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Abstract

We theoretically investigate the effect of random fluctuations on the motion of elongated mi-
croswimmers near hydrodynamic transport barriers in externally-driven fluid flows. Focusing on
the two-dimensional hyperbolic flow, we consider the effects of translational and rotational diffusion
as well as tumbling, i.e. sudden jumps in the swimmer orientation. Regardless of whether diffusion
or tumbling are the primary source of fluctuations, we find that noise significantly increases the
probability that a swimmer crosses one-way barriers in the flow, which block the swimmer from
returning to its initial position. We employ an asymptotic method for calculating the probability
density of noisy swimmer trajectories in a given fluid flow, which produces solutions to the time-
dependent Fokker-Planck equation in the weak-noise limit. This procedure mirrors the semiclassical
approximation in quantum mechanics and similarly involves calculating the least-action paths of a
Hamiltonian system derived from the swimmer’s Fokker-Planck equation. Using the semiclassical
technique, we compute (i) the steady-state orientation distribution of swimmers with rotational
diffusion and tumbling and (ii) the probability that a diffusive swimmer crosses a one-way barrier.

The semiclassical results compare favorably with Monte Carlo calculations.



I. INTRODUCTION

The advection of self-propelled particles in externally-driven fluid flows presents many
surprises when compared to passive advection. Perhaps the biggest surprise is that the
transport efficiency of swimmers does not simply increase as swimming speed increases.
For example, when swimmers are placed in a two-dimensional (2D) oscillating vortex array
exhibiting chaotic mixing, faster swimming does not always lead to faster transport [I], 2].
Even in a steady 2D vortex array, swimmer trapping inside vortices may be enhanced when
the particles swim faster, depending on the shape of the particle [3]. Similarly, transport
efficiency does not simply increase as a swimmer’s rotational diffusivity increases, either. In
fact, the opposite occurs in the 2D oscillating vortex array [2, [4]. It is reasonable to expect
that the more a swimmer’s propulsion direction fluctuates, the smaller its net displacement
in a fixed amount of time, and hence the lower the transport efficiency. Unexpectedly
however, the presence of both rotational noise and shear flow can effectively trap swimmers in
certain regions, as has been experimentally observed for swimming bacteria [5] and swimming
phytoplankton [6] in a channel flow. While numerous studies have investigated the spatial
distributions of noisy swimmers in a variety of flows [fHII], a basic understanding of how
rotational noise alters swimmer trajectories is lacking. Our objective in this paper is to
develop a theory that quantifies the effect of noise on swimmer dynamics in externally

driven fluid flows, especially near transport barriers.

Recently, transport barriers analogous to separatrices—and the related invariant manifolds—
of passive advection were identified for self-propelled particles in fluid flows [12]. Perfectly
smooth-swimming particles are blocked by so-called swimming invariant manifolds (SwIMs)
in position-orientation space. The SwIMs project to one-way barriers, called SwIM edges, to
swimmer motion in position space. Swimmers with orientational noise, on the other hand,
can cross SWIM edges, but they are still blocked by one-way barriers known as burning
invariant manifolds (BIMs), which were originally introduced as barriers for propagating
chemical reaction fronts in fluid flows [I3], [14]. By one-way barriers, we mean that swimmers

can pass through a BIM or SwIM edge in one direction, but not the other.

This theory was applied to analyze the experimental trajectories of smooth-swimming and
run-and-tumble Bacillus subtilis bacteria in a microfluidic cross-channel featuring a hyper-

bolic fluid flow, illustrated in Fig. [lh. Whereas the run-and-tumble bacteria exhibit strong
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FIG. 1. Experimental data of swimming B. subtilis bacteria trajectories in a microfluidic hyperbolic
flow, u = (Bz, —By), from Ref. [12]. B = 0.44s7!. (a) Streamlines of the hyperbolic fluid flow. (b)
Smooth-swimming bacteria. (¢) Run-and-tumble bacteria. The vertical blue lines are SwIM edges
blocking inward swimming particles. The horizontal red lines are SwIM edges blocking outward
swimming particles. In (b) and (c), each trajectory is plotted in units of vg/B, where vg is the
individual bacterium’s measured swimming speed. Every experimentally recorded trajectory is
plotted, and the x — —x and y — —y symmetries have been used to rectify the trajectories so

they all appear to enter from above and exit right.

rotational noise in the form of sporadic, abrupt changes in swimming direction (Fig. ),
the smooth-swimming bacteria tend to swim straight in the absence of a flow, with minimal
rotational noise (Fig. [Ip). The vertical lines in Figs. [Ip and [Ip are the SwIM edges blocking
inward swimming particles, while the horizontal lines are the SwIM edges blocking outward
swimming particles. In the hyperbolic flow, the BIMs coincide exactly with the SwIM edges,
and hence these curves are one-way barriers for both the smooth swimming and run-and-
tumble bacteria. Here, all experimentally recorded trajectories are rectified so they appear
to enter the flow from above and exit to the right. Therefore, there can be no trajectories
to the left of the SWIM edge © = —1, beyond which any trajectory would be swept to the
left, as is evident from Figs. [[b and [Ic. However, we observe a gap between the left SwIM
edge and the measured trajectories of run-and-tumble bacteria in Fig. [I, compared to the
smooth-swimmers in Fig. that can just graze the left SwIM edge before swimming off
to the right. Because the gap represents a depletion of the density of trajectories near the
SwIM edge relative to the smooth swimmer case, we refer to it as the depletion effect. The
depletion effect is caused by the orientation fluctuations of the run-and-tumble bacteria. A
run-and-tumble swimmer near this SwIM edge and initially swimming to the right is very

likely to tumble and end up crossing the left SwIM edge, forcing it to escape to the left. At



the same time, we observe that the run-and-tumble bacteria swim much closer to the lower
SwIM edge than their smooth-swimming counterparts. This again is due to tumbling. While
smooth swimmers get aligned with the extensional x direction of the flow and thus cannot
swim very far below the line y = 0, run-and-tumble swimmers can tumble out of alignment
and swim towards the lower SwIM edge. These stark differences between the trajectories of

smooth versus run-and-tumble swimmers have motivated the present work.

In this paper, we show how to calculate the probability of particular noisy swimmer
trajectories in a given fluid flow, taking the hyperbolic flow as a case study. Our approach
focuses on computing solutions to the time-dependent Fokker-Planck equation of a swimmer
(alternately known as a master equation or Smoluchowski equation) in the weak-noise limit
[T5HT19]. This differs from traditional approaches to the swimmer Fokker-Planck equation,
which are focused on the stationary (time-independent) solution and are in the Eulerian
frame-of-reference [5), 8-10]. In contrast, we construct a time-dependent swimmer proba-
bility density function by following the Lagrangian paths of a swimmer. This procedure is
derived from the weak-noise limit in a manner that is nearly identical to the semiclassical
approximation in quantum mechanics [20], so we refer to it as the semiclassical approxima-
tion to the Fokker-Planck equation. We use this approach to quantify the depletion of noisy
swimmers near a BIM, and compare the results of our semiclassical calculations with Monte

Carlo calculations, i.e. direct numerical simulations of the swimmer equations of motion.

The paper is organized as follows. In Sec. [[I, we provide background information on the
model for swimmer motion employed here and the semiclassical approximation to the Fokker-
Planck equation. In Sec. [Tl we review the dynamics of a deterministic smooth swimmer in
the hyperbolic flow, in particular the role of the SwIMs and BIMs. In Sec. we compute the
position-independent orientation distributions of a swimmer in the hyperbolic flow, obtaining
results analogous to the orientation distributions of magnetotactic and viscotactic swimmers
in external fields [21H23], and we apply the semiclassical approximation to calculate the
orientation distribution of swimmers with both rotational diffusion and run-and-tumble
dynamics. In Sec.[V] we compare Monte Carlo and semiclassical calculations of the depletion
effect. Concluding remarks are in Sec. [VI] In the appendix, we present a complete derivation

of the semiclassical approximation to the Fokker-Planck equation.
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II. NOISY SWIMMER DYNAMICS

We consider the motion of an ellipsoidal swimmer in two dimensions, with position r =
(x,y) and orientation n = (cos#,sinf). The stochastic differential equations describing a

noisy swimmer in a fluid flow u(r) are [2] 4]

dr = [u(r) + ven] dt + \/2D7 dwy, (1a)
do = @ +omn, - E(r)n| dt +v/2Dg dwy + dL(v), (1b)

where w = z - (V x u) is the vorticity, n; = (—sinf,cosf), and E = (Vu + Vu')/2 is the
symmetric rate-of-strain tensor. The shape parameter o equals (a® — 1)/(a? + 1), where a
is the aspect ratio of the ellipse; o varies from —1 to 1, where o = 0 is a circle, and || = 1
is an infinitely thin rod. Positive (negative) values of « correspond to swimming parallel
(perpendicular) to the major axis. Each equation of contains a deterministic drift term,
proportional to d¢, and noise terms. In Eq. , the noise terms are the independent Wiener
processes w, = (w,,w,) and account for translational diffusion with diffusivity Dy. Note
that for certain swimmers, the strength of the translational diffusivity along the particle’s
major axis may differ from the translational diffusivity along the minor axis, and their may
be additional correlations between translational and rotational noise [24]. We ignore these
issues here for simplicity.

Equation , on the other hand, contains two stochastic terms describing fluctuations
in the swimming direction. We distinguish between two types of rotational noise: rotational
diffusion and tumbling. Rotational diffusion refers to continual random perturbations in the
swimmer orientation, such that in the absence of a flow, the orientation # would exhibit
free diffusion (given by the Wiener process wy) with a rotational diffusivity Dg. This can
arise due to random fluctuations in the propulsion force of the swimmer [24, 25] or from
the thermal fluctuations of the surrounding fluid. In the former case, the noise mechanism
would lead to correlations between translational and rotational diffusion, but here we neglect
those for simplicity. Tumbling refers to the sudden resetting of 6 to a random orientation,
independent of its present value, which occurs sporadically as a Poisson process L(v) with
frequency v. This kind of sudden, random reorientation is seen in swimming bacteria in the
“run-and-tumble” mode of swimming. In practice, the distribution of new orientations may

depend on the previous value, as is the case for wild-type strains of the swimming bacteria



E. coli [26], but we neglect this here for simplicity. Hence, the new angle after a tumble is
uniformly and randomly distributed between 0 and 27.

Our goal in this paper is to estimate the probability of various swimmer trajectories of
Eq. . This can certainly be accomplished by Monte Carlo simulations, i.e. direct nu-
merical simulations of Eq. , but we also develop an analytical approach to calculating
such probabilities, which is less computationally costly and provides deeper theoretical in-
sight into the swimmer dynamics. To study the probability of swimmer trajectories, we
investigate the Fokker-Planck equation for the probability density of the particle P(r,6,t)
27,
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where we have abbreviated the deterministic drift terms from Eq. as F, with
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Here, V = (0/0x,0/0y,0/96). We have non-dimensionalized the coordinates using a length

scale £ and velocity scale U, so that
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(4)

is the strength of rotational diffusion, v = D /(£2Dg) is the ratio of translational diffusion
to rotational diffusion (usually v < 1), and A = vL/U is the non-dimensional tumbling rate.
Note that the rotational Péclet number is Pe = 2/¢ [9]. The first two terms on the right-
hand side of Eq. are the usual drift and diffusion terms. The third term proportional to
A accounts for tumbling, with the first term in brackets describing the loss of probability due
to tumbling out of the present angle, and the second term describing the gain of probability
from the swimmers at all other angles that have tumbled into the present angle. Equation
(2)) is difficult to attack in general, so we focus on special cases where exact or approximate
analytical (or semi-analytical) solutions may be found.

Of particular interest is the A = 0 case, describing non-tumbling swimmers or, alterna-
tively, the evolution of the probability density in between tumble events. In this case we

seek asymptotic solutions in the weak diffusion (¢ < 1) limit, which have the WKB form

()

P(r,0,t) ~ A(r,0,t) exp {—M} .

3
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Equation has the same form as the semiclassical approximation to the wave function in
quantum mechanics, and hence we refer to it as the semiclassical approximation. Substitut-
ing this approximation into Eq. with A = 0 leads to a Hamilton-Jacobi equation for W
and a related transport equation for A.

Here, we briefly describe the mathematical theory of approximation ({5)), while a detailed
derivation and discussion are contained in Appendix [A] The solution W to the Hamilton-
Jacobi equation is related to the classical action accumulated along the trajectories

of a particular Hamiltonian system associated with Eq. . The Hamiltonian is given by

H(q,p) = = [v(0} +p}) +vs) +p-F(a), (6)

N | —

where q = (2,y,0) and p = (ps, py, pe). Equation (6) follows from the Hamiltonian (A12))
for a general Fokker-Planck equation (A2), of which Eq. (with A = 0) is a special case.
The function W is equivalent to the Onsager-Machlup-Freidlin-Wentzell action function
[T7, 28, 29] which arises in nonequilibrium statistical mechanics [15], [16] and rare event
modeling [30]. At each point (r,#), the action W(r,0,t) can be expressed as an integral
along the trajectory of the Hamiltonian system with Hamiltonian @ that arrives at that
point at time ¢. This makes Eq. a Lagrangian, as opposed to Eulerian, description of the
probability density. The trajectories associated with the minima of W, i.e. the minimum-
action paths, correspond to the most likely trajectories of a noisy swimmer, because at
lowest order in €, the probability density is peaked at these points. Hence, finding the
minimum-action paths is the main focus of most works involving the Onsager-Machlup-
Freidlin-Wentzell action function, including recent work on escape paths of active particles
in potential wells [19]. In contrast, we consider all possible paths, in order to get a global
approximation to the probability density .

Throughout the paper, we focus on the hyperbolic flow u = (Bxz,—By). Therefore,

Eq. becomes

dr = (x + cos0)dt + \/eydw,, (7a)
dy = (—y +sind)dt + /eydw, (7b)
df = —asin(20)dt + /edwy + dL(N). (7c)

We have taken the velocity scale Y = vy and the length scale £L = vy/B in the non-

dimensional equation ([7)). The typical values of €, 7, A, and a depend on the system
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being considered. In the hyperbolic low experiments leading to Fig. , B = 0.44 s7! [12].
The measured rotational diffusivity for several species of swimming phytoplankton is Dg =
0.15-0.27 rad®/s [6], which in the hyperbolic flow would yield ¢ = 0.68-1.2. For wild-type
E. coli, which exhibit run-and-tumble behavior, the rotational diffusivity during runs is
Dg = 0.06 rad®/s [31] and the tumbling frequency is approximately v = 1 s~ [26], which
in the hyperbolic flow would yield ¢ = 0.27 and A = 2.3. Assuming that the translational
diffusion for wild-type E. coli is due only to thermal fluctuations so that Dy = 0.2 ym?/s
[8] and a swimming speed vy = 14 um/s [26], the translational-to-rotational diffusion ratio
would be v = 0.003. Note that in the hyperbolic flow, € and A can always be made smaller
and ~ larger by increasing B, the flow strength parameter. We take @ = 1 in all numerical
computations, corresponding to the elongated shape of swimming bacteria like F. coli and
B. subtilis. Numerical solutions of Eq. are obtained using the Euler-Maruyama method.
Before investigating the dynamics of noisy swimmers in the hyperbolic flow, we study the

deterministic dynamics of Eq. with e =0 and A = 0.

III. DETERMINISTIC DYNAMICS IN THE HYPERBOLIC FLOW

The deterministic dynamics of Eq. is best understood through the system’s fixed
points and invariant manifolds, previously studied in Ref. [12]. The system possesses four
fixed points, which we refer to as swimming fixed points (SFPs) to distinguish them from
the passive fixed points of the fluid flow. Denoting the phase-space coordinate q = (x,y, ),

the fixed points are
ai’ = (Qil,ig) ,df =107, q=(-10,0), ®)

illustrated in Fig. 2] Each of the SFPs is a saddle. When « > 0, and in particular when
a =1, the q9* fixed points have stable-unstable-unstable (SUU) linear stability, and the q'
fixed points have stable-stable-unstable (SSU) linear stability. Hence, the q3** SFPs possess
2D unstable manifolds, while the g fixed points possess 2D stable manifolds. We refer to
these 2D manifolds as swimming invariant manifolds (SwIMs), to distinguish them from the
invariant manifolds of passive advection [12].

Taken as a whole, the stable and unstable SwIMs consist of two interlocking S-shaped

sheets, plotted in Fig. . The stable SwIMs (the blue surface) attached to qiﬁ and g™ share
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(b) 1.5

FIG. 2. Phase space structure of a swimmer in the hyperbolic flow, for « = 1. (a) Swimming fixed
points (SFPs) and their invariant manifolds (SwIMs). The red surfaces are the unstable SwIMs
of q3"*, and the blue surfaces are the stable SwIMs of g'F. The dark blue lines are the 1D stable
SwIMs of q3"*. The dark and light grey planes are constant- invariant surfaces which are displayed
for visualization purposes. (b) Projection of swimming fixed points and SwIMs into the zy plane.
The black curves are the streamlines of the hyperbolic flow. The red (blue) lines are the unstable
(stable) SwIM edges. The small arrows perpendicular to the SwIM edges point in the swimming

direction.

common boundaries along the lines {(z,y,0) | z = 0, § = £x} which are the 1D stable
manifolds of g3 (dark blue lines). Hence, the union of the 2D stable SwIMs with the 1D
stable manifolds of q3"* is a surface (blue surface in Fig. ) which separates phase space
into two pieces. By symmetry, the same geometric shape can be constructed by taking the
union of the unstable SwIMs of q3"* with the 1D unstable manifolds of ', leading to the red
surface in Fig. 2h. The shape of the stable SwIMs is independent of the y coordinate and,
similarly, the shape of the unstable SwIMs is independent of the x coordinate. This occurs
because in the hyperbolic flow, the 26 equations Eq. and are decoupled from y and
similarly the y6 equations Eq. and are decoupled from x. The stable and unstable

SwIMs intersect along heteroclinic orbits going from one fixed point to another, indicated

by the yellow curves in Fig. 2h.

Cross-sections of the SwIMs are shown in Fig. |3| along with the phase portraits of the
x# dynamics and the yf dynamics. Figure [3a shows that swimmers on the left of the stable
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SwIM ultimately exit the flow to the left, while swimmers on the right ultimately exit right.
Similarly, the unstable SwIM (Fig. [Bp) separates swimmers that entered the flow from the
top from those which entered from the bottom. The SwIMs are therefore transport barriers
to swimmers in the hyperbolic flow, because they carve out the zyf phase space into distinct,
qualitatively different families of trajectories. Importantly, these barriers are nonporous in

phase space, meaning no swimmer trajectory can cross them (in the absence of noise).

On the other hand, in position space, the SwIMs project to one-way barriers, allowing
swimmers to cross in one direction but not the other. Figure[2b shows the singularities of the
projection of the SwIMs into the xy plane—that is, the folds of the S-shapes which bound
the projection of the 2D surfaces into the plane. We refer to these curves as SwIM edges
[12]. The stable SwIM edges at = =£1 (blue curves in Fig. [2b) block inward swimming
particles, while allowing outward swimming particles through. To see this, note that for
x=—1,4 <0 forall §, and for z = 1, £ > 0 for all 6, as shown in Fig. Bh. Along the
stable SwIM edges, the outward fluid flow overpowers the swimmers and they are swept
away from the center of the flow. Similarly, the unstable SwIM edges (red curves in Fig. )
block outward swimming particles, while inward swimming particles can pass through them.
Here, for y = 1, y < 0, and for y = —1, y > 0. On the unstable SwIM edges, it is the inward

flow which overpowers the swimmers and pushes them towards the center of the flow.

The SwIM edges in the hyperbolic flow coincide exactly with the BIMs—the 1D invariant
manifolds of the SFPs when o« = —1 [12,[32]. This is important because SwIM edges are only
guaranteed to be one-way barriers for purely deterministic swimmers. BIMs, on the other
hand, have stronger barrier properties, in that they are also one-way barriers for swimmers
with rotational diffusion or run-and-tumble dynamics in the limit of negligible translational
diffusion [12]. Thus, in the hyperbolic flow, the SwWIM edges also act as one-way barriers
for swimmers with rotational noise. This explains why the run-and-tumble bacteria in
the hyperbolic flow experiment remain bounded by the unstable SwWIM edge at y = —1 in
Fig.[Ip. Similarly, the stable SwIM edges act as points of no return for all swimmers. Once a
swimmer swims over a stable SwIM edge, it is unable to swim back to the center of the flow.
This is the origin of the depletion effect we observe when comparing the smooth swimming
bacteria data (Fig. [Th) to the run-and-tumble data (Fig. [Lb). The orientation fluctuations
of tumbling bacteria make it very likely that a bacterium near the SwIM edge at x = —1,

for example, swims across it, precluding the possibility that it subsequently exits the flow to
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(b)

FIG. 3. Phase portraits of swimmer dynamics in the hyperbolic flow, for & = 1. (a) 26 cross-section
of the dynamics. The blue curve is the cross-section of the stable SWIM of q'f. (b) yf cross-section
of the dynamics. The red curve is the cross-section of the unstable SwIM of q3"*. In both panels,

the solid and dotted grey lines are cross-sections of the stable and unstable constant-0 invariant

surfaces, respectively.

the right. Hence, we expect to observe much fewer trajectories of run-and-tumble swimmers
initially near the left SwIM edge and exiting right relative to smooth swimmers, consistent

with the experimental data.

IV. STEADY-STATE ORIENTATION DISTRIBUTIONS IN THE HYPERBOLIC
FLOW

Because the § equation is independent of x and y, we begin by looking at the effect of
noise on the orientation dynamics alone in the hyperbolic flow. The Fokker-Planck equation

for the probability density P(0,t) restricted to the orientation degree-of-freedom is

oP 0 . e 0’P 1
E = —%[—OJ SIH(QQ)P] —+ éw + A (—P + %) . (9)

We focus on the stationary distributions of the 6 variable, which are the stationary solutions
(0P/ot = 0) of Eq. (9). We first treat the two limiting cases (i) no tumbling (A = 0),
and (ii) no rotational diffusion (¢ = 0), before proceeding to the case where there is both
tumbling and rotational diffusion. Note that the orientation dynamics of a noisy swimmer

in the hyperbolic flow is very similar to the orientation dynamics of swimmers in other types
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external fields, such as magnetotactic swimmers in external magnetic fields [21], 22] and
swimmers in viscocity gradients [23]. The main difference here compared to the preceding
examples, aside from the source of the torque on the swimmer, is that Eq. @ is invariant

under the symmetry 6 +— 6 + 7.

A. Orientation dynamics with rotational diffusion only (A = 0)

Without tumbling, the 6 dynamics is governed by
df = —asin(20)dt + v/zdws. (10)

The deterministic part of the equation has the form of the gradient of a potential V' (6),
meaning we can write df = —(9V/90)dt + \/edws, with V(0) = —a cos(260)/2. Hence, the
dynamics is equivalent to that of an overdamped particle in the potential V() with noisy
driving. In this case, the long-time probability distribution of # evolves towards a stationary
state which is peaked at the potential wells at § = 0 and § = 7 (for a > 0). This probability
distribution P#(6) can be found by solving for the stationary state of Eq. @[) with A\ = 0. For
gradient systems, the solution is simply P?(6) o exp[—2V'(0)/e], which is simple to verify,

and hence we have

Pe(0) o exp [g Cos 29} : (11)
€
Clearly, the distribution depends on a single dimensionless parameter,
a A«
- 12
- =, (12)

which is the ratio of the rate of alignment with the extensional direction of the flow, A«, to

the intensity of the noise. Normalizing the probability distribution, we obtain
—1
Pe(0) = [27?[0 (gﬂ exp [Q oS 29} , (13)
€ €

where Iy(x) is a modified Bessel function of the first kind. The stationary distribution
(13) is invariant under the shift symmetry 6 — 6 + 7, as is the underlying stochastic
process . Equation is plotted in Figs. 4a and , along with histograms from Monte
Carlo simulations of Eq. . In Fig. , we map the Monte Carlo data onto the interval
0 € (—m/2,7/2) using symmetry and only plot Eq. in this range. Similar results were
previously obtained for magnetotactic swimmers in an external magnetic field with rotational

diffusion [22].
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FIG. 4. Stationary 6 distributions with o = 1, with no tumbling (a), (b), and no rotational diffusion
(c), (d). Histograms are Monte Carlo simulations of Eq. (7d), and red curves are the theoretically
predicted distributions given by Eq. for the no-tumbling case and Eq. for the no-diffusion
case. Distributions are plotted in the range § € (—7/2,7/2). (a) A=0,e=0.1. (b) A=0,e=1.
(c)e=0,A=16.(d)e=0,A=5.

B. Orientation dynamics with tumbling only (¢ = 0)

Here we consider the case of the stationary 6 distribution under tumbling only. Every
time a swimmer tumbles, its orientation is drawn from the uniform distribution. If it tumbles
at time 7 = 0, then until the next tumble, its probability density P(6,7) evolves according

to the Liouville equation

o°P 0

5 = 99 [asin(20) P, (14)

with the initial condition P(#,0) = Fy(f) = 1/2n. Intuitively, we thus expect that the
steady-state distribution under tumbling only, Py(#), should consist of the superposition of

probability distributions P(#, 7) describing the relaxation of # in between tumbles, weighted
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by the probability Ae *"dr that the last tumble occurred a time 7 in the past. In other
words, the stationary probability distribution must be [33]

P(0) = A / h P(,7)e dr. (15)

It is straightforward to verify that Eq. is a stationary solution of Eq. @D with ¢ = 0.
An explicit solution to Eq. can be obtained using the method of characteristics, be-
cause the 6 equation of motion in the absence of noise (¢ = 0) can be solved analytically.

The expression for the deterministic trajectory 6*(t) is
0*(t) = tan~" (e">* tanby) . (16)

where 6, = 6(0) is the initial condition, and here it is assumed 6, € [—m/2,7/2]. This
condition arises due to the use of the tan™' function; when 6, is outside this range, this

solution needs to be shifted either up or down by 7, depending on ¢y. Then, the solution to

Eq. is

62a7

cos? @ + e sin? @’

where Py(f) = P(6,0) is an arbitrary initial orientation distribution (see Appendix [B| for

P(9,7) = P (tan™" (e**" tan6)) (17)

the derivation). Again, this form of the solution is valid for 6 € [—7 /2,7 /2], and a shift by
7 in the argument of Py in Eq. adapts the solution to the excluded range of 6.

Next, we obtain the stationary @ distribution Py(#) under tumbling with rate A by sub-
stituting Eq. into Eq. , with Py = 1/2m. Rescaling the time in Eq. by the
tumbling rate A\, we obtain a complicated integral that depends on a single dimensionless
parameter that we call the tumbling number Tu,

A v
U= = (18)
This is essentially the ratio of the tumbling rate to the relaxation rate of a swimmer’s
orientation to its equilibrium (parallel to the extensional z-direction) in the hyperbolic
flow. Note, the latter relaxation rate is distinct from the relaxation rate of the orientation
distribution of a swimmer with rotational diffusion to the stationary state given by Eq. .
It is conceivable that this is the more relevant time scale for defining Tu in the case where we

have both tumbling and rotational diffusion. The stationary distribution P, can be shown

to be equal to
~ Tu o Fy(1, (14 Tu)/2; (3 + Tu)/2; — cot? 0)

Py (6
\(0) 27 (1 + Tu)sin*6 ’

(19)
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where »F} (a, b; ¢; z) is the ordinary hypergeometric function. Like P*(0) (Eq. (13)), Eq.
is invariant under the shift symmetry 6 — 6 + 7. To be sure, the hypergeometric function
makes the expression of the tumbling swimmer’s stationary distribution more opaque
than its counterpart for rotational diffusion.

In Figs. and , we plot Eq. , superimposed over histograms from numerical
simulations of tumbling swimmers in the hyperbolic flow, to obtain a basic intuition for how
the distribution depends on the parameters. We see an excellent agreement between the
theory and simulations. For sufficiently small tumbling rates such that Tu < 1 in Eq.
(Fig. ), it can be shown that P, is singular at the orientation equilibrium 6 = 0 and
relatively flat for all other orientations. On the other hand, for Tu > 1 (Fig. ), the peak
at the equilibrium becomes finite, and the difference between the probabilities near the stable
and unstable equilbria becomes more modest. Again, our results mirror those obtained for

magnetotactic run-and-tumble bacteria in Ref. [22].

C. Orientation distribution with rotational diffusion and tumbling

Having treated the limiting cases of one type of noise versus another, we now seek the
stationary 6 distribution of a run-and-tumble swimmer with rotational diffusion, which we
denote P5(6). This requires slightly modifying the approach of Sec. , where the sta-
tionary distribution is the weighted time average of the probability distributions describing
relaxation to equilibrium, P(6,7) [see Eq. (15)]. Namely, when we have both tumbling and
rotational diffusion, we need to obtain P(6, 1) by solving the time-dependent Fokker-Planck

equation

orP 9. . £ 0°P
E = %[QSIH(QH)P] + 5@,

with initial condition Py() = 1/27, instead of the Liouville equation (14). An exact ana-

(20)

lytical solution of Eq. is unavailable, so we resort to a short-time, small ¢ asymptotic

approximation based on the semiclassical techniques detailed in Sec. [A 5]

1. Approzimation of the Fokker-Planck propagator for small €

P(60,7) is the probability density of reaching  at time 7 under Eq. with a random

initial condition drawn from a uniform distribution. We approximate P (6, 7) by making use
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FIG. 5. Time evolution of the propagator K (6, 60y,t) for 6y = 1.07, « = 1, and ¢ = 0.25. Histograms:

numerical simulations of Eq. with 10* trajectories. Red curves: theoretical prediction given

by Eq. .

of the semiclassical approximation to the Fokker-Planck equation (20)). We note that this
distribution can be expressed as an integral over the propagator K (0,0, 7), which is the

probability distribution of reaching # in time 7 from a fixed initial condition 6, as
1
P(Q,T) = 2—/K<9,90,7’) deo (21)
i

Our strategy is to approximate P(f, 7) by approximating K analytically and performing the
integral numerically.

The propagator K can be approximated in the small ¢ limit using the semiclassical
approach described in Appendix [A]l In particular, we are satisfied with an approximation
valid for short times, because the long-time behavior of P(f, ) is suppressed in the integral
for the steady-state distribution. Therefore, we make use of the Gaussian approximation
of K about a deterministic trajectory, derived for a general 1D Fokker-Planck equation of
the form in Sec.[AF] In this case, K is peaked around the trajectory 6*(r) initiated at
6o, given by Eq. . The final expression for K follows from Eqs. (A64]) and (A65]), which

after lengthy but straightforward calculations yields

[1 R 1 2R,
K(Q,Qo,’r) ~ me exp [—%W(Q — 0 (7'))2 s (22)

PR 4o (€297 + e7297 tan? 90)2 (23)
002 etem 4 8artan?fy — e~4o7 tan* 6y — 1 + tan 6,

We illustrate the validity of the approximate probability distribution by comparing

where

the prediction to numerical simulations of Eq. (10). One comparison is shown in Fig. [

where at t = 0 we initialized the swimmers with the orientation 6y = 1.07, not terribly far
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from the turning point § = 7/2 ~ 1.57, with a modest noise strength of ¢ = 0.25. These
parameters were selected to push the limits of our approximations; not only do we assume
¢ is small, but our calculation of K (6, 6y, ) neglects entirely the contributions of paths that
cross the turning point at = 7/2 ~ 1.57 and relax to the equilibrium at § = 7 instead of
6 = 0. Despite these limitations, we see that the approximate K (0, 6,,7) given by Eq.
does a good job both of tracking the center of the distribution of trajectories and accounting
for their spread as a function of time. After some time, the variance of the approximate
distribution (9?R/06%)~! saturates and the centroid converges onto 6 = 0, yielding a steady-
state. This distribution is reasonably close to the numerical one at t = 4. However, we
know that if we continue the numerical simulations for very long times, then eventually the
distribution should approach the exact steady-state given by Eq. (Figs. 4a and ) In
contrast to our approximate distribution, which only has one peak that eventually converges
to 8 = 0, the true steady-state distribution is symmetrically peaked about # = 0 and 6 = 7.
Over long times, this is achieved as the noise drives some swimmers’ orientations over the
potential barriers at § = +7/2, causing them to settle down around 6 = = for long times.
This process is reflected by the growing peak in the density of simulated trajectories at
0 = m in Fig. and Bd. Our approximate distribution manifestly neglects this process,
because the action associated with such trajectories is larger than for trajectories near the

deterministic path, which are the only trajectories accounted for in our approximation.

2. Approzimation of the stationary state

We can now compute the stationary orientation distributions of swimmers with both
tumbling and rotational diffusion. To recap, we have an explicit approximation of
K(0,0y, 1), the time-dependent probability distribution of  for a rotationally-diffusing swim-
mer with orientation 6y at time ¢ = 0 (which also requires Egs. and to evaluate).
Thus, we are able to numerically evaluate our expression for the time-dependent proba-
bility distribution P(6, ) of @ for a rotationally-diffusing swimmer with an initially uniform
orientation distribution. This initial state corresponds to the swimmer’s orientation distri-
bution after a tumble. Therefore, we can finally evaluate Eq. for Py (), the stationary

0 distribution of a tumbling and rotationally-diffusing swimmer.

We proceed by evaluating Eqs. and numerically, and we compare the results
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FIG. 6. Stationary 6 distributions with @ = 1, with both tumbling and rotational diffusion.
Histograms are Monte Carlo simulations of Eq. , and red curves are the theoretically predicted
distributions given by the numerical evaluation of Eq. using Egs. and . Distributions
are plotted in the range 0 € (—7/2,7/2). (a) e = 0.1, A = 1.6. (b) e =0.1, A =5. (c) e = 1,
A=16. (d)e=1,A=5.

with numerical simulations of tumbling and rotationally-diffusing swimmers, i.e. simulations
of Eq. . The results are shown in Fig. @ with all four possible combinations of € and A
used in Fig. [4f Without rotational diffusion (Figs. [dc and [4ld), the distribution peak at 6 =0
is very sharp. Comparing with the distributions in Fig. [6] we conclude rotational diffusion
smooths out these peaks. We observe good agreement between the stochastic simulations
and the semiclassical theory in all cases. Thus, our semiclassical method for evaluating
P%(0) can in principle be used to fit experimental data, allowing the determination of the

effective rotational diffusivity and tumbling rate of swimmers in the hyperbolic flow.
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V. DEPLETION EFFECT

Here, we present Monte Carlo and semiclassical calculations quantifying the depletion
effect. We quantify the depletion effect by calculating the probability Pr(zg) that a swimmer
ultimately exits right with a given initial position —1 < xy < 1 and a given intensity of the
noise. For an x( near the BIM =z = —1, the signature of the depletion effect is a decreasing
Pr(zy) for increasing noise intensity. A low probability of right-exiting swimmer trajectories
initialized near x = —1 would be consistent with the absence of such trajectories for run-
and-tumble bacteria in the experimental data shown in Fig. [I Conversely, for an zq near
the BIM = = 1, Pr(zo) should increase with increasing noise intensity. This is simply due

to the symmetry of the hyperbolic flow, which requires that
Pr(—x¢) =1 — Pr(z). (24)

We focus solely on the dynamics in the x6 plane, because it is independent of the y variable,

as discussed in Sec. . Hence, Eq. becomes

oP e ( 0*P  0°P e
= V- -(fP)4 - [+ = AN|-P+ — P(z,0',t)do 2
=P s (VG G ) e [ pe g [ Paenar]. @)
where
f = (z+ cosf, —asin(26)) (26)

is the drift restricted to the z6 plane. In Eq. and throughout this section, we also take
V = (0/0x,0/00).

We restrict our attention to the case where rotational diffusion dominates translational
diffusion, i.e. v < 1, and we fix v = 0.1. When v = 0, all swimmers which cross the line
x = 1 must ultimately exit right, due to the BIM at x = 1 blocking inward swimming
particles. Therefore, the probability to exit right may be calculated by integrating the
probability current through z = 1. We assume this remains approximately true for small ~.

Defining Pr(z,t) as the probability that a swimmer has exited right by time ¢, we have
Pr(zo, 1) = / P(z, 0, t)dzdo. (27)
z>1

Differentiating Eq. with respect to time and using Eq. , we obtain the probability
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= — / V - Jdzdf, (28)
z>1

where

J= [f - gDV(ln P)} P (29)

is the probability current density excluding tumbling, with

o (77 (30)

01
The tumbling contribution in Eq. vanishes upon integration over #. Using the divergence
theorem, the probability current becomes

2
@:/ J(1,6,t) - %do, (31)
o J,

and thus the probability to exit right is given by

[e’e) 2T
Pr(xo):/ dt/ a0 [14—0089—?%(111[’(1,9,75)) P(1,6,1). (32)
0 0

For v = 0, Eq. is exact. For small v > 0, Eq. is an approximation, because
swimmers close to the righthand side of the BIM may fluctuate over to the lefthand side

due to translational diffusion.

A. Monte Carlo calculations with diffusion or tumbling

Monte Carlo calculations of the swimmer probability to exit right as a function of x
confirm that the depletion effect is caused by noise. For each zy, we computed Pr(zg) by
integrating Eq. for 50,000 initial conditions with randomly selected initial orientations
By from t = 0 to t = 6. The probability to exit right, according to Eq. , is then the
fraction of trajectories for which x > 1 at the end of the simulation. Figure [7] shows the
results for Pr(zy) for swimmers with diffusion only (A = 0, Fig. |[7Th) and swimmers with
tumbling only (e = 0, Fig. [7b). For the A = 0 swimmers, 6, was drawn from the stationary
distribution P¢(6) given by Eq. (13). For the ¢ = 0 swimmers, 6, was drawn from the
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FIG. 7. Monte Carlo calculations of swimmer probability to exit right Pr(xg), for &« = 1 swimmers
in the hyperbolic flow. (a) A =0, v =0.1, and e = 0.1 (0), € = 0.3 (%), e = 0.5 (x), e = 0.7 (¢),
and ¢ = 0.9 (v). (b) e = 0 and A = 0.167 (O), A = 0.5 (%), A = 1 (x), and A = 2 (0). (c)
e=A=0.

stationary distribution Py(6) given by Eq. (19). We also show Pr(zg) for deterministic
swimmers (¢ = A = 0) initialized with a uniform distribution of 6, in Fig. [Tc. Here, Pr(z)
is obtained by calculating the fraction of trajectories on the right side of the SwIM at a
given z, (see Fig. Bp).

Figure [7| shows that as the intensity of noise increases, Pr(zg) increases for xy > 0 and
decreases for zyp < 0. This occurs both for swimmers with diffusion only (Fig. [7h) and for
swimmers with tumbling only (Fig. ), where the intensity of noise effectively increases
when the tumbling frequency A increases. The reduction of Pr(xg) for zy < 0 for noisier
swimmers is consistent with the depletion effect observed in the experimental data shown
in Fig. [ For smooth swimming bacteria (Fig. [Lh), which behave like swimmers with weak
diffusion, the exit-right probability Pr(z¢) is substantial for most values of x, even those
relatively close to the BIM at # = —1 (Fig. [7a). Therefore, it is not unlikely to observe
bacteria trajectories which graze the BIM at @ = —1, as we indeed see in Fig. [Ih. For
run-and-tumble bacteria on the other hand (Fig. [Lp), Pr(z) is very small near z = —1 for
sufficiently large A\ (Fig. ) Therefore, it is very unlikely to observe bacteria trajectories
that pass near x = —1 and subsequently exit right, explaining the paucity of trajectories
near r = —1 in Fig. . Because fluctuations can cause the swimmers to cross one-way

barriers in the flow, fluctuations can dramatically impact a swimmer’s ability to navigate a

fluid flow.
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FIG. 8. Comparison between the minimum-action paths and noisy trajectories (A = 0, v = 0.1,
e = 0.0625) of a swimmer exiting right with an initial condition (zg,6y) = (0.5,2) (black circle).
The black curve is the deterministic trajectory, which exits left. The solid jagged curves are
representative noisy trajectories hitting x = 1 in time ¢ ~ 1 (green) and ¢t ~ 2 (yellow). The
dotted curves are the minimum-action paths hitting x = 1 at t = 1 (green) and ¢ = 2 (yellow).
They are projections into the zf plane of solutions to the boundary value problem seeking the
trajectories (x(t),0(t), px(t), pe(t)) of Hamiltonian with the specified initial condition (zg, 6p),
final position z(¢) = 1, and final momentum py(t) = 0. The blue curve is the stable SwIM of the

swimming fixed point (blue dot).

B. Semiclassical approximation for diffusion

We use the semiclassical approximation to compute Pr(zy) when A = 0 and investi-
gate how accurately it matches the Monte Carlo calculations. For the x6 dynamics in the

hyperbolic flow, Hamiltonian @ becomes

2 2
H(x,0,p.,p9) = 7% + % + pe( + cos ) — pgarsin(26). (33)

We evaluate Eq. for Pr(zy) using our semiclassical approximation for P(x,6,t). This
essentially requires integrating over a subset of trajectories of Eq. , which begin at xg

at t = 0 and hit x = 1 at a later time. One advantage of the semiclassical approximation
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is that this set of trajectories is independent of €, so once these trajectories are computed,
Eq. can be evaluated for any arbitrary value of €. Another advantage is that this set
of trajectories provides insight into the actual paths in x6 space that noisy swimmers take
on their way to exiting right.

To illustrate the relationship between the trajectories of Hamiltonian and the noisy
trajectories, we first consider the semiclassical evolution of a probability density initially

concentrated at a single point (z,6). This corresponds to an initial condition
Po(x,0) = 6(x — x0)d(0 — 6p), (34)

which is the initial condition for the propagator of the Fokker-Planck equation (Eq. )
The semiclassical solution for such an initial condition (Eq. (A39)) requires one to integrate
all trajectories of Hamiltonian beginning at (zg, fp), which means considering all possible
initial momenta (p.o, peo) at that point (Appendix. This 2D surface of initial conditions
of the Hamiltonian system is called a Lagrangian manifold [20]. Along the way, one keeps
track of the accumulated action R(z, 0, z, 0, t) along each trajectory (Egs. and(A19)).
For Hamiltonian , the accumulated action is

R0 00.0) = 5 [ [mule + ()], (35)

where the integral is along the trajectory connecting (zo, 6p) to (z,6) in time ¢. In the case of
the propagator initial condition, the function W of the semiclassical probability density
is simply equal to the accumulated action, W (x,0,t) = R(x,0,xq,00,t). The exponential
dependence of the semiclassical probability density on W makes the probability density
peaked around the local minima and valleys of W. The Hamiltonian trajectories reaching
these minima or valleys can be thought of as prototypical noisy trajectories.

For example, we consider swimmers exiting right from (z¢,6y) = (0.5,2), as shown in
Fig. [8l For this initial condition, a deterministic swimmer would exit left, because it is to
the left of the SwIM. Noise allows some of the swimmers to cross over the SwIM and exit
right, as illustrated by the two sample trajectories selected from a Monte Carlo simulation
in Fig. [§] We selected one trajectory that hits # = 1 at ¢ ~ 1, and a second trajectory
that hits at ¢t ~ 2; aside from these prescribed hitting times, the trajectories were selected
at random. We can calculate the trajectories of the system with Hamiltonian (33]) which

hit x = 1 at those same times. There are infinitely many, each hitting with a different final
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0. Out of this set of trajectories, we find the ones which minimize the action at x = 1,
equivalent to the condition

MWLED _ o= ) (30)

where the last equality follows from Eq. . In other words, for a given ¢, the minimum-
action trajectory is the one which hits z = 1 with py(t) = 0. Equation is the condition
for a valley of W(z,0,t) because it is a local minimum of W with z (and ¢) held fixed. The
minimum-action trajectories corresponding to the two noisy trajectories are plotted as the
dotted curves in Fig. [§

The resemblance between the noisy paths and the minimum-action paths in Fig. |8demon-
strates the power of the semiclassical approximation to the Fokker-Planck equation. The
deterministic trajectories underlying the semiclassical approximation predict the paths taken
by the noisy system satisfying specific boundary conditions—in this case going from (z, 6y)
at t = 0 to x = 1 at specified times ¢. In the asymptotic ¢ — 0 limit, the probability
density becomes increasingly concentrated along the minimum-action paths. However, for
any finite e, the probability density has a finite width around these minimum-action paths,
so any actual noisy trajectory will deviate from the minimum-action path, as seen in Fig. [§
The minimum-action paths are thus prototypical noisy paths with given boundary condi-
tions, in the sense that they are the peak of the distribution of noisy trajectories satisfying
those boundary conditions. Furthermore, by taking into account the full set of trajectories
of Hamiltonian satisfying the boundary conditions (i.e. not only those in the valley of
the action), one can construct the full probability distribution of trajectories satisfying the
boundary conditions. This requires computing additional quantities along the Hamiltonian
trajectories that are needed to evaluate the probability density prefactor A in Eq. (see
Eq. and Eq. for explicit expressions and Table [I)).

Next, we turn to the semiclassical calculation of Pr(zg), given that the swimmer’s initial
orientation f is distributed according to Eq. as in Sec. . This requires the solution
of the Fokker-Planck equation for P(z,6,t) with initial condition

o Ccos 29]

Py(x,0) = 0(x — o) [27?]0 (g)] B exp { (37)

This is a hybrid propagator-WKB initial condition of the form (A9]), where, in the notation of
Appendix , Ay = [27[0 (%)] and U () = —acos 26. We use the semiclassical probability
density (A52) to evaluate Eq. (32)). This means that for each zy, we must integrate over all
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Variable |Meaning Appendix references

A prefactor of probability density Egs. (A21]) and (A50))
a q = (z,0) = q(2/,t), projection of Lagrangian manifold |Eq. (A25al),

into configuration space, as a function of initial Lagrangian

manifold coordinate z’' = (pz0,6p) and time

0q/07z"  |Jacobian matrix of the projection q(z’,t) Egs. (A26a)), (A27))

fot V- £dr|V-f = 1—2acos(20) for the z6 dynamics in the hyperbolic @

flow; integral performed along the Hamiltonian trajectory

TABLE I. Summary of key quantities that appear in the formulas for the semiclassical probability

density.
Hamiltonian paths which hit z = 1, with initial conditions on the Lagrangian manifold

oU
{(51307 80, D0, Poo) ‘ Y 6o, pz0, peo such that pgy = %(90)} . (38)

Therefore, the initial Lagrangian manifold may be parametrized by the coordinates z’ =

(pz0,0o). The probability current integral Eq. becomes

1 a\1-t [ ¥ 1 0
Pr(mo)—\/ﬁ[%r[o(gﬂ /0 dt/x:1d0 {1—1—008«94—5]99;—5878—x(ln14(1,8,t))}><

—1/2 ¢
‘det @ exp {_(U(Qo) + R(i,@,xoﬁo,t)) _ %/ v. de} 7 (39)
Z 0

where A is given by Eq. and R is given by Eq. . Equation (39) must be integrated
over the set of # and t values at which the trajectories of Hamiltonian hit x = 1. The
meaning of the new variables introduced in Eq. , along with references to the appendix,
is summarized in Table [Il

We make some modifications to Eq. before evaluating it numerically. The integral
over final coordinates (6,t) can be converted to an integral over the initial coordinates of

the Lagrangian manifold (p,, 6y) using the Jacobian determinant

det(29) det(29)
dodt = |——22~ | dp,odf, = 0z’ dpLodbo. 40
Fot+pe| T T 2 cos O+ ypg | L (40)

This converts Eq. into an initial value representation [34, B35]. We also neglect the
d(In A)/0x term at the end of the first line of Eq. (39), because it is of order e relative to
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FIG. 9. Integration domain for Eq. for g = 0.5. The quantity p.o is the initial condition of
the canonically conjugate momentum to x, and 6y is the initial orientation of the swimmer. The
initial conditions in the black region eventually hit x = 1, and hence Eq. is integrated over

the black region only. Initial conditions in the white region hit x = —1 instead.

the other terms. This means it is of higher order in € than we account for in our asymptotic
expression Eq. (see also Eq. (A3)), and thus it may be neglected within the framework
of the semiclassical approximation. We must also truncate the range of p,o for numerical
evaluation, so we take |p,o| < Pmax. Lastly, Eq. is even in 6y by symmetry, so we can
restrict the domain 6y € [0, 7] and double the result. Hence, the final expression that we

evaluate numerically is

2 o -1 Pmax m 1+COS@+ lpg;
Pr(zq) ~ [2[(—)} / dz/de LN
r(xo) /e i € s P 0 0 |14 cos @ + vp,|
1/2 0 1,0, o, 00, t 1 [
det @ exp _(U( 0) + R( , U, Xo, Vo, )) o _/ v .fdrl . (41)
0z’ € 2 Jo

The domain for the integral is the set of initial conditions (p.o, ) that eventually exit
right, i.e. those initial conditions that reach z = 1 at some time ¢. Figure[J|shows an example
integration domain for xq = 0.5.

We evaluate Eq. numerically using the trapezoidal rule. For each xq, we discretize
the set of initial conditions (p.g, o) on the Lagrangian manifold with a uniform grid.
We numerically integrate each trajectory until it hits x = 1, up to a maximum integration

time of ¢ = 6, consistent with the corresponding Monte Carlo calculations in Fig. [Th. We
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FIG. 10. Comparison of Monte Carlo and semiclassical calculations of Pr(xg), for a =1, v = 0.1,
and A = 0. The solid lines are the semiclassical predictions, while markers are the Monte Carlo

calculations. ¢ = 0.1 (), e =0.3 (x), e =0.5 (x), e =0.7 (¢), and € = 0.9 (V).

simultaneously calculate the accumulated action R (Eq. ), the integral f V - fdr, and
the Jacobian matrix dq/0z’. This last step requires integrating the tangent flow along the
trajectories (Eq. ) The integral is then evaluated for a given € by summing over
all the trajectories that hit = 1, with all of the quantities in the integrand evaluated at
that moment. Note that once the set of trajectories and all auxiliary quantities are obtained
for a given z¢, Eq. can be evaluated for an arbitrary €. This represents one of the chief
advantages of the semiclassical approximation. We take py.« = 60. Including higher values
of p.o has a negligible effect on the results, because trajectories with larger p, have a larger
accumulated action R (Eq. ) and thus are exponentially suppressed in Eq. . Using
this approach, we calculate Pr(zy) for a discrete set of values zy € [0,1), and we use the

symmetry to get Pr(xg) for 2o € (—1,0). The results are plotted in Fig. .

C. Discussion

For |zo| near 1, we see in Fig. [10]an excellent agreement between the semiclassical predic-

tions for Pr(zy) and the Monte Carlo simulations. As ¢ increases from 0.1 to 0.9, we see the

27



0.15

caustic fraction
o
—

0.05 | | | |
0 0.2 0.4 0.6 0.8 1

L0

FIG. 11. Fraction of trajectories used in the semiclassical calculation that pass through at least

one caustic before hitting x = 1.

semiclassical predictions overlap with the Monte Carlo simulations for xy near the BIMs.
This is particularly impressive, because in addition to the small-¢ assumption manifest in
the semiclassical model, we have made a couple additional approximations in evaluating
Eq. . Therefore, by summing over all Hamiltonian trajectories that exit right, weighted
appropriately by the semiclassical probability density in Eq. , we can accurately calcu-
late exit-right probability Pr(zg). The integral includes all trajectories with a given
xo that exit right, including those which begin to the right side of the SwIM (Fig. [3r) and
would have exited right even without noise, as well as those which begin on the left side of

the SwIM and cross it due to fluctuations (Fig. [§).

As |zo| gets closer to 0, however, the semiclassical predictions begin to deviate from the
Monte Carlo calculations with increasing . In particular, Eq. requires that Pr(0) = 0.5,
that is, a swimmer starting in the middle of the flow has an equal probability of going left or
right. While the semiclassical prediction appears consistent with this property for € = 0.1,
as € increases further, we see the semiclassical Pr(0) increase above 0.5 in the inset of Fig. .
This fact, combined with our use of Eq. to obtain the semiclassical Pr(xg) for zy < 0,

causes the apparent kink at xy = 0 in our semiclassical predictions plotted in Fig. {10}
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We believe that at least part of the discrepancy between the semiclassical Pr(zy) and the
Monte Carlo calculations for x( close to 0 is due to the presence of caustics, a technical issue
that we have ignored until now. Our semiclassical approximation assumes the uniqueness
of Hamiltonian trajectories that originate on the initial Lagrangian manifold and go from
(20, 0p) to (z,0) in time t. This means, for example, that when evaluating the accumulated
action R(z,0,x,0q,t) in Eq. , there is a unique such trajectory. The uniqueness is the
critical property that makes R a well-defined function. However, uniqueness is guaranteed
only for sufficiently short times, meaning that once ¢ is sufficiently large, there will be multi-
ple Hamiltonian trajectories connecting the two points. In this case, R becomes multi-valued
[36]. Geometrically, the uniqueness breaks down when the evolving Lagrangian manifold de-
velops fold singularities, such that when it is projected into q space, parts of the projection
overlap with each other. These overlap regions are the regions where multiple Hamiltonian
trajectories can arrive at a single point. In the context of the semiclassical approximation
in quantum mechanics, these fold singularities are called caustics, and they have been ex-
tensively studied (see [20] and references therein). The formulas for the semiclassical wave
function need to be corrected to account for the occurrence of caustics through the inclusion
of a Maslov index, a phase factor that essentially counts the number of caustics encountered

by each trajectory.

We know of no general prescription for dealing with caustics in the semiclassical ap-
proximation to the Fokker-Planck equation, even though they commonly occur. Previously,
caustics have been investigated in the semiclassical formulation of the noise-driven dynamics
of a nonlinear oscillator in two dimensions [37]. When calculating the steady-state proba-
bility density of this system, one must account for switching lines in phase space, i.e. curves
on either side of which the least-action path changes discontinuously due to the presence of
multiple Hamiltonian trajectories arriving at those locations. Near the switching line, where
the distinct paths with coincident endpoints have nearly the same action, the semiclassical
probability density needs to account for each of the distinct paths; in fact, the signature
of multiple paths leading to the same point in phase space has been observed experimen-
tally in a noisy electronic oscillator [16]. Caustics also arise in the theoretical description of
noise-induced transitions in non-gradient dynamical systems with metastable fixed points
[38, 39]. Specifically, the quasi-stationary probability densities underlying escape from the

metastable fixed points may be approximated semiclassically, though one must go beyond
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the standard WKB approximation in the vicinity of the caustics. It is not obvious how to
generalize these previously obtained results to the noisy dynamics of the swimmer in the
hyperbolic flow, because the swimmer phase space does not possess stable fixed points and
is fundamentally transient, i.e. time-dependent.

Such a generalization is needed because caustics do indeed occur in the dynamics of noisy
swimmers in the hyperbolic flow. To demonstrate this, we track the number of caustics
encountered by the trajectories underlying our semiclassical calculation of Pr(xy) up until
the point that they hit x = 1. At points where caustics occur, the projection from the
Largrangian manifold into q space is not invertible, meaning the Jacobian determinant
det 0q/0z’ must be zero at that point. Thus, we count the number of caustics encountered
along a trajectory by tracking zero-crossings of det dq/0z". In Fig. , we plot the fraction
of trajectories used in our numerical semiclassical approximation that encounter at least
one caustic on the way to = 1. While the fraction of caustic-crossing trajectories is
around 6% or smaller for o > 0.5, it rapidly rises to nearly 15% as x, decreases from
0.5 to 0. This trend is reasonable, because caustics only begin to occur after a sufficiently
long time. Trajectories beginning closer to x = 1 will tend to reach it sooner, potentially
before many caustics have occurred. At the same time, in the zy > 0.5 range, we see good
agreement between the semiclassical and Monte Carlo calculations in Fig. [10] while in the
o < 0.5 range we observe a discrepancy with increasing . This correlation is evidence that
the semiclassical approximation works well when few trajectories have encountered caustics,
while a discrepancy can be caused by improper treatment of the caustics, which is important

when considering sufficiently long-time processes.

VI. CONCLUSION

To summarize, we have quantified the effect of noise on swimmer dynamics in a steady,
two-dimensional hyperbolic fluid flow. In such a flow, swimmers are ultimately forced to
escape to the left or the right, with their transient dynamics near the passive unstable fixed
point determining which way they go. Without noise, a swimmer’s fate is sealed based on
its position relative to the SwIM in the z6 phase space. With noise, the swimmer’s motion
is a stochastic process. We calculated the steady-state orientation distributions of diffusive,

run-and-tumble, or mixed swimmers in the hyperbolic flow. The fluctuations give some
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swimmers greater opportunity to cross the SwIM and exit on the opposite side than they
would have without noise. There is however a maximal distance that swimmers can get on
either side of the passive fixed point and still be able to swim back to the other side—this
is where the stable BIMs block inward swimming particles.

Fluctuations make it increasingly likely that a swimmer close to one of these BIMs does
indeed end up crossing it, causing irreversible changes to the fluctuating swimmers’ trajecto-
ries (assuming negligible translational diffusion). We quantified this probability using Monte
Carlo calculations and a semiclassical approximation to the swimmer Fokker-Planck equa-
tion. The semiclassical approximation accurately predicts the probability Pr(xg) a swimmer
exits right given that it began at a position z( relative to the passive fixed point, especially
for x close to the BIM. It also predicts the probability distribution of paths that fluctuating
swimmers take in phase space given specified boundary conditions. SwIMs and BIMs are
present in nonlinear flows as well, such as alternating vortex flows [12]. Thus, we expect the
depletion effect to occur in the vicinity of the BIMs of such flows as well.

This study demonstrates the utility of the semiclassical approximation for understanding
the noisy dynamics of a non-trivial active matter system. However, it also reveals a key
shortcoming of the existing semiclassical theory for Fokker-Planck dynamics. In particular,
a general approach is needed for taking into account the occurence of caustics, i.e. multiple
branches of Hamiltonian paths connecting points in configuration space. While this issue has
been examined in a few specific cases [16, B7-39], no general theory is currently available to
the best of our knowledge. A procedure for coherently summing the contributions of multiple
paths, similar to the Maslov theory in quantum mechanics [20, [40], would be highly desirable,
both for accurate numerical computations and for the theoretical analysis of most-likely noisy
paths of a dynamical system.

Finally, the semiclassical approximation may be a valuable tool for analyzing experimental
data of noisy swimmers in fluid flows. For example, with a sufficiently large number of
experimentally-recorded trajectories of the type shown in Fig.[I], it would be possible to test
the semiclassical predictions of the exit-right probability Pr(zq). It should also be possible
to investigate the distribution of experimentally-measured trajectories satisfying specific
boundary conditions [37, [41]. The semiclassically-predicted distributions may be used to fit
the experimental data in order to extract physical parameters, such as rotational diffusivity

and swimmer shape [42].
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Appendix A: Semiclassical approximation for the Fokker-Planck equation

We consider the stochastic process in a d-dimensional phase space
dq = [F(q) +eG(q)] dt + v/eCdw (A1)

where w = (wy,ws, ..., w,) is a set of uncorrelated Wiener processes and C is a d X n
matrix, assumed to be constant for simplicity. The G term is included in Eq. (Al]) to
account for potential noise-induced drift [I7]. The corresponding Fokker-Planck equation

for the probability density P(q,t) is

oP 1 PP

o = VAP 4GP 45D 5 g, (A2)

where D = CCT is the diffusion tensor (up to a factor of 2). The diffusion tensor is required
to be positive-definite.

Our goal is to find an approximate solution to Eq. in the weak-noise (¢ < 1) limit.
We use an approach closely related to the semiclassical approximation of quantum mechanics
[20], and our derivation closely follows Ref. [17]. Similar techniques have been applied to
stochastic dynamics in a variety of settings [15, [16], 18 29, B37-39, 43]. We consider an
asymptotic expansion of the solution

-1

P(q,t) = exp [— > Sula, t)e"_1] , (A3)

n=0
where N is the maximum number of terms in the expansion and the S,, are functions to be

determined. We restrict our attention to N = 2 and rewrite the solution as
P(q,t) ~ A(q, t)e‘W(q’t)/E, (A4)

where W = Sy and A = e, Equation ([A4)) constitutes a WKB approximation to Eq. (A2)).
It is in the same spirit as the semiclassical approximation to the Schrodinger equation; with

the substitution ¢ — ih, the semiclassical wave function is expressed as 1) = Ae’"/"  In that
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case, W is the action of the classical system associated to the quantum Hamiltonian, and
= |[¢]? is the probability density of the system. In the Fokker-Planck case, we shall see
that W also corresponds to the action of a particular classical Hamiltonian derived from the
Fokker-Planck equation, while A is essentially a normalization function.
The functions A and W (equivalently the S,,) are determined by substituting Eq.
into Eq. (A2). This yields the equation

L9s = —
_Z P == (V-F)e+F- ) VSe"— (V-G + G- Y VS,
n=0 n=0
N—-1 N—-1
Ll a Sn o
L on . A
+5 2 D: +n;0vs .DVS, "t (A5)

The goal is to equate terms of equal order in ¢ in Eq. , which leads to equations for the
S,. We are only interested in the € and the &' terms.

The solutions to Eq. depend on the initial condition Py(q) = P(q,0). We derive the
solutions for three types of initial conditions. The first is a Dirac ¢ function centered on an
arbitrary phase-space point qg, where we use the “0” subscript to refer to an initial condition
fixed at some particular value. In this case, the solution is denoted P = K(q, qo,t), where

K is called the propagator, with initial condition

K(q,90,0) = d(q — qo). (A6)

The propagator encodes the probability for the system to make a transition from qg to q
in time ¢. This fact, combined with the linearity of the Fokker-Planck equation, allows its

solution with any initial probability distribution F, to be written as

Pla,t) = / K (q 0. 1) Polco)d . (A7)

However, evaluating Eq. (A7) in practice is very computationally costly, which leads us to
consider initial conditions which vary smoothly over some or all of the q coordinates. In

particular, we consider an initial condition already in WKB form (A4)) [43], i.e
PO(Q) — Ao(q>e—Wo(Q)/5' (A8)

Last, we consider initial conditions that are a hybrid between the WKB form (A8]) and the
propagator form (A6]), of the type

Po(q,qy0) = d(qs — dyo)Ao(qe)e” Ve, (A9)
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Here, the variables are split into two groups, q = (qy, qx), where the qy variables are fixed
at a specific value qsy at ¢ = 0 by the  function in Eq. , while the q; variables are
distributed according to the WKB part of Eq. . We are able to solve for W and A
for this hybrid initial condition in the special case that D is block-diagonal, with one block

corresponding to the q; variables and the other to the qj variables, i.e.

D; 0
D= £ T (A10)

Ody,xd; Dx

where dj is the size of q; and dj, is the size of q;. The equations satisfied by W and A in
Eq. are the same in each of the three cases, but the solutions must be selected such that
the initial condition is satisfied. In Secs. we derive the solutions for the propagator
initial condition (A6)), and in Sec. , we derive the solutions for the WKB and hybrid

initial conditions.

1. Hamilton-Jacobi equation

From the zeroth order of Eq. (A5)), we find W satisfies

%—Vf = —H(q, VW), (Al1)
H(q,p) = %p'DP‘l-P‘F(Q)- (A12)

Equation is the Hamilton-Jacobi equation for a Hamiltonian system in a phase space
of doubled dimension 2d, with coordinates (q, p) and Hamiltonian H given by Eq. .
Here, q is the coordinate of the original stochastic dynamical system , and p is the
momentum canonically conjugate to q. The solution of Eq. is obtained by using
the method of characteristics, which aims to find solutions of the form W (q(t),t) along
particular paths (the characteristics) q(t). For the case of Eq. (A1l), the characteristics
turn out to be the projections of trajectories (q(t),p(t)) of the Hamiltonian system into

configuration space. The relationship between the canonical momentum and W is

p=VW(q,t). (A13)
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The characteristics obey the equations

. OH
q= % = F(q) + Dp, (A14)
) OH OF
p= _a_q = _a_qpu (A15)
. , 1
sz-q—H(q,p)zép-Dp' (A16)

The overdots signify the total time-derivative d/dt along the characteristics q(t). In particu-
lar, W(q(t),t) = OW/dt+q-0W/dq. Equations (A14) and (A15) are Hamilton’s equations,
while Eq. is the differential equation satisfied by the classical action.

The Hamiltonian system Eq. and stems from a variational principle, which
sheds light on the physical meaning of the approximation . We define the action func-
tional as the time integral of for arbitrary functions of time (q(7), p(7)),

ﬂMﬂmUHIAth—HMmHM- (A17)

The critical points of this action functional are derived from the Euler-Lagrange equations

of (A17), which yield directly Eqs. (A14) and (A15). Therefore, W is simply the value of the

action functional Z evaluated at its critical points, up to an additive constant. The phase-
space action functional can be converted into a configuration space action functional,
by going from the Hamiltonian formulation to the Lagrangian formulation. Assuming D is
positive-definite and thus invertible, Eq. can be solved for p, yielding p = D7[q —
F(q)]. Using the second equality of Eq. , we can now eliminate p from Eq. ,

yielding the configuration space action

~ 1

Tla(r)] = 5 | (4= Fl@) D' (4= Fla)dr. (A18)

Equation is alternately known as the Onsager-Machlup action functional [28] or the
Freidlin-Wentzell action functional [29]. Because D is positive-definite, 7 > 0, with equality
only achieved along the deterministic trajectories satisfying ¢ = F(q). Hence, 7 is like a
cost functional which penalizes deviations from the deterministic trajectories. In the case
of the propagator initial condition , the subsequent probability density is peaked
along the deterministic trajectory, and deviations away from the trajectory due to noise are

exponentially suppressed. Furthermore, we can now see that the approximation implied by

Eq. (A4) is that only the critical points of the functional (A18]) contribute to the probability
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density; all other paths q(7) are discarded in this approximation. This formulation also
highlights the link with the path-integral formulation of the Fokker-Planck equation [44] [45].

A useful concept for understanding the time evolution of the semiclassical probability
density is the Lagrangian manifold [20]. According to Egs. f, the action
W(q,t) is expressed in terms of families of solutions of a Hamiltonian system that, at any in-
stant of time, lie on the d-dimensional surface in phase space defined by Eq. . Equation
defines a surface which is a Lagrangian manifold, i.e. a surface in phase space on which
the symplectic 2-form vanishes (for more details, see [20]). The time-evolution of W' (and A,
as shown in Sec. is thus directly obtained from the time evolution of a properly selected
initial Lagrangian manifold under the Hamiltonian flow. The initial Lagrangian manifold,
i.e. a d-dimensional surface in phase space containing the initial conditions (q’, p’), must be
selected so that the initial condition is satisfied, i.e. lim; o A(q,t) exp[-W (q,t)/c] = Py(q).
We use primed variables to refer to the space of initial conditions. Though Eq. ex-
plicitly gives the relationship between W and the Lagrangian manifold for times t # 0, it is
ill-defined for any Py(q) for which W is singular in the ¢ — 0 limit. This occurs when the
projection of the initial Lagrangian manifold into configuration space is singular, which is
the case for the propagator and hybrid initial conditions.

For the propagator initial condition (A6]), the initial Lagrangian manifold is the phase-
space surface ¢’ = qp. This means the Lagrangian manifold includes all possible initial
momenta p’ € R% The projection of this Lagrangian manifold into q space is singular
because all points of the Lagrangian manifold project to the same configuration space point,
qo. The solution of Eq. in this case is W(q,t) = R(q,qo,t), where R is Hamilton’s

principal function, given by

R(d,qo. ) = / p(r) - 4(r) — H(q(r), p(r)] dr. (A19)

where (q(7), p(7)) is the Hamiltonian path [i.e. solution of Eqgs. (A14)) and (A15))] going from
qo to q in time t. Equation (A19) clearly follows from Eq. (A16)). Because this solution is

obtained by evolving the surface q' = qo forward in time, each path has a distinct initial

momentum pg. In fact, pg may be expressed in terms of qg, q, and ¢ as

OR

- . A2
5 (@ a0 (A20)

Po =
To prove it, we consider the change in R as we make an infinitesimal change to the initial
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coordinate qg, while keeping the final coordinate q and transit time ¢ fixed. We get

¢ . . OH oH
R(q,qo+5qo,t)—R(q,qo,t)%/ [5p-q+p-5q——-5q——-5p]d7
0 dq op
t oOH
:p-éq}g—/ {p-5q~l—a—-5q]d7
0 q

= —Po - 0qp.

In Sec. , we show that Eq. indeed gives a probability density that satisfies the
initial condition (A6)).

All of our arguments make the assumption that there is only one Hamiltonian path going
from qg to q in time ¢, so that R is single-valued (for all times ¢ > 0). In general, however, at
longer times there are multiple paths connecting qg and q in the same time ¢, with distinct
initial momenta py. Thus, the action becomes multi-valued. This situation also arises in
semiclassical quantum mechanics. In that case, the quantum propagator consists of a sum
of terms of the form of Eq. , one for each branch of solutions, that are stitched together
in such a way that the propagator is continuous [20), 40]. We are not aware of a similar
procedure for the Fokker-Planck equation. Thus, we continue to assume that there is a

unique characteristic for any (qo, q,t) and hence, R is single-valued.

2. Transport equation

Next, we look at the equation arising from the first order terms of Eq. (A5|). These lead
to a transport equation for S;, which can be rearranged into a transport equation for A.

This results in

) 1. 0*W
A——(V-F—G-VW+§D.8—(12)A, (A21)

where we recall A = dA/dt = A/dt+q-V A, with ¢ given by Eq. (A14). We solve Eq. (A21)
by integrating along the characteristics q(t) defined be Eqgs. (A14))—(A16). Rearranging, we

obtain
d(In A)
dt

1 1
= V- (F+DVW) - JV-F+G-VW. (A22)

Equation (A22)) gives the change of A as one moves along a characteristic path from a point

on the initial Lagrangian manifold, with configuration space coordinate q’, to the terminal
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coordinate q in time ¢. By integration, we obtain

In (j((;”g) = —%/ﬂtv -(F+DVW)dr — %/Otv -Fdr + /OtG -VWdr, (A23)
where the integration on the right-hand side of Eq. is carried out along the charac-
teristic path. Equation applies to any initial Lagrangian manifold, but it must be
handled carefully for initial Lagrangian manifolds with a singular projection, such as the
propagator case for which q' = qg. The propagator initial condition is itself singular
at 4’ = qo, and it turns out that A is also singular at this point. We introduce the quantity
Ay = A(qo, 0) as a placeholder for now, and it is properly accounted for in Sec.

To clarify the first term on the right-hand side of Eq. , we introduce the phase
space functions (q(z,t), p(z’,t)). The functions (q(z’,t), p(z’,t)) express the positions and
momenta (q,p) at time ¢ of Egs. and as a function of their initial coordinate
z' on the Lagrangian manifold. We allow for an arbitrary parametrization z’' of the ini-
tial Lagrangian manifold, and we express the initial conditions as (q'(z’),p’(z’)). For the

propagator initial condition, the initial Lagrangian manifold can be simply parametrized as

(d'(z), p'(z) = (qo, 2). (A24)

The functions (q,p) can be expressed using the flow functions (Q(d’,p’,t), P(d',p’,t)),

which map initial conditions (q', p’) to their values Q and P at time ¢ and satisfy Hamilton’s

equations (A14) and (A15)). It is obvious that

a(z,t) = Q(d'(z'),p'(2), 1), (A25a)
p(z',t) =P(d'(Z),p'(Z),t) = VIW(q(Z, 1), 1). (A25b)

From Eq. (A25)), it follows

dq 0Qaq | 0Qap’
0z oq 0z ' op 0z’
dp _ P I 0P O
oz 0q 0z Op' 0z’

(A26a)

(A26b)

Hence, we can compute the time evolution of the Jacobian matrix dq/0z’ by differenti-
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ating Eq. (A26a)) with respect to time. This leads to

doa_ (40Q)oq  (d0Q) o
dtoz’  \dtoq ) oz dt op’ ) 0z’
~ (OF0Q 0P\ od OF 0Q OP "\ op’
B (301 oq Dﬁq’) 0z (6‘q o Dap’) oz
_OFoa_ op
-~ 0q 0z 0z’

OF OPW1 odq
- % 2% |

(A27)
We obtain the second line of Eq. (A27)) by differentiating Eq. (A14) with respect to ¢’ and
p’ and the third line by applying Eq. (A26]). In the fourth line of Eq. (A27)), we use

o0 _ W iq
oz 0q? 0z’

(A28)

which follows from Eq. (A25b]). Next, we find the equation satisfied by D = det dq/07’,

which is
d(In |D|) daq\ [dq\ "
dt "\ @or ) \on V- (F+DVIV), (429)
where we have used Eq. (A27)). From this it follows
D] '
In{— )=/ V- (F+DVW)dr. (A30)
Dy 0

The right-hand side of Eq. (A30)) is the first term that appears in Eq. (A23) up to a factor

of —1/2. In Eq. (A30),

dq

DO = lim
t—0

For the case of the propagator initial condition, q — qg as t — 0, independent of z’, and
therefore dq/0z' = 0 in the limit, implying Dy = 0. This is related to the divergence of A
as t — 0, so we keep Dy as a placeholder here and return to this point in Sec. [A 3] Using

Eq. (A30]), we may now solve Eq. (A23)) for A, giving

det

A<q7 t) = AO V DO ap,

q -1/2 1 [t t
exp [—5 / V -Fdr + / G- pdT] , (A32)
0 0

where we have replaced z' by p’ by virtue of Eq. (A24)).
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3. Normalization of the propagator

To fix the value of the constant Agv/Dy, we must consider the limit ¢ — 0 and impose
the initial condition (A6)). In this limit we have the estimates

a - D ~ Fao) + D', (A33)
1 _
R“Q—t(q—QO)‘D Ya — qo). (A34)
Solving Eq. (A33)) for q, we find

dq
= Dt A35
ap/ ? ( )
det g—; =t detD. (A36)

Hence, the semiclassical propagator in this limit becomes

1

K(q,q0,t = 0) = Ag/ Dy (det D)_m =4 exp _Q_d(q —qo) DN g—qo)|. (A37)

Equation (A37) is a Gaussian approximation to the ¢ function initial condition (A6]), which
approaches the ¢ function in the ¢ — 0 limit. Therefore, the solutions for W and A satisfy

the initial condition, provided that

Ao/ Dy = (2me) ™7, (A38)

so that the Gaussian is properly normalized. The final semiclassical expression for the
propagator is
—1/2

1 0
K(q, qo,t) ~ ————— |det -

1 1 t t
— R t) — = -Fd G pdr|.
(27T€)d/2 € ap, (qa o0, ) 9 /0 \4 T+ A p 7_:|

) (A39)

exp {

4. Solutions for WKB and hybrid initial conditions
a. WKB initial condition

For the WKB initial condition ({AS)), the initial Lagrangian manifold is the surface defined
by

, W

= 5q

(d). (A40)
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We parametrize the Lagrangian manifold by

()0 (a) = (2. 500@)). (Ad1)

and let the phase space functions be (q(z’,t), p(z’,t)). The position coordinate part of this
function is assumed to be invertible, so that the initial configuration space coordinate can

be expressed as qo = qo(q, t). Then, the solution to Eq. (A11]) is [20, [36]

W(a,t) = Wolao(a, ) + R(q, qo(q, 1), 1), (A42)

where R is evaluated along the Hamiltonian trajectory with initial coordinate qo(q,t) and
initial momentum given by Eq. evaluated at qo(q,1).

The solution to the transport equation (A21)) is almost identical to the propagator initial
condition case. The main differences are the parametrization of the Lagrangian manifold
and the specific initial condition A(q,0) = Ag(q). Taking these into account, we

obtain

A(q,t) = Ao(qo(a, ) o exp {—% /0 'V Fdr o+ /O e pdT} . (A43)

q
det 8_q/

The final expression for the semiclassical probability density is

~1/2
exp[ (Wo () —:R % 9, ) /V Fd7'+/ G- pdT}.
A44

P(q,t) = Ao(qo)

a
det —
e aq

b. Hybrid initial condition

For the hybrid initial condition ({A9)), the initial Lagrangian manifold is the surface defined
by

d = qjo, (A45)
oU

= —(q,). A46

Px Ok (Qk) ( )

We parametrize the Lagrangian manifold by the coordinates z’ = (p, q;), and let the phase
space functions be (q(z,t), p(z/,t)). We assume an inverse to q(z’, t) exists, which we denote

(Pro,Qko) = Zo = Zo(d, dy0,t). Then, the solution to the Hamilton-Jacobi equation is

W(q,t) = U(are) + R(q, qo, t), (A47)
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where qo = (470, Aro(q, 40, t)), and the initial momentum of the trajectory terminating at

q at time t is

i (q, o, 1), (A48)

Pro(q, Ao, t) =

Pro(Q, dfo,t) = (CIkO) (A49)

Solving the transport equation is again similar to the propagator case. The quantity
det 0q/07’ still satisfies Eq. (A29)), while in Eq. (A23]) we write A(q’,0) = Ap(q)})A., where

A, is a placeholder constant. We therefore obtain

—-1/2 t
1
deta—(% exp[—ﬁ/V~FdT+/G-pdT].
0

0z
(A50)
Taking the ¢ — 0 limit of the full solution and forcing it to satisfy the initial condition (A9)

A(q,t) = A, \/D_()AO(ko (4,950, 1))

leads to
A\/Dy = (2me) "4 /2, (A51)

Thus, the full semiclassical probability density is

1 aq 71/2
P(q,t) WAO(%O) det@ X
t
exp [—(U(qko) +€R(q, D:) _ %/V -Fdr +/ G- pdT} . (A52)
0

5. Gaussian approximation to the semiclassical propagator: 1D case

For sufficiently small noise and times, it is useful to approximate the semiclassical propa-
gator as a Gaussian centered on the deterministic trajectory q*(¢). Because of the exponen-
tial form of Eq. , for short times and small noise, the most important part to capture
is the part near the absolute minimum of the action R(q, qp,?) = 0, which due to Eq. ,
occurs at the deterministic solution q = q*(t). We illustrate the approximation for the 1D
case for simplicity, so that q — ¢ and F — F', and we let the diffusion tensor D — 1 and

G — 0. Thus, Hamilton’s equations become

¢=F+p, (A53)
) dF
b= _pd_q' (A54>
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We expand K about ¢* as follows:

1 0°R
K(q,q0.t) ~ A(g* =T g — ) A
(¢ q0,t) = Alq )exp[ 2 02 (¢—q") ] : (A55)
where 1/ .
1 dq | 1 dF
Alq) = —— | 24 A A
(") V2me |Op P [ 2 /o dq dT} (456)

In Eq. (A56)), the Jacobian matrix and integral are evaluated along the deterministic trajec-
tory ¢*(t), so that A(q*) is a function of time. Equation (Ab55]) thus constitutes a Gaussian

approximation to the propagator, which would be properly normalized provided that

2R | oq|V? 1 [tdF
Ve =lag| oo 5] ) 50

Next, we show that this is indeed the case.

Recalling that p = OR/dq, we have that
*R_op
d¢>  Oq

We now rewrite Eq. in terms of partial derivatives with respect to the initial conditions
(¢, p'), which we can then compute using the tangent flow equations of Egs. and .

Using the chain rule, we obtain

(A58)

op  Op [(9g\ "
ww_Zr (71 A
dq  Op (019’) (559)
The quantity dp/0p’ satisfies
’F F
ddp __ d&'Foq dFop (AGO)

dtoy — P dg? 0p'  dq Op"’
with initial condition dp/dp’(0) = 1. Along the deterministic trajectory however, p = 0 for
all time, so the first term of Eq. vanishes. Therefore, we obtain
3_5/ = exp {— /Ot £d7:| . (A61)
Combining Eqgs. , , and , we see that Eq. is almost proved. We need
only verify that dq/0p’ > 0 for all time. This quantity satisfies
d dqg dF @ dp

- = — — A62
dtop’  dq op = Op’ (A62)
with initial condition dq/0p’(0) = 0. Using Eq. (A61]), we obtain
dq { /t dF } /t / dr | .,
— =exp —dr exp |—2 —d7r"| dr’. A63
o o dg""] Jy o dg (463)
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Because Eq. ((A63)) consists of products and sums of exponentials, which are all positive, we
have dq/0p’ > 0. Thus, Eq. (A57)) is proved.

Combining the results, we obtain the following expression for the Gaussian approximation

1 0%2R 1 0°R
K =y — = (g — q*)? A64
(¢, q0, 1) \/zmaqg exp[ 2€8q2(q q)l, (A64)
2R tdF t " dF
- T _2 o _2 - "
0 exp { /0 a7 dT:| { /0 exp [ /0 da dr

Appendix B: Solution to the Liouville equation

to the propagator:

where

dT/}_ : (A65)

We derive the solution to Eq. , rewritten here as

orP : opP
5 ¢ 8111(20)% = 2a cos(20) P. (B1)

The method of characteristics seeks a solution P(0(7),7), where the characteristics 0(7)

satisty
dé

dr
and are explicitly given by Eq. (16). Taking the total time derivative of P(#(7), 7) and using

Eq. (B1)), we get

= —asin(26) (B2)

‘i_f — 20 cos(20(7))P. (B3)

We use the identity cos20 = (1 — tan®6)/(1 + tan® ), substitute tan(6(7)) = e~ 2*7 tan 6,
[from Eq. ] and move P to the left-hand side of Eq. , which yields

d(In P) 5 1 — e 17 tan? f,

= _ B4
dr “1 + e~4o7 tan? f, (B4)
Integrating both sides yields
n pP@,7) 1 n eloT 4+ 2 tan? 6, + 6_4;” tan? 0 (B5)
Fo(fo) 2 (1 + tan?6y)

Finally, we solve Eq. for tan 6y and 6 in terms of 6§ and 7, substitute these into Eq. (B5]),
and solve for P(f,7), which yields

62&7

cos2 6 + etomgin? g’

P(9,7) = P (tan™" (e**" tan6)) (B6)
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