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Well-Posedness and Asymptotics of a Coordinate-Free Model of Flame Fronts*
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Abstract. We investigate a coordinate-free model of flame fronts introduced by Frankel and Sivashinsky; this
model has a parameter « which relates to how unstable the front might be. We first prove short-
time well-posedness of the coordinate-free model for any value of o > 0. We then argue that near
the threshold o = 1, the solution stays arbitrarily close to the solution of the weakly nonlinear
Kuramoto—Sivashinsky equation, as long as the initial values are close.
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1. Introduction. The Kuramoto—Sivashinsky equation,

is a weakly nonlinear model for flame fronts [23], [32]. Frankel and Sivashinsky have shown
that it can be formally derived from coordinate-free models [15] of flame propagation. In
such a coordinate-free model, the normal velocity of the front is specified in terms of intrinsic
geometric information such as curvature and arclength. Omne such model put forward by
Frankel and Sivashinsky is

1 1
(1.2) Vo=1+(a—-1)k+ (1 + 2a2> K%+ <2a + 502 — 3a3> K24 o (o + 3) kg,

where V,, is the normal velocity of the front, k is the curvature of the front, s is arclength, and
« is a parameter measuring instability of the interface. Note that V,, is the normal velocity
of a curve in the plane and therefore is (related to) the time derivative of the position of the
curve. To make the relationship precise, a parameterization must be chosen. Setting this
parameterization is equivalent to specifying the tangential velocity of the front. In the next
section we specify a parameterization (choosing a graph parameterization), and we thus arrive
at a more traditional evolution equation for the flame front. Frankel and Sivashinsky perform
asymptotic analysis of (1.2) in the case o = 1, finding the simplified coordinate-free model

(1.3) V=14 (a— 1)k + 4Kss.
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As discussed by Brauner et al. [8], there are two primary destabilization mechanisms for
premixed gas combustion: hydrodynamic instability (stemming from thermal expansion of
the gas) and thermal-diffusive instability. The derivation of the models (1.2) and (1.3) in [15]
starts from a constant density flame model, neglecting thermal expansion of the gas. Thus
these are models exploring thermal-diffusive instability. This instability generates cellular
structures which may be modeled with free interface problems [11], [12], and models such as
(1.2) and (1.3) give the velocity of this interface. In addition to [15], coordinate-free models
for flame front propagation have been developed in [14] and [16]. Some analytical studies have
been made of these models, such as studying a quasi-steady problem [9], [10].

The Kuramoto—Sivashinsky equation as given in (1.1) is a form of the more general
Kuramoto—Sivashinsky equation

(1.4) bt + %|V¢\2 = —ciA*u — c3Au,

in the case of one spatial dimension. The two linear terms on the right-hand side play different
roles, as the fourth-order term is stabilizing and makes the problem well-posed, while the
second-order term is destabilizing and can lead to growth of solutions. The interaction of the
nonlinear term on the left-hand side with the linear terms leads to rich and highly nontrivial
dynamics, especially given the lack of a maximum principle for the equation owing to its
fourth-order nature. (We mention that there are versions of the coordinate-free models such
as (1.2) available in higher dimension as well [16].)

The Kuramoto—Sivashinsky equation has been widely studied over the years, with global
existence of solutions and stability of the zero solution both established in one spatial dimen-
sion [19], [29], [33]. Detailed estimates have been developed in one spatial dimension for the
dependence of the solutions on the size of the periodic domain [17], [18]. Many results for
the Kuramoto—Sivashinsky equation in one spatial dimension rely on structure not present in
higher-dimensional problems, especially that an estimate for the L? norm of the first spatial
derivative of the unknown is available. In higher dimensions this estimate is not available, and
there are fewer results. If the right-hand side of (1.4) is modified to instead be c¢? Au+c3u, then
a maximum principle is available and this structure may be used to find some global existence
results [19], [27]; the equation is then known instead as the Burgers—Sivashinsky equation.
Larios and Yamazaki have also leveraged this structure for a system which blends features
of the Kuramoto—Sivashinsky and Burgers—Sivashinsky models [25]. For the full Kuramoto—
Sivashinsky equation in two spatial dimensions, Sell and Taboada have proven global existence
of solutions in thin domains [31], and Ambrose and Mazzucato have shown global existence
in the absence of linearly growing modes (which happens when the domain is a sufficiently
small torus) [3] and in the case of a single linearly growing mode in each spatial dimension
[4]. Additional results for the Kuramoto—Sivashinsky equation on thin domains may be found
n [6], [22], [28].

The distinction between known behavior in one spatial dimension and in two spatial
dimensions indicates that the structures present in (1.1) used to demonstrate, for example,
global existence of solutions are perhaps a bit delicate and may not be present in closely
related systems. Indeed, while Frankel and Sivashinsky have formally derived (1.1) from the
coordinate-free models (1.2) and (1.3), the authors are unaware of any analytical theory for
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these relationships. While the question of global existence of solutions for the coordinate-free
models remains open, we demonstrate short-time well-posedness here, focusing on (1.3) for
simplicity, and show rigorously the connection between solutions of (1.3) and (1.1).

There is a long history of demonstrating that weakly nonlinear models serve as valid ap-
proximations for more fully nonlinear models; a key example of such work is the proof that the
Korteweg—de Vries equation is a good approximation of the irrotational Euler equations with
a free surface [7], [30], [34]. For more such works in the theory of water waves, the interested
reader might consult the book of Lannes and the references therein [24]. While the Kuramoto—
Sivashinsky equation is a widely studied weakly nonlinear model for the propagation of flame
fronts, the authors are unaware of any prior proofs of its validity in approximating more highly
nonlinear models. The result in the literature most similar to the present work appears to be
the main result of [8], in which solutions of the Kuramoto—Sivashinsky equation are shown to
remain close to solutions of another weakly nonlinear model; this weakly nonlinear model is de-
rived from coordinate-free models similar to (1.2), but also incorporating temperature effects.

As we will first prove well-posedness of the initial value problem for the coordinate-free
model given by (1.3), we first convert it into an evolutionary problem, which requires setting
coordinates. We do so with an eye toward our approximation theorem, and so not mak-
ing the most general possible choice. As the approximation theorem we prove is for the
Kuramoto—Sivashinsky equation, and the flame front in the Kuramoto—Sivashinsky equation
is parameterized as a graph over the horizontal coordinate, x, we thus make this choice of
frame for the coordinate-free model. We make the relevant calculations in section 1.1. We
prove well-posedness of the initial value problem when the initial data is relatively smooth,
namely we take the data in the Sobolev space H°. We do this so as to deal only with clas-
sical solutions, and since regularity theory is not the focus of the present work. If we were
to take a mild solutions viewpoint instead, then the parabolic nature of the evolution would
certainly allow for rough data. In [3], Ambrose and Mazzucato constructed mild solutions of
the two-dimensional Kuramoto-Sivashinsky equation with initial data in L?. We expect the
same would be possible for the coordinate-free model studied here.

This choice of restricting (1.3) to the case of a graph over the horizontal coordinate is not
a limitation on our well-posedness theory; indeed it would be no more difficult to treat (1.3)
for flame fronts which could have multivalued height or which might be closed curves. To
treat such scenarios, the parameterization of the curve could be set using tangent angle and
arclength, as was done for interfaces between fluids in the numerical work of Hou, Lowengrub,
and Shelley [20], [21]. The formulation of Hou, Lowengrub, and Shelley was subsequently
used by Ambrose and collaborators a number of times to prove well-posedness of initial value
problems in interfacial fluid mechanics, for example, in the works [2], [5], [26]. The advan-
tage of the tangent angle and arclength formulation is that these are naturally related to the
curvature, and the curvature of the front is what appears on the right-hand sides of (1.2)
and (1.3). Ambrose and Akers have implemented numerical methods to compute the prop-
agation of fronts using the angle-arclength formulation for the models (1.2) and (1.3) using
further ideas from [20] in [1].

1.1. Reformulation: Setting coordinates. In order to compare solutions of (1.1) with
those of (1.2), we need to have a more convenient form of (1.2). This convenient form of (1.2)
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is found by specifying a parameterization of the curve which evolves according to (1.2); since
the Kuramoto—Sivashinsky equation (1.1) assumes the front is a graph, we choose a graph
parameterization for (1.2) as well. We take the horizontal spatial variable = to be in T, and
we then take the front height to be a function of x. Clearly we need to rewrite V,, and kg5 in
the new variables.

Function V,,. Consider artificial parameters (53, 7); for any curve (z(53,7),y(5,7)) we can

write the motion as a combination of the normal vector n = % and the tangent vector
(z5.y5)

T= Ik Furthermore, we have the following decomposition of the time derivative of the
curve (z,y)¢ :

(1'5) ($ay)t =Vu-n+ V. T,

where V,, is the normal velocity of the interface, and the tangential velocity V; is related to the
choice of the parameters. As mentioned above, our model covers the case of (z,y) = (z, f(x))
and z; = 0 (i.e., x = (), therefore

_ YV Vi
Vit V1442

We can use the above to find y;. Indeed,

=0=Vr=—y,Va.

Tt

_Vn $‘/;' _1+ 327 'Vn
Yt + -2 B Gt =—V1+y2 -V,

VI Vit Vit
This clearly yields

—Yt

VityZ

Function kss. Note that j—; = /1 + y2, therefore

de _dr ds _de s
de  ds dr ds Y

(1.6) vV, =

and consequently,

d? d [d k d d 2 Yz
f;:<'~”~. Hy%):fﬂ.@ T2y & Yeler
dx S T

dz \ ds ds? d ds 1492
d2/€ 2 d/i YxYzxa
TR .
In other words,
d’k 1 d’k YzYzx drk

1.7 dr_ - OR Yeler  OF
(L7) ds?  1+4y2 dr?2 (1+y2)? dx
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Now we insert (1.6) and (1.7) into (1.2) and get the following equation:

ye+ T ( ) (;’230)5 + <2a+5a 3a3> iy + “\2/%3;) e
(1.8) /1412 = o Ot+3)yx P
y(x,0) = yo(z).
where,
A5 Yeor Yo (Yu)’
e (14y2): (1432
Cr_ Yowse _ 3(Wan)® + Wolhsalre | 15(y2)* (Yan)®
dr? (14 42)2 (1+y2)3 (1+y2)

In section 2.1 we recall some definitions, standard estimates from Harmonic analysis, as
well as a form of Gronwall’s inequality which fits our Gronwall’s type inequalities. In section
3 we present the existence of the solution of (1.8) in H?. In other words, section 3 covers
the proof of Theorem 2.3. This is done via an approximate equation. Finally, in section 4 we
present a proof of Theorem 2.4. This is done via a coordinate scaling, where the scaling has
been chosen carefully.

2. Preliminaries.

2.1. Fourier series, function spaces, and mulitpliers. We will consider periodic function
spaces, although this is not essential. A sufficiently regular function f on a periodic interval
may be written with its Fourier series,

= fw)e™.

PEZL

Consequently, since —/A\f(p) = |p|2f(p), we define the operators |V|* := (—=A)¥/2 4 > 0, via
its action on the Fourier side [V|2f(p) = |p|*f(p).
1
The LP(R™), n > 1, spaces are defined by the norm || f||prrn) = ([gn |f(2)[P dx)?. For
p € (1,00), the Sobolev spaces are the closure of the Schwartz functions in the norm
[ fllwre@ey = [ fllo@ny + Z 10% f1 e ().
o] <k

while for a noninteger s one takes

1 f lwsw@ny = 1L = A2 f || Logny ~ |l Loy + V] fll Lo @ny-

The Sobolev embedding theorem states || f[|zr(r1y < Cl[V]*f|Lo(r1), where 1 < p < ¢ < o0
and = — % = 5, with the usual modification for p = oo, namely || f||zo(11) < Csl[fllwsa(mr),

s> 5. Another useful ingredient will be the Gagliardo—Nirenberg interpolation inequality,

(2.1) VISl e ey < H!V\SlfHLq @ I1V1% f | Gy

where s = 0s1 + (1 — 0)s2 and 5= q

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/01/22 to 144.118.75.33 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2266 D. M. AMBROSE, F. HADADIFARD, AND J. D. WRIGHT

Throughout this work we make use of a particular version of mollifier operators J°, 0 <
0 << 1, which represent the truncation of the Fourier series, zeroing out modes with wave
number larger than % We frequently use the following two essential properties of the mollifiers,
which can be easily proved in a straightforward way using the Hausdorff—Young inequality, or
alternatively the Plancherel theorem:

(2.2) 12 fll s mny < 1 fllze
R C
(2.3) |T°0° £l 2wy < EHfHL?(]R")-

Note that the operator J° is both a self-adjoint operator and a projection, i.e., J°(J°f) =
J?f. Moreover, it commutes with the derivative operator, J%0f = 0.7°f.

2.2. Gronwall’s inequality. We need the following two versions of the Gronwall’s inequal-
ity.

Lemma 2.1. Let the functions x,a,b, and k be continuous and nonnegative on the interval
J = [a, B], and let n be a positive integer (n > 2). Assume § is a nondecreasing function. If

(2.4) z(t) < a(t) + b(t)/ k(s)(z(s))"ds, te€J,
then

1

n—1

(2.5) z(t) < a(t){l —(n— 1)/ k(s)b(s)a”_l(s)ds} , a<t< By,

where B, is given by

(2.6) By, = sup {t €J:(n—1) /at k(s)b(s)a" " Y(s)ds < 1}.

Lemma 2.2. Fiz 7. and T'y > 0. Assume the function E(t) > 0 satisfies the relation

d
(2.7) S E) < aB(l) + BE*(t) + € (E(t)™,
where 0 < € << 1, n > 0, and m > 1. Then there exists E, and €, so that for any

E(0)=Ey<E, and 0 < e < €,

(2.8) sup E(t) <T.,.
0<T<Tx

We provide the proof of Lemma 2.2. One can find the proof of Lemma 2.1 in [13, Theorem
25].

Proof. In order to prove Lemma 2.2 fix Iy, and let E(tp) be the first time at which
E(ty) =T, (if for all t > 0, E(tp) < I'x then let tg = oo, in which case the proof is completed).
Hence, for any t € [0,t9] we have E™ < I'"™~!E. Therefore,

d

(2.9) %E(t) < (a+ AL+ TP Y E).
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Now we apply the routine Gronwall’s inequality to this relation, and we get, for any ¢ € [0, to],
(2.10) E(t) < exp ((a+ BTy + €"T71)t) Ep.
At t = tg, we have E(ty) = T, hence

I, <exp ((a + Al + e”FT_l)to) Ey,

which implies

N In (EO)

t =: 19([%, Ey, €).
O = a4 BT, 4 TP (T, Eo. )

Note that 70(I'x, Ep, €) is decreasing with € and with Ey. What we have shown so far asserts
that if 0 <t < 79(L, Ep, €), then

(2.11) E(t) < T..

Now fix a time ¢, and I', as well as € < 1 := ¢,, and solve 179(I'x, Ey, €) = t, for E,, namely
(2.12) E,=T,exp ((a+ Bl + T M) .

Now we claim that with ¢,,I's, and E, as above, then if Fy < E, and € < 1 we have

(2.13) sup E(t) <T..
0<T<Tx

Indeed, by (2.11) we have E(t) < I'y for 0 <t < 79(I's, Ep, €). Since 79(I'x, Ey, €) is decreasing
with respect to Ey and €, we know

t* = To(F*,E*, 1) S To(F*,Eo, 6).

Thus
{t:0<t<t.}C{t:0<t<m(s Epe},
and we get
(2.14) sup |E(t)| < T.. [ |

0<T<Tx

2.3. Main result. As mentioned, we pursue two main goals in this article. First we aim
to prove the well-posedness of the initial value problem associated to (1.8). This is the content
of Theorem 2.3. Our second goal is to show that the solution to (1.8) stays close enough to
the solution of (1.1), in a sense to be made precise. In Theorem 2.4 we present the related
result.

Theorem 2.3. Let yo € H® be given. Then there exists a time T = T(||yo|lgs) and a
function y € C([0,T), H®) which satisfies (1.8), and the initial condition y(-,0) = yo.
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Theorem 2.4. Fixz 7. > 0 and 'y > 0. Then there exists e, and E, so that whenever
0 <e<e and |Up(")||gs < Ex, the following hold.
Let y(x,t) be the solution of (1.8) with a —1 =€, and

(2‘15) y(‘rv 0) = EUO(\EZ') + ys,O(x)

with |yeollgs < €/*. Let U(€,7) be the solution of the Kuramoto-Sivashinsky equation
1

(2.16) 0:U + 5(0¢U)* + OgU + 405U = 0

with U(&,0) = Uy(§). Then

(2.17) sup [ly(-,t) +t — eU(Ve -, e2t)|| 2 < Tyet.
0<t<Zy

The proofs of Theorems 2.3 and 2.4 are presented in Lemma 3.4 and Remark 4.4, respec-
tively.

Remark 2.5. The time interval presented in Theorem 2.3 increases for a smaller ||yo||ys.
In fact the time interval [0,7] increases as the upper bound of T, i.e., Cln(l + ¢ ),

lyollys >
increases with smaller |lyol| gs.

3. Existence of the solution. The first step toward the completion of the argument is
to show that (1.8) has a unique solution in some Sobolev spaces, over a time interval [0, T],
with T" to be determined. The proof follows the energy method. To that end, we first intro-
duce approximate equations, where the approximation is introduced via a multiplier operator
(mollifier) J°. We next use the Picard theorem to find that the approximate equations admit
unique solutions in some Sobolev spaces over a time interval [0, Ts]. This 75 might be small
(i.e., this time depends badly on the approximation parameter ¢). Therefore, in an attempt
to increase Ty, we prove bounds on the solution which are uniform with respect to 4. Once
the uniform bounds are in hand, since norms of the solutions of the approximate equations
are not increasing fast, the solutions may be continued to a time interval [0, 7], where T' can
be taken to be independent of §. Finally, with solutions existing on a uniform time interval,
the limit may be taken as d vanishes, and this limit can be seen to satisfy the correct initial

value problem.
We define 39 to be the solution of the following initial value problem:

(3.1)
5 §| T, 1 2\ 75| (T%2,)? 2 1.3\ 75| (T%,)°
o+ 0 =07 | ] + (14 40) 7 Dk ]+ (050 = 4ot 4ft
5 1 d?k° 5 _ 5 5,8 5 dr®
+a?(a+3)T [WW W} +J [ 1+(J6yg)2] =a?*(a+3)J {(J yo) - K dw]

y°(2,0) = T°yo(x),
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where
32 = T
1+ (T2
33 W T () ()
de (14+(T%2)%)2 (14 (J%2)%)3
(3.4) PR T 3(T°Y50)® + T W) (T Y50) (T W) | 15(T W)X (T y5e)*
dz® (14 (J%y2)%)% (14 (T%y5)2)3 (14 (J9y9)2)3

We now present the first step toward the existence argument. We show that (3.1) admits a
solution up to a small time Tjy.

Lemma 3.1. Let y(0) € H® be given. For any § > 0, for any s > 0, there is a time Ty and
a function y® € CY([0,Ts], H®) that satisfies (3.1), as well as °(-,0) = J(0).

Proof. Since the initial data is mollified, it is in any Sobolev space. With the abundance
of mollifiers present on the right-hand side of the evolution equation, it is not difficult to
demonstrate that the relevant operator is a Lipschitz map. The Picard theorem applies,
leading to the conclusion of the theorem. We omit further details. |

The next two lemmas concern some uniform bounds on the solution of (3.1). In the first
lemma we prove an H* bound, and we then use it in the subsequent lemma for an H® bound.

Lemma 3.2. Assume y° is the solution of (1.8). Then there exists T = T(ca) and C =
In(1+—L—)

m—2
C(yo, ), independent of 0, so that for any 0 < t < HyWOHH‘l (m and v to be defined
later),
(j5y5 )2 + (a6j6y6)2
(3.5) sup ||y°||? +/ Z z dzr < C.
0<t<T " (1+(T%y3)?)?

Proof. During the proof, we assume that [|y°||2,+(|04y°||2, > 1; otherwise there is nothing

to prove.

In order to prove this lemma, we combine two energy estimates, one on ||y°[|;2, and the
other one on [|9y°|| 2. Indeed,

(3.6)
9,,0
%at”y%z +(a—1) /(5695) ‘ [%}d

+ <1+ ;a2) / (%) - T° [%]dﬁa%aw) / (7%

+ /(J‘sy‘s)‘ [ 1+ (35J5y2)2] dx + <2a +5a2 — ;ag’) /(J‘;y‘s)' {(1 f(??;:%;yl}dx

= a0 +9) [ [ O

We use integration by parts to arrive at a more convenient form for this expression.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/01/22 to 144.118.75.33 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2270 D. M. AMBROSE, F. HADADIFARD, AND J. D. WRIGHT

The first term we simplify produces a useful term in the left-hand side of (3.6), namely

i %dw. Indeed, when we substitute from (3.4) into the fourth term on the left-hand

side of (3.6), we find

) d2 5
o (o + )/(j55 {W dxz}dx
2 (‘76 6) (jgymcaca:)
= (a+3)/ 0+ (T550)2)2 dx
—3a2(a+3)/ T+ (7020 dxf9a2(a+3)/ o (ﬂ ) )3 dx
(T°9°) - (T°WD)*(T°y8,)°
(L+(T0y3)H)*
The term we wish to draw out can now be found after integrating by parts twice:
(jéyé) ) (jéygzmx) _ (jéygmx) (j(s ) (j5y§) ) (jé;yg) ) (jaygz)(j(sygxx)
/ L+ (T9?? / a+ e 1 1+ (T30)?) o
_ (j(sya:x)2 (jéyg)Q i (jéygx)Z
- [ e et
(T°9°) - (T°8) - (T°9) (T o)
wef CENRCTIRE -

+ 1502 (a + 3) / dz.

Our conclusion is

d2 1) (jdyé )2
2 ) 5 2 T
a+9) [(7) [\/71+ o)t =) [ e
(j(s x) : (jaya:a:)Q (j(5y5) : (jéygx)g
et setla+) [ SR
(j5y6) i (jéyx) i (jéy:ex)(jéygxz)
(1+(T°98)%)3
(T°°) - (T°92)* - (T°yss)?
(14 (T%y3))
For the right-hand side of (3.6), we substitute from (3.3), finding
H 8.8\ . (76,.6\ . (78,8 5.8
(T°9°) - (T°y2)* - (T°95.)°
_3a2(a+3)/ i+ (j5y§)2)4 dx.

We also rewrite the fifth term on the left-hand side of (3.6) as

(T%y0) <1+(j5y§)2>

/765\/ j‘;ygzdaz—/ NiERRT dx.

dx

—40*(a + 3) /

dx

— 502 (o + 3) /

dx.

+ 1502 (o + 3) /
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With all of these considerations, (3.6) now may be written as
(3.7)
(T°y5,)* o / (7°y°) - (T2,
i+ o™ =Y Tar )
(14 (@w?)
— d:c+3a2(a+3)/

V1 (T0y))?

dx+

1
SO I + a2+ 3) [

(T°°) - (T°y5.)°
1+ (T°92)?)?
(T°y2)? - (T°02.)° > /(J‘sy‘s) (T°y2) - (T°Y2) (T Yo

d
i+ @odpp o Horatd T+ (o2
PV TR TR (14 L) [ [ el
-1 2 ( T T — (1 -2 / wwr
5 (a+3)/ 0+ (T dx + 5 L+ (7)) dx
1 (T°y°) - (T°v; -)3}
2 2_ -3 / T .
(oot 5o) [ SR
All the terms on the right-hand side are controlled by terms of the form of C(||y°||%, +
|]8§y5|]%2), where 2 < a < 4. Overall, we have the following simplified inequality:
(3.8)

1
32y + aa+3) [

dzx

dxr

+ 40* (o + 3)/

(T°y2s)”
1+ (T°92)%)?
This is straightforward to see (it mainly consists of counting derivatives) and we omit further

details of the proof of (3.8).
We now turn our attention to the rest of the energy estimate. We take four spatial
derivatives of (3.1), and then find its inner product with 9y?’:

(3.9)
| (7°yas)
g0 1+ =) [0 0|

d < c(||y6||%2 n |a;ty6|iz) n (nyén; n |a§y5||%z).

} dx+

(3.10)
2.0

+a2(a+3)/(ﬁa§y6)-a§ ! LR e
V14 (J0y3)2  da?

+ /(j564y5) - 64[ 1+ (jéyé)ﬂ dx + (2a + 502 — 1a3> /(ﬁa‘*gﬁ) ok [W] dz
T T x 3 T x (1 + (j5y2)2)4

5
—aa+3) [0 o) 5 fan
As before, for the fourth term on the left-hand side of (3.9), we substitute from (3.4):
1 d?k0
2 04,0 4
3 0 -0 .

N ]
9 696,08\ . 92| __ Y Yrazx
=« (a+3)/(j 929°) 8x[(1+<j5yg)2)2 dz
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) 1) (jaya;m)g
—3a%(a+3) /(j 5y°) - 02 [W(S))] dx

2 6q6,,0 2 (j6 x)(jéyxa:)(j(syiwx)
—9a”(a +3) /(«7 9:y°) - 0; [ (1 + (T59)2)3 ]dx
(J‘;yi)Z(J‘Syiz)?’] "

(14 (T84 '

+ 15a%(a + 3) / (T°8%°) - 02 [
We expand the first term on the right-hand side of the above equality as follows:

o?(a+ 3) / (T°0%y°) - 2 [(j(f;;))] dz

J°0%y
:a2(a+3)/(1(+(j5yg))2)2d$
SRS LNTE),,
(1+(~75yx) )?
(T°y) (T y0.)( 7534 5]
(1+(T°%9)%)

— 40% (o + 3) / (T005y%) [

— 40’ (o +3) /(j‘safg’yﬁ)a[

Integrating by parts twice, and using (3.3), we also have the formula
2 Sa4, 0N adl( 76,6\ .6 dié
Qa+3) [(T°0h)- 0 |( ) w0 S| do

T oY) (T °Y20) (T Yo
= 042(04‘3)/(768?1/6)32[( y<1>(_i_ (zay)g(>2)3y )]dx

jS :(Z 2, jé fm 3
—3a2(a+3)/(j685y5)82[( (1y+)(j‘(5yg)g)4) ]d:}:.

Therefore the identity (3.9) becomes the following:

L (T
(311) 5010y (72 + (‘”3)/ (1+ (T°42)%)?

~ la-1) / (T3 - &} [%] ”

1 (T°y9.)
. (1 " 2a2> / T -0 [(Uéya)?)] dm
§ 6 695,,0
raatass) [t [T R0 o
6,,0 6,,0 694,,0
+da?(a + 3) / (7582y5)8[<“7 y(ff(;y)ﬁgf)f / )}dx

- ooty e2|\fi+ (@i

dx
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- (2a + 502 — :13013) / (T°8%°) - 02 [M] dx

) 3
sa(a+3) [ (T008") - [(1 f(jygx)) = }dx
546, 8 (T T )(T°Yos)
+10a2(a+3)/(j %y )8%[ (14 (7000 :|dIL‘
[(J‘syi)Q(J‘syix)g’
(14 (T%5)H)*

_18a2(a+3)/(j5agy5),a§ :|d33:<]1_|_j2_|_..._|_t]9‘

We claim that we can reduce the right-hand side of this equality into a manageable form. In
fact we will show that, for some m > 2 and C small enough,

(J7°08y°)? ( )
3.12 J+-+1 gC/’”d:::JrC +
(3.12) 1 9 U T (7 o (1l 72 + 1929°117
+ Ca( 01 + o1 )
To prove this, we find bounds for each of the terms Ji,..., Jg. Instead of demonstrating the
full bound for every single integral, we focus on the most singular part of each of Jy, ..., Jo,

with these most singular parts being the terms with the highest derivatives when distributing
spatial derivatives according to the product rule. We will label collections of the less singular

terms as G(t), which stands for good terms.
We begin with Jp, estimating its most singular term by means of Young’s inequality:

_ 896,08 2 (jéyzm) 526 5 (jéaiyé)
e (afl)/(j 3y0) - 62 {1+(«7691> ]dm < (afl)/(j o) - {H(JW da| + G(t)
1 «768296 ? 54, 52
< 100”1+(]5y§)2 L2+C|IJ 0,y° |72 + G(2).

We proceed similarly for the most singular term in J :

= (14 302) [t a2 [%} =

6 56 5 §92,,0 694,60
‘ (J axg/ [(J 9xy° ) (T 8§y )]dx‘ p
1+ (J% 1+ (T%9)3
j586 2 5o s 9 s )
= 100H1+ (T332 +CHJ || || 7oom|, + .

We now use the Sobelev and Gagliardo-Nirenberg inequalities to control || 7082y | e

5 105 Sie si3
1029 |l2oe < IV12020° 112 < [19°115211085° |15
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This then implies

T8y | S5 1ad, 118
10 < g |2+ e(wikioneih) 1otz + e
jéaG 2 45 4
_100H1+ Ty L2+C(‘ +‘8y‘L2 +G(t).

We turn our attention to estimating Js; to begin, we have

(TY) Ty )(T°0%°)
4042(a+3)/(u7632?/5) [ (1 + (T%2)2)3 } dm'
'/ (7°05y° {(J‘Syi)(ﬂyix)(i‘s@iy‘s)
L+ (T (1+(T°y5)?)?

|J3] =

] d:v' +G(t)

j& agyé

2 2
552,06 55,0
=100 Hl + (T°%y2)? . CHJ 9z HLoo Hj 9z HL2 G

Here we have used the fact that ’W’ <1.

We turn our attention to bounding ||7°92y°||2 . and ||‘75(9;Z’y5||%2 as follows. We use the
Sobolev inequality as well as the Gagliardo—Nirenberg inequality, finding

502, 8 SioiL a2 s Sis S8
(3.13) 1T°024° || < IT°IV 12024112 < |y HEQH&;‘E?J 172

Moreover,

5056 506, 5113 1Ak 5|3 T8y L sk 5. 5\2)5
1 T°0,9° |12 < I|T°02y° || 211090172 < Cl ] I 7201029° 1172111 + (T°y2) || 700 »

L+ (%)

and also,

2
1 5 3
114+ (T°Y2)* e < 1+ |T°%01 3 < 1+ |70V 22 )32 < 1+ (Hﬂy‘sn zznﬁa;‘;yﬂzz) :

We may thus conclude our bound for Js:

1 j586y5 2 jﬁaﬁy
< - ||l—= Ty _ Y TxI
1< ||+ O L Bl W10k + € + Gl

2 j6a6y5 2 5
< 2 || L %Y CllA 14 104016 + O + Gt
=100 1+ (7°90)2 | 2 + Clly° (| 72110:9° |72 + C + G(1)

2 j6 a6y6 2

< ||l —=-r7 51110 .
< | T+ (W + 198718 ) + 6o

Note that above we used the assumption that [|y°||2, + [|02y°[|2, > 1 (otherwise there would
be nothing to prove), and consequently C < ([|y°[|X2 + [|04y°||3).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/01/22 to 144.118.75.33 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

COORDINATE-FREE MODEL OF FLAME FRONTS 2275

We estimate J, similarly to how we estimated J3:

506, 5+ 0 | (TOUD(T°Y0)(TO0*y°)
- /w N E e

| Ja| =

(T085y0 (TN T oY) (T°Dy°)
' [ (7% [ L+ (o)) ]“ﬁ*G@
j586 2

— 4,0
100H1+ T2 ||, +C<|y 172 + 1959°1I7 )+G(t).

We next consider J5, beginning as follows:

) 5 2
|J5]_‘/j586 ) 2[144‘7)}@‘
14 (T%93)?

< 0’ /(Jéagyé) . [(ji i((ﬁzi)?)] d:v‘ +G)

jéag 5 2
< [Tl | gt e R + G
J° 0%y’ :

T CINT YD (TR 12l 1+ (TPy2) e + G (1)

<
- 100H 14 (T%93)?
By the Sobelev and GaghardofNirenberg inequalities, we have

3
8
H (J 5y§) 2 Ay’
as well as
2 2 L 2 s s 2
] (T so(uWJ%mmj sc@+mvwﬁmﬁ sc@+«f@ﬁ%wm0~
LOC
Moreover,

1 3
(T3> < 190 220105° 117
We may then conclude our bound for J5 as
1 J°05y° ? 513 194,003
— s 5 +C 9) +1+G(t
L T | 514 4, 614 5116 4,66
— C 19) C 0 G(t).
< 16|l |+ O + 10891 + CIP I + A1 + Gt
We begin the estimate for Jg similarly to how we estimated J3 above:

|J6|:‘<2a+5042—;a3> / (TOEy) - 02 [M]d:g‘

| J5]

14 (J%2)?
(T°0%° (T°y8.)*(T°0"°)
‘/ 1+ jéygc2 [ (14 (T°y9)2)3 ]d$‘+G(t)
J566 2

+G().

L2

+4Mﬂ£a%ﬁMf>

100”1 + (Jy3)?
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We then make use of relation (3.13), finding

(o)

3 9
<110 < (101 + 17°0% 15 )
L

Therefore, we have the conclusion

ol < 2 H J00849
6

2
=100) 1+ (7002, +C@fﬁrWJ%%%%>+qw

We estimate J7 as follows:

1= et 9 [ R o [ poom] ]
6 96 (5 6,0 \2( 7694,,0
| 255, [t o
(3.14) Sﬁ % H ") j5624)2) 6w
<[ 2B e (1 ttone) + o)
< o[ e 2B o (wikionis) o + oo

Our conclusion for J7 is then

1 J‘Sﬁgyé
| J7| <

2
=100 |1+ (70y2)2 +C (15152 + 17°08° 152 ) + G,

L2

For Jg, we begin with the following estimate:

6,0 6,,0 6,,0

2(a+3)/(J63§y6) - 02 [ (1+ (T52)2)3
T YT 1) (T8
c| [itotw | R el

The integral on the right-hand side is similar to J3, and we handle it in the same way.
This brings us to the final term to estimate, Jy; for this, we have the following:

0,0\2( 76,0 \3
st ot 2 (S

‘/ (T°08y° [(J‘syi)z(ﬂyix)g(ﬁ@“y‘;)
1+ (T%2 (14 (T%y2)%)3

] dx‘ +G(t)

jé 86

= 100 H1+ (Ty3)? +Ew.

relennrata,,
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Here we have used the fact that |%| < 1. The last inequality is similar to (3.14),

and we proceed in the same way to get
1 j58§y5
= 100(|1+ (T%8)2
Putting the above together leads to the relation (3.12), which we had been aiming to
prove. We now may add (3.8) and (3.12), finding

2
|Jo| <

; c(uyéu% n ||ﬁa§y6u%2) ).
L2

j582 (j586 )
1+ J5 9)2)?

< Co (v I= + 1039132 ) + O (I3 + 1929 12

This inequality clearly implies a uniform bound (uniform with respect to 9) for the function
y?(x,t) in the space H* until a time T = T(a, ||yo||g2). We will study the size of this time
interval [0,7] in a bit more detail, and to this end we define I(t) = [|9°||2, + ||0py°||2,
also fix Cy with v = Cj.

We may then say

1
50 (071132 + 192152 ) + &

t
I(t) < e"1(0) + / )% (s)ds.
0

We use Lemma 2.1 to see that I(¢) remains bounded as long as t € [0, ﬁ%], where

(3.15) fBm = sup {t : (% _ 1) /t o~ Cs v [(I(o))(%—n e(%—ms] ds < 1} :
0

A simple calculation then shows that we have guaranteed existence of our solutions over the
interval

In <1 + 7“ T )
(3.16) 0<t< )
Y

Clearly, this bound for the time of existence depends on the initial values; that is, if the value
1(0) = [lyoll22 + |0syol|3> stays small, the time interval is large. Note that we will take this
m > 2 and v to be fixed throughout the following. |

Lemma 3.2 provides a uniform bound in H* for the solutions of the approximate equations
(3.1). Although this is a good and useful estimate, as we are aiming to show the existence of
classical solutions, we need a little more. In what follows, we will pass to the limit of solutions
of the approximate equations (3.1) to find solutions of the original equation (1.8). In order to
do this, we need to have at least the continuity of the function F(y°), where F(y°) denotes

(3.17) u =F@),

with y° determined from (3.1). To guarantee continuity of this function, one approach is to
prove an H®° uniform bound. This clearly means 0?;y is continuous and hence the function
F(y‘;) is continuous as well. The following lemma concerns the appropriate bound.
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Lemma 3.3. Let y° be the solution of (1.8). Then there exists T = T(c) and C = C(yo, a),
In(1+-—235—)

independent of §, so that for any 0 < t < ”'YOHH4 }
(O1T°y°)
219 o<t<T | ”H5 (14 (J%98)2)2

Proof. We take five spatial derivatives of (3.1), and its inner product with the function
a3y’

§
(3.19) %&Haiy‘sl\% + (o - 1)/“68396) % [14(;7(;?))} dx
) . 1 d2 é
+a (a+3)/(~73 %) -0 {W dwz}

+/U%M»@[Luﬁﬂ%ﬂw

(o) il

- <2a + 502 — ;a3> /(J5a§y )05 [%} dz

5
= o+ 3) [(0) 8| (T w5 an

For a more convenient form of this identity, we simplify some of these terms. To begin, we
have

d2 5:|

a%a+m/@ﬂy )0 [ jé 5 d

2 65,0 \75y:m:xm
= o*(a + 3) /(] Ry’) - 0> [(1 n (j‘syx)Q)Q}dx

4 1 (jéyacz)?)
—3a%(a +3) /(j 2y0) - 9> [(1 n (Jéyx)Q)?’]dx

(T°YNT )T 5yfm)] "
(1+(T%3)2)3

T2 T%,)°
+15a2(a +3) /(Jéaiya) : ‘92 [((1 i zj(aygg;Q)zz }dx‘

The first term in the right-hand side of this relation is

4 1 j(syg:&tw
(o +3) /(j oy°) - 02 [(1%75))] dx

J°0Ty
= az(a+3)/(1(+(jéyg))2)2dx

+9a%(a 4 3) /(jaagyé) -0y {
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sor oy (T8 (T0y0)(12,)
_4a2(a+3)/(5 9y°) - (14 (J%2)?)3

2 507,68 2 (~753§y6)(«75yg)(y2x)
— 4o (a+3)/(J ly )830[ 0+ (T0)2)0 ]dw.

dx

We next rewrite another term appearing in (3.19):

5 78,5\2
5655,35[ 1 5 552]d :/ 5875'83[1+(jjyx> ]d
/(J y°) - 0 + (T T%y9)?| dx (T°87y°) - 03 T -

Finally, another term in (3.19) can be written as follows:
2 5055\ . 5| (76 706y o K
oo +3) [(7°00)- 2|70 -0 o

6 76,,0 6 76,,0 6,,0
(1+(7°%2)%)
j5y5)2 . (j6y6 )3
—40?(a+3 / 39Ty° -03[( = 2 dx.
( ) [ (T°0:°) - Oy (1+(j5yg)2)4
One can put in more effort and simplify other terms for a more convenient form, but we
avoid long calculations and work with the following simplified version, as it is enough for our

purpose:
1 ._768; 5\2
(3.20) *@Hagytsuiz +a2(a+3)/(((j§;g))2)2
- sty o8| T ) T4,
<le=1/- ‘/” % [1+<J5yx> ]d‘
0q7,0 (jdagy(;)(ja )(yxx)
J ) S d‘”‘
(T°08°) (T ) (12 )]dm
(1+ .75 9)2)3

+3a2(a+3) (70070 - a[H }/gm ]dm

(
é
+10a a_|_3 ‘/ j687 5 a |: ym:c (j ymmz):|dl_’

dzx

+40”(a + 3)

+4a2(a+3) (T°074°%) a[

1+ (T°y2)?%)3
ym4) }dx’

+ 18a%( a+3‘/.7587 .92
‘/j587 5 3[ 1+(~76 }dm‘
14 (J%2)?

<1+ a)’/j%ﬂ 2[%}@

<2a+5a2 - ;oﬁ) / (7°05y°) - 0 [(1 ij(;y&)j 3 }dz‘

+

=L+ +I; + Ig + Iy.
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We will omit most details of the estimates of these terms, as the proof is similar in many
respects to the previous lemma. For those details that we do show, in order to control
Ii,..., Iy we will focus on the worst term in each of them. In fact, the worse terms are the
ones for which the derivative behind the fractions hits the highest degree in the numerator.
Note that as long as we restrict the time interval to the interval in (3.16), Lemma 3.2 already
provides us with H* bounds, and hence, for a = 0,1, 2, 3, there is a constant C' so that

(3.21) 1031l < C.

Therefore, any term of this kind which comes up in the estimates is easily bounded by a
constant C. Moreover, an application of the Gagliardo—Nirenberg inequality and Lemma 3.2
leads to

(3.22) 1029 I < €ollOFy’ll2 + Cliy’ | 2.

where in our future calculations, the constant €y will be chosen in a way that the seventh
derivatives on the right-hand side could be absorbed in the left-hand side (as is frequently
done in energy estimates for parabolic equations). This incurs the expense of a potentially
large constant C' > 0 on the term ||y°|| 2.

We will start with the term 77, and as mentioned above we only present the bound for the
worst term in the expansion of Iy:

~7687 5 5\2 3 (jéygx)
= a1l ‘/H Jﬁyx <”(”$)) O [1+<J6 e M

<ol L] oo )
597,,0 6,0
<oy p 83[1ij<;§§§>2]
6097,,0 695,,0
=C 1&7(?%@22))2 L 1(47@%2))2 L
=¢ 1(52%2)2 2 70 P
<ol L], (o], o]+
o e W R W et e

We omit the details for I but reach the same conclusion as for I7.
The estimate for I3 has an interesting feature which we mention. To begin, we have

5oy o2 (IO )T oun) (R.)]
J o) a’"[ 0+ (T2 M

o] fir [

I3 < |oz2(a +3)|

+G.
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The integral on the right-hand side of this may be controlled as desired. The interesting
feature mentioned above has to do with an estimate of a lower-order term from the collection
G, namely

[t |2,

A el L B G PR M P R

2
j587 6,012
C
> H1+ j(; 5 L2+ ||\7y ”L2
2
jéa;y(s
+C
B H1+ ToY3) |l 12

in which we have used (3.22) and Lemma 3.2.
Omitting further details, we have the conclusion

Loia5 6912 / (T°07y°)*
- W Yd ) g <
28t||axy ”L2 + CO (1 + (jéyg)Q)de = 07

where Cj is a positive constant and satisfies Cp < 4 — 1%. This clearly finishes the proof. M

Now we are ready to present the existence of the solution to the initial value problem for
(1.8) in the Sobolev space H°.

Lemma 3.4. For all 0 <t < %ln(l i Hm —X—>) there exists a function y € H® that solves
(1.8) with initial data y(-,0) = yo € H®. Moreover, there is a constant C = C(yo, ) so that

(3.23) sup |ly[|gs < C.
0<t<T

Proof. In Lemma 3.2 we have shown that {y°}s-0 is a uniformly bounded and continuous
family of functions defined on T x [0,7] in the Sobolev space H°.

Thus, by Sobolev embedding, the first spatial derivatives of the solutions, y:‘z, are uni-
formly bounded. Inspection of the evolution equation (3.1) also implies that y¢ is uniformly
bounded. We conclude that the solutions 3 form an equicontinuous family. By the Arzela—
Ascoli theorem, there is a uniformly convergent subsequence (which we do not relabel). This
subsequence converges uniformly to some y € C(T x [0,77]). This uniform convergence implies
convergence in C([0, T]; L?). Combined with the interpolation inequality (2.1), convergence in
C([0,T); L?) and the uniform bound in L*([0,T]; H®) implies convergence in C([0,T]; H*)
for any ¢’ € [0,5).

For any t € [0,7T], the sequence y5(-,t) is bounded in the H®, which is a Hilbert space.
Since closed balls in Hilbert spaces are weakly compact, at each time ¢ € [0, T, there is a weak
limit in H°. By uniqueness of limits, this limit must equal y(-,t). Thus we may also conclude
that y is in H° at every time t € [0,T].

We claim that this y € H° solves (1.8). Indeed, for all § > 0, the integral representation
of the solution to (3.1) is in hand,

(3.24) (1) = 4 () + /0 F(yP)(z, )ds,
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where F'(-) is defined in (3.17). The integrand in the right-hand side consists of continuous
terms with functions 93y°, 0 < s < 4, within. Therefore in (3.24), using the regularity we
have established, there is no difficulty in passing to limit on the subsequence. Since y°® — y
as  — 0, that means

(3.25) y(a, 1) = yo(x / F(y

This immediately implies that (3.25) satisfies (1.8). [ ]

4. Asymptotics. In this section we show that, in a special scaling limit, solutions of the
system (1.8) and solutions of the Kuramoto—Sivashinsky equation (2.16) shadow one another
over a time period dependent on initial values of both equations. To begin, we fix an 0 < e < 1
and assume

a=1+e.

Then we use the change of variables
(4.1) (€,7) = <e%x, e%) L y(z,t) = e®(Ver, 2t) — L.
A straightforward calculation transfers (1.8) into new variables as follows:

(@—=1D)Yow _ g
1+y2 1+ e3(Pe)?’

Yt = 63q)T - 17 Yo = egq)fu

V14 (yz)? \/1+e3 (Pe)2,

Pl 3(Rge)® + 9MPPeeDere | 15€”(D)(Dee)”

v = (1+ o) (14 (dage) (14 (Feg2)’

)

and
d 3(Y)? (Y ) DeDecd 36 (Pe)?(Pee)?
Yp - K - j _ Y2YzaYzaa _ Y2 )" Yz )™ 66 §XEEFELE I3 133
x - =
dr  (1+y3)?  (1+yd)? (1+6(2e)?)? (14 €3(Pe)?)?
Then
3 3
3 " Peg 2 € Pegee
o )= 14 e3(Py)2 —
€D + 1+ e3(®¢)? +a(a+ )(1_'_63((1)5)2)2 + + e3(D¢)
6P, P d 6(P..)3
—1002(a + 3)- S PePeePece g2 g € (Pee)

(14 €(®e)?)? (1+€(De)?)?

180 (e 3 & (Pee)*(Pe)? 15\ eH(Pg)
18 +3)(1+é”(<1>s)2) <1+2 >(1+63(<1>£)2)3

1 O (Dee)?
_ (9 2 3 33 )
(“*“f:f>a+é@wﬂ
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This leads to

® ? 0¢)? SPDee®
@ + 00+ 3) iy = ~ Ty — w0070+ D)
e (Dee)? €0 (Dee)*(0¢)? 1,2) _ (Pee)?
(4.2) +30%(0 + 3) (rpaa gy — 1807 (0 +3) rpd e — (1 20 (14+63(®¢)?) 3

2 _ 1.3\ (®e)?
—(2a+5a — 3 )méin
In the above, if we put ¢ = 0 and @ = 1 we arrive at
Lo
O7 +4®esee = —Pee — 50,

which is just (2.16) with a new variable name. It is worth noting that putting f(z,t) =
eU(y/ex, €%t) transfers (1.1) into (2.16) as well. The point of this section is to make rigorous
the comparison of solutions of (4.2) to those of (2.16) when € is small.

4.1. Some a priori estimate for the function ®(£, 7). We now turn our attention to
some bounds for the solution ® of (4.2) in Sobolev spaces. Specifically we have the following
lemma.

Lemma 4.1. Fix 7. andT'x. Then there exists constants E. and e, so that if | ®(0)|| g« < Ex
and 0 < € < €, and if |o — 1| =€, then

(4.3) sup [ ®(7)] ;4 < T
0<7<Tx

Before the proof, note that this lemma tells us that after unraveling the scaling from (4.1)
to go from ® back to y, we find that the solution y(x,t) exists on the time interval [0, 7, /€?],
far longer than the times of existence we found in the previous section.

Proof. The proof goes by adding up two energy estimates together, one on ||®||;2 and the
other on ||9®|| 2. We first multiply (4.2) into ® and take the integral to get the following
energy estimate:

1 P Pee® P(P
LU+ oot B = [ 2 e [ 20

T+ (02 e [P I = r e

_ <1 + ;a2> e/ %d& +100* (o + 3)€’ / mdﬁ
+402(a + 3)éd / st —4e’a?(a +3) / Dee O [%] dg
+3a?(a + 3)63/ T @55()3‘1;) dé — <2a +5a% — ;a?’)e?’ / AT (b fif(fél§2)4d§
—18c*(a + 3)66/Wd

Above we made a simplification on one of the integrals using integration by parts,

g2 @ Oge® (Pee)®(Pe)” 3 D Dee
[ et = [ ogmrs =1 [ o Eoagmes =1 [ o oiasom

E=h+ T+ Is+1y+Is+ Ig+ I7 + Ig + Ig.
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Although this energy estimate is already in a nice form, and we can run the argument, we
are still able to simplify the left-hand side, which itself reduces many calculations. In fact we
make use of the bounds in Lemma 3.4 and the scaling (4.1)
1 B 1
1+ ()2 || oo |14 (32)?

for some Cy > 0 fixed. Therefore, the above energy estimates turns into

(4.4) >

Loo

L+ T+ Is+ 1+ Is+ I + I7 + Ig).

1
(45) SOl + Ca(a+3) ez <

We now try to find a proper bound for the right-hand side of this equality.
Estimate for 1.

P ® 1 1
il = | [ s sse] < clollaloedlee < Io1is (ol lotal. ) < (11 + 1ot
Estimate for I5.

1| oo | Pe 7.

= e <

2
1 7 1 3 1
< C||V]29| 12| Pel7- < C<H<I>IIE2II54<I>||22> (II¢’||,§2II8§<I>II,§2>

1+ e3(¢)?

< c<u<1>||%2 T ||a§<1>||%2) T c(nwiz T uag*cbu‘za).

Estimate for I3.

(I>
ug\—e(w )\ / _®e)” \Serr@umu@sdiz
1—|—€3 (I>§ 2

2
< €@ 12 <H<I>|| 5 ot L) < CGQ,@H; n ua‘*cbuiz)

R S
(1+ €3(D¢)?) 3

LOO

< <\<I>H%2 n H@‘*@!%a) T cé(u% T H64<I>Hi2>-
Estimate for 14.

DD DD
14| = 60°(a + 3)¢® /( St df‘

1+ e3(¢¢)?)

1

(1+€(2)?)? |,
1 1

< CENIVIZD|| 2|V ]2 Dl 2| Pee | 2

’ 19| oo | D | oo | Pee || L2 Pegell 2

|‘I>§E€HL2
3 7 4 1 5 " 3 1 4 1 1 1 3
< Ce (H@H 5 ota) zz) (ucbu 5 lota) 22) <H<I>H 3 lota| L) <H<I>H 5ot zz)

< Oé”(ucbniz ; H82‘<I>H‘i2>-
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Estimate for Is.

1I5) §463a2(a+3)‘/®5585 {(1?{)?)&}%’

1
EETREL

1 3
< O Deell 2| Deee 21V 3 @ 2|V 30
1 1 1 3 7 1 5 3
< cé(mn 3 ota| L) (||<1>H i ot ;) (mu £ lotal 22) (H<I>|| 3 ot zQ>
< Oe?’(ucbué n Haé@!!‘iz)-

Estimate for Ig.

< O||Pegl| 2| Degel| 2 1@ oo | P oo

1

(Dee)*(®
(14 €3( ¢§

2 2
1 1 1 5 3
< 0| e [l V B e 2 < 0e3<||<1>| ,;ua%u ) (||<I>|| 5ot )
e3(u<1>||‘zz n ra%u‘zz)-

Estimate for I.

Is] = 40’ (ar + 3)é? [ Pee |72l Pe |7

LOO

d&‘

1
(1 +63(2e)?)? || oo

(Pge)*®
(1 + Eg(gf)g

- 3 7 1
13 1 T 1
§063\\\V|6@\\?22!\!V|2<I>\L2SCG3<H<I>II ot )(I!@\\22!\84®\\22>

| 15| = 30%(a + 3)€’ 1@ec 75121l o0

d§’ Cé

< Oe?’(u@uiz n ||a4<1>||4L2>-

Estimate for Ig. This is similar to I7.
Estimate for Ig.

e (D¢)?

(Pec)* (D)’
(14 €(Pe)?)?!

3 3
L S CLATPS

3
13 1 7 1
scé’mvw6<I>122mvm>upscé”(ucbu {ote) 2 )(u@u;uaé@r;)

|Ig] = 18a%(a + 3)€®

J

LOO

< ce?’(n@ﬁz n ||a§<1>||‘zz)-

Overall, the energy estimate (4.5) is transfered into

1
(4.6 gortalz: < (1ol + 10l ) + o (el + lofols ).
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As mentioned, our argument is based on a combined energy estimate. For the other term
in the energy estimate, we take 4 times derivative of (4.2), and then find the inner product of
the resulting equation with 8?@

4.7)
821@ 4 _ 4 ‘I’if 4
1+ (@) | 2% = - J o [1 T 63@92} Oe bt
PePeePece | g
i+ e3<¢5>2>3] O P

1
300t + a(a+3) [ of
()

B
/5 14 /1+ (g2

oo &3 4 (@55) 4 _1802(a 8 4 (‘I’Eﬁ) (@ )2 4
+ 3o (a + 3) /5‘ [(1+ 3 ()2 )3}85@% 18a“(ar + 3) /6‘5 [<1 (6 )2)3}&5@1{
(

. (1 - ;a2>6/3§ {%}aﬁ@d& <2a +5a” — ;ai*)é”/a‘* [%}agcbdg.

Although we can simplify most of the terms in this relation, we leave most of them in the
current form, as they are easily bounded in the current form. However,

O ®de +10a” (a + 3)® /ag [

Oi® (089)?
o+ 3) /ag[mefwmg@dg =a%(a+3) / (Hegwdé

(02®) (02 P) e Des
—4a(a+3) / DL

DD
(1 +e3(D¢)?)3

d¢ — 430 (o + 3) / (02) (¢ ®) 0, [ ]dg.

Then, the energy estimates (4.7) turns into
(4.8)

| / (56‘1’ / P
- ®%, 5P .

/8£ [1+\/(1(I)+£)é’>—<1>5}d5 (H a) /85 [1+$§<5<135> )E]dg

2larneS [ 980 . 52| PePeePece 2la  (Pee)”
+60%(a+3) /agcp ag[(H (¢))]8§@d§+3 2(q 4 3)e /a§<1> af[(H ((b))g}df
(990)(8°®)(Pe) (Pee) (Pe)(Pee)

dé + 40’ (a + 3)e? /(a§q>)(a4q>)a§ [(

Tt 63@5)2)3}15

+4a2(a+3)63/ (1 + 3(0)2)3

(2a+5a ) /8E<I> 85 {m]df

2 o (@ iiJ
— 18« (O¢+3)€6/ag(1).8§|:(§—5i)3(;5;)4:|d£::J1+..._|_J9.

As we argued in (4.5), we work with a simpler version of this energy estimate,

1
(4.9) iatuaif@H%z + C()OzQ(Oz +3) / HB?@Hdeg <|Ji+---+ Jy|.

As stated before, in each term we present the bound for the worst part of the integral, and that
happens when in the integrand, the two derivatives hit the highest degree in the numerator
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of the fraction. We denote the rest of the terms G(7), where G stands for good terms. One
type of such (good) terms arises when derivatives hit the denominator. Any time a derivative

is applied to the denominator, which is of the form W, it multiplies the integrand in
€2 Pg g

TF @) T These kind of terms are controlled in the following way:

€%q)€
a+1
(1+@?)

3 3 5 3 3 5
< Ce2||Dge oo < Ce2|||[V]2 D] 12 < Cez||®|2,]|0°D| 5.

D D¢

(1 B 53(<1>£)2) at1

Njw

<e

| Pee | Lo

Lo Lee

Although this might increase the power of ||®||;2 and ||02®| 2 in our final calculations, it also
adds the power € in front of every such term, which fits our Grénwall’s inequality (2.2). For
the rest of the proof, we ignore the good terms G(7), and in each integral in (4.8), we present
the proper bound for the worst term.

Estimate for Jq.

P
6 2 39 4 6
[ o005 ] ae] < crotatatogon.

1

Ji| = S S
1] [T 3(@g)?

+G(71)
LOO

< CoaQ(oz +3)
- 100
Estimate for Jo.

D)2
Jo| = 3%-82[ (P ]d'< D 12
1| ‘/ L+ 11 S(@)2 £ < log 2l

0Bz + 0 (1012 + loge. ) + Gio).

1
O |1 |02 12 + G
1+ Vit a@? Lwll ellze 0@ L2 (7)

< |88 3 3 6 2 194a| R I 1atalE
< 08021V 30l 21020 > < bz (Il ot ) (ol Lozl s ) + 6r)

< Coa®(a +3)
- 100
Estimate for J3.

1
‘Jg’ = (1 + 2()62)6

5 3 5
< Celofal 217120 a0fe e+ Gi(r) < Celogela (o1 ool . ) 1obls + G(r)

lo5al2 + C(H@?@‘iz n ||<1>||‘z2) o).

e )?
%o [(&} dg‘ < Ce % 2|1 Lo 0202+ G T)
/ 3 3 (1+63(q)§)2)g H 3 HL H ff” H 13 HL (

< Coa(a + 3)
- 100
Estimate for Jy.

105|12, + c?(uéniz n Ha4<1>\4p) e

|J4| = 6a%(a + 3)e?

60 2| PePeePece
JEER: [(1 +e3<¢g>2>3]d5‘

< €8P 12| el oo | Pee || oo 02| 2 + G(7)
3 5
< (08| 2 IV2@| 2| [V]2 D] 2|02 | .2
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5 3 3 5 1 1
séw%wmQ@mm%Qm)Q@mﬂ%¢mg(wﬁw;Wé@@)+Gv>

3 3
SQW%@@O@Mﬂ%M§>+aﬂ

Coa®(a + 3)
< 080 + 2 (1@ allo S ) + G(r)
< Coo*(a+3)
- 100
Estimate for Js.

Iogals + (o115 + 105l12) +G(r).

|J5| = 302 (a + 3)€3

P

6p. 02| (P)” 1,

/85 65[(1+e3(¢é ¢
1

T e E o’ 86(1) 284(1) 2|| D 200+G7-

(14 e3(P¢)2)3 Loo” 3 Izl 3 2| Peellz (7)

Coo“(a + 3

< oot oo, + e I + ot ) + G

Coa”(a +3
= 1(00)\\85<I>HL2 +C<H<I>HL2 + HagcbuLQ) +0612<\q>u +[lof| ) ) +G(7).

Now we use the following relation.
Estimate for Jg.

3

(0£2)(92D)(Pe)(Pee) ’

Js| = 40’ (a + 3)€’
| Je] o (a+3)e (1 + €3(D¢)2)3

1

(1+€(26)*) |l
5 3

< CE)|0¢2| 12072l 2 V]2 @l 2 [[[ V]2 @] 2

1 1 3 5 5 3
< el (loge it 1ol ) (olleton. ) (1eik 1ol ) + 60

< Cél

10£ @ 2|0 @[ 2| Pee | v | Be | oo + G(7)

3 3
<&%£@@Q@Mﬁ%ﬂ;)+aﬂ
< C’oag(a + 3)
- 100
Estimate for J.

|J7] = 4302 (a + 3)‘ /ag'(p 9D - [(1?563)(%2)3]%‘

3
3 e2®
< Ce> ||a§6(1)||L2||a§q)||L2||(I>£§5HL°° HWHLOo +G(7)
1 7
< ool otale 12110701 . ) + Gir)

< Coa(a + 3)
- 100

n@@mr%”@@\+4@®|) a(n).

”%@$+CQO¢%HW%®$>+GU)
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Estimate for Jg. This is similar to J5.

Estimate for Jy.
Dee )3 (Pe)?
ot [ o e

< O 0gD| 1210 |l 2| Pee | o< || el [70e + G(7)
5 3
< O 0gD]| 1210 |l 2| VI @[22 | V]2 @] 72 + G(7)

|Jo| = 1802 (ax + 3)e®

3 5\ 2 5 3\ 2
< ool ojel.s (1ol 1ote1 . ) (IelEl0tels. ) + 6o

< Cooz2(a +3)

ot Do+ 2 (o115 + 1020l ) + G

Therefore, we can summarize the energy estimates (4.8) in the following form:
(4.10)
1
3010l < (1912 + gl ) + (1914 + loblLs )+ (oli% + 10l ) +Gio).

At this point we combine both energy estimates (4.6) and (4.10),
1
0 (101 + 10tlR: ) < (o3 + oo ) + (1l + ot
+ Cel2<||<1>ylL% + Hagcpui%) +G(7).

Note that G(7) is also bounded by a combination of the terms in the form of €*(||®[}, +
H@g@”%). We define E(t) = ||®||7, + H@g@“%z. Then this inequality is clearly in the form of
the Gronwall’s inequality in Lemma 2.2, and it finishes the proof. |

4.2. Asymptotics. In this section we show that the solutions of the scaled equations (2.16)
and (4.2) stay close up to a time 7.. In the previous section we established the existence of
the solution of (4.2) in H* on a time interval [0, 7,], under some restrictions. We also recall
an important result of the global boundedness of the function U(,7) in any Sobolev spaces.
This result is proved by Tadmor [33].

Lemma 4.2. The Kuramoto-Sivashinsky equation (2.16) with the initial value Uy € H*
admits a global smooth solution

(4.11) U, ) e H.

Lemma 4.3. Fiz 7« > 0 and I'x > 0 and take E, and €, as in Lemma 4.1. Assume that
|P0)||ge < Ex and 0 < € < ex. Let U(E,7) and ®(&,7) be the solutions of (2.16) and (4.2),
respectively, where we assume ||[U(0) — ®(0)||z2 < e. Then

(4.12) sup [|®(t) = U(t)]| 12 < Twne.
te[0,74]

The constant I'yy, > 0 does not depend on e.
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Remark 4.4. Lemma 4.3 leads directly to Theorem 2.4. Here is the calculation. Recalling
that we define ® from y via y(x,t) = e®(y/ex, €t) —t, we see that the initial conditions stated

n (24) (y(z,0) = elo(Ver) + yeo(x)) imply

B(X,0) = Up(X) + %ye,o (\2) .
< e.

The requirement on yo(z) in Theorem 2.4 (namely ||yeollzs < €/4) and a routine scaling
:

argument give us
U(0) — ®(0)|| 2 = = —
10) = 80 = ¢ o ( Z2)]|

Thus the requirement on the initial condition in Lemma 4.3 is met. Then using the conclusion
of Lemma 4.3 we compute

sup  ly(,t) +t—eU(Ve, et)|p2 = sup  €l|®(Ve,e’t) — UWe, €)1z
0<t<T0/€2 0<t<T0/€2

(4.13) = sup D7) = UG 7)|2

0<t<719

< Ce™l4,

This is the concluding estimate in Theorem 2.4. In the above we used the change of variables
relation || f(a-)|[z2 = a=V?||f(-)||z2 when o > 0 several times.

Proof. From (2.16) and (4.2) we construct the equation for the quantity v = & — U.
Indeed, since for a = € + 1, a?(a + 3) = 4 + (e + 3)%, we have

6T(<I>—U)+4[q)555‘5)) —U&&} ! { 1+ €3(P¢)2 —1—623(U5)2]

(14 €3(Pe)?
Dec - BDeDeeDece € (Pge)’
+(a-1) [Hegw - U&] = 10050 +3) oy 3O g
(P )3(Pe)2 1 €(Pee)?
—18a*(a + 3)&?@55;))4 B (1 2a2> (1+(63(£§>)5)2)3
a a _ 1043 M —€l€e 2&
(00?30 iy~ i e

Then we can simplify it in the form

%3333

O-v+4
T AT (@)

_|_

e (Pe +Ue) [ Us& ]

() )|

_ o2(a 4 3 26" + (21 !
(a+ )|: (1—1—63(‘1’5)2)2 :| €§§§+4 < 1+€3(<I>§)2>+<1+62(U£)2>

€ (P¢)*Uge € (Pge)?
T+ e(@)? (1 + (@)

AP Pege

W + 3042(Ck + 3)

+ (a—1) + 1002(ar + 3)
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O (Dee)(Pe)® ( 2> €(Pge)?
(L+e3(2g)?)" (1+€3(0¢)?)3

1 € (Pee)? Degee
— 2a+5a2—a3>—66+32
( 3% ) Tr et Y ey

1
1+ -«

— 18a%(a + 3) 5

with the initial condition v(§,0) = 0. The presence of at least one € in the right-hand side of
this relation, as well as the H* bounds for both U (¢, 7) and ®(&, 7), makes the right-hand side
very convenient. For future calculations we give the right-hand side a name, say, eF'(§, 7). It
is not very difficult to see that for any time 7 € [0, 7] we have

(4.14) IF|| 2 < C.

Now we find the inner product of the above equation with v,

(4.15)

Veeee

B —
(1+€(P¢)?)° ¢

1
20rlulis + %@ +3) [ v-

_ ve - (Pe + Ug) v
- g gl e

Vegee _ (vee)?
/” (1+ €3(9¢)2)? dg_/(lJré*‘((Pg)?)?dg

20 [o¥Y0) + v [P ) + U((I) )2 +’Uq)§q)§§£ ’U((I)é)Q((I)ggy
—463/1; [ 6P Pee + vePe P £ d§+2466/v .
143 (1 +63((I)§)2)3 &€ (1 +63(¢§)2)4

Considering the relation (4.4), we can present a lower bound for the major part of this equality,
ie.,

v 2
(4.16) /m(egé&wdf > ||vgel|72-

Therefore the energy estimate (4.15) turns into

. (P U,
30r vl + ¥+ Blveels = - [ v- [( = es?;a(?)t (161 63<U5>2>] “
2

Vee 3 3 20 P Pee + vePePeg + v(Pee)® + vPePege
| — Y e 44 3 d
/U {1+e3(<1>5)2} £+ da(a+3)e /U&{ (1+ €3(Pe)2)3 ¢
v(Pe)?(Pee)?

+2403 (o + 3)€° /Ugg {M@&)z)‘l]df + e/v CF(6t)dé = Ky + Ky + K3+ Ky + Ks.
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Now we find proper bounds for the right-hand side of this relation.
Estimate for K. Considering the relation vve = %85(1)2) we have

Vg - ((I)g + Ug)
‘Kl‘ S (N d{
/ (1+\/63 @5 ) ( Ug) )
_ /vz 0 (¢ + Ue) : i
(1+ V(@) + (1+ 5(Ue)?)
< lloll2 Be + Ue < Cfloll2..

(VI+E@) + (1+50e)?)

LOO
Estimate for K.

Vee
ol < | [0 | rastgoa ] < ol + gl

Estimate for Ks.

20D D B, D)2 + 0D D
K| < O /UEE[ VePePee + vePePee + v(Pee)” + v Py s&]dg'

(1+ 63(4’5)2)3

< C€lvgell 2 (vl 2 + Ilvell =) <

< sosleels + Ol +Ce

Note that all the terms 9;®, 1 < s < 3, are bounded (since ¢ € HY).
Estimate for Ky.

[ vee|[ SEE e de| < chucelialioe <

Ky < Cé
K| = Ce 1+ e3(0g)2)"

—cllveellze + Ce vl

- 100
Estimate for Ks.

|K5| S Ce

I F(&T)dﬁ‘ < ClF (o) 2wl 2 < Cllol2 + O,
Overall, the energy estimate (4.15) turns into
Orllvl72 + Cllogell 72 < Cullv]|72 + Caé?,
or
87”””%2 < ClHUH%Q + Ché?.

Then we take the integral from both sides,

T i T—S§ T 0262 T
ol < €V o) s + Cae® [ o= = O (o) + Z= [ 1]

Finally, we restrict ourselves to 7 < 79, 70 = O(1), as well as ||v(0)||;2 < €, and complete the
proof. |
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