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1. Introduction

In the articles [1-3], simulations of solitary waves in spatially heterogeneous variants of the Fermi-Pasta-Ulam-
Tsingou (FPUT) and Toda lattices demonstrated that such waves do not propagate without change of form but instead
continuously emit a small trailing ripple. The systems conserve energy and consequently the solitary waves experience
a commensurate and extremely slow attenuation in amplitude. See Fig. 1 for a representative depiction. A similar
phenomena occurs in simulations of mass-in-mass lattices [4,5], various coupled Boussinesq systems [6,7] as well as
in certain fifth-order Korteweg-de Vries equations [8,9]. In some of these cases, especially those which model capillary-
gravity waves [7-9], the emission runs ahead of the solitary wave. Simulations of water waves over variable bottom
topography evoke a similar dynamic [10-13]. These sorts of waves, often referred to as radiating solitary waves, are
examples of metastable structures in nonlinear dispersive systems.

The observed attenuation is so slow that one of the major tools for analyzing the dynamics of solitary wave-like
solutions, namely approximations of the problem with the KdV (or similar) equations [14-18], is incapable of capturing
the phenomena. Such approximations are valid over very long but nevertheless finite time intervals; the erosion is so
subtle during the period of good approximation that it falls within the natural error bounds. Moreover, radiating solitary
waves very often occur in problems where the construction of genuinely localized solitary waves fails and what is found
instead are generalized solitary waves (also known as a nanopterons) [ 19-29]. These traveling wave solutions are asymptotic
at spatial infinity to very small amplitude co-propagating periodic waves and are consequently of infinite energy, further
evidence that the dynamics of finite energy solitary wave-like solutions is subtle.

Unlike their steady counterparts the nanopterons, there is at this time no fully rigorous mathematical explanation or
description of these radiating solitary waves in any of the many problems in which they arise. There are several careful
non-rigorous treatments (especially [6,8]), but in the main investigations are heuristic or numerical. The phenomenon is
usually attributed to an excitation of some sort of high-frequency oscillation by the solitary wave, due, for instance, to band
structure considerations [3,6], Bragg scattering [12], internal resonances [5] or non-monotone dispersion relations [8].
Notably, the amplitude decays so slowly that in most cases it is very hard to determine the rate with any level of precision.
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Fig. 1. An example of a “radiating solitary wave” in a diatomic FPUT lattice. The wave is propagating to the right and the horizontal axis is in a
moving reference frame.
Source: Figure taken from [3].

For instance, the investigation in [6] finds that the amplitude of the radiating tail is exponentially small with respect to
their parameter but, since their analysis proceeds from a quasi-steady state assumption, no prediction of decay rate for
the solitary wave is made. And in those articles which do hazard a guess, they do not always agree; the formal asymptotics
of [8] predict that the decay is exponential with a very small decay rate whereas [3] conjectures an algebraic rate of decay
based on numerical evidence.

To better understand radiating solitary waves, in this article we formulate a rather bare-bones model which captures
many essential features at play and which we can rigorously analyze. For our system we are able to exactly pin down
the rate at which the solitary wave decays as well as a rather complete description of the radiating tail. Note that our
model is decidedly not meant to quantitatively portray any of the specific systems mentioned but instead provide a partial
skeleton for the rigorous analysis of such systems down the line.

Here are the main ingredients of our model:

e A spatial variable x € R and time variable t € R.

e A solitary wave of fixed speed and profile but variable amplitude: a(t)q(x —t). Here g(x) is the profile and a(t) € R is
the amplitude. We assume that q(x) is real-valued and satisfies some decay/regularity conditions we make precise
below.

e A high-frequency simple harmonic oscillator located at each point x € R. We represent each oscillator by its complex
amplitude ¥ (x, t) € C. This field of oscillators is driven by the solitary wave in a naive way:

Vi = iy + wa(t)q(x — t). (1.1)

In the above, the oscillators’ natural frequency is w > 1.
e A conserved energy

1 1 )
E=alt) + 5 /wa(x,tn dx. (1.2)

The first term is proportional to the square of the L>-norm (i.e. energy) of the solitary wave and the second is the
energy of the oscillator field.

Together (1.1) and (1.2) form a closed system for the variables a(t) and v¥(x, t). Our main result states that a(t) ~
age~%! where 0, is all but equal to 272[q(w)|* and § is the Fourier transform' of g. Weak assumptions on q(x) tell us
that q{w) — 0 as w — oo and as such the rate of decay is very slow when w is big. In particular, if g(x) is analytic then
one knows that [q(w)| < c1e~%2l for some positive constants c; and c,. As such the decay rate of a(t) is incredibly small,
beyond all algebraic orders of w. For instance, we find that if @ = 10 and q(x) = sech(x) then the time it will take for the
amplitude to deteriorate to 95% of its original amplitude is on the order of 10'".

We also prove several results about the asymptotics of the oscillator field, the most salient of which is that e®yr(x, t)
converges to a scalar multiple of a specific profile function o,,(x—t). This convergence is pointwise in the moving reference
frame x — t. We have an explicit formula for this asymptotic profile which ultimately leads to the description

0,(x — t) ~ iq(x — t)/w + trailing periodic wave of extremely small amplitude.

—~ 1 .
1 The normalization/notation for the Fourier transform of a function f : R — C we use is: F[f](k) := f(k) .= o / e“""f(x)dx.
T Jr
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That is to say, when viewed in a frame moving along with the solitary wave the oscillator field looks like roughly like a
copy of the solitary wave plus a tiny periodic tail, exactly the qualitative behavior seen in the systems we are hoping to
understand.

In Section 2 we carry out a number of reformulations of (1.1) and (1.2) which put the analysis and simulation of
solutions within grasp. In Section 3 we use the Laplace transform to describe the dynamics of a(t) for large times,
the specifics of which are contained in Theorem 3.2. In Section 4 we similarly analyze the oscillatory field ¥ (x, t); see
Theorem 4.2. Lastly, in Section 5, we describe the results of simulations of solutions of our model and compare them with
our analytical results.

2. Reformulations and reductions
2.1. An ODE on a Banach space
Differentiation of (1.2) with respect to time and the use of (1.1) to eliminate v get us:
0 = a(t)a(t) + é /Rm [V*(x, )i (x, £) + a(t)g(x — t))] dx.
The quantity y*iy is purely imaginary whereas a and q are purely real so we can simplify this to:
at) = —é / R [¥(x, t)] q(x — t)dx. (2.1)
R

Note that now (1.1) and (2.1) are an ODE for the variables (v, a) on the Banach space L*(R; C)xR. Under the assumption
that q(x) € [*(R; R) the right-hand sides of (1.1) and (2.1) satisfy the following estimates:

liwy + wa(t)q(- — O)ll2r.c) < @V li2r.c + @lalO)lIqll2(r.R)

and

1
= ;”w||L2(R;C)||q||L2(R;R)'

1 / 9 [Y(x Ol qlx — tdx
w Jr

We have used the Cauchy-Schwarz inequality in the latter estimate. These estimates indicate that the right-hand sides
are bounded when viewed as a map from L?(R; C) x R into itself. Since they are also linear in (v, a) they are consequently
continuous (see, for instance, Section 3.1 of [30]). Thus Picard’s Theorem (see Theorem 1.8.1 in [31]) gives the existence
of solutions to the initial value problem for short times and this solution depends continuously on the data (Proposition
1.10.1 of [31]). By the Continuation Theorem (Theorem 1.8.3 of [31]), the solution will exist so long as the norm of the
solution in L?(R; C) x R remains finite. The conservation law (1.2) implies that the norm is constant and therefore cannot
become infinite. Thus the solution exists for all times. Summing up, we have shown:

Theorem 2.1. Fix q(x) € L*(R;R) and w > 0. Then for any yo(x) € [*(R;C) and ay € R there exists unique (¥, a) €
C'(R; [*(R; C) x R) which satisfy (1.1), (2.1), ¥(x, 0) = ¥o(x) and a(0) = ag. The map carrying (¥, ag) to (¥, a) is continuous
(for t in compact sets). Additionally for all t

1

1 1 1
2 2 2 2
Ea(t) +ZTUZ/I;|W(XJ)| dx = an‘FTwz/RWO(XN dx.

Before moving on, note that formulating our system as in (1.1) and (2.1) is a convenient starting point for performing
simulations, which we do in Section 5.

2.2. A scalar delay differential equation
We can eliminate the oscillatory field from the governing equations entirely. We solve (1.1) by Duhamel’s formula:
t
Y(x, t) = et o(x) + w/ et =)g(s)q(x — s)ds. (2.2)
0

Putting this into (2.1):

. 1 A [ ot
a(t)=——/$h[e Yo(x)] q(x—t)dx—/
R

w R

N [/ et=S)g(s)g(x — s)ds] q(x — t)dx.
0

Jo(t)
Rearranging the order of integration in the second term plus some algebra yields

a(t) =j,(t) — /[ cos(w(t — s))q x q(t — s)a(s)ds (2.3)
0
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where
q*q(t) = / q(x + t)q(x)dx
R

is the autocorrelation of q. It is worth pointing out here that g x q(t) is an even function of t.
The scalar continuous delay differential Eq. (2.3) is equivalent to our original system and will be the formulation on
which we do our analysis. Nevertheless there is one more change we make that permits a short formal analysis.

2.3. A scalar renewal equation

Integrating (2.3) from O to t gives
t t T
a(t) = ag —i—/ Jjo(t)dT — / / cos(w(t — s))q x q(t — s)a(s)dsdr.
0 o Jo
folt)

Exchanging the order of integration in the second term leads to

a() = ao + fult) + f gt — S)als)ds (2.4)
0

where
t
Go(t) = —/ cos(ws)q * q(s)ds.
0

Eq. (2.4) is a renewal equation of the sort studied in [32], though in most applications of renewal equations the function
¢, (t) is positive with finite first moment (neither of which is the case for us).

We do a quick non-rigorous analysis of (2.4) now, in the case where f,(t) = 0. Since q  q(t) is even, the Fourier
Convolution Theorem implies ¢, (t) — t—2712|'(i(a))|2 as t — oo. If we simply replace ¢, with this asymptotic state in

(2.4) we have a(t) = ap — 2n2|ﬁ(w)|2/ a(s)ds. Differentiation of this gives @ = —27272[q(w)|?a and so the solution of

0
this simplified equation is aoe‘z”z"Y(“’)'z‘. This gives us our first glimpse as to what the rate of decay for a(t) is going to
be. Of course this replacement of ¢, is completely unjustified which is why we now move on to rigorous analysis.

3. The fate of a(t)

In this section we determine the long time asymptotics of a(t) using (2.3) as the starting point. The integral on the
right hand side of that equation is a time-domain convolution of a(t) and
ko(t) = cos(wt)q  q(t).
So if we apply the Laplace transform? to (2.3) we get
ZA(z) — ap = Ju(2) — Ku(2)A(2). (3.1)

We have made use of the well-known formulas for the Laplace transform of a derivative and of a time-domain convolution
(see, for instance, Sections 6.2 and 6.6 in [33]). We adhere to the usual convention that the Laplace transform of a variable
whose name is in lower case is represented by the corresponding capital.

We isolate A(z) in (3.1):

A(Z) _ [¢0s] Jw(z)
T Z4+K,(z2)  z+K,(2)

From this we ascertain that the key to understanding the evolution of a(t) is the function v,(t) whose Laplace transform
is

. (3.2)

1
z+K,(2)
The following result tells us everything we need to know about V,(z):

V(z) = (3.3)

Lemma 3.1. Suppose that, for some p > 0, e”'q * q(t) € WL°(R*; R). Then, for all o sufficiently large, V,,(z) has exactly
one pole in the set N(z) > —p/2. This pole is simple and located at z = —6,, € R where

B = 272 [G(w)2(1 + O(1/w)). (3.4)

2 Here, we use the notation that the Laplace transform of a function f : Rt — Cis £[f](z) := F(z) == fooo e ?f(t)dt.

4
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Proof. Preliminary estimates: For functions f : R" — C we put:
If1l,, = sup e [f(t).
=0
For functions with ||f ||, < oo we have the following elementary estimate, which holds for %(z) > —p:

/w e f(t)dt
0

If we have ||f(t)||p < oo then an integration by parts in the above gets:

IZ[f1(2)] =

o0

- 1

—N(z)t —pt

< e Iflloe”dt < ———IIfll,. (3.5)
/o e R(z)+ p 4

1L[f1(2) =

1f(0) + ! /oo e 2f(t)dt
z 0

z

1 1 .
=< E <[f(0)| + m”f”p) . (3.6)

d
This again holds for :M(z) > —p. Lastly, the famous identity £[tf](z) = —Eﬁ[f](z), combined with (3.6), implies

(3.7)

d 11
dzﬁ[f](Z)‘ S ‘

S JR—

|z] R(z)+ p
There are no poles far away from the origin: Note that the poles of V,(z) are precisely the zeros of z + K,(z) and
consequently our analysis will focus on K, (z). The assumptions on gxq and the definition of k,, imply that K,(z) is analytic
in the set M(z) > —p. Moreover we have |k, |, < |lg*qll, < oo. Importantly, ||k,|, can be controlled independently of

w. Using (3.5) we have [K,(z)| < llg*qll,/(:M(z)+ p). The restriction that %i(z) > —p/2 tells us that |K,(z)| < 2|lg*qll,/p.
Therefore z 4+ K(z) # 0 when |z| > 2||g * ql|,/ o and the only place to look for the zeros is in inside the set

U, = {lzl < 2llgxqll,/p} N {R(z) = —p/2}.

There is just one pole near the origin: We use the fact that cos(wt) is of high-frequency; the frequency shifting formula
for the Laplace transform tells us

d
— (tf)
de

1 1
K,(z) = Eﬂ[q * q(z + iw) + E[,[q *(q](z — iw). (3.8)
Using (3.6) on the right hand side we have:

1 1

2z +iwl | 212 +iw|> (q*q(o” W@+ p ‘ p) : (3.9)

We have assumed that ||(d/dt)q * ql|, < oo and this quantity is clearly independent of w, as is g x g(0). In U, we have
Nz)+p=>p/2and |z L iv] > o —|z]| > © — 2||g*q]|,/p. All these together tell us that there are constants wy > 0 and
Co > 0 for which

d
—qx*
dtq q

IKu(2)l < <

w>wandz e U, = |K,(z)] < G/w. (3.10)

Now let r := min {|z| 1z € SU,,} > 0, which is independent of w. Thus the preceding estimate allows us to find w; > 0
so that

w>wiandz e U, = [K,(2)| <r/2.

Thus we have |K,(z)] < |z| on the boundary of U,. Since z and K,(z) are analytic in U, we conclude, by Rouche’s
Theorem, that z and z + K,(z) have the same number of zeros (counted with multiplicity) inside U,. Which is to say
z + K,(z) has one simple zero in that set.

And so, as foretold in Lemma 3.1, we have shown that V,(z) = 1/(z + K,(z)) has exactly one simple pole (whose
location is denoted by —6,,) in the set 9%(z) > —p/2. What remains is to further pin down this pole as described in (3.4).
Characterizing the pole: Since g = q(t) is even in t we have

K,(0) = /OO cos(wt)q * q(t)dt = 7F[q* ql(w) = 272 [G(w)|?. (3.11)
0

The final equality is due to the Convolution Theorem. The regularity/decay condition on q = q(t) implies §[q * g](w) — 0
as w — o0, and thus so does K,(0).
Differentiating (3.8) we have:

, 1d . 1d .
K,(z) = Eaﬁ[q * ql(z +iw) + Eaﬂ[q * q)(z — iw).
Then we use (3.7) to get

1 1 1 1 d
IK,(2)] < = — + . — (tgxq)
2 \|z+iw| |z —iw| ) R(z)+ .9p | dt

5

9p
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Note that we have used the fact that ||f||, < oo implies [|tf|,, < oo for p’ < p. Much as in the run up to (3.10), the
above estimate implies the existence of w, > 0 and C; > 0 such that
w>wandz e U, = |K/(2)| < G/w. (3.12)
To complete the proof, we next note that K(z) is real-valued if z = s € R. The fundamental theorem of calculus implies
that |K,(s) — K,(0)] = | f; K'(s')ds’| and so (3.12) leads to:
Ku(0) + (1 — Co/@)s < 5+ K, () < K, (0) + (1+ Co/)s.

The function on the right is zero at s = —K,(0)/(1 + C;/w) and the function on the left at s = —K,(0)/(1 — C3/w). The
intermediate value theorem then tells us that s + K, (s) has a zero somewhere between these two points, which, because
K,(0) — 0 as w — oo, are both in U,. Consequently that zero is —6,, the unique zero of z +K,,(z) in U, we found earlier.
All this, and (3.11), give:

2 2 2 2
2 ) _, _ 2 )
1+G/o — T 1-G/w

This is equivalent to (3.4) and the proof is complete. O

Lemma 3.1 tell us that the rightmost pole of V,(z) is located at —6,,. The common wisdom holds that the placement
of the poles of the transform dictate the asymptotic decay rate of the function and this thinking leads us to expect
Vo(t) = £71[V,,](t) will behave like e~%’ as t — oo. Nevertheless inverting the Laplace transform is a sometimes subtle
business and so we make a precise statement and proof.

Theorem 3.2. Suppose that, for some p > 0, e’Flg(x) € W-*°(R; R). Then the solution of (1.1) and (2.1) with initial data
¥ (x,0) = 0 and a(0) = ay satisfies (for w sufficiently large)
a(t) = apr,e %t + b,(t) (3.13)

where 6, = 212[G(w)*(1 + O(1/w)), 1, = 1+ O(1/w) and Ibully < o0 for any p’ < p/2.
Additionally if e?®yro(x) € L(R; C) then the solution of (1.1) and (2.1) with initial data y(x, 0) = ¥o(x) and a(0) = ag
satisfies (for w sufficiently large)

a(t) = ae %" 4 b, (t) (3.14)
for some constant o« = a(vo, ag) € R; b, (t) satisfies ||by |l < oo for any p' < p/2.

Proof. From Lemma 3.1 we know that the pole of V,,(z) at z = —6,, is simple. We now compute the residue at the pole
in the usual way:

z+6, 1
r. = Res(V,, —6,) = lim (z +6,)V, = lim o .
z——0, z—>—0, Z + Kw(Z) 1+ K/(—Gw)

Estimate (3.12) tells us that r, = 14 O(1/w).
With this we now know that

Wi (2) = Vilz) — —2

z+6,
is analytic for 9i(z) > —p/2. Because of (3.9) we have
. z TwZ
lim zW,(z) = - =1-r,
z—00 z+K,(z) z+46,

provided %(z) > —p/2. Thus we have |W,(z)| < C/|z| for |z| big enough. This is not a rapid of enough decay to for us to
deploy standard inversion results from (for instance) [34].
To get around this we let

T 1—r
By(2) = Vp(2) = —— — 2.
The final term there is a sort of “fudge factor”. Note that B,(z) is analytic for f(z) > —p/2. It is easy to see that
lim;_, o zB,(z) = 0 provided 9(z) > —p/2. Moreover a routine computation gives:

lim z2B,(z) = (=214 + 2)p + T'wbe. (3.15)
Z—> 00

Tt}us |B,(z)] < C/|z|*> for |z| big enough. This rate is fast enough to use Lemma 76.4 in [34] and conclude that
e’ t£71[B,](t) = 0ast — oo for any p’ < p/2.
And so all together we find that

T —T
v(t) = 71| —2 @

If ¥0(x, 0) = O then from (3.2) we have a(t) = apv,(t) and the above leads directly to (3.13).
6

+ Bw] (t) =re %" + (1 —r,)e 2" + £7'[B,](t).
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Now for (3.14). If ¥(x) # 0 the decay conditions placed upon it imply that ||j, ||, < C/w; here is the calculation:

1 C C

(0 = e [ ololate — dx < e [ e gy < =

w R w R [

This tells us that J,(z) is analytic for :(z) > —p. Thus the term J,(z)V,(z) in (3.2) is analytic in 9i(z) > —p/2 except for
the pole of V,,(z) at —6,,. The same sorts of steps as above can be repeated to show that lim e%‘£~1[J,V,](t) exists, from

t—o00
which (3.14) follows. O
4. The fate of ¥(x, t)

Now that we have determined the dynamics of a(t) for large values of t, we do the same for (x, t). We begin by
observing that because a(t) — 0 and we have the conservation of the energy (1.2) we know that ¥(x, t) does not converge
to zero in the L?(R; C) norm. This is not much of a statement, but it does indicate that the ultimate behavior of y(x, t) is
not disintegration.

For a more refined analysis, our starting point is (2.2) which expresses y(x, t) explicitly in terms of a(t). Here is our
first result:

Corollary 4.1. If e’®lg(x) € WT°(R; R) and e”yry(x) € L®(R; C) then the solution of (1.1) and (2.1) with initial data
¥(x, 0) = Yo(x) and a(0) = ag satisfies (for w sufficiently large)

lim e ™t y(x, t) = Yo(x) + @ /oo e Sq(s)g(x — s)ds
0

t—o00
pointwise in x.

Proof. Divide both sides of (2.2) by e/’ and take the limit. The integral converges due to the restrictions placed upon /o
andg. O

The most important takeaway from this result is that it indicates that v(x, t) does not decay to zero (in the supremum
norm) in the large time limit. This can be make rigorous by drilling down into the integral term above to get a more
refined picture, but it turns out it is more interesting to view ¥ (x, t) in a frame that moves along with the solitary wave
q(x — t). And so we put x — t =l and ¢(!, t) = ¥(x, t). This converts (2.2) to

t
ol t) = e Yot + )+ @ / e Sa(s)q(t + [ — s)ds. (4.1)
0

We begin by considering the situation where 1(x) = 0 and ay = 1, in which case ¢(l, t) = y,,(I, t) with

t
YollLt) = / =)y (s)q(t 4 | — s)ds.
0

If we fix | and take the Laplace transform of the above with respect to t, the convolution and frequency shifting identities
get us

Il 2) = 0Q(z — iw)V,,(2)
where

Q(2) = Llg(t + DI(z).

To be clear here, Q/(z) is the Laplace transform of q(t + [) with respect to t.

With our standard assumption that e?¥g(x) € W1*°(R; R) we have ||q(- + Dll, < oo for any I € R. Thus Q,(z) will be
analytic when 0(z) > —p. In turn this implies that I',(l, z) will inherit the simple pole at z = —6,, from V,(z) and that
this is the only singularity when 9i(z) > —p/2. It is easy to compute that

Res(I,(l, z), —0,,) = wr,Q(—6, — iw). (4.2)
— ——

ou(l)
And so we can conclude that
T,0,(1)
Ty(l,z)= ——"—=+Y,(lz
(I, z) 210, +Yo(l,2)
where Y,(l, z) is analytic with respect to z when %(z) > —p/2 and for any I. Thus we have
@T,0,(1)

WL t) =71
Voll. 1) [z+9w

+Y,(1, z):| = wr,o,(De~%t + £71Y,(1, 2)](¢).

7
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For £7'[Y,(l, 2)](t) we can Sf/lOW, using exactly the same sort of techniques that we used in the proof of Theorem 3.2,
that it decays faster than e™”* for any o’ < p/2; we omit the details.
The above line of reasoning leads us to:

Theorem 4.2. Suppose that, for some p > 0, e’Flg(x) € W-°(R; R). Then the solution of (1.1) and (2.1) with initial data
¥ (x,0) = 0 and a(0) = ay satisfies (for w sufficiently large)

Yt + 1, t) = apr,o,(e % + n(l, t). (4.3)

Here o,(1) is given in (4.2), 1, = 1+ O(1/w) and |In(l, -l < oo for all p’ < p/2 and every | € R.
Additionally if e?yro(x) € L(R; C) then the solution of (1.1) and (2.1) with initial data y(x, 0) = vo(x) and a(0) = ag
satisfies (for w sufficiently large)

Yt +1,t) = Bor,o,(De~ %" +n(l, t) (4.4)
for some finite constant B = B(vo, ap) € R As above, r,, = 1+ 0(1/w) and ||n(l, -)|l,; < oo forall p’ < p/2 and every | € R.

Remark 1. The result above is pointwise in L It is quite possible that a stronger mode of convergence holds here, though
the technical difficulty in establishing this is motivation enough to leave that for another article.

To close out this section, we now describe the “asymptotic profile” o,(I) in greater detail. The analysis here is formal
though it could be made rigorous if we stack enough hypotheses on g(x). Recall that o, (l) = Q(—6,, — iw). Since 6,, — 0
as w — oo and Q(z) is analytic in z we have Q,(6, — iw) = Q(—iw) + O(6,,). Then by definition we have

Q—iw) = / gt + dt = e~ / % q(x)dx.
0 1

And so we see that e!/Q,(—iw) — 27G(—w) as | - —oo and e®!Q,(—iw) — 0 as | — oo. This latter convergence will be
exponentially fast. Lastly the same sort of calculation that led to (3.6) gives Q(—iw) = iq(l)/w + O(1/w?).
Putting everything together we have

20 G(—w)e ! 1«0
ou(l) ~ {iq(l)/w I~0
exponential decay [> 0.

In short, o,,(I) looks like a scalar multiple of the solitary wave profile plus a trailing periodic wave of small amplitude and
frequency w.

5. Simulations

We have simulated solutions of our model with a variety choices of the profile g(x) and frequency w. We always take
Yo(x) = 0 since our analytic results indicate the effects of this part of the initial data are transient and do not alter the
long time behavior (or at least the rate of decay of a(t)). Likewise ay = 1 in all cases.

Our method is straightforward: we treat the system as an ODE for (v, a) as in (1.1) and (2.1) and simulate using an
RK4 algorithm. We implement the integrals in (2.1) via Simpson’s rule. We also compute o,,(I) numerically, as for most
functions closed expressions are hard to obtain. We again use Simpson’s rule for the computation. All simulations were
done in MATLAB.

Before we get into the results we note that with our method high accuracy/long time simulations of the problem are
challenging to obtain even for modestly large values of w. Roughly speaking, to accurately resolve a decay rate like e~%!
we would need to simulate out to times of ©(1/6,,) and (for the RK4 method we use) have a temporal step size which is
O(6,). The long time of integration in turn implies a large spatial domain (also O(1/6,,)) is needed, since q(x—t) propagates
in space. And we need to resolve that spatial domain at the same step size as the temporal one. All these considerations
tell us that we need O(1 /03) operations, at a bare minimum, to experimentally determine 6,, in a quantitatively reliable
fashion. And in the most interesting cases 6,, is exponentially small in w, meaning that we quickly reach a computational
bottleneck.

In light of these inherent difficulties we simply integrate out to t = 1000 and choose our step size to be 7 (10w)~!.
For the largest values of w, our simulations have been pushed past the point at which we can be convinced of their
quantitative reliability and instead we view them as a qualitative illustration of our results (which are, after all, fully
justified) and the phenomena they describe.

We show our results in the figures which follow. Each figure contains the same four sorts of graphs.

o Upper left panel: A semilog plc;t of the numerical solution a(t) vs t for the entirety of the run. In the same panel is
shown the graph of we~27@@)*t where « is just a scaling factor used to make the graph readable. Theorem 3.2 tells
us that these should be nearly parallel when w is large and in fact we do see this.
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q(x) = sech(x),w = 4

1 1
a(t)
0.95 — = prediction 0.95
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Fig. 2. Simulation results for sech profile, low frequency oscillators.

e Upper right panel: A plot of a(t) vs t during the very beginning of the simulation. In each case we see that the a(t)
oscillates a few times and quickly “settles down” into the slow decay. The time it takes to settle down does not
seem to depend on w, as predicted by Theorem 3.2.

e Lower left panel: The graphs of the real and imaginary parts of i vs x, at t = 1000, the end of the run. The figure is
zoomed in on the leading edge of the solution, located near x = 1000.

e Lower right panel: The numerically computed asymptotic profile function o,,(l) vs L. The horizontal scale is arranged
to match that of the previous panel. Theorem 4.2 tells us that ¥ (x, t) should look much like (a scalar multiple of)
o,(l) as t — oo and indeed we see exactly this.

5.1. q(x) = sech(x)

We lead off with this choice for q(x) because of the ubiquity of hyperbolic secant in profiles for solitary waves. One
has q(w) = sech(rw/2)/2 and consequently we have

2
0, = ”7 sech? (?) (14 0(1/w)).

We take w = 4 and 8. Results are shown in Figs. 2 and 3. When w = 8 both the decay of a(t) and the trailing oscillatory
tails of v/(x, 1000) and o,,(l) have vanished to the naked eye.

52 q(x) = e
We selected this because the ultra-rapid decay of its Fourier transform renders the decay rate incredibly small even
at modest values of w. We have
T
6, = Ee-w2/2(1 + 0(1/w)).

We show results for « = 4 and w = 6, in Figs. 4 and 5. Note how there is essentially no decay even at w = 6. Likewise
at this value the trailing oscillatory waves in ¥ (x, 1000) and o,(l) are invisible.
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q(x) = sech(x),w
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Fig. 3. Simulation results for sech profile, high frequency oscillators.
.X2
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Fig. 4. Simulation results for gaussian profile, low frequency oscillators.
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2

qx)=e* ,w=6
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Fig. 5. Simulation results for gaussian profile, high frequency oscillators.

53. q(x) = e I

This “peakon” profile is not analytic and consequently the decay rate merely goes to zero algebraically fast and as such
the decay is more obvious at larger values of w. To wit

2

We show results for @ = 8 and 16 in Figs. 6 and 7. Both the decay and the tails are visible at w = 16.
5.4. q(x) = (1—|x])4+

The subscript “4 ” mean to take the positive part, which is to say that g(x) is the “tent” map. This is also non-analytic
and its Fourier transform is sometimes zero (unlike the others) and as such if we fine tune @ we can get solutions which
do not decay at all. Specifically we have

O = %sinc(w/2)4(1 + 0(1/w)).

so if we take w to be an even multiple of 7 we should see no decay/no tails. We show results here (Figs. 8 and 9) for
o = 4 and 57 and we see exactly this behavior.

6. Conclusions, remarks and future directions

A key takeaway of this article is that in this simple model of radiating solitary waves the rate of attenuation in the
amplitude is very slow, but nevertheless exponential. This is in line with the results of [8] and not the algebraic decay
rate the author predicted in [3]. The extremely slow rate of decay predicted by the main results provides further evidence
that radiating solitary waves present challenging complications both on the numerical and analytic sides. Indeed, even
in this simple model, really capturing the rate of decay numerically for large values of w would require a much more
sophisticated approach than is used here.

One can reasonably ask, however, whether or not our model here will truly be reflective of the systems which possess
radiating solitary waves. After all, the derivation of (1.1)-(1.2) is ad hoc and (as is always the case in such models)
important features/considerations have been omitted. Indeed, in our model only the amplitude of the solitary wave is
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Fig. 6. Simulation results for peakon profile, middling frequency oscillators.
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variable and it has fixed speed. In nearly all systems with solitary waves, the speed, amplitude and wavelength of the
solitary wave are linked. This is particularly important in the proofs of stability of solitary waves in KdV [35] and FPUT [36]
and in the derivation of effective equations for solitary waves in potentials [37]. By restricting to a fixed speed and
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Fig. 8. Simulation results for tent profile, low frequency oscillators, tuned for no radiation.

a(x) = (1-|x]),, w = 57

095

0.9

a(t)

= = prediction

200 400 600 800 1000

996 998 1000 1002

1

0.999

0.998

@© 0.997

0.996

0.995

0.994

Fig. 9. Simulation results for tent profile, middling frequency oscillators, tuned to emit radiation.

width, our model is ultimately linear in its unknowns and this in turn makes the analysis by Laplace transform possible.
Preliminary attempts at incorporating variable speed/wavelength result in nonlinear systems and, consequently, there are
substantial technical challenges that make the application of the methods used here non-obvious. One avenue is to adapt
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the refined asymptotics for stationary problems in [20] to this time-dependent setting. Success in that venture will lead
to the next, and most exciting challenge: connecting such results rigorously to a full system with radiating solitary waves.
Work is underway.
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