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ABSTRACT: We propose a quantum-classical hybrid variational algorithm, the
quantum orbital minimization method (qOMM), for obtaining the ground state and
low-lying excited states of a Hermitian operator. Given parametrized ansatz circuits
representing eigenstates, qOMM implements quantum circuits to represent the
objective function in the orbital minimization method and adopts a classical
optimizer to minimize the objective function with respect to the parameters in ansatz
circuits. The objective function has an orthogonality constraint implicitly embedded,
which allows qOMM to apply a di!erent ansatz circuit to each input reference state.
We carry out numerical simulations that seek to find excited states of H2, LiH, and a
toy model consisting of four hydrogen atoms arranged in a square lattice in the STO-
3G basis with UCCSD ansatz circuits. Comparing the numerical results with existing
excited states methods, qOMM is less prone to getting stuck in local minima and can
achieve convergence with more shallow ansatz circuits.

1. INTRODUCTION
The development of quantum computing has boomed in recent
years. The supremacy of quantum computing is demonstrated
by several groups.1,2 One of the most promising applications for
noisy intermediate-scale quantum (NISQ) devices is the varia-
tional quantum eigensolver (VQE) under the full configuration
interaction (FCI) framework.3−8 FCI is a quantum chemistry
method which discretizes the time-independent many-body
Schrödinger equation numerically exactly. The ground state and
low-lying excited states are calculated via solving a standard
eigenvalue problem, while the problem dimension scales expo-
nentially as the number of electrons in the system. The FCI
framework fits naturally into quantum computing. Quantum
algorithms for ground state eigensolvers under the FCI
framework have been extensively developed in past decades.9−13

Among them, VQE is a quantum-classical hybrid method and
has the shortest circuit depth, which makes it the most widely
applied ground state quantum eigensolver on NISQ devices.
In short, VQE adopts a parametrized circuit as the variational
ansatz for the ground state. Then, the energy function

H is minimized with respect to the parameter θ, where
H is the Hamiltonian operator.
In addition to the ground state, excited states play an

important role in connecting computational results and
experimental observations in quantum chemistry. In this paper,
we propose a hybrid quantum-classical algorithm, named the
quantum orbital minimization method (qOMM), to compute
the excited state energies as well as the corresponding states under
the FCI framework.

Existing approaches for excited states on quantum computers
could be grouped into two categories: the excited state energy
computation and the excited state vector computation.
Excited state energy computation on quantum computers

evaluates the excited state energy without explicitly constructing
the state vector. Two methods, quantum subspace expansion
(QSE)14−16 and quantum equation of motion (qEoM),17 are
representatives of this category. Both of them are based on
perturbation theory starting from the ground state. They first
construct the ground state GS via VQE. Then, they evaluate
the expansion values on single excited states from the ground
state GS , i.e.,

= † †
A a a Ha a

p q

p q

q p p qGS GS1 1
2 2

2 2 1 1 (1)

and

= † †B a a a ap q
p q

q p p qGS GS1 1
2 2

2 2 1 1 (2)

for †ap and ap being creation and annihilation operators. Once
these expansion values are available, QSE solves a generalized
eigenvalue problem of matrix pencil (A, B) and obtains the
refined ground state energy and low-lying excited state energies
on the perturbed space of GS . qEoM adopts these expansion
values into the equation of motion expression and obtains
the low-lying excited state energies. Double excitations and
higher order excitations from the ground state could be further
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evaluated and included to improve the accuracy of QSE and
qEoM. However, including more excitations leads to a much
higher computational cost.
Excited state vector computations include a wide spectrum of

methods. The folded spectrummethod18 folds the spectrum of a
Hamiltonian operator via a shift-and-square operation, i.e.,
H H I( )2, where λ is a chosen number close to the desired
excited state energy. Then, H I( )2 is used as the operator in
the VQE method, and an excited state with the energy closest to
λ is obtained via the optimization procedure in VQE. The
witness-assisted variational eigenspectra solver19,20 adopts an
entropy term as the regularizer in the objective function to keep
the minimized excited state close to its initial state, where the
initial state is set to be an excitation from the ground state. The
quantum deflation method21,22 adopts the overlapping between
the target state and the ground state as a penalty term in the
objective function to keep the target state as orthogonal as
possible to the ground state. The extension to more than one
excited state in the quantum deflationmethod is straightforward.
All of these methods above have their classical algorithm
counterparts. On the other hand, the following two methods use
a unique property of quantum computing; i.e., all quantum
operators are unitary and orthogonal states after the actions of
quantum operators are still orthogonal to each other. Subspace
search VQE (SSVQE)23 and multistate contracted VQE
(MCVQE)24 apply the same basic ansatz. They first prepare a
sequence of non-parameterized mutually orthogonal states, 1 ,

2 , ..., K forK excited states. A parametrized circuitU is then
applied to these states. The unitarity ofU (implemented on a
quantum computer) ensures thatU U, ..., K1 are mutually
orthogonal. Hence, we could minimize the objective function

†
U HU

k

k k

(3)

to obtain approximated ground states and excited states. The
energies associated withU U, ..., K1 are usually not ordered.
SSVQE further introduces amin−max problem to obtain a specific
excited state. Also, in the SSVQE paper, a weighted objective
function is employed to preserve the ordering, which will be
the version we investigate numerically in our paper below. The
MCVQE approach enriches the ansatz by introducing a unitary
matrix applied across states in a classical post-processing step, i.e.,

= U Vk k for Vk being the k( , )-th entry of a unitary
matrix V. Hence, a standard eigenvalue problem is solved as the
post-processing in MCVQE to obtain V.
In this paper, we propose to obtain the excited state vector

using the objective function in the orbital minimization method
(OMM)25,26

=
= =

f H H( , ..., ) 2
K

i

K

i i

i j

K

i j j i1
1 , 1

(4)

We refer to our method as the quantum orbital minimization
method (qOMM) throughout this paper. An important
property of eq 4 is that, even though the orthogonality con-
ditions among i ’s are not explicitly enforced, the minimizer
of eq 4 consists of mutually orthogonal state vectors. For
most other methods, the orthogonality condition is explicitly
proposed as a constraint in the optimization problem. The

implicit orthogonality property allows us to adopt a di!erent
ansatz (with regard to either the numerical parameter values, the
structure of the ansatz, or both) for each excited state. In this
paper, the variational ansatz class that we use is of the form

=
=

U Vk

K

k
1 (5)

where 1 , ..., K are initial states,U U, ...,
K1
are parametrized

circuits with θ1, ..., θK being the parameters, and Vk is the
( k, )-th entry of an invertible matrix V that is applied during a
classical post-processing step. Such an expression is more
general than those used in other excited state vector methods,
which typically either apply the same circuitU to all input states
or do not apply the classical post-processing matrix V. Another
feature of eq 4 is that the objective function does not include any
hyper-parameter (unlike, e.g., the deflation approach), which
makes the method easy to use in practice without parameter
tuning. Furthermore, this approach shares the same advantages
over QSE and qEoM as SSVQE and MCVQE. Namely, the
excited states in qOMM are encoded into the objective function
of an optimization problem and not as linear combinations of
single and double excitations above the ground state in a post-
processing step. This allows the method to (1) compute excited
states for which triple and higher excitation terms have a non-
negligible contribution without calculating higher order reduced
density matrices and (2) treat the ground and excited states on
the same footing.
Notice that the objective function (eq 4) includes the

evaluation of the state inner product with respect to the
Hamiltonian operator and the state inner product, i.e., H

i j

and i j , respectively. In other existing excited state methods,
neither of these two are evaluated directly. (In the deflation
method,21,22 the absolute value of the inner product, i j , is
evaluated, while we need the actual value of the inner product
without taking the absolute value.) Given our variational ansatz,
we construct quantum circuits to evaluate both inner products,
which are essentially inspired by the Hadamard test. When the
evaluation of eq 4 is available on a quantum computer, we can
adopt gradient-free optimizers to minimize the objective
function with respect to parameters, θ1, ..., θK.
Finally, we include a sequence of numerical results to

demonstrate the e"ciency and robustness of the proposed
method. We test the following chemistry systems using the
proposed method on quantum simulators: H2 and LiH at their
equilibrium configurations, H2 at a stretched bond distance of
twice the equilibrium distance, and a toy model consisting of
four hydrogen atoms arranged in a square at near-equilibrium
distances and a stretched bond distance configuration.We observe
that qOMM has two major benefits compared to algorithms such
as weighted-SSVQE (in this paper, when we refer to SSVQE, we
implicitly mean the weighted version of SSVQE that uses one
optimization step for finding multiple eigenvalues simultaneously)
that enforce the orthogonality of the input states at every
optimization step. (1) Enforcing the mutual orthogonality of the
input states through the overlap terms allows for greater flexibility
in the choice of ansatz applied to each input state, as well as greater
flexibility in the choice of input states. The circuit applied to each
input state must be identical in the SSVQE framework in order to
enforce orthogonality, whereas qOMM allows us to apply a
di!erent ansatz circuit to each input state. (2) The tendency to get
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stuck in local minima, while not eliminated entirely, is diminished
considerably. The first benefit is important because choosing a
suitably expressive ansatz for excited states is often more di"cult
than the ground state VQE problem. In practice, this means that
one is often able to use a more shallow and less expressive ansatz
circuit, a feature that is crucial for applications on NISQ devices.
The rest of the paper is organized as follows. Section 2

illustrates the circuits we use to evaluate the inner products. The
overall method is discussed in section 3. In section 4, we apply
the method to various chemistry molecules to demonstrate the
e"ciency of the proposed method. Finally, section 5 concludes
the paper and discusses future work.

2. INNER PRODUCT CIRCUITS
In the objective function of qOMM, the inner product of two
states and the inner product of two states with respect to an
operator are complex numbers. Both the real and imaginary
parts are explicitly needed to construct the objective function.
If two states are identical, then the inner products can be e"-
ciently evaluated by the well-knownHadamard test. We propose
quantum circuits for the evaluation of the inner products for the
case in which they are di!erent in this section.
To simplify the notations, we consider evaluating and
H , where and are given by a unitary circuit acting

on 0 , i.e., = U 0 and = U 0 . Given the variational

ansatz, the inner product = †U U0 0 can be viewed
as the inner product of 0 with respect to the operator

= †
O U U . In principle, the transpose of the ansatz circuit can
be constructed. After the ansatz circuit is compiled into basic
gates, the transpose of the circuit is the composition of the
transposed basic gates in the reverse ordering. Hence,
could then be evaluated using theHadamard test, which requires
the controlled ansatz circuit and the controlled transpose of
the ansatz circuit. Instead, we adopt an idea inspired by the
Hadamard test, which can be applied to evaluate H

without controlled transpose of the ansatz circuit. In the
following, we discuss such two quantum circuits evaluating the
inner products in detail.
2.1. Evaluation. For complex-valued states and
, the inner product is also a complex number. The

evaluation of is divided into the evaluations of the real and
imaginary parts. We will introduce the circuit for evaluation of
the real part of in detail, and the circuit for the imaginary
part could be constructed analogously.
Figure 1 illustrates the precise quantum circuit used to

evaluate the real part of . Here we list expressions at all five
stages, as shown in the figure

= +H I( ) 0 0 1
2
( 0 1 ) 0

(S1)

+ = +C U 1
2
( 0 1 ) 0 1

2
( 0 0 1 )

(S2)

+ = +X I( ) 1
2
( 0 0 1 ) 1

2
( 1 0 0 )

(S3)

+ = +C U 1
2
( 1 0 0 ) 1

2
( 1 0 )

(S4)

+ = +

+

H I( ) 1
2
( 1 0 ) 1

2
( 0 ( )

1 ( )) (S5)

where H is the Hadamard gate, X is the Pauli-X gate, I is the
identity mapping, andC U is the controlledU gate. Conducting
the measurement on the ancilla qubit, we have the probability
measuring zero being

=

= + +

= +

(measurement 0)
1
4
( )( )

1
2

1
2
Re

(6)

where ·Re( ) denotes the real part of the complex number. Hence,
if we execute the quantum circuit as in Figure 1 for M shots and
count the number of zeros, the Re could be well-
approximated givenM (which will scale as ( )12 for some target
accuracy ϵ due to statistical sampling noise) is reasonably large.
The imaginary part of could be estimated in a similar

way. Notice that the real part in eq 6 comes from +
. If either or is replaced by or , then the

real part in eq 6 corresponds to the imaginary part of the inner
product instead. One way to implement the replacement is to
add a phase gate on the ancilla qubit after stage eq 2. The
resulting quantum circuit is as that in Figure 2 where the light
blue dashed box is enabled. We then need to execute the circuit
for another M shots to obtain the approximation of Im .
In addition to variational ansatz = U 0 and = U 0 ,

we could extend the quantum circuit to variational ansatz
= U Q 0 and = U Q 0 , where Q is a common

quantum circuit preparing the initial state. If such ansatzes are
adopted, we could enable the light pink dashed box in Figure 2
such that the circuitQ is applied on 0 as a common circuit. The

Figure 1. Inner product circuit.

Figure 2. Extended inner product circuit.
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real and imaginary parts of the inner product are evaluated
similarly as before.
2.2. H Evaluation. The Hamiltonian operator

considered in this paper is under the FCI framework and admits
the form

= +
=

†

=

† †
H h a a v a a a a

p q

N

pq p q

p q r s

N

pqrs p q s r

, 1 , , , 1

orb orb

(7)

where hpq and vpqrs are one-body and two-body integrals,
respectively. The Hamiltonian operator H , in general, is not a
unitary operator. Hence, it cannot be represented by a quantum
circuit directly. On the other hand, the excitation operators, †a ap q

and † †a a a ap q s r , are unitary and can be represented by quantum
circuits. The detailed circuits of these excitation operators
depend on the encoding scheme. All methods proposed in this
paper do not rely on the encoding scheme. The value H is
then calculated as a weighted summation of circuit results

= +
=

†

=
† †

H h a a v

a a a a

p q

N

pq p q

p q r s

N

pqrs

p q s r

, 1 , , , 1

orb orb

(8)

Thus, it su"ces to consider circuits for the evaluation of
U , whereU denotes a general unitary operator.
Figure 3 illustrates the circuit for U . This circuit can be

understood in the same way as the circuit of ⟨ψ|ϕ⟩. The value
U can be explicitly written as

= =†U U UU( 0 )( 0 ) (9)

where the construction circuit for isUU . Hence, Figure 3 is
essentially the circuit in Figure 1 and Figure 2 with a modified
constructing circuit for .

3. QUANTUM ORBITAL MINIMIZATION METHOD
The orbital minimization method originates in the field of
density functional theory (DFT). The minimization problem
admits the following linear algebra form

* *
◊

I X X X HXmin tr((2 ) )
X

N K (10)

where X is a matrix with each column denoting a state vector,H
is the Hamiltonian matrix, I is the identity matrix of size K × K,
and tr(·) denotes the trace operator. When H is Hermitian
negative definite, all local minima of eq 10 are of the form27

=X QV (11)

where ◊Q N K are K eigenvectors of H associated with the
smallest K eigenvalues and ◊V K K is an arbitrary unitary
matrix. Substituting eq 11 back into eq 10, we find that all of
these local minima are of the same objective value and they are
global minima with minimizers consisting of mutually
orthogonal vectors. This property has been proven analyti-
cally.27 Unlike many other optimization problems for solving the
low-lying eigenvalue problem, OMM as in eq 10 does not have
any explicit orthogonal constraint and the orthogonality in eq 11
could be achieved without any orthogonalization step. This
property is the key reason for us to investigate the application of
eq 10 in quantum computing, where explicit orthogonalization is
di"cult to implement in the presence of hardware and envi-
ronmental noise. Furthermore, despite the fact that minimizing
eq 10 is a non-convex problem, its property that all local
minimizers are also global minimizers which encode mutually
orthogonal vectors in the case where we are minimizing over all
possible vectors27 (absent the constraint of vectors expressable
as quantum circuits) makes it a compelling objective function to
investigate in the quantum setting. The numerical simulations in
this work serve to provide some insight into the extent to which
these favorable properties in the classical setting carry over to
the quantum setting where we are constrained by vectors
expressable as quantum circuit ansatzes.
In the quantum computing setting, each column of X is

represented by the ansatz = Ui ii
. By the nature of quantum

computing, if quantum error is not taken into account, i is
always of unit length for all i. Hence, the 2I − X*X term in eq 10
has one on its diagonal. Substituting the variational ansatz into
eq 10, we obtain the optimization problem for our quantum
excited state problem

gmin ( , ..., )K
, ...,

1
K1 (12)

for

=

| |

=

†

=

† †

g U HU

U U U HU

( , ..., )
K

i

K

i i

i j

i j

K

i j j i

1
1

, 1

i i

i j j i

(13)

If the variational space is rich enough such that vectors in
QV as in eq 11 can be well-approximated by { }=U i i

K
1i
, then

qOMM can achieve a good approximation to the global
minimum of its linear algebra counterpart (eq 10). In practice,
if we obtain the global minimum value of eq 10 for qOMM
(though the value is not known in advance), then we are
confident that the ansatz is rich enough and the optimizer works

Figure 3. Extended inner product circuit with a unitary gate.
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perfectly in finding the global minimum for parameters θ1, ..., θK.
However, we lack the theoretical understanding of the energy
landscape of eq 12. In part, the dependence of g on θ1, ..., θK, like
that in the deep neural network, is highly non-linear and non-
convex. It could be analyzed for some simple ansatz circuit.
However, for most complicated circuits, the analysis remains
di"cult. On the other hand, from the linear algebra point of
view, when the variational space is rich enough, we could view
the problem as optimizing the vectors X directly in eq 10. The
nature of a quantum computer poses unit length constraints
on each column of X. Adding extra unit length constraints
would dramatically change the energy landscape of the original
problem (eq 10). We defer the theoretical understanding of
eq 12 to future work. In this paper, we focus on the numerical
performance of eq 12.
For numerical optimization of the objective function g, note

that its gradient with respect to a parameter θiα is given by

=
†

=

†
†

=

† †

g U

HU

U

U U HU

U U j U H

U

d
d

2Re
d

d

2Re
d

d

2Re
d

d

i

i

i

j

j

j i

K

i

i

j j i

j

j i

K

i j

i

i

1

1

i

j

i

j j i

i j j

i

(14)

where θiα is the α-th parameter in θi. From eq 14, we notice that
the gradient evaluation requires an e"cient quantum circuit for
Ud

d
i

i
. The existence of such quantum circuits is ansatz dependent.

Assume that we can evaluate eq 14 for all parameters. Then, the
update on parameters follows a gradient descent method as

=+ g( )t t t( 1) ( ) ( ) (15)

for θ(t+1) and θ(t) being all parameters at (t + 1)-th and (t)-th
iteration, respectively, and τ is the step size. Since all evaluations
of quantum circuits involve randomness, in practice, this
amounts to using the stochastic gradient descent method.
Other advanced first order methods recently developed in deep
neural network literature, e.g., ADAM, AdaGrad, coordinate
descent method, etc., could be used to accelerate. These
methods could achieve better performance than the vanilla
stochastic gradient descent method.
When the gradient circuit is not available, we can adopt

zeroth-order optimizers to solve eq 12. In this work, we use
L-BFGS-B28 as the optimizer, which uses a two-point finite
di!erence gradient approximation and thus does not require

explicit implementation of the circuit for Ud

d
i

i
. We find this

optimizer to work well in the noiseless simulations we consider
here, but we note that other promising candidates for noisy
simulations and experimental calculations exist, which could also
be used for our proposed objective function. In particular, using
the simultaneous perturbation stochastic approximation (SPSA)
for small molecule VQE calculations has been demonstrated
experimentally on superconducting hardware29 and a quantum
natural gradient version of SPSA also exists.30
When the optimization problem is solved, we will obtain a

set of parameters θ1, ..., θK such that U U, ..., K1 K1

approximate vectors in QV as in eq 11. Numerically, we find
that V is very close to an identity matrix, while a post-processing
procedure still improves the accuracy of the approximation.
The post-processing procedure is slightly di!erent from that in
MCVQE.We construct twomatrices with their (i, j)-th elements
being

= | = |† †
A U HU B U Uand
ij i j ij i ji j i j (16)

Then, a generalized eigenvalue problem with matrix pencil
(A, B) is solved as

=AR BR (17)

whereR denotes the eigenvectors andΛ is a diagonal matrix with
eigenvalues of (A, B) being its diagonal entries. The desired
eigenvalues of H are in Λ, and the corresponding eigenvectors
admit = U Rj

K
j ji1 j

for i = 1, ..., K. The eigenvector, which is

the excited state of H , can be explicitly constructed as a linear
combination of unitary operators31 on a quantum computer.
qOMM has several unique features compared to existing

excited state vector methods. The targets of the folded spectrum
method18 and witnessing eigenspectra solver19,20 are di!erent
from that of qOMM. The quantum deflation method21,22
addresses the excited states one by one, and the optimization
problems therein are of di!erent di"culty than that in qOMM.
The most related excited state vector methods to qOMM are
SSVQE and MCVQE. Since SSVQE and MCVQE are very
similar to each other, we focus on the di!erence among qOMM
and SSVQE in this paper. Both the qOMM and weighted
SSVQE algorithms23 take a set of input states and seek to
simultaneously optimize the parametrized circuit and obtain the
low-lying eigenvalues and eigenvectors of the Hermitian
operator. Both methods achieve their goal via solving a single
optimization problem. There are two major di!erences between
them. The first one is how the mutual orthogonality of the
eigenvectors is enforced. The construction of the weighted
SSVQE objective function ensures that the set of states being
evaluated is mutually orthogonal throughout optimization
iteration. The proposed qOMM implicitly embeds this
constraint into the objective function such that the states
being evaluated are only guaranteed to be mutually orthogonal
at the global minimum. The first di!erence leads to the second
major di!erence. SSVQE adopts the ansatz circuits for di!erent
states that must admit a mutual orthogonal property. Hence,
they restrict their ansatz circuits to be a set of identical param-
etrized circuits acting on mutually orthogonal initial states.
qOMM does not constrain the ansatz circuits in this way.
qOMM could adopt as its set of parametrized circuits any
combination of ansatz circuits that have been tested in the
literature, e.g., ansatz circuits inMCVQE24 and SSVQE,23 ansatz
circuits in the deflation method,21,22 etc. In addition to these
ansatz circuits, qOMM could also adopt other ansatz circuits
that have not been tested by excited state methods. In this work,
we adopt UCCSD32 as our main ansatz circuit so that the
particle number is preserved throughout.

4. NUMERICAL RESULTS
We present the numerical results of our proposed method
obtained from a classically simulated quantum computer. We
apply it to the problem of finding low-lying eigenvalues of the
electronic structure Hamiltonian for near-equilibrium config-
urations of two di!erent molecules as well as the toy model
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consisting of four hydrogen atoms arranged in a square lattice.
The numerical tests in this section serve to explore what
advantages or disadvantages may arise for each of the qOMM
and weighted SSVQE approaches (using weight vectors of the
form [n, n − 1, ..., 1] for finding n states) in di!erent situations.
Section 4.1 presents the results for H2 and the hydrogen square
model obtained from noiseless simulations. Section 4.2 presents
the results obtained from simulating H2 with a depolarizing
noise model. Section 4.3 presents the results for LiH obtained
from noiseless simulations.
All codes for these simulations are implemented using the

Qiskit33 library. The electronic structure Hamiltonians were
generated using molecular data from PySCF34 in the STO-3G
basis and mapped to qubit Hamiltonians using the Jordan−
Wigner mapping for the noiseless simulations and the Parity
mapping for the noisy simulations. The relative accuracies of the
results for both methods are calculated by comparing them to
their numerically exact counterparts obtained by numerically
exact diagonalization of the Hamiltonians. Circuits involved in
noiseless qOMM simulations were conducted using Qiskit’s
StateVector simulator. Circuits involved in noiseless SSVQE
simulations were conducted using Qiskit’s QasmSimulator in
conjunction with theAerPauliExpectationmethod for computing
expectation values in order to improve runtime performance.
Both of these methods produce ideal, noiseless results.
Simulations for finding the energy levels of H2 were performed
at an interatomic distance of 0.735 Å, those of LiH were
performed at an interatomic distance of 1.595 Å, and those of the
hydrogen square lattice model were performed at an interatomic
distance of 1.23 Å. Simulation results for the hydrogen square
model and H2 at stretched bond distances can also be found in
Appendix A. For the LiH simulations, we freeze the two core
electrons to reduce the problem size from 12 qubits to 10 qubits.
The set of initial states for both algorithms and all molecular

Hamiltonians were chosen to be the Hartree−Fock state and
low-lying single-particle excitations above it. For example, if we
wish to find three energy levels for four-qubit H2, in the Jordan−
Wigner mapping, this would be the set {|01⟩α|01⟩β, |01⟩α|10⟩β, |
10⟩α|01⟩β}. For LiH, this would be the set {|00001⟩α|00001⟩β, |
00001⟩α|00010⟩β, |00010⟩α|00001⟩β}, where the subscripts α
and β denote the spin group [in the Qiskit implementation of n-
qubit basis states in the Jordan−Wigner representation, the first
n
2
qubits encode spin-up (α) and the second n

2
qubits encode

spin-down (β); thus, we have chosen these three basis states
because they are elements of the two-particle, spin magnet-
ization Sz = 0 subspace of the full 2n-dimensional Fock space].
Given that the UCCSD32 ansatz preserves the numbers of spin-
up and spin-down, the above choice of initial states constrains
these variational quantum algorithms to search only the desired
subspace, lessening the computational di"culty and producing
physically meaningful results at the same time. For this reason,
UCCSD is our ansatz of choice for these simulations. If we wish
to find only two energy levels, we would omit the highest-energy
state from the set. This choice of the set of states allows us to
study two di!erent types of algorithm initializations: one in
which all of the ansatz parameters are randomly sampled
according to a uniform distribution on [−2π, 2π) and another
one in which they are all set to zero. With the random parameter
initialization, we can study the robustness of the algorithms with
respect to their starting point in the parameter space. With the
“zero vector” initialization, the UCCSD ansatz circuit is
initialized to the identity and the states after the initial ansatz

circuit application remain the Hartree−Fock state and low-lying
single-particle excitations above the Hartree−Fock states. For
most molecules, these states from Hartree−Fock calculation are
good approximations of the ground state and low-lying excited
states under FCI. The optimization from the “zero vector”
initialization could be viewed as a local optimization and
improves the performance of optimizers upon the random
initialization. In Qiskit’s implementation of ansatz circuits such
as UCCSD, one can increase the expressiveness of the ansatz by
repeating the corresponding quantum circuit block pattern r
times, which comes at the cost of both the circuit depth and the
number of variational parameters increasing by a factor of r. In
this paper, we refer to an ansatz circuit that consists of the
UCCSD circuit block pattern repeated r times as r-repetition
UCCSD (or simply r-UCCSD). We run both algorithms for
several di!erent numbers of repetitions in order to account for
the fact that the necessary ansatz expressiveness for convergence
is not known a priori. Such a study allows us to explore the
dependence of convergence success on the circuit depth for each
algorithm.
When using a random initialization, we run each algorithm

10 times for each setting. In sections 4.1 and 4.3, for each setting,
we plot one run roughly representative of the average convergence.
In the noisy results in section 4.2, we plot the run which obtained
the lowest objective function convergence. The complete set of all
10 runs for all of these simulations is plotted in the appendix, and
their convergence success rates are summarized in Table 1 for
completeness. When using the “zero vector” initialization, we run
each algorithm only once. Running the algorithm multiple times
for this initialization is neither necessary nor useful in the absence
of noise because the outcome is deterministic for a given initial
point.

4.1. H2 and Hydrogen Square.We begin by presenting the
results for the four- and eight-qubit systems we consider here:
H2 and the hydrogen square model. Figure 4 illustrates the
convergence of the objective function for each algorithm when
attempting to calculate the first three energy levels of the H2
molecule at the equilibrium bond distance.
Figure 4b demonstrates how qOMM and SSVQE both

converge to the global minimum, but notably, SSVQE cannot do
so with just one-repetition UCCSD, requiring two repetitions in
order to converge to within a relative accuracy of 10−5. The
success rate is further reported in Table 1. Figure 4a illustrates an
attempt to solve the same problem, except the ansatz parameters
are all initialized to zero. In this instance, we see that qOMM
converges more quickly by a factor of roughly 5 compared to its
random initialization counterpart, while SSVQE gets stuck in a
local minimum and does not converge regardless of the ansatz
circuit depth used. In both figures and all later convergence
figures in this paper, we depict the convergence curve as the
relative error (defined as | |

| |
f f

f
exact measured

exact
) against the number of the

objective function evaluations, which is considered the most
expensive operation in VQE-type algorithms. The L-BFGS-B
implementation used in this paper uses a two-point finite
di!erence method such that each parameter is perturbed slightly
from a given reference point common to all of them. Thus, for an
n-parameter objective function, n + 1 function evaluations are
required for each parameter update step in order to estimate the
gradient. Hence, in all convergence figures, we observe stair-like
curves of width n + 1.
Figure 5 illustrates the convergence results for the hydrogen

square lattice at an interatomic distance of 1.23 Å. We can see
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from these figures that, similarly to H2, the di!erence between
SSVQE and qOMM is primarily in the number of UCCSD
repetitions needed to converge. When calculating two states,
qOMM requires 2-UCCSD, whereas SSVQE requires 3-UCCSD.
When calculating three states, qOMM still requires only 2-UCCSD,
whereas SSVQE requires 4-UCCSD. These observations are further
tabulated in Table 1.
4.2. Noisy H2 Simulations. We now run H2 simulations in

the presence of a classically simulated noise model on Qiskit’s
AerSimulator. Each one-qubit gate in the circuit is modeled as
being accompanied by a local depolarizing channel with some
probability of error perror. Two-qubit gates are accompanied by a

tensor product of two local depolarizing channels acting on each
qubit. No error mitigation strategies are employed. We use the
Parity mapping in order to use symmetry considerations to
reduce the H2 Hamiltonian to a two-qubit representation.35
We construct ansatzes for each algorithm using the circuit block
pattern shown in Figure 6.
This pattern can be repeated an arbitrary number of times to

construct increasingly expressive ansatzes in the same way that
the number of UCCSD repetitions was varied in the noiseless
simulations. TheQiskit compiler is used to compile all circuits to
the set of basis gets consisting of Rz, Ry, CNOT, X , and the
identity. For all problem instances, we use theminimum number

Table 1. Success Rate of Given Problem Instances Converging to within a Relative Accuracy of 10−5 for a Given Number of
UCCSD Repetitions Using a Randomized Ansatz Parameter Initialization

UCCSD repetitions

molecule algorithm 1-rep 2-rep 3-rep 4-rep 5-rep 6-rep 7-rep
H2 (0.735 Å) qOMM (3 states) 100%

SSVQE (3 states) 0% 70% 100%
H2 (1.47 Å) qOMM (3 states) 100%

SSVQE (3 states) 0% 90% 100%
hydrogen square (1.23 Å) qOMM (2 states) 0% 100%

qOMM (3 states) 0% 100%
SSVQE (2 states) 0% 100%
SSVQE (3 states) 0% 100%

hydrogen square (2.46 Å) qOMM (2 states) 0% 90%
qOMM (3 states) 0% 100%
SSVQE (2 states) 0% 100%
SSVQE (3 states) 0% 100%

LiH (1.595 Å) qOMM (2 states) 0% 100%
qOMM (3 states) 0% 100%
qOMM (4 states) 100%
qOMM (5 states) 100%
qOMM (6 states) 100%
qOMM (7 states) 100%
SSVQE (2 states) 0% 80%
SSVQE (3 states) 0% 0% 70%
SSVQE (4 states) 0% 100%
SSVQE (5 states) 10% 100%
SSVQE (6 states) 10% 100%
SSVQE (7 states) 60% 100%

Figure 4. Convergence (noise-free) of the relative error | |
| |

f f
f

i exact

exact
of qOMM and SSVQE for three H2 states at an interatomic distance of 0.735 Å.
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of repetitions necessary to converge in the absence of noise in
order to ensure that we are not simply measuring the ability of
the ansatz to represent the global minimum. This corresponds to
one repetition for qOMM and two repetitions for SSVQE. We
use COBYLA as the classical optimization subroutine. This
optimizer is more suitable for noisy simulations than L-BFGS-B
due to its lack of a need to calculate gradient information. 106
circuit samples are used to evaluate all inner product terms and
expectation values. perror is set to 10−3. Both SSVQE and qOMM
are run 10 times with randomly initialized parameters. The
convergence of the runs which achieved the lowest objective
function values is given in Figure 7. The results for all 10 runs

are given in Appendix A. We can see from these figures that
both SSVQE and qOMM demonstrate a robustness to noise,
although they do not achieve the same accuracy as the noiseless
results.

4.3. LiH.We now present the results for the 10-qubit system
we consider here: LiH. Figure 8 illustrates the convergence of
the objective function for both algorithms with various UCCSD
ansatzes when calculating up to the first three energy levels.
We can see from Figure 8c that, when the ansatz parameters are
randomly initialized, both algorithms demonstrate the ability to
converge within an accuracy of 10−5 but require two-repetition
UCCSD to do so. From Figure 8a, we can see that, when all of
the parameters are initialized to zero, both algorithms converge
to within a relative accuracy of 10−5 much more quickly
than their randomly initialized counterparts. Notably, qOMM
requires only one-repetition UCCSD to achieve this con-
vergence, while SSVQE requires two repetitions. When three
states are calculated, qOMM can achieve a convergence below
10−5 with two-repetition UCCSD, whereas SSVQE requires

Figure 5. Convergence (noise-free) of the relative error | |
| |

f f
f

i exact

exact
of qOMM and SSVQE for the hydrogen square model at an interatomic distance of

1.23 Å using a random parameter initialization.

Figure 6. Base circuit block pattern used for noisy H2 simulations.

Figure 7. Convergence of the relative error | |
| |

f f
f

i exact

exact
of qOMM and SSVQE for H2 at an interatomic distance of 0.735 Å, where each circuit gate is

modeled as having a probability of local depolarizing error perror = 0.001.
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three repetitions. From Figure 8b we can see that when the
ansatz parameters are all initialized to zero, both algorithms
quickly converge to the global minimum. Notably, qOMM
requires only 1-UCCSD repetition with this initialization. When
attempting to find larger numbers of states, we can see from
Table 1 that qOMM can converge with 2-UCCSD for all
numbers of states considered, whereas SSVQE requires an
increasing number of ansatz repetitions to find increasing
numbers of states. In the following, we discuss the numerical
results on LiH mainly from three perspectives: convergence
plateau, initialization, and ansatz circuit depth.
Convergence Plateau. In many of the LiH convergence plots

we show here, both qOMM and SSVQE initially converge at a
rapid rate but then hit a plateau and stall the convergence until
they escape from the “bad” region of the energy landscape.
As long as the algorithm escapes from the “bad” region, the
convergence rate resumes being rapid. These “bad” regions of
the energy landscape (regardless of what their nature may be)
seem to be the main obstacle for the convergence of both
algorithms, which is more severe to SSVQE. Studying this
apparent feature of the energy landscape may provide some
insight as to how both algorithms may be improved and what
limitations are inherent to the construction of the cost functions.

From a numerical linear algebra point of view, such a con-
vergence behavior is not very surprising. The objective function
in SSVQE is convex, while with the consideration of the
orthogonality constraint and the parametrization of the ansatz
circuits, the energy landscape of SSVQE becomes non-convex.
On the other hand, the objective function of qOMM, by itself, is
non-convex but has no spurious local minima.27,36,37 When the
parametrization of the ansatz circuits is taken into consideration,
the energy landscape of qOMM is non-convex and could have
spurious local minima. For non-convex energy landscapes, usual
optimizers, including L-BFGS-B, are e"cient in a neighborhood
of local minima whereas, around strict saddle points, without
second-order information, the optimizers could stall there for a
long time. From a practical point of view, we can further
investigate the convergence of each eigenvalue. Since the issue is
more severe for SSVQE, we focus on the SSVQE rather than
qOMM. The construction of the SSVQE objective function
allows us to obtain the estimated values for each eigenvalue at
every function evaluation (in addition to the objective function
as a whole) at a negligible additional computational cost. This
allows us to gain some intuition as to why the SSVQE objective
function convergence is observed to plateau in many of the LiH
runs before steeply converging below a relative accuracy of 10−5.

Figure 8. Convergence of the relative error | |
| |

f f
f

i exact

exact
of qOMM and SSVQE for LiH.
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In Figure 9 and Figure 10, we plot the eigenvalues and their
relative accuracies, respectively, for one of the ten randomly
initialized SSVQE runs. We can see from Figure 9 that while E0
converges rapidly, the convergence of E1 and E2 plateau and
do not converge for many more function evaluations. From
Figure 10 we can see that E1 does not escape from its plateau
until the accuracy of E0 is su"ciently decreased. This is followed
by the accuracies of E0 and E1 increasing together. E2 does not
escape from its plateau until the accuracies of E0 and E1 are both
su"ciently decreased, after which the accuracies of all three
energy levels collectively increase, allowing the objective
function to converge to its global minimum. While we only
illustrate this for one of the ten runs, we observe that this
qualitative behavior is typical for the other nine runs. Besides the
non-convexity reason from objective functions, other reasons for
this behavior could be related to two aspects of the weighted
sum nature of the SSVQE algorithm. First, the same ansatz
circuit is applied to all input states, meaning any change in the
parameters has a direct impact on all the expectation value terms
simultaneously. Second, the energy levels contribute unequally
to the overall cost function, with the lower energy levels
contributing more than the higher energy levels, an e!ect that
becomes more pronounced due to the presence of the weight
vector. Because qOMM enforces orthogonality (at the global

minimum) through its overlap terms, the energy expectation
value terms are associated with di!erent independent parameter
values. This means that changes in parameters that directly a!ect
one of the energy expectation value terms in eq 4 do not directly
change the others. They only change the overlap terms. This
a!ords qOMM a flexibility that allows it to spend much fewer
iterations escaping from the “bad” landscape regions. From
Figure 8b and Figure 8a we see that starting with a good initial
guess can reduce this e!ect, resulting in significantly improved
convergence.
We also briefly note that although we have chosen to measure

convergence speed in terms of the number of calls to the
objective function, another valid measure of convergence speed
would be the total number of optimization iterations if it can be
assumed that one can parallelize multiple calls to the objective
function. This is because one optimization iteration can require
multiple calls to the objective function. In the noiseless results
we have presented here, each optimization iteration of the
L-BFGS-B optimizer requires n+1 calls to the objective function
for n total parameters. For problem instances we have presented
here where qOMM has more parameters than SSVQE, the
speedup of qOMM over SSVQE would be even greater by this
measure. For instance, in Figure 8d, qOMMwith 2-UCCSD has
144 total parameters and SSVQE with 3-UCCSD has 72.

Initialization. Initialization plays an important role in the
convergence for both qOMM and SSVQE. Even for the
corresponding VQE ground state problem with one-repetition
UCCSD, as in Figure 11, random parameter initialization on
average converges in about 100 times more objective function
evaluations than the zero vector parameter initialization. Both
initializations in Figure 11 converge to a relative error 10−5. In
excited state computing, the two di!erent initialization strategies
for both qOMM and SSVQE not only di!er in the number of
iterations but also di!er in the convergence results. Comparing
Figures 8a and 8c, for SSVQE with two-repetition UCCSD,
random parameter initialization converges more than ten times
slower than that of zero vector parameter initialization. A similar
result can be observed in Figures 8b and 8d for SSVQE with
three-repetition UCCSD. Besides the di!erence in the number
of iterations, optimization starting from random parameter
initializations sometimes cannot find the global minima, as can
be seen from Table 1. Overall, in all results included in this
paper, zero vector parameter initializations outperform their

Figure 9.Convergence of the first three energy levels of LiH for SSVQE
using a random parameter initialization.

Figure 10. Relative accuracy | |
| |

E E
E

n i n

n

, ,exact

,exact
of the convergence of the first

three energy levels of LiH for SSVQE using a random parameter
initialization.

Figure 11. Convergence of the relative error | |
| |

E E
E
i0, 0,exact

0,exact
of VQE for the

ground state problem of LiH using a random parameter initialization.
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random parameter initialization counterparts for both algo-
rithms. However, we still include numerical results for random
parameter initializations to demonstrate the di!erent perform-
ance between qOMM and SSVQE. This is because the zero
vector initializations initialize the states to be excitations from
Hartree−Fock states and only work for a limited number of low-
lying states. If more excited states are needed, the zero vector
initialization could even be a bad initialization, which is due to
the fact that the excitation energies fromHartree−Fock may not
be in the consistent order with that of FCI excitation energies.
This ”zero vector” initialization is demonstrated primarily not to
advocate for its use as a scalable initialization strategy, but to
illustrate what the improved convergence could look like if it can
be assumed that one has a reasonable initialization strategy. The
flexibility of variational ansatzes in qOMM would have another
advantage when many excited states are needed. In qOMM, we
could use zero vector parameter initialization for a few states and
random parameter initialization for the remaining states without
known good initializations. Such a mixed initialization strategy
could avoid being trapped in bad local minima and benefit from
the fast convergence of those states with zero vector parameter
initialization. SSVQE, unfortunately, cannot use such a mixed
initialization strategy due to the implicit orthogonality among
initialized states. This motivates further investigation into
developing and benchmarking initialization strategies more
sophisticated than the ones we consider in this work. For
example, the MCVQE paper24 proposes an e"cient quantum
circuit implementation of CIS states for excited state initial-
izations. This initialization would likely improve the con-
vergence results of the simulations for both qOMM and SSVQE
presented in this paper. Furthermore, because the optimization
stage of MCVQE can be seen as a special case of SSVQE that
uses a CIS initialization and an equal weighting of the states,
performing analogous simulations using a CIS initialization
would o!er insight into how the convergence of qOMM
compares to that of MCVQE. The approach of using chemically
motivated initializations inspired from classical computational
chemistry is likely to further improve the convergence of
algorithms such as qOMM and SSVQE. The main challenge in
this approach is that high level chemically inspired initializations
require e"cient low-level circuit implementation, which is
highly nontrivial.
Ansatz Circuit Depth. Based on our numerical results,

increasing the ansatz circuit depth, i.e., increasing the repetition
in UCCSD, has two major impacts. First, the expressiveness
increases as the ansatz circuit depth increases. In the ground
state VQE, as in Figure 11, one-repetition UCCSD is su"cient
for the ansatz to approximate the ground state to chemical
accuracy. When two states of LiH are needed, one-repetition
UCCSD, as in Figure 8, is not able to simultaneously approxi-
mate the ground state and the first excited states, whereas
two-repetition UCCSD is able to. From the qOMM results in
Figure 8a, we know that one-repetition UCCSD is able to
approximate the ground state and the first excited state. When
three states are needed, as in Figure 8b, we need three-repetition
UCCSD to simultaneously approximate three states. Again, one-
repetition UCCSD is still able to approximate any of these three
states. More generally, 2-UCCSD is su"cient for all LiH
cases studied when using qOMM, whereas SSVQE requires
n-UCCSD in order to reliably find n states. The results for the
hydrogen square model in Figure 5 demonstrates a similar
pattern, except the situation is more severe for SSVQE, which
requires more than n-UCCSD for finding n states. A more

detailed analytical description of the ability of the UCCSD
ansatz to simultaneously represent an increasing number of
excited states as the number of repetitions is increased is not yet
known. qOMM could adopt many UCCSDs, UCCSD with
many repetitions, or a mixture of them as its variational ansatz.
SSVQE, however, could only benefit from increasing the
repetitions in UCCSD. The second impact of ansatz circuit
depth relates to optimization. Another field full of non-convex
optimization and parametrized ansatz is the deep neural
network. An interesting theoretical result38 therein shows
that enlarging the parameter space, i.e., increasing the number
of parameters, would make the optimization problem easier,
i.e., the energy landscape would be full of the approximated
global minimum. Although we have not established similar
results for quantum ansatz circuits, we observe the behavior
from our numerical results. In Figure 8b, one-repetition
UCCSD is able to characterize the three states for LiH using
qOMM. However, all ten random parameter initializations got
stuck as can be seen in Table 1. As we increase the circuit depth
from one-repetition to two-repetition UCCSD, qOMM rapidly
converges to a global minimum for all 10 random parameter
initializations.
We conclude this section by discussing the circuit depth

involved in calculating the inner product terms in the qOMM
objective function. Currently, the only method for computing
these terms that we are aware of involves running the circuit in
Figure 1. At a minimum, the inner product circuit will incur a
circuit depth twice that of the original ansatz. There will be
additional circuit depth due to the need to compile controlled
versions of the ansatz to the finite basis gate set of the machine.
The extent of this additional depth compared to the original
ansatz will depend on a number of factors including the basis
gate set and qubit connectivity of the hardware, the choice of
ansatz, and the e"ciency of the compilation algorithm used. We
can give some intuition for the circuit depths involved for the
particular systems we studied here for a particular basis gate set.
Using the Qiskit compiler, the gate depth for the 1-UCCSD
ansatz used in our LiH simulations is approximately 1400 gates
when compiled to the basis gate set consisting of Rz, X , X,
CNOT, and the identity. The corresponding circuit depth for
computing the inner product terms is approximately 19,600
gates. These counts would be scaled roughly by a factor of n for
n-UCCSD. This underscores the importance of future work that
addresses how to reduce these gate counts. In particular, finding
(if they exist) more e"cient implementations of the inner
product computations will be important for the applicability of
qOMM in the NISQ era. We emphasize that, while there
are several known subroutines for computing the overlap of
two states for other applications such as quantum machine
learning,39 these generally compute real quantities of the form

1 2 , whereas for qOMMwe need the full complex quantity
⟨ψ1|ψ2⟩. The observation that SSVQE appears to require an
increasingly expressive ansatz for increasingly larger systems and
an increasing number of states is also a concern. Future work
that addresses how to mitigate this e!ect will be important for
the applicability of SSVQE in the NISQ era. In particular, it has
been shown that certain conditions can induce cost function
landscapes with gradient magnitudes that vanish exponentially
(i.e., barren plateaus) with the number of qubits, rendering
convergence infeasible. This has been shown to occur in
instances where one uses a hardware-e"cient ansatz in com-
bination with a non-local cost function40 and in the presence of
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noise when one uses an ansatz with circuit depth that scales
linearly or faster with the number of qubits.41 Because both of
these types of barren plateaus worsen with increasing circuit
depth, the extent to which the two methods studied in this paper
are susceptible to this e!ect will likely depend on how the circuit
depth required for each algorithm to converge scales with
increasing problem size. Such an investigation would require
the simulation of larger chemical systems and would be an
interesting direction of future research. We also note that there
are various strategies that could be employed to facilitate the
study of larger systems by representing the active space with as
few qubits as possible, e!ectively delaying the onset of barren
plateaus. A simple, well-known example of this idea was used in
this work when we froze the two core orbitals in LiH to reduce
the problem size from 12 qubits to 10. Another strategy would
be to optimize the basis set under a fixed qubit budget, as is
done in OptOrbFCI in the context of classical computational
chemistry.8 Generalizing this work to quantum variational
algorithms such as VQE, SSVQE, and qOMM will be the topic
of future work.

5. CONCLUSION
In this work, we have proposed a method which can calculate
the low-lying eigenvalue/eigenstate pairs of a Hermitian
operator on quantum hardware. We have classically simulated
the algorithm for three di!erent electronic structure Hamil-
tonians: H2, LiH, and the hydrogen square lattice. We have
compared it to SSVQE, another algorithm with the same goal,
but one which enforces the orthogonality of the input states
explicitly at every optimization step. We showed that a small
problem such as H2 is not di"cult enough to meaningfully
distinguish any di!erences in performance for these two
approaches when using a random initialization strategy, but
when one compares them to more moderately sized problems
such as 10-qubit LiH, noticeable di!erences in performance
begin to emerge. In this scenerio, qOMM converges with fewer
objective function evaluations and with a less expressive ansatz
in all but one of the simulations considered here. Each of these
methods incurs additional circuit depth beyond the ground
state problem that should be addressed by future works in
order to increase their applicability in the NISQ era. This

Figure 12. Convergence of the relative error | |
| |

f f
f

i exact

exact
of qOMM and SSVQE for H2 using a random parameter initialization.

Figure 13. Convergence of the relative error | |
| |

f f
f

i exact

exact
of qOMM and SSVQE for H2 at an interatomic distance of 0.735 Å, where each circuit gate is

modeled as having a probability of local depolarizing error perror = 0.001.
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corresponds to finding more e"cient methods for computing
the inner product terms in qOMM and reducing the ansatz
circuit depth needed for SSVQE to converge e"ciently. One
potential direction for attempting to improve SSVQE would be
to investigate the extent to which incorporating adaptive ansatz
strategies42−44 would alleviate this apparent feature of SSVQE.
These methods were developed in order to find depth-e"cient
ansatz circuits for problem instances for which doing so by
manual heuristic guesswork is di"cult. This is precisely the
problem from which we observed SSVQE to su!er in this work.
qOMM could benefit from these methods as well. Additionally,
one could investigate whether or not modifying the SSVQE
weight vector to adaptively change over the course of the
optimization could mitigate the objective function plateau
e!ect we observed in our simulations.
The LiH simulations demonstrate that, in the context of these

types of excited state methods, even a crude initialization
strategy can greatly reduce not only the number of optimization
iterations needed to converge but also the circuit depth needed

to do so. Another potentially interesting topic would be to
develop and benchmark more powerful and versatile initializa-
tion strategies that are tailored specifically to these excited state
methods. This would also improve the applicability of these
methods in the NISQ era.

■ A. ADDITIONAL CONVERGENCE PLOTS
Here we provide all 10 runs for each of the randomly
initialized tests for which only one run was shown in section 4.
We also provide some additional tests such as H2 and the
hydrogen square model at stretched bond distances and up to
seven states of LiH. The success rates for the noise-free
simulations are summarized in Table 1. Figure 12 depicts all
10 randomly initialized runs for the H2 results discussed in
section 4.1. Figure 13 depicts all of the 10 randomly initialized
runs for the noisy H2 results discussed in section 4.2. Figure 14
depicts all of the 10 randomly initialized runs for the hydrogen
square toy model at equilibrium bond distance discussed in
section 4.1. Figure 15 further depicts 10 randomly initialized

Figure 14.Convergence of the relative error | |
| |

f f
f

i exact

exact
of qOMMand SSVQE for the hydrogen square model at an interatomic distance of 1.23 Å using a

random parameter initialization.

Figure 15.Convergence of the relative error | |
| |

f f
f

i exact

exact
of qOMMand SSVQE for the hydrogen square model at an interatomic distance of 2.46 Å using a

random parameter initialization.
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runs for this same system at a stretched bond distance. Figure 16 is
an extension of the LiH results discussed in section 4.3, where all
10 randomly initialized runs for the results given in that section are
depicted here as well as randomly initialized results for up to seven
states.
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