-1, the film was formed by slow solvent evaporation at room temperature under ambient atmosphere over a period of four days, followed by soaking in methanol for perfect removal of trapped solvents (43). All films in this study showed reproducible and controllable membrane thicknesses of 50–60 μ m except for PIM-1 (~120 μ m). For thermal rearrangement, each film was further heated to their corresponding target temperatures under a N₂-purged atmosphere in a muffle furnace (Lenton, London, UK).

Fabrication of asymmetric hollow fiber membranes: For selected TR-X0 and TR-X1 polymers, their precursor hollow fiber membranes were fabricated using a non-solvent-induced phase separation method, i.e., the so-called dry-jet wet spinning process. The degassed dope solution and bore solution were delivered to the spinneret (0.44-0.2-0.12 from Kasen, Osaka, Japan) using a gear pump (GM-S series from Mitsubishi Company, Tokyo, Japan) and a 307 HPLC pump (Gilson Company, Middleton, WI, USA), respectively, and the nascent fibers were extruded and passed through the air-gap distance. Subsequently, the hollow fiber membranes were immersed in a coagulation bath and moved to a godet bath and a take-up roll. Relevant parameters for fabricating asymmetric hollow fiber membranes are summarized in a previous study (32, 41). The fabricated

329 hollow fiber membranes were washed and dried for three days. The resulting hollow fiber
330 membranes underwent the same thermal rearrangement as the flat sheet dense membranes.
331 Fabrication of PIM-1 hollow fibers were also conducted using a dry-jet wet-quench
332 method. Under room temperature of 22°C and relative humidity of 10%, the degassed
333 PIM-1 dope was extruded with a [45wt% THF, 46.75wt% DMAc, 8.25wt% ethanol] bore
334 fluid, a [15wt% PIM-1, 69.5wt% THF, 13.25wt% DMAc, and 2.25wt% ethanol] dope
335 fluid, and a [82.5wt% butanol, 17.5wt% THF] sheath layer surrounding the dope and bore
336 fluid. This sheath layer slows the evaporation of THF, reducing skin layer thickness and
337 defects in the final fiber. All dopes and fluids were extruded using syringe pumps (1000D
338 for sheath and core, 500D bore fluid, Teledyne Isco). Air gap was set at 1.5 cm, and the
339 flow rates for bore, core and sheath layers were 90/120/65 mL/h, respectively. Dope
340 temperature from pump to spinneret was kept at 22°C, while the water quench bath was
341 kept at 50°C. Drum take up rate was 1.5 m/min. After phase inversion in the water quench
342 bath, the fibers were collected on a rolling drum in a separate water bath. The fibers
343 remained on this drum for at least 45 min to ensure full phase inversion before removal to
344 a separate bath of deionized water. This separate DI water bath was replaced every day for
345 three days to ensure full removal of solvent molecules within the fiber. After these water
346 exchanges, the fibers underwent three methanol washes for 20 min each, followed by three
347 more 20-min washes in hexane. After the final hexane wash, the fibers were dried in
348 ambient conditions for an hour before being placed in a 60°C vacuum oven (29 in Hg)
349 overnight.

350
351 **Hollow fiber membrane modules:** Fifty TR hollow fibers with a length of 25 cm were
352 bundled, and both ends were blocked using a paste resin. Each bundle was placed into a
353 20 cm long cylindrical aluminum housing and sealed with sealing caps. Epoxy resin was
354 injected into the interior of the housing at a steady rate and was cured for 3 h at 60°C. The
355 caps were then removed to cut excess fiber ends on both sides. Afterwards, the
356 oxygen/nitrogen perm-selectivity for all modules was investigated to ensure validity prior
357 to other evaluations. The detailed information is as follows: outer diameter (OD)= 426±22
358 μm , inner diameter (ID)=289±31 μm , effective length=18.5 cm, packing density=22±2%,
359 and membrane area=52 cm^2 . For PIM-1 hollow fiber modules, one single PIM hollow
360 fiber with a total length of ~30 cm was used in each module. ¼ inch stainless steel tubing
361 was swaged with ¼ stainless steel union Tee on both ends, followed by NPT female tube
362 adapter that results in an effective length of 14 cm (see **Fig. S8b**). After placement of the
363 fiber into the tubing and prior to sealing, PTFE tape was packed into the female tube
364 adapters, preventing uncured epoxy from entering the module interior. 3M™ DP100
365 Clear® epoxy filled the tube adapters, sealing the module interior. Before the epoxy
366 hardened, NPT male tube adapters were screwed into the epoxy filled NPT female tube
367 adapter on both ends, which results in a total module length of 23 cm. Epoxy was cured
368 under room temperature for 48 h before gas separation performance evaluation works, and
369 excess fiber length was removed. Detailed fiber information is as follows: outer diameter
370 (OD) ~900 μm , inner diameter (ID) ~580 μm , effective length=14 cm, and membrane
371 area=3.96 cm^2 .

372
373 **Direct fluorination:** All flat sheet membranes in this study were treated with dilute
374 fluorine gas (500 ± 15 ppm F₂/N₂ at atmospheric pressure) at 25°C for 30, 60, 90, 120,
375 150, and 300 min in a homemade reaction chamber, as shown in **Fig. S1a** (44). Prior to the
376 actual treatment, the interior of the reaction chamber was kept inert by alternately
377 applying a vacuum and nitrogen gas in the chamber approximately five times. After
378 fluorination, unreacted fluorine gas was removed using a scrubber filled with activated

379 carbon. Direct fluorination was conducted for 1, 5, and 10 min for the modular hollow
380 fiber configurations. Dense membranes were directly fluorinated on both sides of the
381 membrane to realize efficient and uniform performance. For TR hollow fiber membrane
382 modules, the lumen-side was exposed to fluorine gas while shell-side was exposed for
383 PIM-1 hollow fiber membrane modules, depending on the position of the effective skin
384 layer acting as a role in regulating separation performances. We denoted a direct
385 fluorinated polymer membrane as **Sample-F_{yy}**. Here, **Sample** indicates polymer species
386 for direct fluorination and **yy** is the direct fluorination time in minutes. Particularly in the
387 case of TR polymers, **Sample** is further coded as TR-X_x where X represents the precursor
388 types and x is the number of species (please refer to **Fig. S1b**).
389

390 **Surface properties:** Electron spectroscopy for chemical analysis (ESCA, SIGMA
391 PROBE ThermoVG, UK) was used to investigate surface chemical substitution. The
392 survey mode and high-resolution mode were used with monochromatic AlK α radiation at
393 a general pressure below 7×10^{-9} Torr. In the case of survey measurements, 10 sweep
394 cycles were conducted at electron binding energy ranges of 0–1,000 eV. Approximately
395 100 scans for C_{1s} peaks were also performed. Solid state nuclear magnetic resonance
396 (NMR) measurements were conducted.
397

398 **Microscopic image analysis:** Field-emission scanning electron microscopy (FE-SEM,
399 SUPRA 55VP, Carl Zeiss, Germany) was performed to investigate the substitution of
400 fluorine in the near surface by measuring the depth profile of the membrane. Specific atom
401 sources, such as fluorine, carbon, nitrogen, and platinum, were identified using the
402 focused ion beam (FIB) technique and energy dispersive X-ray spectroscopy (EDX). The
403 flat sheet membrane samples were coated with platinum (Pt) to prevent surface charging
404 effects. Electron probe X-ray microanalysis (EPMA) was also used to confirm cascaded
405 structures in hollow fiber modular configurations.
406

407 **Investigation of the pore size distribution with depth profile:** A variable monoenergy
408 slow positron beam (VMSPB) system coupled to slow beam positron annihilation lifetime
409 spectroscopy (sb-PALS) and Doppler broadening energy spectroscopy (DBES) (20, 45)
410 (R&D Center for Membrane Technology, Chung Yuan University, Taiwan) was employed
411 for investigating the pore size and distribution with depth profiles of pristine and
412 fluorinated membranes. A 50 mCi ²²Na positron source was used. The sb-PALS system
413 used the secondary electrons emitted from the membrane surface as the start signal and the
414 γ -rays induced by positron annihilation in the pore volume as the stop signal. The sb-
415 PALS data were measured using a BaF₂ lifetime detector at a counting rate of
416 approximately 100–200 cps. Each PALS spectrum contained 2.0 million counts. All the
417 collected sb-PALS data were fitted using the PATFIT program. The analyzed results of
418 positron lifetimes (τ_1 , τ_2 and τ_3) and intensities (I_1 , I_2 and I_3) from PALS spectra were
419 attributed to positron and positronium annihilation in membrane materials. The shortest τ_1
420 of 0.125 ns is from *p*-Ps annihilation, the τ_2 of 0.45 ns is from positron annihilation, and τ_3
421 is due to *o*-Ps annihilation. Since Ps is known to preferentially localize in defect sites
422 (particularly in the free volume before annihilation occurs), the parameters from *o*-Ps
423 annihilation have been successfully used to obtain the electron properties and depth
424 profiles of free volumes in membranes. The *o*-Ps lifetime τ_3 is on the order of 1–5 ns in
425 polymeric materials, corresponding to the so-called pickoff annihilation with electrons in
426 molecules, and is used to calculate the mean free volume radius R (Å to nm) based on an
427 established semi-empirical correlation equation from a spherical-cavity model as follows:

$$\frac{1}{\tau_3} = 2 \left[1 - \frac{R}{R + \Delta R} + \frac{1}{2\pi} \sin\left(\frac{2\pi R}{R + \Delta R}\right) \right]$$

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

Here, τ_3 is the positron lifetime (ns), R is the pore radius (Å), and ΔR is the electron layer thickness, semi-empirically determined to be 3.823 Å. The pore volume was calculated from the pore radius, assuming a spherical shape. Detailed descriptions of the VMSPB and the data analysis can be found elsewhere (20).

DBES spectra were measured using an HP Ge detector (EG&G Ortec, with a 35% efficiency and an energy resolution of 1.5 at the 511 keV peak) at a counting rate of approximately 1,000 cps. The total number of counts for each DBES spectrum was one million. DBES spectra were characterized by the S parameter, which was defined as the ratio of the integrated counts between energies of 510.3 and 511.7 keV (S width) to the total counts. PALS was performed by varying the monoenergy of the positron beam over a range from 0 to 30 keV. When the positron and Ps are localized in a hole or free volume with a finite size, the observed S parameter is a measure of the momentum broadening based on the uncertainty principle; a larger hole results in a larger S parameter value and an increase in the amount of *para* positronium (singlet state). The S parameter has been successfully used in detecting the free volume depth profile in polymeric systems (20). The cascaded structure of fluorinated membranes was obtained from an analysis of the S parameter data using the VEPFIT program. The χ^2 of the analysis was less than 1.0, indicating a reasonable error in the data curve fitting.

Physicochemical properties: Small angle X-ray scattering (SAXS) measurements were conducted with the synchrotron radiation source of the 4C SAXS beamline at the Pohang Light Source II of the Pohang Accelerator Laboratory (PAL) (46, 47). Scattering data were adjusted for sample transmission and background scattering. The two-dimensional scattering data were analyzed using a software package provided by PAL to obtain radially integrated SAXS intensities versus the scattering vector q . Here, q is a function of angle (θ) according to the following equation:

$$q = \frac{4\pi}{\lambda} \sin(\theta)$$

Here, λ is the radiation wavelength, and θ is half of the scattering angle (2θ). The Bragg spacing d was calculated according to the following equation:

$$d = \frac{2\pi}{q}$$

Thermogravimetric analysis (TGA, TGA Q50, TA Instruments, New Castle, DE, USA) was performed to observe the thermal stability of the membranes. The thermal stability was analyzed based on the decomposition temperature as a function of the fluorination time. The TGA measurements were carried out under a nitrogen atmosphere at a heating rate of 5°C min⁻¹ from 60°C to 800°C. No changes were observed in the thermal stability up to 450°C. The mechanical properties of the tensile strength and elongation were characterized to evaluate the stress-strain behavior of the polymer samples using a universal testing machine (UTM, Autograph AGS-J, Shimadzu, Kyoto, Japan) and at least five film specimens of each sample (1 1/4" High ASTM D-638 Type). Optical property changes were also monitored.

467

Molecular dynamics simulations: The Materials Studio program package (BIOVIA Software Inc., CA, USA) was used for molecular dynamics simulations in this study. Since gas transport through polymeric membranes is subject to various factors, such as intermolecular interactions and complex pore morphologies (in addition to the effect of bottlenecks), we developed ideal and conceptual pore models using carbon nanotube (CNT) structures (**Figs. 1E and 1F**). First, we built a single-walled carbon nanotube with a 0.964 nm inner diameter, corresponding to that of TR-A2-F0. Then, the length of the CNT models was scaled to 1/2 to obtain a tighter carbon atom wall. In addition, according to the fluorine treatment time, the pore structures of the CNT models were modified to a rugby ball shape, as shown in **Fig. 1E**. The models were geometrically optimized after helium and methane molecules were inserted into the CNT models using the sorption module in the Materials Studio program package. Finally, a constant volume (NVT) simulation was performed under 298 K and 1 atm conditions for 100 ns with an Andersen thermostat and the Ewald non-bond summation method to obtain the diffusivity coefficients calculated from the mean square displacement of gas molecules in the CNT models simulated by molecular dynamics. The COMPASS II (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies II) force field was used (48-51). Three different types of TR microstructures, with 0 min, 60 min and 300 min exposures were considered to investigate the efficacy of the squeezed hourglass-shaped microstructure in He/CH₄ applications, and their pore size distributions were obtained from the sb-PALs spectra (**Fig. 1D**; and **Fig. S3**).

489

Gas permeation properties: The constant volume method with varying pressure (the so-called time-lag method) was introduced to measure the gas permeability of P84[®], TR-PBO, and PIM-1 membranes (**Table S3**). The membrane films were 4 cm² in size and were masked with impermeable aluminum tape on both sides before being placed in the permeation cell apparatus. The constant volume method is based on the following equation:

$$P = \frac{dp}{dt} \left(\frac{VT_0 l}{p_0 T A \Delta p} \right)$$

where P [Barrer, 1 Barrer = 3.3 \times 10⁻¹⁶ mol m/m² s Pa] is the permeability, and dp/dt is the experimental value of the rate of pressure increase under a thermodynamic steady state. V [cm²] indicates the volume downstream, and l [cm] is the thickness of the membrane. A [cm²] represents the effective area of the membrane, and T [K] is the absolute temperature of the operating system. Δp [cmHg] indicates the pressure difference across the membrane and is the driving force of diffusion through the membrane. T_0 and P_0 indicate standard temperature and pressure, respectively. The gas permeabilities of six representative single gases of He, H₂, CO₂, O₂, N₂, and CH₄ were measured at 35°C and 760 Torr.

505

Constant pressure methods were applied in the case of pristine and c-TR and c-PIM-1 hollow fiber membrane modules. The gas permeability was calculated using the following equation:

$$P = \frac{Q \times l \times T_0}{A \times \Delta p \times T}$$

Here, Q [cm² min⁻¹] is the gas flow rate downstream measured using a bubble flow meter, Δp [cmHg] indicates the pressure difference across the membrane (5 bar for TR and 7 bar for PIM-1, respectively) and T is the temperature measured at the bubble flow meter

512 (35°C). The ideal selectivity of a single gas ($\alpha_{i,j}$) is determined as the ratio of the two gas
513 permeances. The values reported here are an average of at least three measurements. The
514 uncertainty in the data is 5% or less.

515
516 **Evaluation of the practical feasibility in helium recovery:** The mixed-gas permeation
517 tests with 2000h-aged TR-X1-F0 and TR-X1-F1 hollow fiber membrane modules were
518 performed using a constant pressure method following the previous report (52). 20 bar of
519 He/CH₄ (1 mol%/99 mol%) gas mixture was fed from bore to shell side of the module at
520 ambient temperature while permeate pressure was constant at 0.5 bar by a diaphragm
521 vacuum pump (Laboport® N86 K18, KNF Neuberger Inc., Trenton, NJ, USA). The stage
522 cut (θ) was defined as the ratio of permeate flow rate to feed flow rate and controlled by
523 regulating feed flow rate using mass flow controller (M3030VA, Line Tech, Daejeon,
524 Korea). Gas composition at permeate side was determined by gas chromatography (Micro
525 GC 490, Agilent Technologies, Inc. Santa Clara, CA). Helium recovery was determined
526 by multiplying stage cut with the ratio of helium concentration at permeate to that at feed.
527 A simple single-stage membrane process model that describes the helium concentration in
528 the permeate and retentate stream as a function of stage cut (θ) was developed to predict
529 the He purity and He recovery in the permeate stream. The goal of this study was to
530 compare the experimental results and precisely predict the exact condition to achieve 90%
531 helium recovery for the case of TR-X1-F1 hollow fiber membrane modules. This model
532 was conducted using a numerical method, which divides the membrane process into a
533 finite number of stages with the same stage repeated in series (please see **Fig. S10**, 1,000
534 in this study). In this model, the retentate stream of each stage becomes the feed stream of
535 the next stage. Therefore, the overall permeation is a summation of each permeate stream,
536 and the overall retentate stream is the final retentate stream. For simplicity, the effect of
537 pressure drop on the helium separation performance was neglected, meaning that the
538 operating pressure along the flow path is constant. The concentration of He in the
539 permeate stream at the pressure ratio φ is as follows:

$$n_{He_p} = \frac{\varphi}{2} \left[n_{He_F} + \frac{1}{\varphi} + \frac{1}{\alpha - 1} - \sqrt{\left(n_{He_F} + \frac{1}{\varphi} + \frac{1}{\alpha - 1} \right)^2 - \frac{4\alpha n_{He_F}}{(\alpha - 1)\varphi}} \right]$$

540 Therefore, the He recovery and purity were calculated as follows:

$$Recovery = \frac{\sum_{k=1}^n (P_k \times n_k^p)}{F_1 \times n_1}$$

$$Purity = \frac{\sum_{k=1}^n (P_k \times n_k^p)}{\sum_{k=1}^n P_k}$$

541 The simulated result with commercial perfluoropolymers (marked in blue pentagons in
542 **Figs. 3D and 3E**) (53) was also presented for comparison.

543
544 **Preliminary study on assessing feasibility in energy-related applications:** To
545 investigate capability of hydrogen dehydration (H₂O/H₂) for c-TR and c-PIM hollow fiber
546 membranes, H₂ and water vapor permeabilities were collected using a home-made gas
547 permeability testing system connected with a gas chromatograph (GC, 490 Micro GC,
548 Agilent Technologies, USA) and two mass flow controllers (MFC, M3030V, Line Tech,
549 Korea) operating at 80% RH at 50°C under a 2.2 bar unilateral back pressure (54). The gas
550 permeability (P) can be obtained by the following equation.

$$P = \frac{VM_{gas}d}{P_{feed}RTA\rho} \frac{d_p}{d_t}$$

551 Here, A (cm^2) and d (μm) represent the effective membrane area and thickness of
 552 membrane samples, respectively. P_{feed} and M_{gas} (g mol^{-1}) are the pressures of each gas
 553 (760 mmHg) and molecular weight of the permeating gas, respectively. V (cm^3) is the
 554 volume of the measuring device at the bottom of the membrane samples. ρ (g cm^{-3}) and R
 555 ($\text{L mmHg K}^{-1} \text{mol}^{-1}$) are the densities of the permeating gas and the gas constant,
 556 respectively. $\frac{d_p}{d_t}$ is the slope that can be plotted from a change in permeated gas pressure as
 557 a function of time. The unit of P is Barrer where $1 \text{ Barrer} = 10^{-10} \text{ cm}^3 (\text{STP}) \text{ cm cm}^{-2} \text{s}^{-1}$
 558 cmHg^{-1} . 100 sccm of Ar was used as a sweep gas and 1,000 sccm of feed was injected to
 559 the system.

562 References

1. H. B. Park *et al.*, Polymers with cavities tuned for fast selective transport of small molecules and ions. *Science* **318**, 254-258 (2007).
2. K. A. Thompson *et al.*, N-Aryl-linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. *Science* **369**, 310-315 (2020).
3. D.-Y. Koh, B. A. McCool, H. W. Deckman, R. P. Lively, Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. *Science* **353**, 804-807 (2016).
4. M. D. Guiver, Y. M. Lee, Polymer rigidity improves microporous membranes. *Science* **339**, 284-285 (2013).
5. M. Carta *et al.*, An efficient polymer molecular sieve for membrane gas separations. *Science* **339**, 303-307 (2013).
6. Y. Yang *et al.*, Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. *Science* **364**, 1057-1062 (2019).
7. H. Li *et al.*, Na⁺-gated water-conducting nanochannels for boosting CO₂ conversion to liquid fuels. *Science* **367**, 667-671 (2020).
8. A. Cadiou, K. Adil, P. Bhatt, Y. Belmabkhout, M. Eddaoudi, A metal-organic framework-based splitter for separating propylene from propane. *Science* **353**, 137-140 (2016).
9. H. T. Kwon, H.-K. Jeong, A. S. Lee, H. S. An, J. S. Lee, Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. *Journal of the American Chemical Society* **137**, 12304-12311 (2015).
10. A. J. Brown *et al.*, Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. *Science* **345**, 72-75 (2014).
11. J. Le Roux, D. Paul, J. Kampa, R. Lagow, Surface fluorination of poly (phenylene oxide) composite membranes Part I. Transport properties. *Journal of Membrane Science* **90**, 21-35 (1994).
12. J. Le Roux, D. R. Paul, J. Kampa, R. Lagow, Modification of asymmetric polysulfone membranes by mild surface fluorination Part I. Transport properties. *Journal of Membrane Science* **94**, 121-141 (1994).
13. J. Mohr, D. Paul, I. Pinnau, W. Koros, Surface fluorination of polysulfone asymmetric membranes and films. *Journal of Membrane Science* **56**, 77-98 (1991).
14. A. Kharitonov *et al.*, Direct fluorination—useful tool to enhance commercial properties of polymer articles. *Journal of Fluorine Chemistry* **126**, 251-263 (2005).
15. M. Langsam, M. Anand, E. Karwacki, Substituted propyne polymers: I. Chemical surface modification of poly [1-(trimethylsilyl) propyne] for gas separation membranes. *Gas Separation & Purification* **2**, 162-170 (1988).

598 16. M. Langsam, Fluorinated polymeric membranes for gas separation processes, US Patent
599 4,657,564. (1987).

600 17. M. Langsam, A. C. L. Savoca, Polytrialkylgermylpropyne polymers and membranes, US
601 Patent 4,759,776. (1988).

602 18. P. M. Budd *et al.*, Solution-processed, organophilic membrane derived from a polymer of
603 intrinsic microporosity. *Advanced Materials* **16**, 456-459 (2004).

604 19. R. B. Bird, W. E. Stewart, E. N. Lightfoot, *Transport phenomena* John Wiley & Sons, New
605 York (1960).

606 20. Y. Jean, J. D. Van Horn, W.-S. Hung, K.-R. Lee, Perspective of positron annihilation
607 spectroscopy in polymers. *Macromolecules* **46**, 7133-7145 (2013).

608 21. A. W. Thornton *et al.*, Architecturing nanospace via thermal rearrangement for highly
609 efficient gas separations. *The Journal of Physical Chemistry C* **117**, 24654-24661 (2013).

610 22. A. Cho, Congress Tries Again to Head Off Looming Helium Crisis. *Science* **339**, 894
611 (2013).

612 23. W. J. Nuttall, R. H. Clarke, B. A. Glowacki, Resources: Stop squandering helium. *Nature*
613 **485**, 573 (2012).

614 24. A. X. Wu, J. A. Drayton, Z. P. Smith, The perfluoropolymer upper bound. *AIChE Journal*
615 **65**, e16700 (2019).

616 25. L. M. Robeson, The upper bound revisited. *Journal of Membrane Science* **320**, 390-400
617 (2008).

618 26. W. H. Lee, J. G. Seong, X. Hu, Y. M. Lee, Recent progress in microporous polymers from
619 thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas
620 separation: Pushing performance limits and revisiting trade-off lines. *Journal of Polymer*
621 **58**, 2450-2466 (2020).

622 27. J. M. Henis, M. K. Tripodi, Composite hollow fiber membranes for gas separation: the
623 resistance model approach. *Journal of Membrane Science* **8**, 233-246 (1981).

624 28. S. H. Han *et al.*, Tuning microcavities in thermally rearranged polymer membranes for
625 CO₂ capture. *Physical Chemistry Chemical Physics* **14**, 4365-4373 (2012).

626 29. J. I. Choi, C. H. Jung, S. H. Han, H. B. Park, Y. M. Lee, Thermally rearranged (TR) poly
627 (benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity.
628 *Journal of Membrane Science* **349**, 358-368 (2010).

629 30. A. Brunetti *et al.*, Mutual influence of mixed-gas permeation in thermally rearranged poly
630 (benzoxazole-co-imide) polymer membranes. *Journal of Membrane Science* **580**, 202-213
631 (2019).

632 31. M. Calle, H. J. Jo, C. M. Doherty, A. J. Hill, Y. M. Lee, Cross-linked thermally rearranged
633 poly (benzoxazole-co-imide) membranes prepared from ortho-hydroxycopolyimides
634 containing pendant carboxyl groups and gas separation properties. *Macromolecules* **48**,
635 2603-2613 (2015).

636 32. J. Lee *et al.*, Densification-induced hollow fiber membranes using crosslinked thermally
637 rearranged (XTR) polymer for CO₂ capture. *Journal of Membrane Science* **573**, 393-402
638 (2019).

639 33. M. L. Jue, V. Breedveld, R. P. Lively, Defect-free PIM-1 hollow fiber membranes.
640 *Journal of Membrane Science* **530**, 33-41 (2017).

641 34. E. P. Favvas *et al.*, Helium and hydrogen selective carbon hollow fiber membranes: The
642 effect of pyrolysis isothermal time. *Separation Purification Technology* **142**, 176-181
643 (2015).

644 35. J. Jansen, F. Tasselli, E. Tocci, E. Drioli, High-flux composite perfluorinated gas
645 separation membranes of Hyflon® AD on a hollow fibre ultrafiltration membrane support.
646 *Desalination* **192**, 207-213 (2006).

647 36. C. H. Park *et al.*, Nanocrack-regulated self-humidifying membranes. *Nature* **532**, 480
648 (2016).

649 37. Y. S. Do, J. G. Seong, S. Kim, J. G. Lee, Y. M. Lee, Thermally rearranged (TR) poly
650 (benzoxazole-co-amide) membranes for hydrogen separation derived from 3, 3'-
651 dihydroxy-4, 4'-diamino-biphenyl (HAB), 4, 4'-oxydianiline (ODA) and isophthaloyl
652 chloride (IPCI). *Journal of Membrane Science* **446**, 294-302 (2013).

653 38. S. Kim, J. G. Seong, Y. S. Do, Y. M. Lee, Gas sorption and transport in thermally
654 rearranged polybenzoxazole membranes derived from polyhydroxylamides. *Journal of*
655 *Membrane Science* **474**, 122-131 (2015).

656 39. Y. Zhuang *et al.*, Mechanically tough, thermally rearranged (TR) random/block poly
657 (benzoxazole-co-imide) gas separation membranes. *Macromolecules* **48**, 5286-5299
658 (2015).

659 40. H. J. Jo *et al.*, Thermally rearranged poly (benzoxazole-co-imide) membranes with
660 superior mechanical strength for gas separation obtained by tuning chain rigidity.
661 *Macromolecules* **48**, 2194-2202 (2015).

662 41. J. H. Lee *et al.*, Wet CO₂/N₂ permeation through a crosslinked thermally rearranged poly
663 (benzoxazole-co-imide)(XTR-PBOI) hollow fiber membrane module for CO₂ capture.
664 *Journal of Membrane Science* **539**, 412-420 (2017).

665 42. S. Zhao, J. Liao, D. Li, X. Wang, N. Li, Blending of compatible polymer of intrinsic
666 microporosity (PIM-1) with Tröger's Base polymer for gas separation membranes. *Journal*
667 *of Membrane Science* **566**, 77-86 (2018).

668 43. J. G. Seong *et al.*, Effect of methanol treatment on gas sorption and transport behavior of
669 intrinsically microporous polyimide membranes incorporating Tröger' s base. *Journal of*
670 *Membrane Science* **480**, 104-114 (2015).

671 44. S. J. Moon *et al.*, Thin film composite on fluorinated thermally rearranged polymer
672 nanofibrous membrane achieves power density of 87 W m⁻² in pressure retarded osmosis,
673 improving economics of osmotic heat engine. *Journal of Membrane Science* **607**, 118120
674 (2020).

675 45. H. Chen *et al.*, Free-volume depth profile of polymeric membranes studied by positron
676 annihilation spectroscopy: layer structure from interfacial polymerization.
677 *Macromolecules* **40**, 7542-7557 (2007).

678 46. W. H. Lee *et al.*, Thermally rearranged semi-interpenetrating polymer network (TR-SIPN)
679 membranes for gas and olefin/paraffin separation. *Journal of Membrane Science* **625**,
680 119157 (2021).

681 47. K. H. Lee *et al.*, Highly conductive and durable poly (arylene ether sulfone) anion
682 exchange membrane with end-group cross-linking. *Energy & Environmental Science* **10**,
683 275-285 (2017).

684 48. C. H. Park, E. Tocci, Y. M. Lee, E. Drioli, Thermal treatment effect on the structure and
685 property change between hydroxy-containing polyimides (HPIs) and thermally rearranged
686 polybenzoxazole (TR-PBO). *The Journal of Physical Chemistry B* **116**, 12864-12877
687 (2012).

688 49. D. Rigby, H. Sun, B. Eichinger, Computer simulations of poly (ethylene oxide): force
689 field, pvt diagram and cyclization behaviour. *Polymer International* **44**, 311-330 (1997).

690 50. H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications
691 overview with details on alkane and benzene compounds. *The Journal of Physical*
692 *Chemistry B* **102**, 7338-7364 (1998).

693 51. H. Sun, D. Rigby, Polysiloxanes: ab initio force field and structural, conformational and
694 thermophysical properties. *Spectrochimica Acta Part A: Molecular Biomolecular*
695 *Spectroscopy* **53**, 1301-1323 (1997).

52. Y. Zhang *et al.*, Alicyclic segments upgrade hydrogen separation performance of
intrinsically microporous polyimide membranes. *Journal of Membrane Science* **611**,
118363 (2020).

53. P. W. Hale, K. A. Lokhandwala, Helium recovery from gas streams, US Patent
20050217479A1. (2005).

54. G. Q. Chen, C. A. Scholes, G. G. Qiao, S. E. Kentish, Water vapor permeation in
polyimide membranes. *Journal of Membrane Science* **379**, 479-487 (2011).

55. P. K. Gantzel, U. Merten, Gas separations with high-flux cellulose acetate membranes.
Industrial Engineering Chemistry Process Design Development **9**, 331-332 (1970).

56. D. Syrtsova, A. Kharitonov, V. Teplyakov, G.-H. Koops, Improving gas separation
properties of polymeric membranes based on glassy polymers by gas phase fluorination.
Desalination **163**, 273-279 (2004).

57. Y. Okamoto *et al.*, New perfluoro-dioxolane-based membranes for gas separations.
Journal of Membrane Science **471**, 412-419 (2014).

58. M. Fang, Z. He, T. C. Merkel, Y. Okamoto, High-performance perfluorodioxolane
copolymer membranes for gas separation with tailored selectivity enhancement. *Journal of
Materials Chemistry A* **6**, 652-658 (2018).

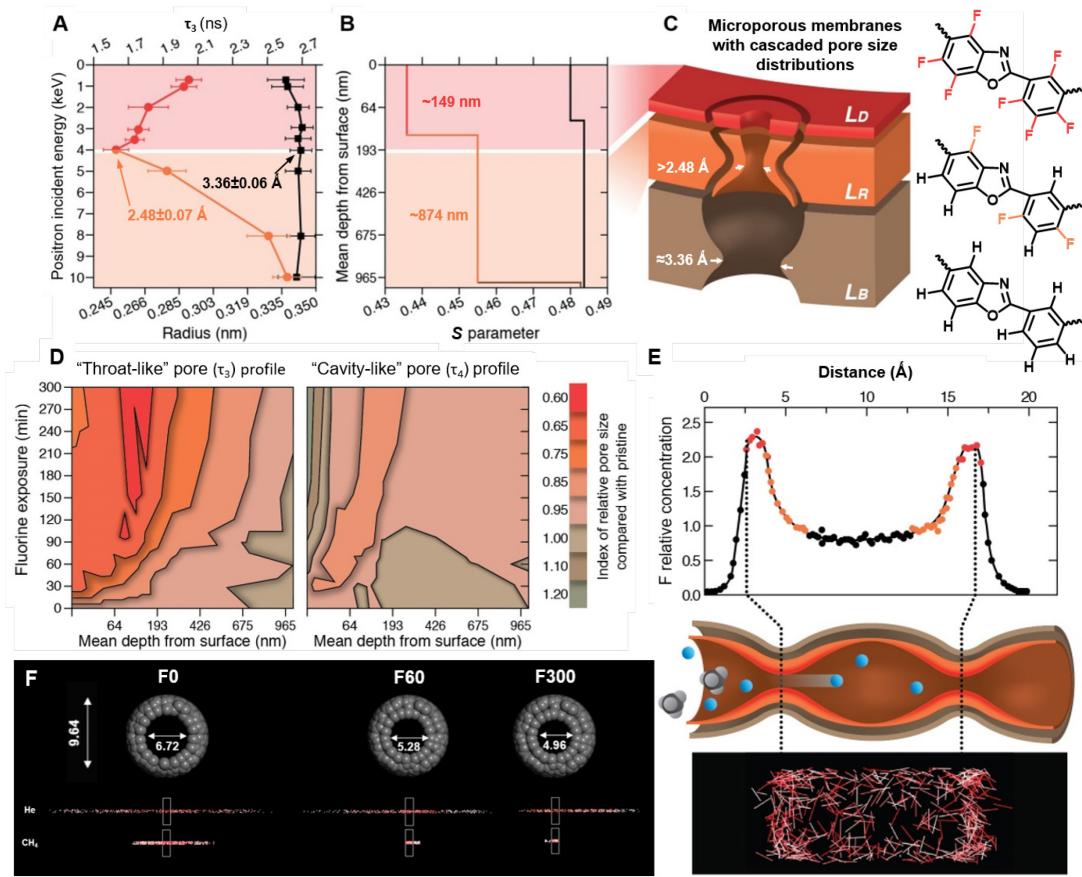
59. J. Mohr, D. Paul, Y. Tam, T. Mlsna, R. Lagow, Surface fluorination of composite
membranes. Part II. Characterization of the fluorinated layer. *Journal of Membrane
Science* **55**, 149-171 (1991).

60. J. Park, D. R. Paul, Correlation and prediction of gas permeability in glassy polymer
membrane materials via a modified free volume based group contribution method. *Journal
of Membrane Science* **125**, 23-39 (1997).

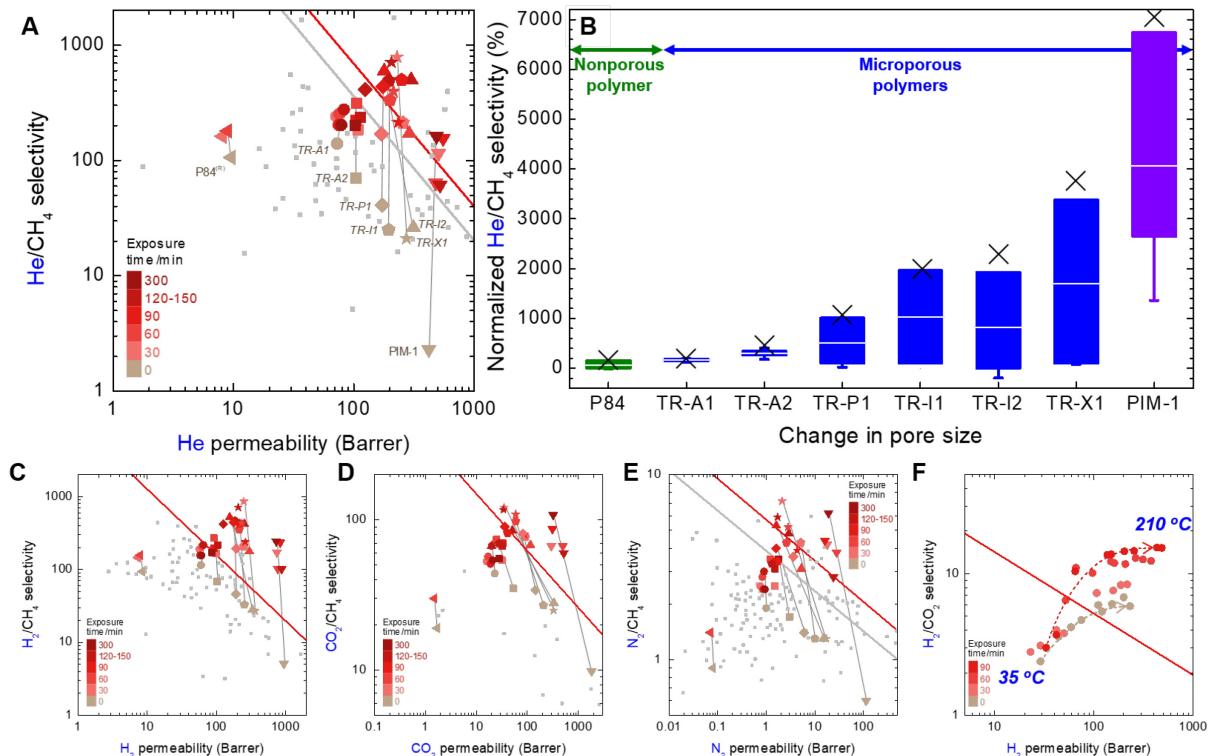
Acknowledgments

Dr. Donald R. Paul at the University of Texas at Austin is acknowledged for his advice
and discussions that led to further study of hollow fiber membrane configurations. The
authors thank Prof. Nanwen Li at the Chinese Academy of Science for PIM-1 synthesis.

Funding: This research was supported by the Technology Development Program to Solve
Climate Change through the National Research Foundation of Korea (NRF) funded by the
Ministry of Science and ICT (NRF-2018M1A2A2061979). CHP acknowledge the
financial support from the National Research Foundation of Korea (NRF) funded by the
Ministry of Science and ICT (NRF-2019R1A2C1087209). RPL, CJR, YR acknowledge
the U.S. National Science Foundation (CBET 1653153) for research support. Partial
funding from POSCO Co. in South Korea and Aramco is highly appreciated.


Author contributions: YML, JGS and SYL conceived of this work. JGS and YML wrote
the manuscript. JGS and WHL performed most of the experiments and data analysis. YSD
and HJJ synthesized the materials and estimated transport properties with flat sheet
geometries. JL and JSK fabricated hollow fiber membrane modules. JYB and SJM
assessed the practical feasibility. CHP conducted molecular dynamics simulations. KRL,
WSH and JYL investigated pore size distributions with sb-PALs and DBES. YR
synthesized PIM-1 for hollow fibers spinning, YR, CJR and RPL spun PIM hollow fibers
and fabricated fiber membrane modules, and edited the manuscript.

Competing interests: The authors declare they have no competing interests.


Data and materials availability: All data are available in the main text or the
supplementary materials.

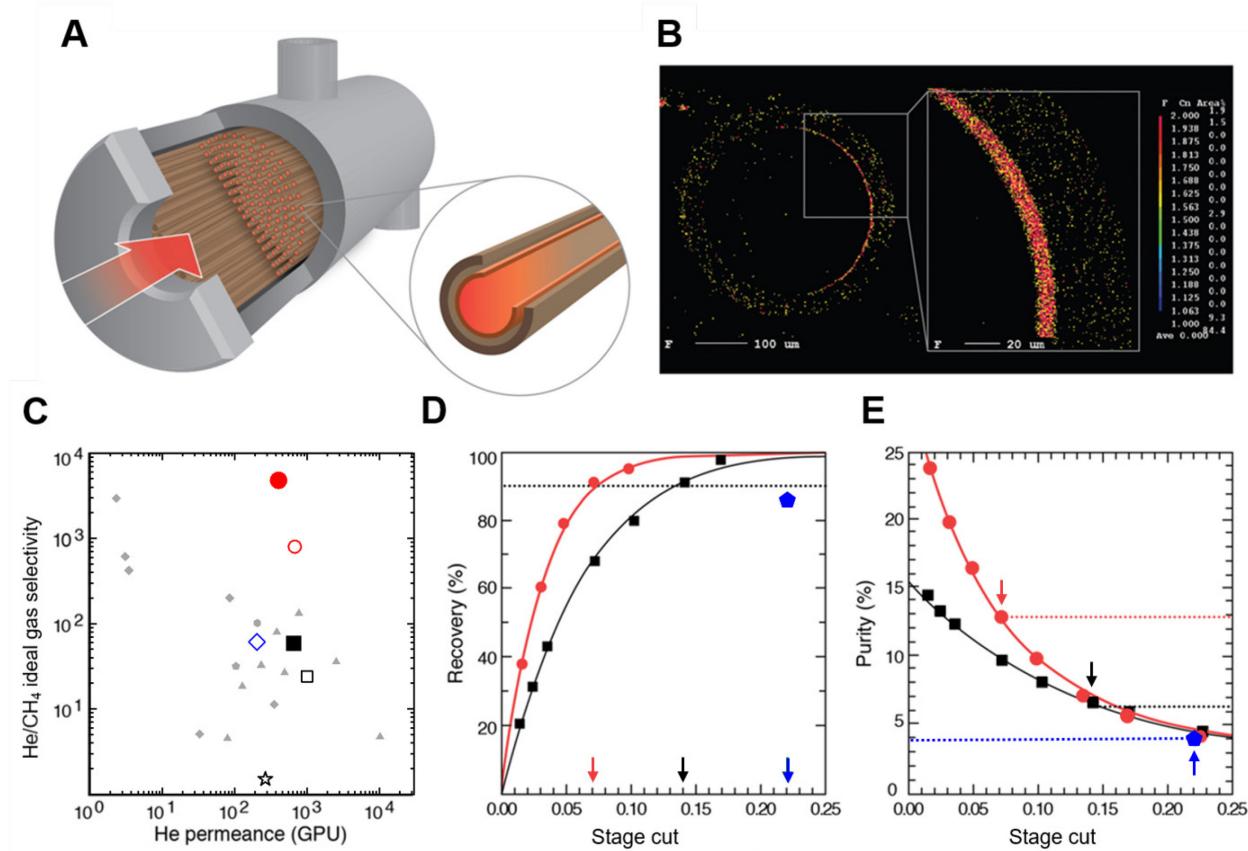

Figures and Tables

Fig. 1. Membranes with cascaded cavities. The depth profiles of (A) pore size and (B) layer thickness in c-TR (red and orange) at the near surface compared to pristine membranes (black) (28). (C) This domain consists of L_D (red, $\sim 149 \text{ nm}$) and L_R (orange, $\sim 874 \text{ nm}$) on top of L_B (brown). Each chemical structure indicates possible substitution positions performed at L_D , L_R and L_B in TR polymers, respectively. (D) Graphical representation spectra for τ_3 (left) and τ_4 (right) of the TR-A2 series. Each map was built by calculating the ratio of the modified pore size to the pristine pore size from Fig. S3 and then marking each region based on the color scale. (E) (Upper panel) MD simulation of the relative concentration of molecular fluorine colliding with the conceptual pore morphologies in TR polymers as a function of the penetration path. The relative concentration of molecular fluorine was obtained by the ratio of fluorine concentration at the penetrating distance from the entrance of the pore to minimum concentration (i.e., fluorine concentration at the center of the morphologies), (middle panel) a proposed schematic of selective transport of helium (blue sphere) from methane (grey tetrahedron) penetrated through c-TR, and (lower panel) a snapshot supporting squeezed microporous nature (the red sticks indicate molecular fluorine). (F) Snapshots of diffusion behaviors of He and CH_4 penetrated into conceptual TR pore models with fluorine exposure from 0 min (left) to 60 min (middle) and 300 min (right), referenced from sb-PALs results in Fig. S3. The simulated He and CH_4 diffusivity coefficients for TR membranes varied from $1.1213 \times 10^{-5} \text{ cm}^2/\text{sec}$ and $6.01 \times 10^{-7} \text{ cm}^2/\text{sec}$ (0 min) to $4.802 \times 10^{-6} \text{ cm}^2/\text{sec}$ and $2.8 \times 10^{-8} \text{ cm}^2/\text{sec}$ (90 min) and $2.744 \times 10^{-6} \text{ cm}^2/\text{sec}$ and $1.0 \times 10^{-8} \text{ cm}^2/\text{sec}$ (300 min). The simulated diffusion selectivity of He/ CH_4 in TR membranes was enhanced from 19 (0 min) to 171 (90 min) and 172 (300 min).

Fig. 2. Tunable separation performances with controlled reaction and polymer templates. (A) Changes in He/CH_4 separation for all microporous and nonporous polymers in this study. Grey-colored dots are from literatures on fluorinated polymers (24). Red-colored and grey-colored upper bounds (24-26) are for perfluoropolymers and non-perfluoropolymers, respectively. Detailed information can be found in **Table S3**, and the dotted lines guide the eye. (B) Box-and-Whisker plot displaying the difference in the tunability of the He/CH_4 performance with all polymers in this study. This plot indicates better pore accessibility of molecular fluorine to membrane sub-surfaces, from P84[®] (leftmost) to PIM-1 (rightmost). For each box, the ends and line through the box correspond to the first and third quartiles and mean value, respectively. The whiskers indicate standard deviations, and X represents the maximum. (C-E) Changes in (C) H_2 , (D) CO_2 , and (E) N_2 separation performances with regard to CH_4 . (F) Comparison of H_2/CO_2 performances of pristine and c-TR membranes at elevated temperature.

790
791 **Fig. 3. Toward practical applications.** (A) Schematic of a c-TR hollow fiber membrane
792 module. Each color corresponds to the case of **Fig. 1**. (B) Electron probe X-ray
793 microanalysis (EPMA) micrographs of cross-sections of the c-TR hollow fiber
794 morphology. For c-PIM-1, graded domain would be positioned on shell side. (C-
795 E) represent the practical feasibility of using pristine (black) and c-TR (red)
796 modules in helium separation applications. Solid ones are aged for 2,000 h. (C)
797 He/CH₄ performances of c-TR and c-PIM-1. For PIM-1, black-colored open star
798 indicates the pristine while blue-colored open diamond is a pore-regulated one.
799 Other hollow-fibrous or asymmetric flat sheet membrane modules made of
800 cellulose acetates (55), polyimides (34, 53, 56), perfluoropolymers (35, 53, 57, 58)
801 and carbon molecular sieve materials (34) were also provided for a comparison.
802 Detailed data are given in **Table S5**. (D and E) He recovery and purity dependence
803 in a He/CH₄ mixture fed with 1% helium under 20 bar at ambient temperature.
804 Arrows and dotted lines guide the eye to indicate 90% He recovery. Solid lines are
805 from a predictive process model, while solid bullets are from experimental results.
806 The blue pentagons correspond to results from thin-film composite (TFC) modules
807 made of commercially available perfluoropolymers (**Fig. S10**) (53).aa