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Abstract. It is well-known that stars have the potential to be excellent dark matter detec-
tors. Infalling dark matter that scatters within stars could lead to a range of observational
signatures, including stellar heating, black hole formation, and modified heat transport. To
make robust predictions for such phenomena, it is necessary to calculate the scattering rate
for dark matter inside the star. As we show in this paper, for small enough momentum
transfers, this requires taking into account collective e�ects within the dense stellar medium.
These e�ects have been neglected in many previous treatments; we demonstrate how to in-
corporate them systematically, and show that they can parametrically enhance or suppress
dark matter scattering rates depending on how dark matter couples to the Standard Model.
We show that, as a result, collective e�ects can significantly modify the potential discovery or
exclusion reach for observations of compact objects such as white dwarfs and neutron stars.
While the e�ects are more pronounced for dark matter coupling through a light mediator,
we show that even for dark matter coupling via a heavy mediator, scattering rates can di�er
by orders of magnitude from their naive values for dark matter masses . 100 MeV. We also
illustrate how collective e�ects can be important for dark matter scattering in more dilute
media, such as the Solar core. Our results demonstrate the need to systematically incorpo-
rate collective e�ects in a wide range of astroparticle contexts; to facilitate this, we provide
expressions for in-medium self-energies for a variety of di�erent media, which are applicable
to many other processes of interest (such as particle production).
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1 Introduction

Discovering the microphysical nature of dark matter (DM) is one of the major goals of
fundamental physics. All existing evidence for DM comes from its gravitational interactions,
but many di�erent types of DM models result in very similar mass distributions over the
galactic scales on which gravitational e�ects are significant, hence cannot be distinguished
by their gravitational interactions alone. Consequently, to distinguish between these models,
we need to look for signatures of non-gravitational interactions between DM and the Standard
Model (SM).

The most obvious approach is to look for interactions of DM with laboratory systems.
Many di�erent types of experiments, aiming to detect various kinds of DM candidates, have
been proposed and implemented, but so far no unambiguous evidence of DM has been seen.
In many models of DM, this is not unexpected. DM that is some combination of too weakly-
interacting, too dilute (due to individual particles being too heavy, or being clustered in
clumps), too low-mass (so that individual interaction events are not energetic enough to be
detected), or too strongly-interacting (so that DM is slowed down by the Earth’s atmosphere
and the environment surrounding the experiment, resulting in low-energy events) could evade
detection in such experiments.

An alternative approach, which may help to detect some of these models, is to look
for the e�ects of DM on astrophysical objects, such as stars. These are much larger and
denser than terrestrial targets, and can consequently have larger interaction rates with DM.
The main di�culty is how to observe the e�ects of such interactions. For DM whose leading
interaction with SM matter is via scattering, scattering events inside a star can result in the
DM losing energy and being captured onto a gravitationally bound orbit. Such DM particles
then have the potential for further interactions in and around the star, leading to a variety of
possible observational signatures. These including heating old, cold stellar remnants (either
from the kinetic energy of the DM [1–9], or from its annihilation [10–12]), formation of a
black hole inside the star [13–23], modification of heat transport [24–31], or others. Since
these signatures usually rely on the accumulation of many dark matter particles, rather
than detecting a single event, their sensitivity does not fall o� at large and small dark matter
masses in the same way as laboratory experiments, and they can potentially probe parameter
space which would be very di�cult to explore on Earth.
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To make predictions for these kinds of stellar observables, one needs to calculate the
scattering rate of DM inside stars. For scatterings involving large enough momentum trans-
fers, this is a simple particle-by-particle process, as is familiar from WIMP direct detection;
the total scattering rate is simply given by � ƒ nSM‡‰SMv, where nSM is the number density
of SM target particles, ‡‰SM is the DM-SM scattering cross section, and v is the relative
velocity. However, for smaller momentum transfers, it can be important to take into ac-
count collective e�ects which arise due to coherent interactions with multiple particles in the
medium. A very familiar example of such an e�ect is the coherent scattering of particles o� of
all of the nucleons within a nucleus when the transferred momentum is . 100 MeV. However,
for momentum transfers smaller than the inverse spacing between separate nuclei (or separate
electrons), more complicated e�ects can occur, such as screening phenomena, scattering o�
of collective excitations (e.g. phonons or plasmons), and others. These types of e�ects have
been studied recently in the context of laboratory experiments searching for the scattering of
sub-GeV DM [32–35], but have mostly been ignored in existing treatments of DM scattering
in stars. In this paper, we consider such e�ects systematically, and show that they can make
parametrically large di�erences to DM capture rates. Depending on the DM model, these can
be either enhancements or suppressions of the capture rate compared to naive calculations.

Calculating these capture rates requires a model of the stellar interior. In some cir-
cumstances, such as the dilute, weakly-coupled plasma inside the Sun, this task is relatively
simple. In others, such as the strongly-coupled ion lattice in cold white dwarfs, or the highly
uncertain state of matter inside neutron stars, it is much more complicated. Given these
complications, we do not attempt to provide detailed or comprehensive analyses of stellar
models; instead, we work with simplified models of stellar media, and use these to illustrate
the physics of collective e�ects for DM scattering rates. The systematic approach that we
present should be valuable for future, in-depth investigations. Even in circumstances where
collective e�ects are not important, our in-medium formalism can simplify calculations in-
volving thermal distributions, as we illustrate in section 6.1.

In addition to working with simplified models, we also investigate the bounds that can be
placed on scattering and capture rates from general properties such as causality. Specifically,
for a dark photon mediator, we show how the Kramers-Kronig relations enable us to place
bounds on scattering and capture rates (extending the non-relativistic derivation in [35]),
and how these bounds let us draw phenomenologically useful conclusions.

Another contribution of this paper is to systematically consider the in-medium be-
haviour of vector and scalar mediators. In particular, we present formulae for evaluating one-
loop vector and scalar self-energies in both degenerate Fermi gases and dilute non-relativistic
plasmas; as far as we are aware, these expressions are novel. We have made code imple-
menting some of these formulae available online.1 These and similar calculations should be
useful in circumstances beyond DM scattering in stars. For example, in-medium self-energies
are important in properly computing the emission rates of light hidden-sector particles from
hot media such as supernovae [36] (e.g. in appendix F, we show how previous calculations
of electron-coupled scalar emission from supernovae were parametrically incorrect). Our for-
malism can also be applied to DM scattering in laboratory experiments, as explored in [35].

The outline of the paper is as follows: in section 2, we outline the computation of
scattering rates using in-medium propagators and give specific examples of such rates. In
section 3, we discuss the kinematics associated with stellar capture, after which we apply

1https://github.com/wderocco/DarkScatter.
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our computed capture rates to both white dwarfs (section 4) and neutron stars (section 5).
We then discuss scattering in dilute stellar plasmas, and ramifications for various potential
signatures in the Sun (section 6) before concluding and discussing future directions in sec-
tion 7. Various formulae for the processes discussed are collected in appendices A–E, while
appendix F discusses particle emission from supernovae.

2 Scattering rates and in-medium propagators

A systematic way to calculate the scattering rate for a particle travelling through a medium
is to use the e�ective in-medium propagator for the particle. If we consider a DM particle
‰ coupled to the SM via a mediator particle X, then this can be related to the e�ective in-
medium propagator for the mediator X. Diagramatically, at leading order in the (assumed
weak) X ≠ SM and ‰ ≠ X couplings, the scattering rate can be related to the imaginary part
of the following self-energy diagram,

‰
X X

P P ≠ Q P

‰

where the filled circle represents the medium (this usually consists of SM particles, but if
there is a large density of DM particles, e.g. if DM self-capture in a star is important, then
it could include DM as well).2 Via the optical theorem, the imaginary part of the self-energy
corresponds to the scattering rate via mediator exchange with the medium,

æ

P P ≠ Q

Q
(2.1)

For the explicit example of Dirac fermion DM, scattering via a vector mediator of mass mX ,
the total scattering rate, integrating over momentum transfers Q, is given by (appendix A)

� =
2g2

‰

E

⁄
d3q

(2fi)3

1
2EÕ (1 + f(q0)) 1

(Q2 ≠ m2

X)2

◊

1
2

1
E2

≠ p2 cos2 ◊
2

Im �X
L (Q) ≠

1
≠Q2 + 2p2 sin2 ◊

2
Im �X

T (Q)
2

(2.2)

where g‰ is the DM-mediator coupling, P = (E, p) is the initial 4-momentum of the DM
particle, Q = (q0, q) is the scattering 4-momentum, EÕ = E ≠ q0 is the post-scattering
DM energy, f(q0) © (eq0/T

≠ 1)≠1 is the bosonic occupation number corresponding to the
temperature T of the medium, ◊ is the angle beteween p and q, �X

L (Q) is the in-medium
self-energy for the longitudinal mode of X, and �X

T (Q) is for the transverse mode (eq. (2.2)
assumes a uniform, isotropic medium).3 Eq. (2.2) computes the total scattering rate for a

2While we have drawn the mediator X as a vector, it may be a vector or a scalar.
3Eq. (2.2) assumes that the SM current that X couples to is conserved — more specifically, that current-

nonconserving processes are unimportant in the medium. If X does not have flavour-changing couplings, then
this is a good approximation at the very sub-weak-scale temperatures in astrophysical media.
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DM particle passing through a spatially uniform medium; we can compute other quantities
of interest, such as the scattering rate into particular parts of phase space or the momentum
transfer rate, via similar expressions, as we discuss below. There are also similar expressions
for other kinds of DM particles (e.g. spin-0 DM) and other types of mediators; for more
details, see appendix A.

We have seen how, to compute the DM scattering rate, we want to compute the mediator
self-energy in an SM medium. If we have some perturbative description of the SM medium,4
then to leading order in the (assumed weak) SM-mediator coupling, the self-energy is given
diagramatically by

X X
=

X X
+

X X
(2.3)

where the single-hatched circles on the r.h.s. correspond to one-particle irreducible self-
energies, while the bold line corresponds to the in-medium SM photon propagator.5 Al-
gebraically,

�XX
tot = �XX + (�XA)2

Q2 ≠ �AA
(2.4)

where �XX and �AA correspond to the 1PI self-energies, and �XA to the 1PI mixing self-
energy (all self-energies are functions of Q). Eq. (2.4) is schematic, in that the SM photon
propagator has vector indices, Dµ‹(Q), but for an isotropic medium, it will split into lon-
gitudinal and transverse parts, each of which can be put into the form of eq. (2.4) (see
appendix A).

Taking the imaginary part of eq. (2.4), we obtain

Im �XX
tot = �XX

i + �AA
i ((�XA

r )2
≠ (�XA

i )2) + 2�XA
r �XA

i (Q2
≠ �AA

r )
(Q2 ≠ �AA

r )2 + (�AA
i )2

(2.5)

where �r, �i indicate the real and imaginary parts of each self-energy. A naive calcula-
tion, ignoring collective e�ects, usually corresponds to the leading-order parts of the �XX

i

term. Diagramatically, cutting the simplest two-loop self-energy diagram corresponds to the
leading-order particle-by-particle scattering rate,

‰ ‰

f

æ

‰ ‰

f f

(2.6)

4This does not necessarily have to be in terms of ‘bare’ SM particles, but can be in terms of weakly-
interacting quasi-particles, e.g. Fermi liquid theory [37].

5In principle, we should sum over all SM intermediate states allowed by symmetries. In this paper, we
will consider spin-0 and spin-1 mediators, so we are interested in bosonic SM states with no conserved SM
quantum numbers. At low energies, this picks out the photon; if we are working in an EFT including the
pion, then we can have mixing between a pseudoscalar mediator and the pion, but we will not consider such
cases. If we were working in an e�ective description of the medium that included excitations such as phonons,
then these should also be included in the intermediate states.
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with in-medium initial-state and final-state occupation number factors for f . The other
term in eq. (2.5) corresponds to the ‘mixing’ contributions to the scattering rate. These can
sometimes cancel against the �XX

i term, resulting in a suppressed scattering rate, or can
enhance it, e.g. if the denominator becomes small (giving ‘resonant’ e�ects). This is similar
to the situation in particle emission calculations [36].

A simple model of phenomenological interest is a ‘dark photon’ mediator [38], where
X is a massive vector which couples to the SM electromagnetic current, L ∏ ŸXµJµ

EM
, with

coupling suppressed by the ‘kinetic mixing’ parameter Ÿ. In this case, we simply have that
�AX = Ÿ�AA and �XX = Ÿ2�AA, so writing � © �AA, we have

Im �XX
tot = Ÿ2Q4 Im �

(Re � ≠ Q2)2 + (Im �)2
= Ÿ2Q4 Im �

|Q2 ≠ �|2
(2.7)

We can see that, for large momentum transfers with |Q2
| ∫ |�|, we have Im �XX

tot ƒ Ÿ2 Im �;
at leading order, this corresponds to the naive particle-by-particle scattering rate from
eq. (2.6). Collective e�ects are important when the � terms in the denominator of eq. (2.7)
are significant. These can either lead to suppression, if |�| ∫ |Q2

| (generally referred to
as ‘screening’), or enhancement, if Q2

≠ Re � ƒ 0 contributes significantly to the scattering
(‘resonant’ e�ects).

Analogous analyses apply to other types of mediator, such as scalars. One important
general point is that whether medium e�ects are important depends on the comparison of
|Q2

| to |�(Q)|, not on the comparison between |Q2
| and m2

X , as is sometimes assumed. In
particular, we will see how collective e�ects can sometimes be very important for scattering
via a heavy mediator (corresponding to contact interactions in the low-energy theory).

2.1 EM sum rules
For a dark photon mediator, the expression in eq. (2.7) corresponds to Im(�XX

tot )µ‹ =
Ÿ2Q2 Im (≠iDµ‹), where Dµ‹ is the in-medium propagator for the SM photon, in Lorenz
gauge (more precisely, it is the analytic continuation of the in-medium imaginary-time prop-
agator — see appendix D). We can also see this directly [39] by changing variables to put
the mediator-SM interaction into kinetic mixing form, L ∏ ≠

Ÿ
2
Fµ‹F Õµ‹ , where F Õ is the field

strength corresponding to AÕ. Then,

X X
= X A X (2.8)

where the crosses correspond to the kinetic mixing interaction. Here, all of the interac-
tions with the medium have been subsumed into the in-medium propagator for the SM
photon. Since the properties of the in-medium propagator Dµ‹ are constrained by causality,
we can place limits on the scattering rate via a dark photon mediator, as discussed (for
non-relativistic DM) in [35]. We go through the derivation of such limits in appendix D. For
example, to derive limits on scattering rates via longitudinal vector exchange, we can use the
Kramers-Kronig relations [40] to derive the sum rule

⁄ Œ

0

dq0

q0

Q2

q2
Im DL(q0, q) = fi

2
k2

S

q2(q2 + k2

S) (2.9)

where k2

S © �L(0, q) is the (static) longitudinal screening scale. In the circumstances that
will be of interest to us, we will usually have k2

S Ø 0, corresponding to screening rather than
anti-screening (see appendix D), so we can upper-bound eq. (2.9) by fi/(2q2).

– 5 –
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Since, for a dark photon mediator, Im(�XX
tot )µ‹ = Ÿ2Q2 Im (≠iDµ‹), and the DM scat-

tering rate can be written in terms of an integral over Im �X(Q) for di�erent Q (eq. (2.2)),
we can use eq. (2.9) (and an analogous sum rule for the transverse propagator) to bound the
DM scattering rate. Specifically, we can write the scattering rate as a nested integral of the
form

s
· · ·

s dq0
q0

Q2

q2 . . . Im DL(q0, q), and then upper-bound the
s dq0

q0
integral by assuming that

DL(q0, q) (for given q) is a delta-function at the value maximizing the rest of the integrand,
with the delta-function’s weight set by eq. (2.9) (see appendix D for details). For a non-
relativistic DM particle ‰ with velocity v‰ π 1, and taking the temperature to be negligible,
this implies that the scattering rate via longitudinal mediator exchange is upper-bounded by

�L .

Y
___]

___[

g2
‰Ÿ2

4fi
m‰v‰ mX π m‰v‰

16
15

g2
‰Ÿ2

4fi
m‰v‰

3
m‰v‰

mX

44

mX ∫ m‰v‰

(2.10)

where we give the forms for very light and very heavy mediators (compared to the DM
momentum scale). The scattering rate limit via transverse mediator exchange is further
suppressed by v2

‰ compared to the longitudinal rates:

�T .

Y
___]

___[

0.53 ◊
g2

‰Ÿ2

4fi
m‰v3

‰ mX π m‰v‰

1.16 ◊
g2

‰Ÿ2

4fi

m5
‰v7

‰

m4

X

mX ∫ m‰v‰

(2.11)

as follows from the form of �T (appendix A). For relativistic ‰, the rate limits will be larger
than these formulae; see appendix D. We can also use similar arguments to place sum rule
limits on other quantities, such as total capture rates, as we discuss in the next section. As we
will see in sections 4 and 5, these limits allow us to set reliable bounds on the scattering rate
through a dark photon mediator, even without using an explicit model of the stellar medium.

3 Stellar capture rates

We can use the formalism for calculating scattering rates outlined in section 2 to calculate
quantities of physical interest, such as the capture rate for halo DM into gravitationally
bound orbits in and around a star. For situations in which the star is optically thin, and
capture is dominated by individual scattering events, the capture rate can be derived from
the DM velocity distribution at each point inside the star, that arises from the infall under
gravity of halo DM.

At a given point inside the star, an infalling halo DM particle with energy E (as mea-
sured by a stationary observer at that point) had energy EŒ =

Ô
BE far from the star, where

Ô
B is the gravitational redshift at that point (B = g00 in Schwarzschild coordinates). In most

circumstances of interest, an isotropic halo DM velocity distribution leads to an isotropic dis-
tribution of infalling DM at points inside the star.6 Consequently, if we assume for simplicity
that the halo DM velocity distribution is isotropic, with phase space density fŒ(EŒ), then

6The halo DM velocity distribution at a point inside the star is isotropic as long as there are not bound
orbits inside the star with EŒ > m‰ (i.e. with P0 > m‰, where P is the 4-momentum in Schwarzschild
coordinates), which we will call ‘positive orbits’. In Newtonian gravity, positive orbits are not possible. At
a given point inside the star, all test particle trajectories with a given energy either escape to infinity, if the

– 6 –
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since (from Liouville’s theorem) the phase space density is preserved during gravitational
infall, the phase space density at a point inside the star is set by f(E) = fŒ(

Ô
BE).

We can relate fŒ to the velocity distribution of halo DM by noting that we must have

n‰ = gs

⁄
d3p

(2fi)3
fŒ =

gsm3
‰

(2fi)3

⁄
d3vfŒ ∆ fŒ(p) = (2fi)3

n‰

gsm3
‰

pv(p/m‰) (3.1)

where we have taken the halo DM to be non-relativistic, gs is the spin degeneracy of the
DM, and pv(v) is the halo DM velocity distribution. Going forwards, we will define f̂Œ ©

gsfŒ/(2fi)3 = n‰

m3
‰

pv(p/m‰) for notational convenience (and more generally, Â ©
gs

(2fi)3 A for
other quantities A).

In terms of f(E), the scattering rate per volume at a point within the star, considering
only scatterings from unbound to bound orbits, is (as measured by a stationary local observer)

�
vol = gs

⁄
d3p

(2fi)3
f(p)�EæEÕ<Eesc = 4fi

⁄
dE Ep f̂(E)�EæEÕ<Eesc (3.2)

where �EæEÕ<Eesc indicates the scattering rate into bound orbits (with energy < Eesc =
m‰/

Ô
B), and we have assumed that the DM velocity distribution is isotropic, so that f is

only a function of E (if the DM distribution is non-isotropic but the medium’s response is
isotropic, then we can equivalently consider averaging over di�erent orientations to obtain an
isotropized velocity distribution — see appendix E). Writing this in terms of EŒ, we have

�
vol = 4fiB≠3/2

⁄ Œ

m‰

dEŒ E2

Œ

Û

1 ≠
m2

‰B

E2
Œ

f̂Œ(EŒ)�EæEÕ<Eesc

ƒ 4fi

Ô
1 ≠ B

B3/2
m2

‰

⁄ Œ

m‰

dEŒ f̂Œ(EŒ)�EæEÕ<Eesc (3.3)

where in the second line we used that the halo DM is non-relativistic, so EŒ ƒ m‰. This is
the local rate, as measured by a stationary observer inside the star; due to time dilation, the
total capture rate, as measured by a stationary observer at infinity, is

C = 4fim2

‰

⁄
dV

vesc

B

⁄ Œ

m‰

dEŒf̂Œ(EŒ)�EæEÕ<Eesc (3.4)

If the escape velocity vesc =
Ô

1 ≠ B inside the star is much greater than the velocity disper-
sion of the incoming DM, then the kinetic energy of DM in the star will be dominated by the
energy acquired during its infall and almost all of the halo DM particles at a point inside the
star will have energy just above Eesc. In some circumstances, this will mean that �EæEÕ<Eesc
can be treated as approximately constant over the small range of relevant E, and we can
take it out of the

s
dEŒ integral. This is not always possible; if soft scatterings are strongly

total energy (kinetic plus potential) is non-negative, or enter bound orbits, if the total energy is negative.
In particular, the direction of the trajectory does not a�ect whether it is escaping or bound. This is not
necessarily true in GR, for su�ciently compact objects. If some of the trajectories passing through a point
inside the star form positive orbits, then infalling halo DM cannot travel along these trajectories, even though
the total energy might be Ø m‰; it can only travel along escaping trajectories. As we discuss at the end of this
section, heavy neutron stars may be just compact enough for positive orbits to exist. However, even for e.g.
the heaviest neutron star model from [41], positive orbits can only exist in a small volume of phase space near
the edge of the star. Consequently, their existence cannot have a large e�ect on our capture rate calculations,
and we ignore them here.
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enhanced, as they can be for light mediators, then how close a particle’s energy is to the
Eesc threshold can make a significant di�erence to the capture rate. However, if we can take
�EæEÕ<Eesc outside the integral (e.g. if hard scatterings dominate the capture rate), then

C ƒ 4fim2

‰

⁄
dV

vesc

B
�down≠scatter

⁄ Œ

0

vŒdvŒf̂Œ(vŒ)

= n‰

= 1
vŒ

> ⁄
dV

vesc

B
�down≠scatter (3.5)

where �down≠scatter is the rate of scatterings from higher to lower energies for a DM particle
with velocity vesc, vŒ is the DM velocity at infinity, and the angle brackets denote the average
over the DM velocity distribution at infinity. Eq. (3.5) matches the capture rate expression
from [41].

If we cannot take �EæEÕ<Eesc outside the
s

dEŒ integral, it is still possible to simplify
eq. (3.4). For clarity, we will consider the explicit example of spin-1/2 DM scattering through
the longitudinal mode of a vector mediator, which gives a contribution to the capture rate of

dC

dV
=

2g2
‰

fi

vesc

B
m2

‰

⁄ Œ

m‰

dEŒf̂Œ(EŒ) 1
Ep

⁄
dq q

◊

⁄ q0,max

E≠Eesc
dq0(1 + f(q0)) 1

(Q2 ≠ m2

X)2
(E2

≠ p2 cos2 ◊) Im �X
L (q0, q) (3.6)

where q0,max is the maximum value of q0 possible for given q and E, derived by taking the
outgoing ‰ to be on-shell. Here, we are taking the mediator self-energy to be isotropic, i.e.
to be independent of the direction of q — for non-isotropic media, this can be viewed as the
average over di�erent directions for q. If the escape velocity inside the star is much larger
than the typical halo DM velocity, then q0,max and E2

≠ p2 cos2 ◊ will depend only weakly
on EŒ. Consequently, the EŒ dependence of the

s
dq0 integral arises mostly from the EŒ

dependence of its lower limit, E ≠Eesc = (EŒ ≠m‰)/
Ô

B (if the energy transfer is below this
limit, the DM will still have enough energy left over to escape the star after the collision).
So, denoting the kinetic energy of the DM far from the star as EK © EŒ ≠ m‰, we have

⁄ Œ

m‰

dEŒf̂Œ(EŒ)
⁄ q0,max

(EŒ≠m‰)/
Ô

B
dq0 ƒ

⁄ q0,max

0

dq0

A⁄ Ô
Bq0

0

dEK f̂Œ(m‰ + EK)
B

©

⁄ q0,max

0

dq0F̂Œ(
Ô

Bq0) (3.7)

Consequently,

dC

dV
ƒ

2g2
‰

fi

⁄
dq q

⁄ q0,max

0

dq0F̂Œ(
Ô

Bq0)(1 + f(q0)) 1
(Q2 ≠ m2

X)2
(E2

≠ p2 cos2 ◊) Im �X
L (3.8)

Appendix E gives explicit expressions for F̂Œ for an (o�set) Maxwell velocity distribution.
For q0 much larger than typical halo DM kinetic energies, we have

F̂Œ(q0) ƒ F̂Œ(Œ) = n‰

4fim2
‰

= 1
vŒ

>
(3.9)

corresponding to eq. (3.5). For q0 much smaller than such values, we have F̂Œ(q0) ƒ
n‰

m3
‰

pv(0)q0, so the small-energy-transfer capture rate is linearly suppressed in q0. This corre-
sponds to there being fewer DM particles with energy close enough to Eesc to be trapped by
losing energy q0.
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For a dark photon mediator, we can use these formulae to place sum rule bounds on the
total capture rate, similarly to the bounds on the scattering rate per volume from section 2.1.
These are applied in sections 4.6 and 5.

Eq. (3.8) contains a factor of 1 + f(q0) = (1 ≠ e≠q0/T )≠1, so for energy transfers .
the temperature T of the stellar medium, the down-scattering rate from unbound to bound
orbits is enhanced by ≥

T
q0

. However, this also means that up-scatterings from bound to
unbound orbits can be important. When T is large enough that the q0 . T phase space
becomes important, we are not necessarily just interested in the rate of unbound-to-bound
scatterings. Often, we are interested in the properties of the dynamic equilibrium which
arises once enough dark matter has been captured that up-scatterings from bound orbits
become significant. To understand this behaviour properly, one would generally need a full
model of the capture and evolution of DM within the star. Here, we will not attempt to do
that, but will note when energy transfers q0 . T are important for capture rates (e.g. Solar
capture via a light mediator, section 6.1).

3.1 Geometric capture rate

The C =
s

dV dC
dV formula for the total capture rate derived above holds when the star is

optically thin to DM. If, on the other hand, the star is optically thick, then the maximum
possible value for the capture rate is given by the geometric rate, i.e. the rate at which halo
DM particles intersect with the star. To compute this correctly, one needs to take into account
gravitational focusing. For R > 4GM , where R is the radius of the star and M is its mass,
a trajectory grazing the star’s surface can come from and escape to infinity. The angular
momentum (per unit mass) of such a trajectory is L =

Ò
2RgR

1≠2Rg/R , where Rg © GM . For a
DM particle with velocity at infinity vŒ, the corresponds to impact parameter bmax = L/vŒ,
so the geometric capture rate is [13]

C =
e
fib2

maxn‰vŒ
f

= 2fiRgR

1 ≠ 2Rg/R
n‰

= 1
vŒ

>
(3.10)

where the angle brackets denote averaging over the DM velocity distribution at infinity. If the
star is more compact, so R Æ 4GM , then trajectories grazing the star’s surface are bound;
all incoming-from-infinity DM trajectories have inwards radial velocity, and the geometric
capture rate is the same as an object with radius R = 4GM , giving

C = 16fiR2

gn‰

= 1
vŒ

>
(3.11)

i.e. the same rate as a black hole. Only the heaviest neutron stars have radius close to the
4GM threshold, so in general, the expression from eq. (3.10) will be fine for our purposes.
For dense stellar remnants such as white dwarfs and neutron stars, capture rates not too far
from the geometric limit are often needed to obtain observable signatures, as we discuss in
subsequent sections.

4 White dwarfs

White dwarfs are the densest astrophysical objects whose physics we understand fairly well
(as we discuss in section 5, the physics of neutron star cores is very poorly understood).
Consequently, they represent a promising target for signatures of DM scattering, with the
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potential for large and reliably-computable scattering rates. In this section, we will discuss
how to perform such computations for some representative DM models, and how such scat-
terings might lead to observational signatures. We begin by briefly summarizing some of the
signatures of DM capture in white dwarfs proposed in the existing literature, before outlining
our calculations of the DM capture rate in white dwarfs. At low DM masses, we find that
this rate is dominated by collective scattering with longitudinal phonons, which we calculate
analytically. We discuss a number of di�erent DM mediator models; heavy vector mediators,
light dark photon mediators, and heavy scalar mediators.

4.1 Observational signatures
DM scattering in a white dwarf (WD) can lead to a variety of possible observational conse-
quences. The simplest such signature is heating of the star. Old WDs are expected to cool
down to temperatures O(105 K) [42] in their cores; their thin outer layers are significantly
cooler, at temperatures ≥ few ◊ 103 K [43]. If enough of the energy carried by DM can be
deposited into a WD, then in regions of su�ciently high DM density, the WD’s temperature
could be appreciably raised.

Since the escape velocity in a WD is non-relativistic, the kinetic energy carried by
infalling DM is only a small fraction (at most ≥ 10≠2) of its total energy. Consequently,
very large ambient DM densities would be required for purely kinetic heating of WDs to
be significant, even at the geometric capture rate. One way to deposit more energy is for
captured DM to annihilate inside the WD [11, 44–46]. After the initial scattering event
that captures a DM particle into a bound orbit, further scatterings will cause the particle
to lose more energy, thermalizing it down into a smaller volume within the WD, where
it may annihilate with other captured DM particles. In most models, the cross sections
required to capture enough DM for detectable heating mean that these subsequent stages of
thermalization and annihilation always happen fast enough to set up an equilibrium between
DM capture and annihilation. In particular, to capture enough DM, capture rates not too
far from the geometric limit are usually required [46]. Consequently, to calculate the heating
rate, we just need to calculate the DM capture rate, as discussed in section 2.

Other possible signatures include, for example, the formation of black hole inside the
WD, destroying it from the inside [14], which is possible for su�ciently heavy, bosonic,
asymmetric DM. To understand this process, one needs to understand the initial capture of
the DM, and its subsequent scattering inside the WD, both with the SM medium and with
other DM particles. Alternatively, the decay of very heavy DM particles inside WDs [47] (or
other kinds of energy injection processes [48, 49]) could ignite supernovae. We leave analysis
of such possibilities to future work.

4.2 Scattering calculations
Depending on its composition and temperature, the matter in a WD core can exist in di�erent
states [50, 51]. In this paper, our focus will be on illustrating the physics of collective
e�ects, rather than performing detailed or comprehensive phenomenological investigations.
Accordingly, we will focus on a particular nominal WD model, and leave investigations of
broader parameter space to future work.

As discussed in [46], the best prospects for detecting WD heating signatures appear to
come from the heaviest WDs. Consequently, we will take as our nominal model the heaviest
WD model considered in [46]. This has basic parameters

Mú ƒ 1.38M§ Rú ƒ 1250 km vesc,core ƒ 0.1 flcore ƒ 1010 g cm≠3 µe,core ƒ 8 MeV (4.1)
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DM capture rate in WD (heavy vector mediator)
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Figure 1. Rates for down-scattering to a gravitationally-bound orbit in the core of a heavy WD, for
a DM particle with halo velocity vŒ = 10≠3, coupling through a heavy (mX = TeV) vector mediator.
The blue curve corresponds to a dark photon mediator, the green curve to an electron-coupled vector,
and the orange curve to a proton-coupled vector. The dashed green and orange curves correspond
to calculations ignoring collective e�ects, while the solid curves take collective e�ects into account
— as can be seen from the plot, the solid curves match up with the dashed curves at high enough
DM masses, where scattering is dominated by momentum transfers above screening scales. The dot-
dashed blue curve corresponds to the sum rule limit (section 2.1) on the scattering rate for a dark
photon mediator; as expected, the dark photon curve lies below this limit. The dark photon rate is
also well below those for other mediators at small DM masses, due to charge screening in the WD.
The black curve labelled ‘phonons’ corresponds to the rate for resonantly scattering into longitudinal
phonons, given by eq. (4.12). As derived in section 4.3, the scattering rate for proton- and electron-
coupled vector mediators is dominated by scattering into longitudinal phonons at small DM masses,
accounting for the green and orange curves matching onto the black curve at low DM masses.

where Mú is the WD mass, Rú is its radius, and vesc,core, flcore, and µe,core are the escape
velocity, density, and electron chemical potential in the WD core. We will assume that the
WD is old, with core temperature Tcore ƒ 105 K. Ref. [46] takes the core to be composed
entirely of carbon ions and electrons; at such low temperatures; the core consists of a lattice
of carbon nuclei, embedded in a degenerate electron gas. This is very analogous to a typical
metal; the major di�erences are that the ions in the WD are bare nuclei, and the electrons
are at much higher (relativistic) velocities.

The most comprehensive previous study of DM scattering in WDs appears to be [46].
This takes into account Pauli blocking for scattering o� electrons, but does not consider other
collective e�ects. As discussed in section 2, this corresponds to calculating the scattering
rate using the leading-order part of the 1PI self-energy Im �XX

L (eq. (2.6)), and ignoring
the ‘mixing’ contributions. We will see that, even for the heavy-mediator case that [46]
considered, collective e�ects can make significant di�erences to the scattering rates for DM
lighter than ≥ 100 MeV. For DM scattering through a light mediator, collective e�ects are
important up to much higher masses.

To compute scattering rates properly, the first quantity we need to calculate is the
photon self-energy in the WD medium. The leading-order electron contribution is fairly
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simple, being very well-approximated by that of a fully degenerate (T π µe), free electron
gas (see appendix B.3). To check that the free approximation is good, we can compare
the Coulomb interaction energy between electrons to their kinetic energy; for a relativistic
electron gas, this gives

e2/rs

EF
≥ e2

3 2
9fi

41/3

vF ƒ 4 ◊ 10≠2
π 1 (4.2)

where EF is the electron Fermi energy, vF is the Fermi velocity, and rs is the ‘typical distance’
between electrons, defined via n≠1

e = 4

3
fir3

s . This ratio being small corresponds to interactions
acting as a small perturbation [52].7 The leading-order formulae for the contribution to
�AA(Q) from a degenerate fermion gas are given in appendix B.3 — as far as we are aware, the
exact forms for the leading-order self-energy that we present have not been derived previously.

The contribution to �AA(Q) from the ions is somewhat more complicated, since
Coulomb interactions are strong enough to make the ions form a lattice [52]; approximating
them as a free, non-relativistic gas will not always be viable. In particular, for q0 smaller
than the lattice band gap (which for our nominal parameters will be O(50 keV) [54]), we
expect the ion contribution to the imaginary part to vanish as incoming DM cannot transfer
su�cient energy to excite ions above the lattice band gap. Additionally, for q comparable
to lattice scales, the self-energy will be non-isotropic, since the lattice picks out preferred
directions.

One could treat the ion lattice properly via e.g. a density functional theory calculation,
of the type performed in [55, 56]. Here, we will work with simpler approximations. For
large momentum transfers, we will treat the ions as a free, dilute, non-relativistic gas (see
appendix B.4). For small momentum transfers, we will use the zero-velocity approximation
�L(Q) ƒ Ê2

i Q2/q2
0, where Ê2

i © e2Z2
i ni/mi is the ion plasma frequency, with Zi the ion

charge, ni the ion number density, and mi the ion mass (this will be valid for q much smaller
than inverse lattice scales, and q0 much smaller than the lattice band gap). This is how the ion
lattice in a metal is treated in basic condensed-matter calculations for longitudinal excitations
in metals [57]. Figure 1 shows the resulting scattering rates for di�erent kinds of heavy vector
mediators,8 where for DM masses m‰ Ø 25 MeV we use the free ion gas approximation, while
for m‰ Æ 45 MeV we use the zero-velocity approximation. In the overlap regimes, the di�erent
curves match up well enough (to within ≥ 1%) that the di�erence is invisible on the plot,
suggesting that a proper treatment of the ion lattice would also show similar behaviour.

The very low WD core temperatures we are considering, along with the large WD
escape velocity, mean that DM evaporation will only be important for rather small DM
masses [46, 58]. Quantitatively, if DM thermalizes in the WD core, its thermal velocity
dispersion is ‡‰ ƒ 10≠2


T/105 K

Ò
100 keV/m‰, compared to the escape velocity vesc ƒ 0.1.

Ref. [46] finds that, for this nominal WD model, evaporation becomes significant for DM
masses m‰ . 50 keV, in agreement with these parametrics.

While numerical calculations like those in figure 1 are, in some sense, all that we need
to make predictions, it is important to understand the physics behind these behaviours. To
that end, figure 2 plots the imaginary part of the longitudinal photon propagator. For large

7This in contrast to the situation in e.g. metals, where this ratio is typically ≥ 2 ≠ 3 [53]. The electron gas
in a metal can still be analyzed in terms of weakly-interacting quasi-particles with renormalized parameters,
using Fermi liquid theory [37].

8These rates are computed by numerical integration of eq. (A.7), with Im �X
L (Q) computed using the

formulae given in appendix B. The �XX and �XA contributions are computed analogously to �AA.
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Imaginary part of longitudinal photon propagator in WD core

Figure 2. Density plot of the imaginary part of the longitudinal photon propagator Im DL(q0, q)
for a nominal white dwarf core model (see section 4.2). Darker shades correspond to larger values of
the imaginary part, on a logarithmic scale. In the left-hand panel, the band on the left corresponds
to scattering with the relativistic electrons, while the parabolic band corresponds to scattering with
(non-relativistic) ions. The electron band is cut o� at q ƒ 2EF by kinematics, where EF ƒ 8 MeV
is the electron Fermi energy. The solid black line corresponds to the light cone, while the dashed
black line corresponds to the maximum possible value q0,max of q0 for given q, for a DM particle of
mass m‰ = 140 MeV (travelling at the escape velocity vesc,core ƒ 0.1c). The right panel shows the
imaginary part at smaller momentum transfers, corresponding to the red rectangle on the left-hand
plot, along with q0,max curves for m‰ = 10 MeV and 2 MeV. The main feature at these small momenta
is the longitudinal phonon dispersion relation.

momentum transfers (for which we approximate the ions as a free gas), illustrated in the
left-hand panel, the imaginary part is dominated by an electron scattering component at
small q, and an ion scattering component with q0 ƒ

q2

2mi
(the latter dominates the rate for

m‰ ∫ EF ).9 The electron Fermi momentum sets the width of the electron-scattering band;
for q ∫ me, we must have q ≠ q0 . 2EF in order for up-scattering from inside the Fermi sea
to be kinematically possible (see appendix B.3). For smaller momentum transfers, illustrated
in the right-hand panel, the dominant feature is the longitudinal phonon pole (this plot looks
almost the same for both free gas and zero-velocity ion models). As we derive below, resonant
scattering into these longitudinal phonons dominates the scattering rate at small DM masses,
and we can obtain analytic expressions for this rate.

For a vector mediator, there will also be contributions to the scattering rate from trans-
verse modes. However, since transverse modes couple to the DM particle current rather than
the particle density, these rates are suppressed by v2

esc ≥ 10≠2 relative to the longitudinal con-
tributions, and only compete when the longitudinal modes are heavily screened (which can
occur for light DM scattering through a dark photon mediator, as we discuss in section 4.6).

9Properly, at momentum transfers q & 100 MeV, the finite size of the carbon ions will start to become
important. We neglect these e�ects for simplicity; as we will see below, they are generally not important for
parameter space in which collective e�ects are significant. For example, in figure 1, we see that the no-mixing
calculations match up well with full calculations for m‰ & few ◊ 100 MeV. Since the escape velocity in the
WD core is ƒ 0.1, we need DM masses m‰ & GeV for ion form factors to be important.
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4.3 Longitudinal phonons

As noted above, our nominal WD core consists of an ionic lattice embedded in a degenerate
electron gas, and is very analogous to a metal. Its collective excitations are correspondingly
similar to those of a metal; in particular, the low-energy collective excitations are phonons
(compression and shear waves). Since the ions are expected to form a BCC lattice [52], only
the acoustic modes are expected to be present, rather than additional optical phonon modes.
As we discuss in this section, scattering from longitudinal phonons (compression waves) can
dominate the DM scattering rate at small DM masses.

Firstly, we review the basic theory of longitudinal phonons in a WD core [54]. For
small momentum transfers, and phase velocities (vph = q0/q) significantly larger than the
ion velocities, then as discussed above, we can use the zero-velocity approximation �L(Q) ƒ

Ê2
i Q2/q2

0 for the ion contribution to the photon self-energy. The electron contribution is
well-approximated by that for a free, degenerate Fermi gas; at small momentum transfers,
this gives �L(Q) ƒ ≠

4–
fi EF pF

Q2

q2 ©
≠Q2

q2 k2

TF
. So, the inverse longitudinal photon propagator

is given by

Q2
≠ �L(Q) ƒ Q2

A

1 + k2

TF

q2
≠

Ê2
i

q2
0

B

(4.3)

The longitudinal photon propagator has a pole, Q2
≠ �L ƒ 0, at

q2

0 = Ê(q)2
©

Ê2
i q2

q2 + k2

TF

ƒ

Y
]

[

Ê2
i

k2
TF

q2 q2
π k2

TF

Ê2
i q2

∫ k2

TF

(4.4)

This gives the dispersion relation for longitudinal phonons.10 The approximation to the
electron contribution to �L will be valid for q . EF , while the ion approximation should be
valid at q small compared to lattice scales, i.e. q . few ◊ MeV. If there is only a single ion
species, then its number density is ni = ne/Zi = p3

F
3fi2Zi

. This gives a sound speed of

cs = Êi

kTF

=
Û

Zi

3
EF

mi
vF (4.5)

Taking our nominal WD core parameters, for which EF ƒ 8 MeV, kTF ƒ 0.8 MeV and
Êi ƒ 30 keV, we obtain cs ƒ 0.036. This is illustrated in the right-hand panel of figure 2,
which shows how Im DL(Q) is maximised on the phonon dispersion relation, for low mo-
mentum transfers. The narrow dark-shaded region (the shading is logarithmic in Im DL(Q))
corresponds to a weakly-damped pole.11

Since cs is smaller than the escape velocity in the WD core, vesc ƒ 0.1, it is kinemat-
ically possible to scatter into phonons for all DM masses. For weakly-damped phonons,

10As is the case for metals, the acoustic dispersion relation for longitudinal phonons arises because of
screening from the electron gas; an ion lattice in a fixed negative charge background would have gapped
longitudinal oscillations [57].

11At small momentum transfers, the imaginary part of the ion contribution to �L will be very small, while
the contribution from the electrons is

�L(Q) ƒ k2
TF

3
1 + i

fi
2

q0/q

vF

4
(4.6)

so the imaginary part is suppressed relative to the real part by at least cs/vF ≥


EF /mi.
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the phonon scattering rate is dominated by momenta close to the dispersion relation, and
can be calculated analytically. The escape velocity is non-relativistic, so the leading-order
scattering rate is

�L ƒ
1

2fi2

g2
‰

v‰

⁄
dqdq0 q(1 + f(q0)) 1

(q2 + m2

X)2
Im �X

L (Q) (4.7)

(where we have assumed a vector mediator for simplicity — we discuss scalar mediators in
section 4.7). From section 2, Im �X

L (Q) is given by

Im �X
L (Q) = �XX

i + �AA
i ((�XA

r )2
≠ (�XA

i )2) + 2�XA
r �XA

i (Q2
≠ �AA

r )
(Q2 ≠ �AA

r )2 + (�AA
i )2

(4.8)

So, if we fix q and integrate over q0, the resonant contribution is dominated by the
�

AA
i ((�

XA
r )

2≠(�
XA
i )

2
)

(�AA
r ≠Q2)2+(�AA

i )2 term for q0 close to the dispersion relation value Ê(q). If we
expand Q2

≠ �AA
r to linear order around the dispersion relation q0 = Ê, writing

Q2
≠ �AA

r ƒ C(q0 ≠ Ê) © Cy, then
⁄

dq0 Im �X
L (q0, q)(. . . ) ƒ

⁄
dy

�AA
i ((�XA

r )2
≠ (�XA

i )2)
C2y2 + (�AA

i )2
(. . . )

ƒ
fi

|C|

Ó
(�XA

r )2
≠ (�XA

i )2(. . . )
Ô

(Ê,q)
(4.9)

From eq. (4.3), we have that

d

dq0

(Q2
≠ �L) ƒ

2
q0

A

(1 + k2

TF)q2

0 ≠
q2Ê2

i

q2
0

B

= 2(Q2
≠ �L)

Q2
+ 2Ê2

i Q2

q3
0

(4.10)

Evaluating this on the dispersion relation, we have C ƒ 2Ê2
i Q2/Ê3. Thus, the resonant

scattering rate is

�res ƒ
1

4fi

g2
‰

v‰

⁄
dq

q
(1 + f(Ê))Ê3

Ê2
i

(�AX
r )2

≠ (�AX
i )2

(q2 + m2

X)2
(4.11)

The simplest situation in which to evaluate this integral is for m‰ small enough that qmax ƒ

2m‰vesc . kTF ≥ MeV. In that case, we are scattering o� the acoustic (rather than flat) part
of the dispersion relation, so Ê ƒ csq ƒ Êiq/kTF. The value of (�AX

r )2
≠(�AX

i )2 on the disper-
sion relation depends on the mediator’s couplings. The contribution to the mixing self-energy
from electrons is �AX

r /Q2
ƒ ≠

gXe
e k2

TF
/q2

ƒ ≠
gXe

e Ê2
i /Ê2 (where gXe is the mediator coupling

to electrons), while the contribution from ions is �AX
r /Q2

ƒ
gXp

e Ê2
i /Ê2 (where we have as-

sumed a vector coupling to protons with coupling gXp). This shows that mediator-electron
and mediator-proton couplings give rise to the same resonant scattering rate — this is as we’d
expect, since the ions and electrons move together in low-frequency phonons — while the rate
for dark photons, for which these contributions cancel, is suppressed. Taking the example of
a heavy vector coupling purely to electrons (or to protons), the resonant scattering rate is

�res ƒ
1

4fi

g2
‰g2

eX

e2m4

Xv‰
ÊikTF

⁄
dq q2

ƒ
2

3fi

g2
‰g2

eX

e2v‰
ÊikTF

m3
‰(v‰ ≠ cs)3

m4

X

(4.12)
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(ignoring the temperature of the medium), since the maximum q for which we can scatter
into an acoustic phonon is qmax = 2m‰(v‰ ≠ cs). This analytic rate is drawn as the black
line in figure 1, showing that it matches up with the scattering rates for electron- and
proton-coupled vectors at small m‰.

For a dark photon mediator, we have Im �X
L (Q) = Ÿ2Q4

�
AA
i

(�AA
r ≠Q2)2+(�AA

i )2 , so the resonant
scattering rate is given by

�res ƒ
g2

‰Ÿ2

4fi

1
m4

Xv‰

⁄
dq

q

Ê3

Ê2
i

q4 = 32
7fi

g2
‰Ÿ2

v‰
ÊikTF

m4
‰

k4

TF

m3
‰(v‰ ≠ cs)7

m4

X

(4.13)

As expected, this is suppressed by higher powers of m‰ and v‰ compared to eq. (4.12) — at
small enough m‰, this suppression is strong enough that transverse scattering can dominate
instead, as we discuss in section 4.6.

From figure 1, we can see that the resonant scattering rate from eq. (4.12) is larger than
the naive scattering rate for an electron-coupled vector, but smaller than that for a proton-
coupled vector. We can understand this behaviour parametrically. For an electron-coupled
vector, the contribution to the imaginary part of the self-energy from the degenerate electron
gas is Im �L ƒ

g2
eX
2fi E2

F
q0
q 1q0<qvF , where 1 denotes the indicator function. So, assuming that

v‰ π vF , the ‘no-mixing’ scattering rate (i.e. using only the first term in eq. (2.5)) is

�no≠mix ƒ
1

30fi3

g2
‰g2

eX

v‰

E2

F m3
‰v5

‰

m4

X

(4.14)

Compared to the resonant scattering rate,

�res

�no≠mix

ƒ
20fi2kTFÊi

e2E2

F v2
‰

A

1 ≠
cs

v‰

B3

= 20vF cs

v2
‰

A

1 ≠
cs

v‰

B3

(4.15)

If cs is not too much smaller than v‰, then this ratio can be reasonably large for high vF —
for our nominal WD core, �res/�no≠mix ƒ 20.

For an ion-coupled vector, the most naive scattering rate we can compute is to use the
Yukawa cross-section for scattering with stationary ions;

�no≠mix = ni‡‰iv‰ , ‡‰i ƒ
g2

‰g2

XpZ2
i

fi

µ2
‰i

m4

X

(4.16)

where we have assumed a heavy mediator (mX ∫ m‰v‰), and µ‰i © m‰mi/(m‰ + mi) is the
DM-ion reduced mass. This corresponds to the dotted orange line in figure 1, which matches
the full scattering rate at large m‰. Compared to the resonant scattering rate at small m‰,

�res

�no≠mix

ƒ
2

3Z2
i e2

kTFÊim3
‰(v‰ ≠ cs)3

niµ2
‰iv

2
‰

ƒ
2
Zi

m‰

EF

v‰cs

v2

F

A

1 ≠
cs

v‰

B3

(4.17)

where we have used µ‰i ƒ m‰, since we are interested in the small-m‰ regime. Since cs <
v‰ π vF , the resonant scattering rate is much smaller than the naive rate unless m‰ ∫ EF ,
as illustrated in figure 1.

For low-velocity ions, the scattering rate in eq. (4.16) is a good approximation to the no-
mixing scattering rate obtained from modelling the ions as a free gas (since, as per eq. (4.14),
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the no-mixing scattering rate from electrons is much smaller). Furthermore, since the imag-
inary part of the ion contribution to �L is unimportant for the resonant scattering rate into
phonons, and the real part of the ion contribution is very similar for a free gas or a zero-
velocity model (at the momentum transfers of interest), the resonant rate �res computed
above is very close to the full scattering rate for the free ion gas model. Consequently, the
small �res/�no≠mix ratio in eq. (4.17) corresponds to a strong cancellation between the �XX

i

and mixing terms in eq. (2.5).
This cancellation arises because of the kinematics of scattering with low-velocity ions.

To scatter o� a stationary ion, we need q0 = q2/(2mi), so q0/q = q/(2mi) Æ m‰v‰/mi. For
small m‰, this phase velocity is π cs. Consequently, the ion contribution to �L, which is
Ã 1/q2

0, is much larger than the electron contribution. Since the �XX
i term is also dominated

by the ion contribution (for a free ion gas model), we obtain a cancellation between this term
and the mixing term in eq. (2.5), similarly to a dark photon mediator. Both this example,
and the electron-coupled vector example above, illustrate that even for mediators other than
dark photons, collective e�ects can give rise to parametrically large di�erences between the
full and naive calculations (and that these can be either enhancements or suppressions).

4.4 Transverse mediator modes

The above calculations all applied to scattering via the vector mediator’s longitudinal mode.
For mediators other than dark photons, the scattering rate via transverse modes is orders
of magnitude smaller, over the entire m‰ range in figure 1. For an electron-coupled vector,
the transverse rate is suppressed by v2

‰ from the form of �T (eq. (A.6)), and in addition, is
not enhanced by resonant scattering with phonons (the transverse phonons — shear waves
— arise from the ion lattice, rather than through the lattice’s interactions with the electron
gas, and couple more weakly to an electron-coupled mediator, since they do not involve
long-wavelength charge density perturbations). For an ion-coupled vector, in addition to the
v2

‰ suppression, the imaginary parts of Im �XX
T and �AX

T are suppressed by the small ion
velocities; e.g. from appendix B.4, if we approximate the ions by a free, non-relativistic gas,
then the ion contribution to vector self-energies is

�T = Ê2

p ≠

A

‡2

i ≠
Q2

4m2
i

B

�L (4.18)

where ‡i =


T/mi ≥ 3 ◊ 10≠5 is the typical ion velocity. The only situation in which
scattering via transverse modes contributes significantly to the rate is with a dark photon
mediator, for which the longitudinal modes are screened most strongly. In contrast, there is
no static screening for transverse modes (i.e. �T (q0, q) æ 0 as q0 æ 0 — see appendix D), and
�T is mostly imaginary in relevant parts of the small-Q phase space (eq. (B.13) and (B.14)),
so the transverse rate can compete with the longitudinal one at small enough momentum
transfer. At the smallest m‰ shown in figure 1, the dark photon rate begins to be dominated
by the transverse rate; we will discuss this kind of behaviour in more detail (for a light dark
photon mediator) in section 4.6.

4.5 Heavy dark photon mediator

Using the calculations outlined above, we can compare the potential reach of DM scatter-
ing signatures in WDs to other constraints on DM parameter space. This comparison will
depend on the DM model. Here, we will consider the illustrative example of a ‘heavy’ dark
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WD capture for heavy dark photon mediator
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Figure 3. Plot of constraints on a scalar DM particle coupled via a heavy dark photon mediator,
taking the mediator to have mass mX ≥ 2m‰, with coupling –‰ ©

g2
‰

4fi = 0.005 to the DM ‰. The
blue curve shows the coupling required to obtain 10% of the geometric capture rate for our nominal
WD model from section 4; this corresponds to the approximate capture rate required for observable
heating from DM annihilations, under the assumptions in [46]. The dashed blue curve shows the same
calculation ignoring mixing e�ects. The other curves correspond to existing constraints on the DM
model — see section 4.5 for details.

photon mediator; specifically, mX ≥ 2m‰. This is heavy enough that the mediator mass is
significantly larger than scattering momentum transfers, but light enough that cross-sections
are not suppressed by a parametrically higher scale.

Figure 3 shows the constraints on this model, in terms of the standard ‡e parameter
used in the direct detection literature,

‡e ©
g2

‰g2
e

fi

µ2
‰e

((–me)2 + m2

X)2
(4.19)

(this roughly corresponds to the DM-electron cross section appropriate for direct detection
experiments relying on electron excitations). The green shaded regions correspond to con-
straints from existing direct detection experiments [59–65], while the dashed green curves
corresponds to sensitivity projections for future direct detection experiments (specifically,
SENSEI [66–68] and SuperCDMS [69]).

To place firm constraints on DM models from WD observations, we would need to
observe old, su�ciently cold white dwarfs in a location where we can be confident the DM
density is high. So far, it is not possible to be certain that these criteria are met. However, [46]
argues that, from observations of WDs in the M4 globular cluster, one can set plausible
constraints on the DM scattering rate for models in which in the DM would subsequently
annihilate in the WD, assuming that the ambient DM density in the globular cluster is
O(103 GeV cm≠3). To be in tension with observations, the capture rate for such DM in
heavy WDs would need to be & 10% of the geometric capture rate [46]. We indicate the
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coupling values needed to attain this capture rate, for the nominal WD model introduced
above, via the solid blue curve in figure 3.

To calculate the DM capture rate in our nominal WD, we take the DM halo velocity
dispersion to be ‡ = 8 km s≠1, and the velocity of the WD relative to the halo to be vı =
20 km s≠1, as in [46]. We approximate the capture rate over the whole star by taking the
per-volume capture rate in the core, and multiplying it by the WD volume. Since the core
comprises the majority of the WD’s volume, and has a higher per-volume DM capture rate
than the less dense outer layers, this should be a good approximation. It would obviously be
possible to do a more proper calculation, but the large uncertainties in parameters such as the
halo DM density in the globular cluster mean that other unknowns dominate the uncertainty
in the calculation; we leave a more careful treatment to future work. As mentioned above,
the main goal of our paper is to illustrate the physics of collective e�ects. To this end, we
can compare our full calculation to a calculation ignoring mixing e�ects, shown as the dashed
blue curve in figure 3. This illustrates how, for DM masses . O(100 MeV), collective e�ects
suppress the scattering rate via a heavy dark photon mediator by orders of magnitude.

The WD and direct detection signatures apply to a particle that makes up 100% of the
DM abundance. While, for a DM particle making up a fraction f of the local DM abundance,
direct detection experiments are sensitive to couplings f≠1/2 larger, WD heating signatures
are unobservable for su�ciently small f (for [46], f . 0.1), due to the geometric capture rate
ceiling. Consequently, it is valuable to understand the parameter space for which a candidate
particle can make up 100% of the DM abundance.

The simplest way to produce the correct DM abundance is via thermal freeze-out, i.e.
for the DM to be in chemical equilibrium with the SM until T ≥ 0.1m‰, after which point
the exponentially Boltzmann-suppresssed ‰ abundance means that ‰-‰ annihilations fall out
of equilibrium. Since freeze-out relies on ‰-‰ annihilations being fast enough, it implies a
related ‰-‰ annihilation rate in the late universe, which could be detected through cosmic
rays or its e�ects on the CMB. These constraints rule out standard freeze-out scenarios for
fermionic DM coupled to a vector mediator, in which the annihilation rate is dominated
by a DM-velocity-independent component [70]. For scalar DM, on the other hand, the
annihilation rate scales ≥ v2

‰ since s-wave annihilation is forbidden by angular momentum
conservation [70]. Since the DM velocity is high during freeze-out, v‰ ≥ 0.1, and much lower
in the late universe, scalar DM annihilating through a dark photon mediator can attain the
correct freeze-out abundance at couplings for which late-universe annihilation signatures are
not constraining [70]. Consequently, for figure 3, we have assumed a scalar DM particle
(though this does not make a large di�erence to the WD calculations).

The upper red-dotted line in figure 3 corresponds to the couplings required for the
correct freeze-out abundance, when mX is O(1) di�erent from 2m‰ (e.g. mX = 3m‰). As the
figure shows, these couplings are large enough to be almost excluded by existing experiments.
To obtain the correct DM freeze-out abundance at smaller couplings, we need to increase the
annihilation rate around freeze-out. The simplest way to do this is to make the process
resonant, which occurs when mX ƒ 2m‰ (so that annihilation via an s-channel mediator
is almost on-shell). The lower red-dotted lines in figure 3 correspond to di�erent resonant
scenarios, with ‘R ©

m2
X

4m2
‰

≠ 1 quantifying how close to resonance a zero-velocity annihilation
is. These curves illustrate that, by tuning the parameters, we can obtain the correct DM
abundance for a wide range of couplings below current bounds.12

12For scalar DM, ‘R . 10≠6 results in the dark photon dominantly decaying into SM states, since the decay
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Another constraint on DM freeze-out scenarios, for su�ciently light DM, is the e�ect
of extra relativistic particles at ≥ MeV temperatures on BBN [71]. This rules out thermal
freeze-out DM for m‰ . 5.2 MeV [71] (for scalar DM), as illustrated by the blue shaded
region in figure 3.

At higher DM masses, the only astrophysical systems with su�ciently high temperatures
to produce ‰ particles in large numbers are supernovae. In particular, ‰ and X production
in SN1987A would have modified the observed neutrino signal, placing constraints on their
couplings [72]. Since X production can also be significant (for mX not too large), the
SN1987A constraints will depend on g‰ and Ÿ separately, rather than just on their product.
In figure 3, we show the constraints calculated in [72] for fermionic DM, coupled to a dark
photon with mass mX = 3m‰, with –‰ ©

g2
‰

4fi = 0.005 (this coupling is chosen so that
DM self-interactions are weak enough to be unconstrained [73]). Though scalar DM with
a slightly di�erent dark photon mass will behave somewhat di�erently inside the SN, the
overall constraints should be similar [72].

As well as being produced in supernovae, ‰ and X particles could also be produced
in accelerator experiments. Figure 3 show the constraints from LSND [74], E137 [75] and
BaBar [76] as gray shaded regions. At DM masses & 40 MeV, where self-interaction con-
straints are weaker, the accelerator constraints can be relaxed by taking larger –‰ (since
production is mostly via on-shell X, which scales as Ÿ2 rather than Ÿ2–‰).

Putting all of these constraints and projections together, figure 3 illustrates how DM
scattering in WDs could potentiallly probe much weaker couplings than even next-generation
direct detection experiments. It also illustrates how, for DM masses . O(100 MeV), collec-
tive e�ects suppress the capture rate by orders of magnitude relative to a naive calculation.
While the di�erence between the mixing and no-mixing curves happens to be mostly within
the SN1987A-disfavoured region for this model, it is still important to have done the calcu-
lation correctly, both to confirm that the rate is not even further suppressed, and since the
SN1987A constraints are subject to some uncertainties [77]. For other dark matter models,
the relationship between WD signatures and existing constraints will di�er; the main point
of figure 3 is to provide a worked example of how these might fit together.

A possible caveat to our capture rate calculations is self-capture; if the DM-mediator
coupling g‰ is much larger than the mediator-SM couplings Ÿe, then even if only a small
amount of DM is captured via SM interactions, it may come to dominate the capture rate,
and allow this to increase past the SM-only value. For asymmetric DM models, in which
DM does not annihilate, but simply builds up in the WD, self-capture could be important
— we leave investigations of DM models and signatures in this regime to future work. For
symmetric DM, as we have been considering for WD heating signatures, the fairly short
timescale on which DM annihilates within the star means that, according to basic estimates,
self-capture should not be significant for the mass range in figure 3 (above the BBN bound).
We leave a more detailed treatment to future work.

4.6 Light dark photon mediator

The comparison between WD scattering signatures and other constraints is somewhat dif-
ferent for a very light mediator, as low-momentum-transfer scatterings are enhanced. In this
section, we will focus on the case of an ultra-light dark photon mediator; for other types of

into DM particles is phase space suppressed [70], changing the phenomenology. This can be avoided in other
models, which can allow even smaller ‡e [70].

– 20 –



J
C
A
P
0
5
(
2
0
2
2
)
0
1
5

DM capture rate in WD (light dark photon mediator)
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Figure 4. Rates for down-scattering to a gravitationally-bound orbit in the core of a heavy WD,
for a DM particle with vŒ = 10≠3, coupling through a light dark photon mediator. The dashed
blue curve corresponds to the rate calculated ignoring collective e�ects, while the solid blue curve
incorporates collective e�ects, which become significant for m‰ . few ◊ 104 MeV (corresponding
to the bump in the solid blue curve). The dot-dashed blue curve corresponds to the EM sum rule
limit for the scattering rate (section 2.1), while the dot-dashed orange curve corresponds to the
sum rule limit for scattering through transverse dark photon exchange. The orange curve shows the
contribution of scattering through transverse dark photon exchange — this is relatively suppressed
at higher DM masses, but dominates at lower DM masses, due to the lack of screening at small
momenta for transverse excitations.

light mediators, there are typically strong constraints on the mediator-SM couplings, arising
from high-energy experiments [78], stellar production [36], or fifth force tests [79].

Collisions in a WD occur at significantly higher relative velocities (≥ 0.1c) than typical
halo DM velocities (. 10≠3c), so we expect the WD scattering rate to be relatively enhanced
for heavy mediators, but not for light mediators. Consequently, we expect that WD scattering
signatures for light mediators should be less competitive with other probes, such as direct
detection experiments, than in the heavy mediator case.

To illustrate the physics of scattering via a light dark photon mediator (or equivalently,
for millicharged DM — see e.g. appendix D of [73]), figure 4 shows the capture rate for DM
with a particular vŒ (= 10≠3), comparing the full calculation to a naive particle-by-particle
one (we show the results for spin-1/2 DM, but those for spin-0 DM are very similar). For
the naive calculation, the capture rate increases as we decrease m‰, since smaller momentum
transfers are required to lose enough energy for capture. Specifically, for capture to a bound
orbit, we need q0 > 1

2
m‰v2

Œ (taking velocities to be non-relativistic). For Yukawa scattering
o� stationary ions, we have q0 = µ2

‰iv
2
‰

mi
(1 ≠ cos ◊), where ◊ is the scattering angle in the CoM

frame, so we need (1 ≠ cos ◊) > mim‰

2µ2
v2

Œ
v2

‰
© ‘ for capture. So, the total cross section for

su�ciently hard scatterings is

‡ = 1
8fi

g2
‰Ÿ2e2

µ2v4
‰
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(4.20)
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showing that the small-momentum-transfer enhancement more than compensates for the
smaller µ‰i as m‰ is decreased, leading to a ‡ Ã 1/m‰ dependence, as per the dashed blue
line in figure 4. Recalling that the total capture rate, from eq. (3.4), behaves as

dC

dV
Ã

⁄ Œ

0

dvŒvŒf(vŒ)�vŒ (4.21)

we see that attempting to calculate the total capture rate, integrating over all vŒ using the
no-mixing rates, would result in a

s dvŒ
vŒ

logarithmic divergence driven by small vŒ [80]. This
is why we displayed the capture rate for a fixed vŒ in figure 4; to obtain a finite total capture
rate, we always need to take into account mixing e�ects in some way, and there is no sensible
comparison to a fully naive calculation.

From figure 4, we can see that once the momentum transfer required for capture is
smaller than the screening scale in the WD (i.e. m‰v2

Œ/vesc . MeV, rather roughly), the
small-momentum enhancement is cut o� by screening e�ects.13 This results in a roughly con-
stant scattering rate as m‰ is decreased (since the rate is dominated by momentum transfers
around the screening scale), until m‰ becomes small enough that all of the accessible momen-
tum transfer range is below the screening scale, after which the scattering rate decreases with
m‰. For small enough m‰, the weaker screening of transverse modes is enough to make up for
the extra v2

‰ suppression, and transverse scattering starts to dominate the capture rate, as il-
lustrated in figure 4.14 The figure also displays the EM sum rules limits from section 2.1, illus-
trating how the calculated rate gets within a factor few of this limit, for m‰ such that the typ-
ical momentum transfer approximately matches the appropriate screening scale in the WD.

Using the formulae from section 3, we can compute the total capture rate, integrated
over the vŒ distribution. Figure 5 illustrates the results, showing the coupling required to
obtain 10% of the geometric capture rate (as per the WD heating discussion in section 4.5),
using the same assumptions and approximations as described in the previous section15 (we
display the results for fermionic DM — the rates for scalar DM are very similar). The
coupling is shown in terms of the ‘e�ective millicharge’ qe� © Ÿg‰/e. The gray shaded
regions correspond to existing constraints; at m‰ . 10 MeV, these arise from production in
SN1987A [72] or in stellar cores [83], while at higher masses, they come from direct detection
experiments [84, 85]. Figure 5 illustrates that, over the whole m‰ range, the couplings
required for close-to-geometric capture rates in WDs lie within already-excluded parameter

13Even though figure 4 shows DM masses up to m‰ ∫ GeV, capture is dominated by low-momentum-
transfer scatterings, so nuclear form factors are not important (they only become important for m‰ & 100 TeV).

14As discussed in section 4.2, a proper treatment of the ion lattice is somewhat complicated, and this is
even more true for its transverse mode response. Transverse phonons (shear waves) can be supported by
the lattice, even without dynamical electrons, so we cannot determine the transverse phonon properties via
calculations like those in section 4.3. However, at the relevant momentum transfer scales, the total transverse
response function will be dominated by the electron response, and di�erent models for the ion response will
make little di�erence. For example, we compared two di�erent toy models for the ion contribution to the
transverse response; treating ions as a free gas (appendix B.4), and taking a single-pole response function for
transverse phonons, assuming the shear wave velocity is ≥

Ô
2 of the compression wave velocity [37], with

quality factor Q = 100. For the m‰ range shown in figure 4, these models result in almost the same behaviour.
15While the dependence of the per-volume DM scattering rate on medium density is weaker for a light

dark photon mediator than for a heavy mediator, it still generally increases with density (as per the limits in
section 2.1). This is in contrast to the case of dark photon production, where the per-volume production rate
of very light dark photons is larger in less dense media [81, 82] — intuitively, the sterile mode decouples from
SM particles as mAÕ æ 0, so its production rate vanishes, but DM-SM scattering is mediated by the active
mode. Since the per-volume scattering rate in the denser core is larger than in the less dense outer layers of
the WD, the approximation of only using the scattering rate in the core should be good.
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WD capture for light dark photon mediator
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Figure 5. Bounds on the e�ective millicharge qe� for a DM particle coupling through an ultra-
light dark photon mediator (or via the SM photon). The gray shaded region corresponds to existing
constraints from stellar cooling [83], SN1987A [72], and the Xenon10 experiment [84, 85]. The blue
solid curve corresponds to the approximate qe� required to obtain 10% of the geometric capture rate
for the heavy WD model in section 4.2. This corresponds to the approximate capture rate that could
be constrained by DM capture and then annihilation, for WDs in the M4 globular cluster, according
to [46]. The dashed line corresponds to the EM sum rule limit for this capture rate.

space. The EM sum rule bound, indicated by the dashed line, shows that this statement
is almost independent of our model of the WD interior; for DM masses . GeV, any causal
model of the WD medium would result in significantly-below-geometric capture rates, for
unconstrained couplings (modulo the anti-screening issues discussed in appendix D).

One possible caveat to this statement is self-capture. For millicharged DM (or somewhat
equivalently, for a very light dark photon mediator with Ÿ ≥ O(1)), self-capture is not
enhanced. If Ÿ π 1, then g‰ can be much larger (for a given qe�), and it might be possible
for self-scatterings to become important. However, it is worth noting that light mediators
somewhat complicate the possible signatures of DM scattering in WDs — in particular, if
DM annihilates to a light mediator, this generally escapes from the WD, so does not deposit
its energy. Millicharged DM, which interacts with the SM photon, would lead to energy
depositions from annihilations, but could only make up a small sub-component of the DM
density (at the relevant couplings), since long-range interactions with SM matter would alter
the galactic dynamics of DM halos [86–92]. In fact, as demonstrated in recent work [92], it
is likely that dark photon models are also constrained by galactic dynamics, and are only
viable as DM subcomponents at these couplings.

Overall, there are a number of points worth emphasizing. For scattering via a light
mediator, collective e�ects are important even for large DM masses, since the naive calcula-
tion for the capture rate is dominated by soft scatterings. However, since soft scatterings are
enhanced, we obtain less benefit from the high velocity of collisions in a WD, so obtaining
close-to-geometric capture rates requires couplings above those allowed by other constraints.
In addition, it can be more complicated to obtain observable signatures, such as WD heating,
from light mediator models.
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DM capture rate in WD (heavy scalar mediator)
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Figure 6. Rates for down-scattering to a gravitationally-bound orbit in the core of a heavy WD
for a DM particle with vŒ = 10≠3 coupling through a TeV-mass mediator of di�erent types. The
dashed curves show rates calculated ignoring collective e�ects, while the solid curves include collective
e�ects. The red curves correspond to a scalar mediator coupling to electrons. These can be compared
to the rate for a electron-coupled vector mediator with the same mass (thin green curves). The purple
curves show the rate for a scalar mediator coupling with opposite strengths to electrons and protons.
The thin blue curve shows the rate for a heavy dark photon mediator; comparing to the e ≠ p scalar
mediator, we see that the suppression at small DM masses is much less for the scalar mediator than
for a dark photon mediator.

4.7 Scalar mediator

So far, we have been considering vector mediators, with couplings of the form Xµf̄“µf . Our
formalism can also be applied to other types of mediators, such as scalars. In figure 6, we
show the scattering rates via di�erent kinds of heavy scalar mediators (with couplings of the
form „f̄f) in our nominal WD core.

For a scalar coupling to electrons, L ∏ „ēe, figure 6 shows that the scattering rate is the
same as an electron-coupled vector for large m‰, but significantly smaller for small m‰. This
is because, at large momentum transfers, the relevant scale for both the vector-vector (�L)
and scalar-scalar (�„„) self-energies is Q2, whereas at small momentum transfer, the scale
for �„„ is m2

e, whereas the scale for �L is ≥ E2

F (for relativistic electrons). Consequently,
the scalar rate is suppressed by ≥ 1/“2

F . We see this same parametric di�erence between
the no-mixing rates (shown as dashed lines), and the full rates, which are dominated by
resonant scattering o� longitudinal phonons, since the mixing self-energy �„L

≥ meEF is
also suppressed compared to �XL

≥ E2

F .
Figure 6 also shows the scattering rate for a scalar with opposite couplings to electrons

and protons, L ∏ „(ēe ≠ p̄p). The scattering rate is almost exactly the same as the proton-
coupled vector in figure 1; this is because the ions in the WD core are non-relativistic, whereas
the electrons are relativistic, so the scalar coupling to electrons is relatively suppressed, but
not the coupling to ions. This illustrates how, even though an e≠p scalar mediator — which
for non-relativistic SM matter, couples in the same way as a dark photon — can somewhat
suppress scattering rates in e.g. direct detection experiments [32, 35], this suppression is
easily lifted by relativistic e�ects.
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5 Neutron stars

Many of the possible observational signatures of DM scatterings in WDs also apply to DM
scattering in neutron stars (NSs), including black hole formation [13–21, 23] and stellar heat-
ing [1–12]. A benefit of the increased density of NSs is that the much higher escape velocity
(up to ≥ 0.9c in a NS core) means that the kinetic energy of infalling DM is comparable to
its rest mass energy, so purely kinetic heating from DM scattering events could potentially
result in observable heating (if an old, cold neutron star is observed in a region of su�ciently
large DM density) [8, 93].

The major issue for predicting the results of DM scatterings in NSs is our poor under-
standing of the physics of NS interiors. The ‘crust’ of a NS — e�ectively, the region in which
the physics is somewhat understood — extends to a depth of ≥ 1 km (compared to a total
radius ≥ 10 km for the star). Its outer layers consist of an ionic lattice embedded within a
degenerate electron gas; as the depth and density increase, this transitions to a complicated
‘nuclear pasta’ structure of nucleons [8].16 At smaller radii (the ‘core’), where the densities
are higher, a range of possible behaviours have been proposed, including various types of
meson condensates, or unconfined quark matter [94, 95]. In the latter case, it is even possible
that the QCD matter is neutral by itself, forbidding the presence of an electron gas [95, 96].
Consequently, the behaviour of the lepton and QCD sectors in the NS core, which makes up
the vast majority of the star’s mass and volume, are very uncertain.

Given these uncertainties, one can either attempt to place bounds on DM scattering
rates, e.g. by considering scattering only within the NS crust [8], or one can consider toy
models of the NS core. Here, we adopt the latter approach; we will consider a very simple
toy model, in which the electrons, muons and protons are all represented by free, degenerate
Fermi gases, while QCD dynamics are ignored. We emphasize that, given this unrealistic
toy model, the following calculations should not be used to place constraints or make precise
predictions — their main point is to illustrate how mixing e�ects are likely to have a significant
impact on scattering and capture rates. As well as this toy model, we can calculate the EM
sum rule bounds for a dark photon mediator, which will be valid for any physical model of
the NS interior (modulo the anti-screening issues discussed in appendix D).

For our nominal NS parameters, we will take the heaviest NS model from [41], which has

Mú ƒ 2.2M§ Rú ƒ 12 km vesc,core ƒ 0.91
flcore ƒ 1.4 ◊ 1015 g cm≠3 µe,core ƒ µµ,core ƒ 300 MeV (5.1)

The muon and electron chemical potential determine the proton number density, which
corresponds to a proton chemical potential of ≥ 70 MeV (i.e. µp ƒ mp + 70 MeV). We will
approximate the photon self-energy as the combination of the free, degenerate Fermi gas
contributions from these three species (see appendix B.3). Neutrons, while uncharged, do
interact with photons via their magnetic moments [97], but rough estimates indicate that
this contribution will be subdominant. The more worrying omission is that protons (if they
are even a sensible degree of freedom in the NS core) strongly interact with themselves, and
with the rest of the strongly-interacting QCD matter in the core. We leave a more careful
treatment of such e�ects to future work.

Neutron stars are born at high temperatures in supernovae, but cool down over
time; if heating is insignificant, old and isolated NSs are expected to reach temperatures

16Ref. [8] considers some collective e�ects for DM scattering in NS crust, e.g. scattering o� phonons, but
does not seem to perform a systematic calculation including screening e�ects.
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≥ O(100 K) [8, 93]. For kinetic heating via DM scattering to be visible with projected in-
struments, it would need to maintain a NS at a temperature & 103 K [2]. In either case,
the temperatures of old NSs will generally be negligible for the purposes of our scattering
calculations. These low temperatures, and the very high escape velocity, mean that DM
evaporation will only be significant at very low DM masses [58, 98].

Figure 7 takes the same heavy dark photon mediator model that we considered in
section 4.5, and shows the approximate couplings for which one would obtain ≥ geometric
DM capture rates in our nominal NS, for our toy model. For reasonable DM densities, one
generally needs close-to-geometric DM capture rates for signatures such as kinetic heating to
be potentially observable [2] (the DM capture rate required for other signatures such as BH
formation is more model-dependent). We calculate the capture rate assuming a DM velocity
distribution similar to the Milky Way halo, with velocity dispersion v0 ƒ 160 km s≠1 and
velocity o�set vı ƒ 240 km s≠1 [99] (in the notation of appendix E). Figure 7 shows that, for
m‰ . 100 MeV, collective e�ects start to make a significant di�erence to the capture rate,
even for a heavy mediator; for m‰ . 20 MeV, the EM sum rule bounds show that almost any
NS interior physics leads to scattering rates below the naive particle-by-particle value, for
a heavy dark photon mediator. Since the SN1987A constraints are subject to considerable
systematic uncertainties [77], these rates are important to compute correctly, even within the
nominally disfavoured parameter space.

Figure 8 shows the parameter space for an ultra-light dark photon mediator (or mil-
licharged DM), as per section 4.6. Since the NS escape velocity is even higher than for a
WD, we expect constraints involving lower DM velocities (such as direction detection exper-
iments) to be comparatively even better relative to NS scattering, for an ultralight mediator.
Correspondingly, our toy model gives a capture rate that is always well below geometric, for
couplings in unconstrained parameter space, while the EM sum rule limit is sub-geometric
for m‰ . 10 GeV.

6 Dilute stellar plasmas

As well as the compact remnants discussed in previous sections, DM scattering in other types
of stars could also lead to observable signatures. In this section, we will give a brief overview
of such signatures, and then sketch how collective e�ects can modify DM behaviour, for a
number of illustrative cases involving our Sun.

The dilute, non-relativistic, weakly-coupled plasma that makes up stars such as the
Sun is rather simpler than the dense media in WDs and NSs. However, the relatively high
temperature inside the Sun (T ≥ keV in the core) means that upscattering needs to be
taken into account. For light enough DM (not too much heavier than me), the fact that the
electron velocity in the Solar core is much larger than the escape velocity (vth ≥


3T/me ƒ

2 ◊ 104 km s≠1
∫ vesc,core ƒ 103 km s≠1) means that scattering of halo DM can result in a

higher-energy population of reflected DM, if the optical depth of the Sun is small enough [100].
The flux of this reflected component at Earth will be smaller than the halo DM flux, but its
higher energy means that it can be a useful signal in direct detection experiments [100, 101].

For heavier DM, the Solar core temperature means that if m‰ . few ◊ GeV, evapora-
tion of previously-captured DM (i.e. up-scattering to an unbound orbit) is not Boltzmann-
suppressed enough to be ignorable [58, 102]. Consequently, it is not possible for a large
population of captured DM to be built up, though the evaporating flux, which includes some
particles at very high velocities, may be useful target for direct detection experiments [102].
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NS capture for heavy dark photon mediator
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geometric rate (NS)
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Figure 7. Plot of constraints on a scalar DM particle coupled via a heavy dark photon mediator,
taking the mediator to have mass mX ≥ 2m‰, with coupling –‰ ©

g2
‰

4fi = 0.005 to the DM ‰. The solid
blue curve corresponds to the approximate coupling required to obtain of order the geometric capture
rate for DM in the toy NS model described in section 5. The dot-dashed blue curve corresponds to
the EM sum rule limit for the capture rate (section 2.1). The dashed blue curve corresponds to the
capture rate computed ignoring mixing e�ects. The other curves and shaded areas are as per figure 3.

At yet higher DM masses, scattering of halo DM can lead to a captured population,
which thermalizes down to a smaller volume within the Sun. If annihilation events occur, but
the products are absorbed and thermalize within the Sun, not enough energy is deposited
to have an observable e�ect on the Sun (even if DM is captured at the maximum possible
geometric rate). However, if the annihilation products escape, such as neutrinos or long-lived
hidden sector particles, then these could give signatures in detectors on Earth [103–111]. For
DM heavy enough for this scenario to be of interest, collective e�ects are only likely to be
important for the capture rate if scattering is via a light mediator.

If the dark matter is asymmetric, or otherwise unable to e�ciently annihilate, then
other types of observational signatures are possible. The simplest of these is anomalous heat
transport. If DM has a significantly longer mean free path than photons in the star, then
despite its much lower number density, it could contribute to heat transport, potentially
changing the structure of the star by a detectable amount [24, 29–31]. For Population III
stars, which may have formed at the cores of dense DM halos, other possible signatures such
as BH formation have been proposed [23].

These potential observational signatures, in the Sun and in other stars, motivate proper
calculations of DM scattering rates. In appendix B.4, we derive formulae for vector self-
energies in dilute non-relativistic plasmas (which translate simply to scalar self-energies, since
all particles are non-relativistic); as far as we are aware, these formulae are novel. Below, we
use these results to derive some features of DM scattering inside the Sun, illustrating how
collective e�ects can be important, and how our formalism simplifies scattering calculations.
We do not attempt a comprehensive investigation of DM scattering and its signatures in the
Sun, though our methods should be useful for future work on these topics.
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NS capture for light dark photon mediator
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Figure 8. Bounds on the e�ective millicharge qe� for a DM particle coupling through an ultra-
light dark photon mediator (or via the SM photon). The gray shaded region corresponds to existing
constraints from stellar cooling [83], SN1987A [72], and the Xenon10 experiment [84, 85]. The blue
solid curve corresponds to the approximate qe� required to obtain of order the geometric capture rate
for the heavy NS model in section 5. This corresponds to the approximate capture rate that could be
constrained by kinetic heating signatures [2]. The dashed line corresponds to the EM sum rule limit
for this capture rate.

DM capture rate in Sun for dark photon mediator
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Figure 9. Estimate of total DM capture rate in the Sun for DM particles of mass m‰ = 50 GeV
coupling through a dark photon mediator of mass mX . The solid blue curve corresponds to the
total down-scattering rate from unbound orbits into gravitational bound orbits, while the green curve
corresponds to the capture rate ignoring mixing e�ects. The dashed blue curve corresponds to the
approximate net capture rate described in section 6.1. The dotted gray lines indicate di�erent power
law dependences on mX .
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Imaginary part of longitudinal photon propagator in Solar core

Figure 10. Density plot of the imaginary part of the longitudinal photon propagator Im DL(q0, q) in
the Solar core. Darker shades correspond to larger values of the imaginary part, on a logarithmic scale.
The left panel shows the imaginary part at larger momentum transfers; the three bands correspond
to scattering o� H, 4He, and heavier ions (from left to right). The dashed black line corresponds
to q0,max for a DM particle of mass m‰ = 50 GeV, travelling at the Solar core escape velocity. The
red line corresponds to the zero-velocity ion dispersion relation q0 = q2

2mi
for 4He. The right panel

shows the imaginary part at smaller momentum transfers. Here, the dashed black line is as per the
left panel, while the red line corresponds to q0 = q‡i, where ‡i ©


T/mi is the thermal velocity

dispersion for 4He. As discussed in section 6.1, the phase space around the red curve in the left-hand
panel dominates the scattering rate for large mediator masses, while the space around the red curve
in the right-hand panel dominates for small mediator masses.

6.1 Solar capture with light mediator

Since, as mentioned above, collective e�ects (during the capture of halo DM particles) are
most likely to be important for light mediators, we will investigate the e�ects of mediator
mass on the capture rate of DM in the Sun. For DM coupling through a dark photon
mediator, figure 9 shows the capture rate for halo DM in the Sun, as a function of mediator
mass (taking m‰ = 50 GeV). This rate is estimated via calculating the per-volume capture
rate in the core of the Sun, and multiplying this by the Solar volume. We take the halo
DM velocity distribution to be an o�set Maxwell distribution as described in appendix E,
with v0 ƒ 160 km s≠1 and vı ƒ 240 km s≠1, and use the BS2005 model [112] for Solar core
properties, taking into account scattering o� H, 4He, C, N, and O ions (heavier ions can be
important for hard scatterings and heavier DM, but will not be significant for us).17 More
detailed computations are easily done, but our calculations are mostly intended to illustrate
the physics involved. As we will see, even when collective e�ects are not important, the
kinematics of scattering against a thermal distribution of SM target particles can lead to
non-trivial behaviour, which our formalism makes it simple to compute.

For high enough mediator masses, scattering is e�ectively via contact interactions, and
we have C ≥ m≠4

X .18 We start to deviate from this behaviour once mX is small enough
that momentum transfers q & mX contribute significantly to the scattering rate, i.e. mX .

17More up-to-date Solar models, such as AGSS09 [113], are available, but are not importantly di�erent for
our purposes.

18The DM mass m‰ = 50 GeV is small enough that nuclear form factor e�ects are not important for Solar
capture, even for a heavy mediator.
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m‰vesc,core ƒ 3 ◊ 10≠3m‰; this power-law break is visible in figure 9. If the Solar core were
cold, then as calculated in section 4.6, the capture rate would scale as ≥ log(1/mX) for
smaller mX . However, the Solar core temperature is high enough that this does not hold for
su�ciently small mX ; instead, as we can see from figure 9, the scaling changes to ≥ m≠1

X . In
the full calculation, taking into account mixing e�ects, this scaling holds until mX becomes
small compared to screening scales (in the Solar core, the Debye scale kD ƒ 11 keV).

We can derive these scalings analytically. Ignoring mixing e�ects, and taking the non-
relativistic limit of eq. (3.8), we have

dC

dV
ƒ

2g2
‰

fi

⁄
dq

q

(q2 + m2

X)

⁄ q0,max

0

dq0F̂Œ(q0)(1 + f(q0)) Im �L (6.1)

For q0 π q (as is true for non-relativistic scattering), the contribution to the imaginary part
of the photon self-energy from each plasma species is (from appendix B.4)

Im �(i)
L ƒ

2
Ô

fie2Z2
i ni

q‡i

1
1 + f(q0)e≠(›i≠”i)

2 (6.2)

where the index i ranges over ion species plus electrons, and we have defined ›i ©
q0Ô
2q‡i

,
”i ©

q
2
Ô

2mi‡i
, where mi is the mass of the i-th species, and ‡i ©


T/mi is its thermal

velocity dispersion. The 1/(1 + f(q0)) term in eq. (6.2) cancels with the 1 + f(q0) term in
eq. (6.1), so the q0 dependence of the integrand in eq. (6.1) is purely through the ›i term in
e≠(›i≠”i)

2 , and the F̂Œ(q0) term.
For small ‡i, the e≠(›i≠”i)

2 term gives an exponential suppression unless the momentum
transfer almost matches the on-shell ion dispersion relation, q0 ƒ q2/(2mi), as we would
expect.19 For q0 π m‰v2

0, where v0 is the typical halo DM velocity, we have F̂Œ(q0) Ã
≥

q0

(see figure 14), so the
s

dq0 integral in eq. (6.1) scales as ≥ q2. Consequently, if we ignore
mixing terms in Im �L, the

s
dq integral in eq. (6.1) scales as

s
dq q3

(q2+m2
X)2 ≥ log m≠1

X for
small enough mX , and we have re-derived the logarithmic dependence we expected.

This derivation applies if we can always treat ‡i as small. However, for q small enough
that ”i . 1, we simply need ›i . O(1) in order for e≠(›≠”i)

2 not to be an exponential suppres-
sion, rather than ›i ƒ ”i. That is, we simply need the transfer phase velocity vph © q0/q to be
. ‡i, rather than almost equal to q/(2mi), the phase velocity on the ion dispersion relation.
This is illustrated in figure 10; for q & 2mi‡i, the dispersion relation bands are separated from
the horizontal axis, while for smaller q, they are not (as per the right-hand panel of figure 10).

For these smaller q, the
s

dq0 integral is dominated by q0 ≥ q‡i (assuming v‰ > ‡i,
which is the case for the Sun, as illustrated in figure 10). If this q0 is small enough to be in
the F̂Œ(q0) ≥ q0 regime, then the

s
dq integral scales as

s
dq q2

(q2+m2
X)2 ≥ m≠1

X overall. For the
m‰ = 50 GeV DM mass considered in figure 9, we have mi‡2

i = T ƒ keV π m‰v2
0 ƒ 14 keV,

where v0 is the halo DM velocity dispersion, so if q . 2mi‡i, then q0 ≥ q‡i is small enough
for F̂Œ(q0) to be in the linear regime (figure 14). Consequently, for mX small enough that
”i . 1 dominates the capture rate integral, the total capture rate scales as m≠1

X . In the Solar
19Unlike in the WD case analysed in section 4.3, there are not narrow acoustic resonances that we can

resonantly scatter into. Since the electron and ion velocities in the Sun are thermal, with the same temperature,
the imaginary part of �L is comparable to the real part, along the Q2 ≠ Re �L = 0 ‘dispersion relation’ [114],
and we do not have a narrow pole, as illustrated in figure 10. In a cold WD, the electrons have large velocities
due to the Fermi sea, and we do obtain a well-defined pole for the ion acoustic mode, as per figure 2.
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core, mi‡i ≥ few ◊ MeV (for the di�erent ion species), so the capture rate should scale as
m≠1

X for mX π MeV, as we observe in figure 9.20 This calculation illustrates how, even in
settings where collective e�ects are not important, our formalism can make including thermal
kinematic e�ects simple, since the self-energies incorporate all of the necessary information
about the velocity distributions of the SM particles.

One caveat regarding these capture rates is that they apply to down-scattering of halo
DM from unbound to bound orbits. As discussed in section 3, if the temperature of the star
is important for capture, then we also expect up-scattering of captured DM into unbound
orbits to be significant, once enough captured DM has been built up. Correspondingly, the
solid curves shown in figure 9 give the net DM capture rate before DM has built up in the
Sun. To compute the net capture rate once dynamic equilibrium has been reached would
require a full treatment of DM scattering and evolution post-capture. We do not attempt
that here — instead, figure 9 shows a plausible estimate for the equilibrium net capture rate
(the dashed blue curve), from assuming that the DM phase space density in bound orbits is
the same as the halo DM phase space density in just-escaping orbits. That is, we take

dCnet

dV
ƒ

2g2
‰

fi

⁄
dq

q

(q2 + m2

X)

⁄ q0,max

0

dq0

1
F̂Œ(q0)(1 + f(q0)) ≠ q0f̂Œ(0)f(q0)

2
Im �L (6.3)

In situations where the capture rate is dominated by low-q0 scatterings, it is plausible that the
phase space density for bound orbits just below Eesc is similar to the phase space density for
halo DM trajectories just above Eesc, in which case eq. (6.3) should be a good approximation.
We leave a more careful treatment of DM build-up in the Sun to future work.

6.1.1 Solar basin scattering
A non-DM example in which Solar scattering via a light mediator can be important is the
scenario of a ‘Solar Basin’ of millicharged particles [116]. The idea is that light (. keV mass)
particles with a small coupling to the photon (or to a light dark photon mediator) would be
produced in the Sun, and in particular, some would be produced on bound orbits. These may
survive in the Solar system over very long timescales, and so build up in density until they
are detectable in Earth-based experiments [117–121]. To calculate the present-day density
of such particles at Earth, it is important to take into account possible scatterings within
the Sun, which may scatter Solar basin particles into di�erent orbits (or eject them from the
Solar system entirely).

Doing these scattering calculations properly requires taking into account the thermal
velocities of the SM particles inside the Sun, and the Q-dependent screening of the medi-
ator, as our formalism automatically includes. Compared to the estimate in [116], which
ignores thermal velocities and approximates screening with a constant Debye scale, prelimi-
nary calculation using our approach give a scattering rate O(100) times larger, which could be
significant for the evolution of Solar basin particles. We leave a full calculation to future work.

6.2 Solar reflection
As mentioned above, light enough DM can be significantly accelerated by scattering with
electrons in the Solar core, resulting in a high-energy ‘reflected’ flux which could be detected

20In recent work [115], it was claimed that the capture rate (from a no-mixing calculation) scales as m≠2
X in

this regime. Ref. [115] appears to derive this conclusion from somewhat complicated numerical calculations,
rather than analytic arguments, and it is not clear where they di�er from our analyses. We have confirmed
that our calculations match the results of directly simulating scattering events for many randomly-generated
particles.
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on Earth. The most recent calculations [101] for this Solar reflection scenario consider models
with DM coupling through a heavy mediator, as well as models with DM coupling via a
light dark photon. For the latter, they do attempt to take screening into account. In our
terms, their formulae correspond to Im �L/(|Q2

≠ �Vlasov

L |
2), compared to the full expression

Im �L/(|Q2
≠ �L|

2), where �Vlasov

L is the fluid approximation to the self-energy, as reviewed
in appendix B.4. However, since ›e . 1 and ”e . 1 in electron scattering events (the DM
is accelerated to at most the electron speed), the Vlasov approximation to �L will be O(1)
correct, and using our full expressions makes only a small di�erence to the overall rates.

For other mediators, [101] neglected collective e�ects, whereas we have emphasised that
these apply even to heavy mediators. However, since the DM masses of interest are generally
& 100 keV, to avoid other constraints, we need momentum transfers & 10 keV to give the
DM & keV kinetic energies, relevant for detection in experiments on Earth. Since the Debye
scale in the Sun is also ≥ 10 keV, we would expect collective e�ects to have O(1) (rather than
parametrically large) e�ects on signal rates. We leave more precise calculations to future
work. Nevertheless, it is likely that, for the lower end of the DM mass range considered
in [101], collective e�ects could be quantitatively important even for heavy mediator models.

7 Conclusions

In this paper, we have showed how collective e�ects in dense stellar media can significantly
modify DM scattering rates. For DM scattering via contact interactions, we illustrated that
scattering rates in WDs and NSs for DM masses . 100 MeV can be either parametrically
above or parametrically below the results of naive calculations, depending on the model.
For scattering via a light mediator, naive capture rate calculations diverge due to long-range
interactions, so collective e�ects are always important; our formalism allows them to be
computed systematically. While collective e�ects of these kinds have been investigated in a
range of contexts relevant to laboratory DM detection experiments (though even there, our
setup can o�er new insights, e.g. [35]), they have predominantly been ignored for scattering
in astrophysical media. Since DM scattering in stars could lead to a wide range of potential
observational signatures that could give strong constraints or discovery potential for DM,
understanding the physics of such scatterings is phenomenologically important.

The aim of this paper has been to present a systematic formalism for computing scat-
tering rates in media, and to illustrate its application with some simple examples. We have
not attempted to perform comprehensive analyses of di�erent stellar models, di�erent DM
models, and their phenomenological consequences. This is the most obvious avenue for future
work based on our results.

For stellar media whose underlying physics is known, performing such analyses is a
fairly well-defined exercise. Properly treating DM scattering in NSs, on the other hand, is
more di�cult problem. While our toy calculations, and EM sum rule bounds for dark photon
mediators, suggest that collective e�ects will be significant for DM masses . 100 MeV even for
contact interactions, they do not provide reliable predictions. Given the current uncertainty
surrounding the basic physics of neutron star cores, making precise predictions is likely to be
di�cult, but it may be possible to derive useful bounds on scattering rates, e.g. by considering
scattering in the better-understood crust [8].

Among di�erent DM candidates, a class of models where our techniques will apply,
but may have qualitatively di�erent behaviour, is inelastic DM [122]. Compact stars are
excellent potential probes of inelastic DM, since the large kinetic energy of infalling DM
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enables upscattering to states separated by larger energy splittings than in a terrestrial
detector [2]. Upscattering can also be important in the Sun, from the high thermal velocities
of electrons in the Solar core [123]. Inelastic scatterings involve di�erent regions of (q0, q)
parameter space from the elastic scattering events we have considered in this paper, but can
be treated via obvious extensions of our methods.

Another area in which our calculations should prove useful is the computation of particle
emission rates from astrophysical media. The impact of collective e�ects on such processes has
been explored in a wide range of papers, and was presented systematically in [36]. However,
there are a range of particle candidates and emission environments for which only partial or
flawed calculations have been presented (e.g. the example of resonant scalar emission from
supernovae discussed in appendix F). Important ingredients for all of these calculations are
particle self-energies, as presented in appendices B and C.

In addition to stars, another obvious astrophysical setting for dense plasmas is the hot
early universe. At some level, collective e�ects will apply to DM scattering with the SM
plasma in the early universe. For contact interactions, a generic issue is that, post-electron-
freezeout, the number density of charged particles in the universe is very small (compared to
the photon number density), and the collective scales are correspondingly small. Pre-electron-
freezeout, relativistic abundances of charged particles are present, and collective scales can
be large; however, e�ects from this era are often hard to observe in the late universe, having
been thermalised along the way. For light mediators, on the other hand, collective e�ects in
DM-SM scattering can be important even for small screening scales, as explored in various
papers [124–126]. These generally use a fixed ‘Debye mass’ to incorporate screening, rather
than the full thermal e�ects, which may sometimes make an appreciable di�erence.

In some circumstances, it is useful to treat the hidden sector itself as a medium with
which particles can scatter. For example, if we consider DM interacting via a light mediator,
then DM self-scattering can be calculated using the self-energy of the mediator in the DM
medium. This provides a systematic way to perform such calculations, and should allow
discrepancies between existing treatments [127, 128] to be resolved, as well as encompassing
collective e�ects such as those investigated in [92].

All of these avenues remain open and are ripe for further research. Regardless, the
examples presented in this paper illustrate the importance of considering collective e�ects
when studying DM in astrophysical settings. We hope that the formalism presented here,
as well as the equations presented in the appendices, will be useful to researchers seeking to
robustly understand the dynamics of DM in astrophysical settings.
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A In-medium scattering rates

As discussed in section 2, the scattering rate for a particle passing through a medium can
be related to the imaginary part of the particle’s e�ective in-medium propagator. For a
weakly-coupled, thermal medium, we can calculate this using the tools of thermal field
theory [40]. In this appendix, we will give explicit formulae for the scattering rate in some
simple situations, considering spin-0 and spin-1/2 particles, coupled via spin-0 and spin-1
mediators (with scalar and vector couplings). Straightforward extensions of these formulae
apply to other kinds of DM-mediator couplings, e.g. pseudoscalar couplings, DM form
factors, inelastic scattering, etc.

A.1 Spin-1/2 DM

A.1.1 Vector mediator
Suppose that we have a Dirac fermion ‰ (our DM particle), coupled to a vector mediator
X of mass mX , L ∏ g‰Xµ‰̄“µ‰. If a ‰ particle is passing through a uniform (though
not necessarily isotropic) medium, then at leading order in the (assumed weak) couplings
between ‰ and X and between X and the medium, its scattering rate can be obtained from
the imaginary part of the self-energy diagram

‰
X X

P P ≠ Q P

‰

and is given by [40]

� = ≠
2g2

‰

E

⁄
d3q

(2fi)3

1
2EÕ (1+f(q0)) 1

(Q2 ≠ m2

X)2
Im �X

µ‹(Q)(P ·Q÷µ‹+P µ(P ≠Q)‹+P ‹(P ≠Q)µ)

(A.1)
where �X

µ‹ is the in-medium self-energy for the mediator, P = (E, p), and q0 is such that
P ≠ Q = (EÕ, pÕ) puts ‰ on-shell. If the SM current that the mediator couples to is conserved
(or more generally, if current non-conserving processes are unimportant in the medium), then
we have the Ward identity Qµ�µ‹(Q) = 0, which we can use to write

� = ≠
2g2

‰

E

⁄
d3q

(2fi)3

1
2EÕ (1 + f(q0)) 1

(Q2 ≠ m2

X)2
Im �X

µ‹(Q)
A

Q2

2 ÷µ‹ + 2P µP ‹

B

(A.2)

Specializing to an isotropic medium, we can decompose the self-energy as

�µ‹ = �L‘L
µ‘L

‹ + �T

ÿ

i=1,2

‘i
µ‘i

‹ (A.3)

where ‘L
µ is the unit longitudinal polarization vector perpendicular to Q, and ‘1,2

µ are the unit
transverse polarization vectors (all quantities are functions of Q). Explicitly, if we take e.g.
Qµ = (q0, 0, 0, q), then we can take

‘1

µ = (0, 1, 0, 0) , ‘2

µ = (0, 0, 1, 0) , ‘L
µ = ≠1


Q2

(q, 0, 0, q0) = i


|Q2|
(q, 0, 0, q0) (A.4)
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where the last equality holds for Q2 < 0, as we are interested in for scattering. Using this
decomposition, we have � = �L + �T , where

�L =
4g2

‰

E

⁄
d3q

(2fi)3

1
2EÕ (1 + f(q0)) 1

(Q2 ≠ m2

X)2

1
E2

≠ p2 cos2 ◊
2

Im �X
L (Q) (A.5)

and

�T =
2g2

‰

E

⁄
d3q

(2fi)3

1
2EÕ (1 + f(q0)) 1

(Q2 ≠ m2

X)2

1
≠Q2 + 2p2 sin2 ◊

2
(≠ Im �X

T (Q)) (A.6)

We can change the integration variables to q0, q to get

�L =
g2

‰

2fi2

1
Ep

⁄
dq dq0 q(1 + f(q0)) 1

(Q2 ≠ m2

X)2

1
E2

≠ p2 cos2 ◊
2

Im �X
L (Q) (A.7)

and analogously for �T . For non-relativistic scattering, the leading term in small v‰ is

�L ƒ 2g2

‰

⁄
d3q

(2fi)3
(1 + f(q0)) 1

(q2 + m2

X)2
Im �X

L (Q) (A.8)

A.1.2 Scalar mediator

For a scalar mediator „ of mass m„, coupling to ‰ via L ∏ g‰„‰̄‰, we have a similar formula
for the scattering rate,

� = ≠
2g2

‰

E

⁄
d3q

(2fi)3

1
2EÕ (1 + f(q0)) 1

(Q2 ≠ m2

„)2

1
2m2

‰ ≠ Q2/2
2

Im �„(Q) (A.9)

For a non-relativistic ‰ particle, this has leading-order form

� ƒ ≠2g2

‰

⁄
d3q

(2fi)3
(1 + f(q0)) 1

(Q2 ≠ m2

„)2
Im �„(Q) (A.10)

Since f̄f ƒ f̄“0f , we expect �„
ƒ �X

00 = q2

Q2 �X
L ƒ ≠�X

L if „ and X couple to SM fermions
in same way, and the SM fermions are non-relativistic. So, in this limit, scattering via scalar
and vectors mediators results in the same rate, as expected. (Note that nucleons in nuclei
move at speeds O(0.1c), so we have deviations at the O(10≠2) level even for non-relativistic
matter — this can be important for lifting cancellations etc. [35]).

A.2 Spin-0 DM

A.2.1 Vector mediator

For complex scalar DM ‰, interacting with a vector mediator X via L ∏ ig‰Xµ(‰úˆµ‰ ≠

‰ˆµ‰ú) (writing the three-particle coupling, which is the only one that contributes to the
leading-order scattering rate), the scattering rate is given by

� = ≠
4g2

‰

E

⁄
d3q

(2fi)3

1
2EÕ (1 + f(q0)) 1

(Q2 ≠ m2

X)2
P µP ‹ Im �X

µ‹(Q) (A.11)
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where we have used the Ward identity Qµ�µ‹(Q) = 0 as above. For an isotropic medium,
splitting this into transverse and longitudinal parts gives

�=
4g2

‰

E

⁄
d3q

(2fi)3

1
2EÕ (1+f(q0)) 1

(Q2≠m2

X)2

A

p2sin2◊(≠Im�X
T (Q))≠Q2

q2
(E≠q0/2)2Im�X

L (Q)
B

(A.12)
with leading non-relativistic form

� ƒ 2g2

‰

⁄
d3q

(2fi)3
(1 + f(q0)) 1

(Q2 ≠ m2

X)2
Im �X

L (Q) (A.13)

This matches the expression for Dirac fermion DM, as expected.

A.2.2 Scalar mediator
For complex scalar DM ‰, interacting with a scalar mediator „ as L ∏ c‰„‰ú‰, the scattering
rate is given by

� = ≠
c2

‰

E

⁄
d3q

(2fi)3

1
2EÕ (1 + f(q0)) 1

(Q2 ≠ m2

„)2
Im �„(Q) (A.14)

(note that c‰ has dimensions of energy) with leading non-relativistic form

� ƒ ≠
c2

‰

2m2
‰

⁄
d3q

(2fi)3
(1 + f(q0)) 1

(Q2 ≠ m2

„)2
Im �„(Q) (A.15)

B Vector self-energies

As discussed in section 2 and appendix A, the scattering rate for DM passing through a
uniform medium can be expressed in terms of the in-medium self-energy of the mediating
particle. In this appendix, we calculate the self-energy for a vector mediator X, which couples
to SM Dirac fermions as Xµf̄“µf , at leading order (i.e. treating the SM fermions as free).
For weakly-coupled plasmas, this will give a good approximation, with other contributions
being suppressed by higher powers of –EM. Even for strongly-coupled plasmas, if there is an
e�ective description in terms of weakly interacting quasi-particles (e.g. as per Fermi liquid
theory [37]), these calculations can still apply.

B.1 One-loop free fermion

The leading-order self-energy in a medium of free Dirac fermions corresponds to the one-loop
diagram

X X

Q

If we consider the electron contribution to the photon self-energy, we have

�µ‹(Q) = 4e2

⁄
d3k

(2fi)3

1
2Ek

(fe(Ek)+fē(Ek))Q ·K(KµQ‹ +QµK‹)≠Q2KµK‹
≠(Q ·K)2gµ‹

(Q ·K)2 ≠Q4/4
(B.1)
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where fe is the in-medium occupation number for electrons, and fē for positrons. This
expression agrees with those in [129] and [40]. In a thermal medium, with temperature T and
chemical potential µe, we have fe(E) = (e(E≠µe)/T + 1)≠1, and fē(E) = (e(E+µe)/T + 1)≠1.21

For Dirac fermions with an anomalous magnetic moment (e.g. neutrons), there are extra
contributions, which are given in [97].

In [52, 129], it is mentioned that the ≠Q4/4 term in the denominator of eq. (B.1) ‘can be
ignored at O(e2)’, and moreover, that it should be neglected to avoid introducing a spurious
imaginary part. These statements are only true for timelike Q with Q2 = O(eE), where E
is the typical electron energy scale. For our scattering calculations, where we are interested
in Q2 < 0, keeping the ≠Q4/4 term does not introduce any spurious imaginary part, and it
is important to retain it to correctly treat scatterings with larger momentum transfers.

While the expressions we give in this section are presented for the electron contribution
to the photon self-energy, it is simple to find the contribution to general vector mediator
self-energies from general Dirac fermion species. We simply substitute the fermion-mediator
coupling gXf for e, the fermion mass mf for me, and the species’ chemical potential µf for µe.

B.1.1 Imaginary part

We can evaluate the imaginary part of the self-energy either directly from eq. (B.1), or by
evaluating the cut self-energy [40]. From either method, we obtain (for the longitudinal
mode)

Im �L(Q) = ≠
e2

4fi

Q2

q2

1
q

sgn(q0)
1 + f(q0)

⁄

RQ

dE sgn(E) sgn(EÕ)

◊ (1 ≠ f̃(E))f̃(EÕ)
A

Q2

2 + 2EEÕ
B

(B.2)

where EÕ = E ≠ q0, and f̃(E) © (e(E≠µe)/T + 1)≠1 is the fermionic occupation number for a
medium with electron chemical potential µe and temperature T . The integration is over the
range of E for which K and K ≠ Q can be on mass-shell, for appropriate directions of k̨, i.e.
RQ = {E : |2Eq0 ≠ Q2

| Æ |2kq| and |E| Ø me}, where k =


E2 ≠ m2
e. For the transverse

modes,

Im �T (Q) = ≠
e2

4fi

1
q

sgn(q0)
1 + f(q0)

⁄

RQ

dE sgn(E) sgn(EÕ)

◊ (1 ≠ f̃(E))f̃(EÕ)
A

≠
Q2

2 + k2
≠

(2Eq0 ≠ Q2)2

4q2

B

(B.3)

B.1.2 Real part

To evaluate the longitudinal and transverse self-energies in an isotropic medium, we can
reduce the integral in eq. (B.1) to an integral over the fermion energy, by doing the angular
integrals analytically. Taking K = (E, k) to be the four-momentum of the fermion in the
loop, we can define x © Q · K = Eq0 ≠ kq cos ◊, with extreme values x± © Eq0 ± kq (where

21Our convention for the chemical potential is di�erent from that of [41], which takes fe(E) =
(e(E≠me≠µe)/T + 1)≠1 etc.
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E and k are such that K2 = m2
e). In terms of x±, the real parts of the self-energy are

Re �L(Q) = Q2

q2

e2

2fi2

1
q

⁄ Œ

me

dE(fe(E) + fē(E))

◊

S

U≠2kq ≠

A

E(E ≠ q0) + Q2

4

B

log

------

x+ ≠
Q2

2

x≠ ≠
Q2
2

------

+
A

E(E + q0) + Q2

4

B

log

------

x+ + Q2

2

x≠ + Q2
2

------

T

V (B.4)

and

Re �T (Q) = e2

2fi2

1
q

⁄ Œ

me

dE(fe(E) + fē(E))

◊

C

2kq

A

1 + Q2

2q2

B

+ 1
2

A

≠k2 + Q2

2 + (Eq0 ≠ Q2/2)2

q2

B

log

------

x+ ≠
Q2

2

x≠ ≠
Q2
2

------

+ 1
2

A

k2
≠

Q2

2 ≠
(Eq0 + Q2/2)2

q2

B

log

------

x+ + Q2

2

x≠ + Q2
2

------

T

V (B.5)

B.2 Small-Q approximations
If we expand eq. (B.4) and eq. (B.5) in small Q2, we obtain

Re �L(Q) ƒ
Q2

q2

e2

fi2

⁄ Œ

me

dE k (fe(E) + fē(E))
C

≠1 + Eq0

kq
log

----
x+

x≠

---- ≠
Q2E2

x+x≠

D

(B.6)

in agreement with [129] (equation A17), and with [40] (equation 9.5), and

Re �T (Q) ƒ
e2

fi2

⁄ Œ

me

dE k (fe(E) + fē(E))
C

q2
0

q2
≠

Q2

q2

Eq0

2kq
log

----
x+

x≠

----

D

(B.7)

in agreement with [40] (equation 9.4). These approximations are valid if |Q2
| π |x±| for the

E that contribute significantly to the integral. For example, if the distribution is dominated
by highly relativistic electrons, then this condition becomes q π E.

B.3 Degenerate fermion gas
For simple forms of f̃(E), we can evaluate the one-loop self-energy expressions analytically.
An example is a fully degenerate Fermi gas, for which f̃(E) = 10ÆE<µe (if µe is positive).
For physical systems, this is a good approximation if T π µe, as we discuss in section B.3.1.

We will mostly be interested in scattering events resulting in energy loss, so we will
assume Q2 < 0 and q0 > 0 for simplicity (other kinematic regions can be analysed similarly).
To obtain Im �L, we can perform the integral in eq. (B.2) over final state energies in the
range [E+, µe + q0], where

E+ © max

Q

aµe,
1
2

Q

aq0 + q

Û

1 ≠ 4m2
e

Q2

R

b

R

b (B.8)

– 38 –



J
C
A
P
0
5
(
2
0
2
2
)
0
1
5

(if E+ Ø µe + q0, the integral is zero). This gives

Im�L(Q) ƒ ≠
e2

4fi
Q2q3 sgn(q0)

A

≠
2E3

+

3 + 2µ3
e

3 +E2

+q0 +µ2

eq0 ≠
q3

0

3 ≠
E+Q2

2 + µeQ2

2 + q0Q2

2

B

(B.9)
For the transverse part,

Im �T (Q) ƒ ≠
e2

4fi

1
q

sgn(q0)
A

≠ m2

e(≠E+ + µe + q0) +
≠E3

+ + (µe + q0)3

3

≠
q2

0(≠E3
+ + (µe + q0)3))

3q2
≠

(≠E+ + µe + q0)Q2

2

+
q0(≠E2

+ + (µe + q0)2)Q2)
2q2

≠
(≠E+ + µe + q0)Q4

4q2

B

(B.10)

We can also integrate the expressions for the real parts in eq. (B.4) and eq. (B.5) analytically,
but the expressions are significantly more complicated — they are available in the code
repository associated with this paper (https://github.com/wderocco/DarkScatter).

In the small Q2 limit, eq. (B.6) gives:

Re �L(Q) ƒ
e2

fi2

Q2

q2
EF pF

3
≠1 + zF

2 log
----
1 + zF

1 ≠ zF

----

4
(B.11)

and the imaginary part is

Im �L(Q) ƒ ≠
e2EF pF

2fi

Q2

q2
zF �(1 ≠ |zF |) (B.12)

where zF ©
q0

qvF
, with vF © pF /EF . The imaginary part is zero for q0 < 0. The transverse

equivalents are

Re �T (Q) ƒ ≠
e2EF pF

2fi2

C

≠1 + zF

2“2

F

log
----
1 + zF

1 ≠ zF

---- + Q2

q2

3
≠1 + zF

2 log
----
1 + zF

1 ≠ zF

----

4D

(B.13)

and

Im �T (Q) ƒ
e2

4fi
EF pF zF

A
Q2

q2
+ 1

“2

F

B

�(1 ≠ |zF |) (B.14)

where “F © EF /me.

B.3.1 Temperature e�ects
The formulae above were computed using the zero-temperature electron distribution func-
tions. It turns out that these are good approximations when T π µe, even for q0, q π T .

For the real parts, this is fairly obvious — the formulae in eqs. (B.4) and (B.5) do not
depend strongly on the sharpness of the step function in fe(E). For the imaginary parts, the
(1 ≠ f̃(E))f̃(E ≠ q0) term in eqs. (B.2) and (B.3) has integral

⁄ Œ

≠Œ
dE(1 ≠ f̃(E))f̃(E ≠ q0) = q0

1 ≠ e≠q0/T
= q0(1 + f(q0)) (B.15)
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Consequently, the e�ect of changing T on the kernel (1≠f̃(E))f̃(E≠q0)

1+f(q0)
is simply to spread out

the function in E, while keeping its integral fixed. Since the energy range ≥ T over which
this kernel gets spread is small compared to the energies ≥ µe at which it has support, the
zero-temperature result is a good approximation for T π µe.

From appendix A, the total scattering rates depend on
s

· · ·
s

dq0(1 + f(q0)) Im �X
L (Q).

Consequently, if the self-energy is dominated by degenerate Fermi gas contributions, then
only the 1 + f(q0) part depends strongly on T , and we have that scatterings with q0 π T are
enhanced by ≥ T/q0, as observed in [46, 98].

B.4 Dilute non-relativistic gas

Another situation in which we can evaluate eq. (B.1) analytically is when our plasma
species are dilute and non-relativistic. From eq. (3.1), the occupation number is given by
fe(Ev) = (2fi)3 ne

2m3
e
p(v), where Ev is the energy of an electron with velocity v, and p(v)

is the probability distribution for electron velocities. The longitudinal mode self-energy is
given by �L = Q2

q2 �00, so

�L ƒ Ê2

p
Q2

q2

⁄
d3v p(v)2q0(q0 ≠ v · q) ≠ Q2

≠ (q0 ≠ v · q)2

(q0 ≠ v · q)2 ≠
Q4

4m2
e

= Ê2

p
Q2

q2

⁄
d3v p(v) q2

≠ (v · q)2

(q0 ≠ v · q)2 ≠
Q4

4m2
e

(B.16)

where Ê2
p © e2ne/me is the plasma frequency. Since we are assuming that v is non-

relativistic, the (v · q)2 term in the denominator will be negligible compared to the q2 term.
The integrand in eq. (B.16) only depends on v · q © qvq, where vq is the component of the
velocity parallel to q, so

�L ƒ Ê2

pQ2

⁄
dvq pq(vq) 1

(q0 ≠ qvq)2 ≠
Q4

4m2
e

© Ê2

pQ2S (B.17)

where pq is the probability distribution for vq. We can write the integral S as

S =
⁄

dv pq(v) 1
(q0 ≠ qv)2 ≠

Q4

4m2
e

= ≠
me

Q2

⁄
dv pq(v)

Q

a 1
Q2

2me
+ q0 ≠ qv

≠
1

≠
Q2

2me
+ q0 ≠ qv

R

b (B.18)

For a Maxwell velocity distribution, pq(v) = 1Ô
2fi‡2 e≠v2/(2‡2

), this gives

S = ≠
me

Ô
2Q2‡

⁄
dv

1
Ô

fi
e≠v2/(2‡2

)

Q

a 1
Q2

2me
+ q0 ≠ qv

≠
1

≠
Q2

2me
+ q0 ≠ qv

R

b (B.19)

Using the integral definition of the plasma dispersion function [114],

Z(›) = 1
Ô

fi

⁄ Œ

≠Œ
dx

e≠x2

x ≠ ›
(B.20)
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and writing › = q0Ô
2‡q

, we have

S = me

q0Q2
›

C

Z

A

›

A

1 + Q2

2q0me

BB

≠ Z

A

›

A

1 ≠
Q2

2q0me

BBD

©
me

q0Q2
›(Z(› ≠ ”) ≠ Z(› + ”)) (B.21)

where ” = ≠Q2

2
Ô

2qme‡
. So,

�L ƒ Ê2

p
me

q0

›(Z(› ≠ ”) ≠ Z(› + ”)) (B.22)

To connect this to the usual approximations for �L, we can consider situations in which ” is
small (we make this more precise below). Then, using the fact that Z Õ(›) = ≠2(1 + ›Z(›)),
we have that

Z(› ≠ ”) ≠ Z(› + ”) ƒ ≠2”Z Õ(›) = Q2

q0me
›Z Õ(›) = ≠

2Q2

q0me
›(1 + ›Z(›)) (B.23)

This is a good approximation if |”| π max(1, |›|). In this regime,

�L ƒ ≠Ê2

p
Q2

q2

1
‡2

(1 + ›Z(›)) (B.24)

This is the ‘Vlasov’ approximation to the self-energy [114], which only depends on e, ne and
me through Ê2

p. It corresponds to treating each plasma species as a fluid, characterized by
its charge-to-mass ratio e/me and its charge density ene, rather than taking into account the
kinematics of individual scattering events. For small |›|, corresponding to phase velocities
small compared to electron velocities, the condition on ” is equivalent to q π me‡, so the
Vlasov approximation is valid for momentum transfers much smaller than the typical electron
momenta. For large |›|, we need q2

2me
π q0. The useful aspect of our full formula, Eq (B.22), is

that it simultaneously includes the kinematics of ‘hard’ scattering events, for which these con-
ditions are not satisfied, as well as the coherent response to low-wavenumber perturbations.

To understand the behaviour of �L, we need the behaviour of the plasma dispersion
function Z. In terms of the complex error function, we can write Z(z) = i

Ô
fie≠z2 erfc(≠iz).

Evaluated at real arguments (as is the case above), we have [130]

Z(x) = i
Ô

fie≠x2
≠ 2xY (x) (B.25)

where

Y (x) = e≠x2

x

⁄ x

0

dt et2 (B.26)

The real and imaginary parts of Z(x) for real x are plotted in the left-hand panel of figure 11.
For large |x|, we have

Re Z(x) ≥ ≠
1
x

3
1 + 1

2x2
+ . . .

4
(B.27)

while for small |x|,

Re Z(x) ≥ ≠2x

A

1 ≠
2x2

3 + . . .

B

(B.28)
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Figure 11. Left: plots of real (blue curve) and imaginary (orange curve) parts of the plasma dispersion
function Z(z) = i

Ô
fie≠z2erfc(≠iz), evaluated for real arguments. Right: real (blue) and imaginary

(orange) parts of 1 + zZ(z), as arises in Vlasov approximations to self-energies (eq. (B.24)).

Figure 11 also plots the real and imaginary parts of 1 + xZ(x), which gives the Vlasov
approximation to the self-energy (eq. (B.24)).

It is easy to see that eq. (B.24) corresponds to the expected plasma behaviour in the
static and zero-momentum limits. In the static (q0 æ 0) limit, we have › æ 0, so ›Z(›) ≥

i
Ô

fi›, and consequently �L ƒ Ê2
p/‡2, giving the usual Debye screening scale. In the zero-

momentum limit, q æ 0, we have › æ Œ, so ›Z(›) ≥ ≠

1
1 + 1

2›2

2
, so �L ƒ Ê2

p, as expected.
We can obtain a simplified expression for the imaginary part of eq. (B.22) when q0 π q.

In that case, ” ƒ
q

2
Ô

2me‡
, and we have ›” ƒ

q0
4T . Consequently,

Im(Z(› ≠ ”) ≠ Z(› + ”)) ƒ 2
Ô

fie≠(›2
+”2

) sinh
3

q0

2T

4
=

Ô
fie≠(›≠”)

2 1
1 + f(q0) (B.29)

so
Im �L ƒ

fi
Ô

2
e2ne

q‡

1
1 + f(q0)e≠(›≠”)

2 (B.30)

B.4.1 Yukawa scattering rate
As an illustration, we can put together the scattering rate expressions from appendix A with
the Im �L expression from eq. (B.30) to see how, for a su�ciently dilute non-relativistic
plasma, we recover the particle-by-particle Yukawa scattering rate. The total Yukawa cross
section for particle-by-particle scattering is

‡‰e =
g2

‰g2
e

fi

µ2
‰e

m2

X(m2

X + 4k2

CM
) (B.31)

where µ‰e is the DM-electron reduced mass, and kcm is the momentum in the CoM frame.
If we consider a heavy mediator, and assume that the relative velocity is dominated by the
DM velocity v‰ in the plasma rest frame, then the scattering rate is

�L ƒ ne‡‰ev‰ ƒ
g2

‰g2
e

fi

µ2
‰e

m4

X

nev‰ (B.32)

From eq. (A.8), the rate for non-relativistic DM scattering, in terms of the mediator self-
energy, is

�L ƒ
g2

‰

2fi2

1
v‰

⁄
dq dq0 q(1 + f(q0)) 1

(q2 + m2

X)2
Im �X

L (Q) (B.33)
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If the medium is dilute enough for the mixing terms in Im �X
L to be unimportant, then using

eq. (B.30), this gives

�L ƒ
1

2fi2

Ú
fi

2
g2

eg2
‰ne

v‰‡m4

X

⁄
dq

⁄
dq0 e≠(›≠”)

2 = 1
4fi

g2
eg2

‰ne

v‰m4

X

q2

max =
g2

‰g2
e

fi

µ2
‰enev‰

m4

X

(B.34)

matching the standard Yukawa rate. A useful aspect of the self-energy calculation is that it
is very simple to take into account the electron velocity distribution and collective e�ects.

B.4.2 Transverse modes
For non-relativistic electrons, the transverse self-energy is given by

�T ƒ Ê2

p

⁄
d3v p(v)≠Q2v2 cos2 „ sin2 ◊ + (q0 ≠ vq cos ◊)2

(q0 ≠ v · q)2 ≠
Q4

4m2
e

(B.35)

where ◊ is the angle between q and v. Doing the angular integrals, we obtain

�T ƒ Ê2

p

⁄
dvqp1(vq)(q0 ≠ qvq)2

≠ Q2‡2

(q0 ≠ qvq)2 ≠
Q4

4m2
e

(B.36)

We can rewrite this in terms of �L,

�T ƒ Ê2

p

⁄
dvqp1(vq)

Q

a1 ≠

Q2‡2
≠

Q4

4m2
e

(q0 ≠ qvq)2 ≠
Q4

4m2
e

R

b = Ê2

p

A

1 ≠ Q2

A

‡2
≠

Q2

4m2
e

B

S

B

= Ê2

p

A

1 ≠

A

‡2
≠

Q2

4m2
e

B
me

q0

›(Z(› ≠ ”) ≠ Z(› + ”))
B

= Ê2

p ≠

A

‡2
≠

Q2

4m2
e

B

�L (B.37)

A distinct qualitative feature of the transverse modes is their lack of static screening. Taking
the limit of › small, so ›Z(›) ≥ ≠i

Ô
fi›, we have

�T ƒ ≠iÊ2

p

Ú
fi

2
q0

q‡
(B.38)

which goes to zero as q0 æ 0, for fixed q. Consequently, there is no screening of static
fields, only ‘dynamical screening’ of finite-frequency perturbations (this is actually a general
property of QED plasmas, which holds at all orders in perturbation theory [40]).

C Scalar self-energies

In this section, we calculate the leading-order (one-loop) self-energies for a scalar mediator,
coupling as L ∏ „f̄f , to Dirac fermions f . As well as the scalar-scalar self-energy �fi„,
we also calculate the mixing self-energy �„µ with the SM photon. Similarly to the vector
mediator case considered in appendix B, the one-loop result will be a good approximation for
weakly-coupled plasmas. This is less obvious in the scalar case, since the mixing self-energy
is proportional to the (in-vacuum) electron mass me; in cases where –E2

∫ m2
e, where E

is a typical electron energy, one might worry that higher-order contributions dominate (as
assumed in some papers [73]). However, we show that corrections to the one-loop result are
subleading (with consequences as discussed in appendix F).
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C.1 One-loop free fermion
The scalar-scalar self-energy is given by

�„„(Q) = 4g2

„

⁄ d3k

(2fi)3

1
2Ek

(fe(Ek) + fē(Ek)) (Q · K)2
≠ m2

eQ2

(Q · K)2 ≠ Q4/4 (C.1)

while the scalar-vector mixing self-energy is

�„µ(Q) = 4g„eme

⁄
d3k

(2fi)3

1
2Ek

(fe(Ek) ≠ fē(Ek))(Q · K)Qµ
≠ Q2Kµ

(Q · K)2 ≠ Q4/4 (C.2)

We note here that the expressions (C.1) and (C.2) correct some typos in the corresponding
expressions from [81]. In particular, both have an extra overall factor of 4, and (C.2) has a
minus sign between the electron and positron phase-space distributions. One way to under-
stand this relative sign is to remember that, in the non-relativistic limit, a Yukawa potential
is universally attractive, whereas a vector mediator couples to particles and antiparticles
with opposite charges. While in diagrams such as �AA and �„„ this does not appear, as the
relative sign gets squared, in the mixing diagram �„µ it survives.

C.1.1 Imaginary parts
For an isotropic medium, the imaginary parts are

Im �„„(Q) = ≠
g2

„

4fi

sgn(q0)
1 + f(q0)

2m2
e ≠ Q2/2

q

⁄
dE sgn(E) sgn(EÕ)(1 ≠ f̃(E))f̃(EÕ) (C.3)

and

Im �µ
„A(Q) = ≠

sgn(q0)
1 + f(q0)

g„eme

4fiq

⁄
dE (2Kµ

≠ Qµ) sgn(E) sgn(EÕ)(1 ≠ f̃(E))f̃(EÕ), (C.4)

where the integration is over RQ, as defined in section B.1.1.
The transverse part of �µ

„,A does not contribute in the corrections to the scalar prop-
agator (there is no preferred direction). The longitudinal projection vector depends on the
sign of Q2. Using the convention

eL,µ © ≠
1

q


Q2
(q2, q0qi) = ≠

1
q

(q2, q0qi) ◊

Y
]

[

1Ô
Q2 , Q2 > 0
1

i
Ô

|Q2|
, Q2 < 0 (C.5)

we find

Im �L
„A(Q) = ≠

g„e

4fi

sgn(q0)
1 + f(q0)

meQ2

q2


Q2

⁄
dE (2E ≠ q0) sgn(E) sgn(EÕ)(1 ≠ f̃(E))f̃(EÕ) (C.6)

if Q2 > 0

= ≠
g„eme

2fi2

Q2

q2


|Q2|

⁄
dE [fe(E) ≠ fē(E)]

S

UE log

------

1
x≠ ≠

Q2

2

2 1
x+ + Q2

2

2

1
x≠ + Q2

2

2 1
x+ ≠

Q2
2

2

------
+

+ q0

2 log

------

1
x+ + Q2

2

2 1
x+ ≠

Q2

2

2

1
x≠ + Q2

2

2 1
x≠ ≠

Q2
2

2

------

T

V (C.7)

if Q2 < 0
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C.1.2 Real parts
The real part of the scalar-scalar self-energy in an isotropic medium is

Re�„„ = 4g2

„

⁄
+Œ

me

dE

(2fi)2

1
f̃e(E) + f̃ē(E)

2
S

Uk +
m2

e ≠
Q2

4

2q
log

------

1
x+ + Q2

2

2 1
x≠ ≠

Q2

2

2

1
x+ ≠

Q2
2

2 1
x≠ + Q2

2

2

------

T

V

(C.8)
while the mixing self-energy with a longitudinal vector mode is

Re�L
„A = g„eme

2fi2

Q2

q2


Q2

⁄
dE (fe(E) ≠ fē(E))

S

UE log

------

1
x≠ ≠

Q2

2

2 1
x+ + Q2

2

2

1
x≠ + Q2

2

2 1
x+ ≠

Q2
2

2

------
+

+ q0

2 log

------

1
x+ + Q2

2

2 1
x+ ≠

Q2

2

2

1
x≠ + Q2

2

2 1
x≠ ≠

Q2
2

2

------

T

V (C.9)

if Q2 > 0

= ≠
g„e

4fi

sgn(q0)
1 + f(q0)

meQ2

q2


|Q2|

⁄
dE (2E ≠ q0) sgn(E) sgn(EÕ)(1 ≠ f̃(E))f̃(EÕ) (C.10)

if Q2 < 0

C.2 Degenerate Fermi gas — small-Q approximations

Similarly to appendix B.3, we can evaluate the self-energies analytically for a degenerate
Fermi gas. Here, we write down the small-Q approximations:

Re �„„ ƒ
g2

„

2fi2

5
EF pF + 3m2

e log me

EF + pF
+ m2

e
q0

q
log

----
EF q0 + pF q

EF q0 ≠ pF q

----

6
(C.11)

Im �„„ ƒ ≠
g2

„

2fi
m2

e
q0

q
�

3----
vF q

q0

---- ≠ 1
4

(C.12)

For Q2 < 0, the mixing self-energy is

Re �L
„A(Q) ƒ ≠

g2

„

2fi
EF me

q0

q

q


|Q2|
�

3----
vF q

q0

---- ≠ 1
4

(C.13)

Im �L
„A(Q) ƒ ≠

g„eme

fi2

Q2

q2

q


|Q2|
pF

3
≠1 + zF

2 log
----
1 + zF

1 ≠ zF

----

4
(C.14)

while for Q2 > 0,

Re �L
„A(Q) ƒ

g„eme

fi2

Q2

q2

q


Q2
pF

3
≠1 + zF

2 log
----
1 + zF

1 ≠ zF

----

4
(C.15)

Im �L
„A(Q) ƒ ≠

g2

„

2fi
EF me

q0

q

q


Q2
�

3----
vF q

q0

---- ≠ 1
4

(C.16)

C.3 Electron mass corrections

As mentioned at the start of this appendix, for weakly-coupled plasmas it is su�cient to
use the one-loop results for the self-energies. In particular, the scalar-vector mixing self-
energy �„L for an electron-coupled scalar is proportional to me, the in-vacuum electron
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mass, even when me is much smaller than collective scales in the plasma. This is because the
scalar coupling „Â̄Â = „(Â̄RÂL + Â̄LÂR) mixes chiralities, whereas vector couplings preserve
chirality, XµÂ̄“µÂ = XµÂ̄L“µÂL + XµÂ̄R“µÂR. If electrons were massless, there would be
no way to match these chiralities, so the mixing self-energy would be zero.

To demonstrate the stronger claim that the one-loop result is quantitatively a good
approximation, rather than just scaling in the correct way with me, we perform an illustrative
calculation for the case of a relativistic degenerate plasma. The most important corrections to
the one-loop result come from replacing the electron propagators in the loop with in-medium
propagators. The leading contribution to the electron self-energy �(K) is

e

K P K

e

where K is the electron four-momentum. The in-medium propagator S(K) is given by
≠iS≠1(K) = /K ≠ me ≠ �(K). For a degenerate electron gas, the integral is dominated by
placing the internal electron with momentum P on-shell (rather than placing the photon
on-shell, or considering positrons), and the real part of the self-energy � at one-loop order is
given by

�(K) = 2e2

⁄ d3p

(2fi)3

1
2Ep

2me ≠ /P

(K ≠ P )2
fe(Ep), (C.17)

where Ep =


p2 + m2
e and K © (k0, k). We define an expansion of � in “-matrices as

�(K) © “0�0 + “iki�k + me�m © /� + me�m. The three terms are given by

�m = –EM

fik

⁄
+Œ

me

dE log
-----
m2

e + k2
0 ≠ k2

≠ 2Ek0 + 2pk

m2
e + k2

0
≠ k2 ≠ 2Ek0 ≠ 2pk

----- fe(E), (C.18)

�0 = ≠
–EM

2fik

⁄
+Œ

me

EdE log
-----
m2

e + k2
0 ≠ k2

≠ 2Ek0 + 2pk

m2
e + k2

0
≠ k2 ≠ 2Ek0 ≠ 2pk

----- fe(E), (C.19)

�k = ≠
1
k2

C

≠
m2

e + K2

4 �m ≠ k0�0 + –EM

fi

⁄
dE pfe(E)

D

, (C.20)

where p ©


E2 ≠ m2
e and k © |k|. In the zero temperature limit, the electron phase-space

distribution is the step function fe(E) = �(EF ≠ E).
In the one-loop expression for �„L with in-medium electron propagators, the relevant

Dirac trace is (for electron momenta K and K ≠ Q in the loop)

�„µ(Q) Ã tr
#
( /K ≠ /�(K)+me(1+�m(K)))“µ( /K ≠ /Q≠ /�(K ≠Q)+me(1+�m(K ≠Q))

$

= 4me
!
(1+�m(K ≠Q))( /K ≠ /�(K))+(1+�m(K))( /K ≠ /Q≠ /�(K ≠Q))

"
(C.21)

showing how this is proportional to the in-vacuum mass me. We are interested in evaluating
this for K on the electron’s in-medium dispersion relation [131]. For Q small, this means
that the /� terms are ≥ eEF , so compared to the electron momenta ≥ EF that dominate the
loop integral, they do not change the result significantly (this is analogous to the argument
for why the one-loop vector self-energies do not receive large corrections). The remaining
question is how large the �m terms are.

In figure 12, we plot �m(k0(k), k) (evaluated via eq. (C.18)), solving numerically for the
dispersion relation k0(k), for an ultra-relativistic degenerate electron gas. It is clear that the
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Figure 12. Plot of the quantity �m, as defined in eq. (C.18), for µe = 350 MeV. The dashed line
corresponds to the zero momentum approximation of eq. (C.23), whereas the orange line corresponds
to relativistic electrons and the approximation of eq. (C.22). The blue line uses the full integral of
eq. (C.18) and the full numerical dispersion relation. This plot illustrates that corrections to the
scalar-vector self energy �„L from the ‘modified electron mass’ are small.

correction to �„µ is small for the entire range of k0, k. We can understand some limiting cases
analytically. For applications of interest, the electrons contributing the most have energies
≥ EF ∫ me, for which k0 ƒ k. In the limit k0 ƒ k ∫ me, we find

�m ƒ
–EMEF

fik

C

1 + log m2
e

4E2

F

+ EF ≠ k

EF
log |EF ≠ k|

k

D

(C.22)

For smaller electron momenta k, the dispersion relation lies above the light-cone, so we can
get some analytic handle in this case by considering the limit k0 ∫ k. Taking also epF ∫ me,
the k0 > 0 dispersion relation and �m are

k0 ƒ
epF

2
Ô

2fi
, �m ƒ ≠

2–EMpF

fik0

3
1 + k0

2pF
log 2pF

k0

4
ƒ ≠

e
Ô

2
fi

A

1 + e

4fi
Ô

2
log 4fi

Ô
2

e

B

,

(C.23)
As we see from figure 12, these approximations match the full integral well in their regions
of validity.

D EM sum rule limits

Causality imposes constraints on the properties of in-medium propagators, and as discussed
in section 2.1, this allows us to place constraints on certain types of scattering rates. In
particular, for a dark photon mediator, we have Im(�XX

tot )µ‹ = Ÿ2Q4 Im (≠iDµ‹), where Dµ‹

is the in-medium propagator for the SM photon, in Lorenz gauge. More specifically, Dµ‹

is the analytic continuation of the in-medium imaginary-time propagator. In the real-time
formalism, we can write the photon propagator (Dµ‹)ab as [40]

(Dµ‹)ab (Q) =
A

n(q0) + 1


n(q0)
n(q0)


n(q0) + 1

B A
Dµ‹ 0

0 (Dµ‹)ú

B A
n(q0) + 1


n(q0)

n(q0)


n(q0) + 1

B

(D.1)

where n(q0) © (e|q0|/T
≠ 1)≠1, so Dµ‹ corresponds to the ‘diagonal component’.
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Consequently, to constrain the DM scattering rate via a dark photon mediator, we are
interested in the properties of the SM photon propagator. In general, if we are allowed
to tune the medium properties and the initial DM velocity, we can obtain arbitrarily large
scattering rates, via matching the on-shell momentum transfers possible for the DM particle
to the dispersion of weakly-damped excitations in the medium (so that we obtain resonant
scattering at all momentum transfers). However, if we are interested in the average scattering
rate across di�erent incoming DM directions, such tuning is no longer possible, and as we
will see, it is possible to place general limits on the scattering rate. Equivalently, instead of
thinking in terms of averaging over di�erent DM directions, we can consider a DM particle
scattering from an isotropic medium (with mediator self-energy obtained by averaging over
di�erent orientations of the original medium).

In an isotropic medium, we can decompose Dµ‹ into transverse and longitudial parts,

Dµ‹(Q) = i

Q2 ≠ �T (Q)P T
µ‹ + i

Q2 ≠ �L(Q)P L
µ‹ (D.2)

where P T,L
µ‹ are the transverse and longitudinal projectors, and �T,L are the transverse and

longitudinal photon self-energies, respectively (we have elided the i‘ prescription for eval-
uating contour integrals, since these ambiguities do not a�ect our calculations). We can
also define (following [40]) the ‘spectral density’ quantities flL(Q) © 2Q2

q2 Im DL(Q), and
flT (Q) © 2 Im DT (Q), where DL(Q) = ≠1

Q2≠�L(Q)
, DT (Q) = ≠1

Q2≠�T (Q)
. Both flL and flT are

always non-negative, for both timelike and spacelike Q (this is the point of the Q2/q2 factor
in the definition of flL). From the Kramers-Kronig relations, we have the ‘sum rules’

⁄ Œ

0

dq0

q0

flT (q0, q) = fi

q2
(D.3)

⁄ Œ

0

dq0

q0

flL(q0, q) = fi
3 1

q2
≠ DL(0, q)

4
= fik2

S

q2(q2 + k2

S) (D.4)

which hold for any q, where k2

S = �L(0, q) is the static longitudinal screening scale (so
DL(0, q) = 1

q2+k2
S

). Since flL,T Ø 0, the integral over any range of q0 is also bounded by the
corresponding r.h.s. The flL,T Ø 0 condition also implies that either k2

S Ø 0, or k2

S Æ ≠q2

— intermediate values would violate the positivity of the l.h.s. If k2

S Ø 0, corresponding to
screening (rather than anti-screening) of static fields, then the r.h.s. of eq. (D.4) is Æ fi/q2.
While �(0, q) should be non-negative at small enough q for a stable system [132], it is possible
to have �(0, q) < 0 at q comparable to lattice scales — for example, this is probably the case
for some metals, such as aluminium [132]. However, to obtain k2

S very slightly below ≠q2,
which is required for the r.h.s. of eq. (D.4) to be ∫ fi/q2, would require very strong antis-
creening, which is most likely only possible for a system very close to instability [132]. In this
work, we assume that fi/q2 is a good approximate bound for the r.h.s. of eq. (D.4) (as is the
case for the toy models we consider), and leave a more thorough investigation for future work.

Given eqs. (D.4) and (D.3), we can place bounds on the scattering rate via a dark
photon mediator. From appendix A, the longitudinal scattering rate is

�L = ≠1
4fi2

g2
‰Ÿ2

Ep

⁄
dqdq0 q(1 + f(q0)) Q2q2

(Q2 ≠ m2

X)2
(E2

≠ p2 cos2 ◊)flL(q0, q) (D.5)
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For a given q, we can write the
s

dq0 integral as

I0 ©

⁄
dq0

q0

flL(q0, q)
A

≠Q2q2

(Q2 ≠ m2

X)2
(1 + f(q0))q0(E2

≠ p2 cos2 ◊)
B

(D.6)

From eq. (D.4), this can be bounded by fi/q2 times the maximum of the bracketed term
within the relevant q0 interval. To take a simple example, for non-relativistic scattering, the
bracketed term is approximately equal to

m2
‰q4

(q2 + m2

X)2

q0

1 ≠ e≠q0/T
(D.7)

This is maximized by taking q0 to be as large as it can be, for the given q. If we take
the mediator to be heavy, and the temperature to be negligible, then the scattering rate is
bounded by

�L . 1
4fi

g2
‰Ÿ2

v‰m4

X

⁄
2m‰v‰

0

dq q3

A

qv‰ ≠
q2

2m‰

B

= 16
15

g2
‰Ÿ2

4fi
m‰v‰

3
m‰v‰

mX

44

(D.8)

as derived in [35]. Similarly, for a light mediator, we have

�L .
g2

‰Ÿ2

4fi
m‰v‰ (D.9)

For relativistic ‰, the bracketed term in eq. (D.6) might not be maximized at the
maximum value q0,max of q0, for given q. We attain q0 = q0,max at cos ◊ = 1, where ◊ is the
scattering angle. Consequently, the E2

≠ p2 cos2 ◊ term in eq. (D.5) is = m2
‰, which can be

much smaller than its maximum value of E2, if E ∫ m‰. Consequently, it can be beneficial
to take cos ◊ somewhat smaller than 1. For example, in the case of a heavy mediator, the
derivative of the bracketed term in eq. (D.6) with respect to q0, evaluated at q0 = q0,max, is

E2q4

m4

X

1
(1 ≠ 6v2

‰ + 5v4

‰) + O(q/E))
2

(D.10)

where we have expanded in large E. For small q, we can see that if v‰ Ø 1/
Ô

5 ƒ 0.45, then
the derivative at q0,max is negative, so the quantity is maximized at some smaller q0. When
this is true, we can still derive sum rule limits by optimizing numerically. Figure 13 shows
the results of such numerical calculations; in the ultra-relativistic limit, the scattering rate
upper-bound scales ≥ g2

‰Ÿ2E5/m4

X for a heavy mediator, and ≥ g2
‰Ÿ2E for a light mediator).

We can incorporate a non-zero medium temperature by keeping the 1 + f(q0) factor in
eq. (D.6). However, as noted in section 3, if the temperature is large enough to significantly
a�ect scattering rates, then one is often interested in the net capture rate once upscattering
has been taken into account.

D.1 Transverse limits

We can put similar bounds on the scattering rate via transverse dark photon modes. The
total scattering rate is given by

�T = 1
8fi2

g2
‰Ÿ2

Ep

⁄
dqdq0 q(1 + f(q0)) Q4

(Q2 ≠ m2

X)2
(≠Q2 + 2p2 sin2 ◊)flT (q0, q) (D.11)

– 49 –



J
C
A
P
0
5
(
2
0
2
2
)
0
1
5

0.4 0.6 0.8 1.0

10-15

10-12

10-9

v�

�/
(�
2 m

�)

transverse

longitudinal

total

Figure 13. Plot of sum rule limits on the scattering rate for spin-1/2 DM via a heavy dark photon
mediator (specifically, taking mX = 103m‰), in a cold medium, as a function of the DM particle’s
velocity v‰. The green curve corresponds to the total limit, while the blue and orange curves corre-
spond to the limits on the scattering rate via longitudinal and transverse modes respectively. The
dotted blue line corresponds to the � Ã v5

‰ limit for non-relativistic velocities.

So, for given q, the
s

dq0 integral is

I0 ©

⁄
dq0

q0

flT (q0, q)
A

Q4

(Q2 ≠ m2

X)2
(1 + f(q0))q0(≠Q2 + 2p2 sin2 ◊)

B

(D.12)

and we want to maximize the bracketed term over the relevant q0 range. Since the ≠Q2 +
2p2 sin2 ◊ term is somewhat more complicated, in the non-relativistic case, than the equivalent
in the longitudinal case, we simply optimize numerically. Doing so, as illustrated in figure 13,
we find that in the non-relativistic limit, the bound scales as

�T . 1.16 ◊
g2

‰Ÿ2

4fi

m5
‰v7

‰

m4

X

(D.13)

for a heavy mediator (the parametric scaling can be obtained from taking the loose bound
≠Q2 +2p2 sin2 ◊ Æ q2 +2p2; the numerics provide the constant) For a light mediator, we have
�T . 0.53◊

g2
‰Ÿ2

4fi . We can see that at small v‰, the transverse bounds are suppressed by ≥ v2
‰

relative to the longitudinal bounds, as expected from the forms of �L and �T . Numerically,
the �T limit (for a heavy mediator) becomes larger than the �L limit for v & 0.7 — at
ultra-relativistic velocities, �T is ≥ 7 times larger.

E DM velocity distribution

For our purposes, the most important quantity related to the DM halo velocity distribution is

FŒ(”) ©

⁄ ”

0

dEKfŒ(m‰ + EK) (E.1)

as introduced in section 3. This definition is phrased in a manner appropriate to isotropic
DM velocity distributions, for which fŒ is purely a function of the energy. However, in
most cases, a star will have some non-zero velocity relative to the DM halo (which will not
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Figure 14. Plot of FŒ(”) from eq. (E.4), for DM halo parameters v0 = 160 km s≠1 and vı =
240 km s≠1 as used in the text. The dashed curve shows the asymptotic value of FŒ, from eq. (E.6).

necessarily have an isotropic velocity distribution in any case [133–138]). Nevertheless, if the
orientation of the star is unimportant for the capture rate (e.g. if the star is spherical, and the
medium response is isotropic, both of which are reasonable approximations in the parameter
space of interest to us), then we can imagine averaging over di�erent orientations of the halo
DM velocity distribution relative to the star, to obtain an isotropic velocity distribution in
the rest frame of the star which would give the same capture rate. Consequently, we can
take the more general definition

FŒ(”) = m‰

4fi

⁄ v”

0

d3v
fŒ(m‰v)

v
= 2fi2n‰

gsm2
‰

⁄ v”

0

d3v
pv(v)

v
(E.2)

where v” is such that m‰v2

” /2 = ” (we assume that the DM halo velocities are non-relativistic),
and we view fŒ as a function of momentum.

In many circumstances, the halo DM velocity distribution in the rest frame of the star
is reasonably well-modelled by an o�set Maxwell distribution [99, 139], of the form

pv(v) = (2fiv2

0)≠3/2 exp
A

≠
(v ≠ vı)2

2v2
0

B

(E.3)

where v0 is the velocity dispersion of the DM halo, and vı is the relative velocity of the
star (a truncated Maxwell distribution, which is cut o� for velocities higher than the halo
escape velocity, can be a better approximation, but for integrals such as eq. (E.2), which are
weighted towards smaller v, this will make little di�erence). Using this form of the velocity
distribution, we have

FŒ(”) = n‰fi2

gsm2
‰vı

3
2 erf

3
vı

Ô
2v0

4
+ erf

3
v” ≠ vı
Ô

2v0

4
≠ erf

3
v” + vı
Ô

2v0

44
(E.4)

This function is plotted in figure 14, for the v0 = 160 km s≠1, vı = 240 km s≠1 parameters
used in the text. In the limit of very small vı, this becomes

FŒ(”) = (2fi)3/2n‰

gsm2
‰v0

1
1 ≠ e≠”/(m‰v2

0)
2

(E.5)
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If capture is dominated by hard scatterings, then the quantity of interest is

FŒ(Œ) = 2fi2n‰

gsm2
‰

= 1
vŒ

>
(E.6)

For an o�set Maxwell distribution, we have
= 1

vŒ

>
= 1

vı
erf

3
vı

Ô
2v0

4
ƒ

Ú
2
fi

1
v0

(E.7)

where the last equality applies for vı π v0.

F Resonant scalar emission

Though the main subject of this paper is dark matter scattering, our self-energy calculations
can also be applied to particle emission rates, as per [36]. As an illustrative example, our
calculations show that the rate for resonant (electron-coupled) scalar emission from SN1987A
in the literature, calculated in [73], is parametrically too large. This is because [73] takes the
�„L mixing self-energy to be Ã me�

e , where me�
e ƒ 12 MeV is the ‘e�ective electron mass’

in the supernova core [131]. However, as we derived in appendix C, the mixing self-energy
is actually ≥ me(1 + O(e)), where me is the in-vacuum electron mass. Physically, this is
because the mixing requires a chirality flip, and so an insertion of the fermion mass (the
in-medium ‘e�ective mass’ does not mix chiralities, but is simply a parameterization of how
far the dispersion relation lies from the light-cone). Numerically, this will result in a resonant
emission rate ≥ 500 times smaller than calculated in [73], for an equivalent scalar-electron
coupling. We leave a fuller calculation of the emission rate, and its consequence for scalar
coupling constraints, to future work.
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