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ABSTRACT. We consider a linear Fermi-Pasta-Ulam-Tsingou lattice with ran-
dom spatially varying material coefficients. Using the methods of stochastic
homogenization we show that solutions with long wave initial data converge
in an appropriate sense to solutions of a wave equation. The convergence is
strong and both almost sure and in expectation, but the rate is quite slow.
The technique combines energy estimates with powerful classical results about
random walks, specifically the law of the iterated logarithm.

1. Introduction. We prove an almost sure convergence result for solutions of
the following one-dimensional random polymer linear Fermi-Pasta-Ulam-Tsingou
(FPUT) lattice in the long wave limit:

m(5)i(j) = k() [u(i +1) —u()] = k(G = 1) [u(f) —u(G = 1)]. (1.1)

Here j € Z, u = u(j,t) € R and t € R. We choose the coefficients m(j) (which
we refer to as “the masses”) to be independent and identically distributed (i.i.d.)
random variables contained almost surely in some intervals [am,b,] € RT with
standard deviation o,,. We similarly take the coefficients 1/k(j) (“the springs”)
to be i.i.d. with support in [ag,br] C RT and deviation oj. This system is well-
understood when these coefficients are either constant or periodic with respect to j
[8], but for the random problem most of what is known is formal or numerical [6, 9].
For initial conditions whose wavelength is O(1/¢), with € a small positive number,
we prove that the £2 norm of the difference between true solutions and appropriately

scaled solutions to the wave equation is at most O ( log log(1 /e)) for times of

O(1/¢) for almost every realization. While such an absolute error diverges as ¢ —
0%, it happens that this is enough to establish an almost sure convergence result
within the “coarse-graining” setting used in [8] to study the (multi-dimensional)
periodic problem. In addition to the almost sure convergence, we are able to provide
estimates on the mean of the error in terms of o, and o; and prove convergence in
mean.

The articles [1, 5] study the nonlinear FPUT lattice with periodic coefficients.
These show that soliton-like solutions exist for very large time scales using Korteweg-
de Vries (KdV) approximations. The authors of [5] used the so called multiscale
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method of homogenization, a by-now classical tool with a long history in PDE for
deriving effective equations, see [2]. In this paper, we carry out a very similar ap-
proach in deriving and proving the results; however, our expansions only result in
an effective wave equation, not the KdV equation. In our setting, since the coeffi-
cients are random, it is necessary to average over the entire lattice. The law of large
numbers implies this average is equal to the expectation, so the speed of the approx-
imate solution depends on the expectation of the random variables. The probability
theory hinges upon classical but extremely powerful asymptotic analysis of random
walks, namely the law of the iterated logarithm, as well as basic martingale theory.

We denote a doubly infinite sequence {f(j)};ez by f. Let S* be the shift
operators which act on sequences f as

(SENG) = FG£D),
and the operators 6T and §—, the left and right difference operators, are
O NG =FG+1) = f0)
0= NHG) = rG) =G -1,
Defining
ri=06"u
p=u,

we convert our second order equation (1.1) to the system

F=0Tp
1.2
p= i(57(k1"). (1-2)
m

For the remainder of the paper, we work with (1.2).
Here is the idea of our ultimate result. Suppose that the initial conditions for
(1.2) have the following long wave form:

r(5,0) = ®(ej)/k(j) and  p(4,0) = ¥(ej)

where &, ¥ : R — R are suitably smooth and of somewhat rapid decay. Then the
solution p of (1.2) has

Llpl(X/e,7/€) — Po(X,7)

as € — 07 where Py solves the wave equation 92P, = 023§(P0. The operator L
interpolates the sequence p into a function on R. It is defined below, as is the
wave speed c. The convergence is strong in L?(R) and is both almost sure and in
expectation. A similar convergence holds for r.

The paper is organized as follows. We carry out the multiscale expansion in
Section 2 and derive effective equations and approximate solutions. In Section
3 we dive into the analysis of various smooth, rapidly decaying functions which
are sampled at integers and multiplied componentwise by random walks. These
estimates are necessary to control the error and here is where most the probability
theory is needed. In Section 4 we provide the rigorous estimates of the error. We
introduce coarse-graining and prove the convergence results in Section 5. In Section
6 we provide numerical simulations as evidence that our estimates are good ones
i.e. they are not vast overestimates.



USING RANDOM WALKS TO ESTABLISH WAVELIKE BEHAVIOR 2583

2. Homogenization and derivation of the effective wave equation. In this
section we homogenize the equation following closely what is done in [5]. First, we
define “residuals”, which quantify how close some function is to a true solution. For
any functions 7(j,¢) and p(j,t) put

Res; (7,p) := 6Tp — Oy

N 1 _ (2.1)
Reso(7,p) = Eé (kT) — O4p.
We look for approximate long wave solutions of the form
r(j,t) =71(4,t) := R(j, €], €t
(G, 1) = 7e(4, 1) (J €y et) (2)

P 1) = pe(j,t) := P(j, e, et),
where R = R(j, X, 7) and P = P(j, X, 7) are maps
ZxRxR—R.

In the periodic-coefficient problem studied in [5], it was necessary to assume that
these functions are periodic in the Z slot, but this needs to be exchanged in the
random case. Here, we make a “sublinear growth” assumption that makes averaging
possible:

lim R(j, X,7)/j = lim P(j,X,7)/j=0. (2.3)

|7]—o00 71—

The following lemma is crucial to the derivation of the effective equations.

Lemma 2.1. Fiz g = {g(j)} There ezists an f = {f(j)};cz satisfying both

(0= () = 9(j)

JEZ"

and
lim f(5)/7j —0 (2.4)
|§]|—o0
if and only if
p N1 N
din g 300 = Jim Dol

Proof. We only give a proof for “5%”.
— Since g(j) = f(j + 1) — f(j) we get
= =
lim — ZE g(i) = lim — ;[f(z +1) = f@)] = Jim =
by assumption (2.4). Proof of the second equality follows the same reasoning,.
< It is easily checked that

=S a0 and F=) = -3 (=) (25)
k=0 k=1

for j > 0 solves d7 f = g. Then

Jj—1

lim M = lim 722) g(Z)

j—oo ] j—o0 ]

=0.

It is likewise seen that
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by using the formula for f(—j). O

Now we continue with the homogenization procedure. We must understand how
5% act on functions of the type (2.2). The following expansions are found in [5]. If
u(j) =U(j,€j), then

oFu(j) = Z OEU
n>0

where o
~t +1)* T+
6f:=0 and oF := (%S .

~E ~*E
Here 9 and S act only on the first slot; they are analogous to partial derivatives
with respect to j. Precisely,

5 (UG, X) = UG +1,X),
5 (), X):=U( — 1,X),
506G, X) = UG +1,X) — UG, X),
5 (U)(4,X)=U(,X) - U@ — 1,X)
Let
M
(Esu)(5) = (65 u)(j) = Y " (650) (j, )
n=0

be the error made by truncating the series expansion of §*u after M terms. Thus
the lowest power of € we see in the error term is ™1,
We further assume that our approximate solutions R and P themselves have
expansions in e:
R(]a X7T) = RO(j=X7T)+6R1(j7 X> T) and P(]7 X, T) = PO(j7 X> 7—)+6P1(j7X7T)'
(2.6)
Of course R;(j,X,7) and P;(j, X,7) meet (2.4). Using the above expansion, we
directly compute Resy (T, Pe):
Resl(ﬁ,ﬁe) = 5JPO —+ 6(5pr0 —+ EY(P())
+€dd Py + €261 Py + eEf (Py) (2.7)
- 68—,—R0 - 628¢R1.

Here we have used the expansion for 6. Similarly

SO 1
RBSQ(’I"e,pe) = E((S()_kRO + 651_k}R0 + El_ (kJRo)

+ €0y kRy + €207 kRy + €Ey (kR)) (2.8)
— €0, Py — 6237131).
Next set
Qi = kR;. (2.9)
We choose Py, P1,Qo and @ so that the O(1) and O(e) terms in (2.7) and (2.8)

vanish. We get

«t
Fy=0
1« (0(1))
—0 Qo=0
m
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and
t 1
0 P = E@Qo - Stox Py
B 0(0)
0 Q1 =m0-Py— S 0xQo.
From (O(1)) we learn that Py and Qg do not depend on j, i.e.
PO(ja X7 T) = -P()(Xv T) and QO(ja X7 T) = Q()(Xv T)‘ (210)

If there are to be solutions P; and @1 to (O(e)) which satisfy (2.4), Lemma 2.1 tells
us we must have

1 N—1 ~ N
lim — 2 [kj)aTQO —aXPO] = lim g
N—1 N

lim iZ[ ()8 Po—axQO = hm —
0

|: 8Xp0 =0

4)0-Py — 8x Qo] = 0.

N—oo N o N —o00 N
B B (2.11)
Since Py and Q¢ do not depend upon j these can be rewritten as
N-1 i N
1 1 1 1 - _
lim — — = 1l — —— | 0:Qo = Ox P,
NSeo N 2 k() OrQo = Jim_ N; R | O Q0 = 9x o
and
| N1 B XN B B
S D SUTIDE S RS DI T e
j= j=
The strong law of large numbers tells us that
| V=l |
A}E}noo N z;) m(j) = ]\}gﬂw N z:lm(—J) =E[m] = m (2.12)
j= j=
and N—-1 N—-1
1 1 1 1 1
| — =Kk || == 2.13
NS N Z k(j) N—o N ‘ k(—7) {k] k (2.13)

almost surely, since m and k are sequences of i.i.d. random variables. To be clear
E[] is the expectation of a random variable. And so we find that
8,Qo = kdx Py
o (2.14)
0Py = —0xQo.
m
From this, out pops the effective wave equation
872—@0 = CQ@?{ Qo
with wave-speed
k/m.
We can use d’Alemberts formula to get Qo and subsequently find P, from its
relation to Qq:
Qo(X,7) = A(X —c7) + B(X +c7)
(2.15)

Py(X,7) = %(—A(X —c7)+ B(X + c7)).
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The functions A and B will ultimately be determined by the initial conditions for
(1.2) in a fashion that is consistent with (2.2).

At this point we have computed the effective wave equation but we must also
determine the full form of P; and Q;. Using (2.10) and (2.14) in (O(e)) we get

oF k _
0 Plz (—1>8Xp0
k
~ m _
0 Q1= (T - 1) Ix Qo-
m
Define x,, and x as the solutions to

k
6+Xk=f—1and5_xm:@—1.
k m

Using formula (2.5) in Lemma 2.1, we can solve explicitly for xx and x,,. They are

10 g j %
i) = 1 i) = 1
Xk (j) > [k(i) ] and x4(—j) Z;l k(i)]
= = (2.16)
o [m() m(i)
W)= 3 |7 1] e =32 [1- 70
Observe that — — 1 and @ — 1 are mean zero random variables and as such yj and

Xm are classical random walks. The expression for ()1 and P, can be given in terms
of xr and xm:

Ql(.j7 Xa T) = Xm(j)aXQO(Xa T)

Pi(j, X, 7) = xk(1)0x Po(X, 7).
We need to know estimates for the norm of P; and @1 so that we can estimate the
residuals. Results are given in the next section. Here is an important preview of
what we find: the growth rates for random walks ultimately imply that the terms
eP; and e¢R; in (2.6) are, despite appearances, not actually O(e); we show below
that they are in fact O(y/loglog(1/€)). This in turn implies that the residuals are
not as small as the above derivation would lead one to believe; the formal calculation
presented above predicts O(e?) but they turn out to be O(ey/loglog(1/e)). This is
the main technical complication in this article and the key difference between the
random problem we study here and the periodic or constant coefficient problems
studied in [8].

Before moving on, we now spell out our long wave approximation in detail.

Putting together (2.2), (2.6), (2.9), (2.10), (2.15) and (2.17) we see that

(2.17)

F(1) = e (A(e(j — et)) + B(e(j + ct)))

")
+eX]:(l§,§) (A'(e(j — ct)) + B'(e(j + ct)))
) (2.18)
i) = = (A =) + Bl + )
LX) e — et)) 1 Bl + 1))

o~
3
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3. Probabilistic estimates. In this section we provide tools which will allow us
to compute the ¢? norms of the residuals for all [t| < Ty/e. The first subsection
deals with almost sure and realization dependent estimates by making use of the
the law of the iterated logarithm (LIL). The second subsection provides estimates
on the expectation of the norms using martingale inequalities.

3.1. Almost sure estimates. One can find the statement of the LIL in [3] and
more details can be found in [4]. Here we present the theorem in a form convenient
to us.

Theorem 3.1. (The Law of the Iterated Logarithm) Suppose y(j) (j € Z) are i.i.d
random variables with mean zero and Ely?] = o%. Define the (two-sided) random
walk x via

Jj—1 J
XG) =Y _y) and x(—j) =Y y(—i) (3.1)
i=0 i=1
for 5 >0 and x(0) = 0.
Then '
lim sup x() =g,

lil—=+o0 /2] log log(3])

The LIL is an extremely sharp description of a random walk. It says that, with

a probability of one, the magnitude of x(j) exceeds the curve o4/2jloglog(j) (by
any fixed amount) only a finite number of times but comes arbitrarily near it an

infinite number of times. Here is how we use the LIL:

Corollary 3.2. For almost every realization of {k(j)} and {m(j)} there is a finite
positive constant C,, = C,,(k, m) for which

IXeG)] + [xm ()] < Cu/15]log log(|i] + €)

forall j € Z.

Remark 1. The constant C,, is almost surely finite by the LIL, but it may be
extremely large. There is no way to determine its magnitude except in very special
circumstances. Note, however, it does not depend on e.

Remark 2. In this paper, we use a small modification of the usual “big C” notation.
If a constant in an estimate depends on the particular realization of the coefficients
we mark it as “C,,.” If it does not, we omit the subscript w. All such constants C.,
are always almost surely finite. No such constants will ever depend on e.

Proof. (Corollary 3.2) We have assumed that 1/k(j) and m(j) are i.i.d. and as such

and ’
ym(]) = % -1

satisfy the hypotheses of the LIL. Thus that result implies for almost every realiza-
tion of {k(j)} there is a natural number Ny, for which

IXk(9)] < 2k0/2]j] log log(|])
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when |j| > Ng. Then put

Cj := max Q%Uk\/i, max Xk—(j) :
0<|iI<Nk +/]7]loglog(|]])

It follows that |xx(j)| < Cr+/I7|loglog(]j]) < Ck+/I7|loglog(]j] + ) for all 5. The

same argument can be used to estimate Y. O

Given the growth rate in the LIL, we introduce a new norm fashioned to absorb
it:

1My, o= > I(L+]-[loglog(] - | + €)' /*FO| 2.
=0

The space Hj;; will be the completion of L? with respect to this norm. Similarly,
we also introduce

1z, =D I+ D)Y2FD 2
=0

and the space Hj,. Note that || F||gs < ||F||zs, < C[|F| g, where H* is the usual
L?%-based Sobolev space of functions R — R which are weakly s-times differentiable.
Now we unveil the two main estimates we need to provide almost sure control of

the residuals.

Lemma 3.3. For any Ty > 0 and almost every realization of {k(j)} and {m(j)}
there is a finite positive constant C,, = Cy, (k,m,Ty) for which € € (0,1/4) implies

sup  [[x(-)F(e(- = ct))llez < Cue™ /loglog(e V)| F| a1, (3.2)

[t|<To/e

and

sup  [[x()OFF(e(- = et))|le2 < Cu/loglog(e )| F gz, - (3.3)

[t|I<To/e
In the above xis either xi or Xum-
To prove these we need some calculus estimates.
Lemma 3.4. For alle € (0,1/4), and a,b € R
|a + b loglog(|a + b| + €) < |a|]loglog(2|a| + €) + |b|log log(2]b| + €)

and
loglog(|z| + €) < log(2log(e|x| + €)) + loglog(e ! + ¢).

Proof. The first inequality follows from the fact that |z|loglog(|z| + €) is a convex
function.
We will show the second inequality in two steps. First we show that

loglog(|z| 4 €) < log(2log(e|z| + €' +¢)).
Since log is monotonic, this inequality follows from
|2l + e < (elz] + 7 +e)?,

which is trivial.
Now we show that

log(2log(e|z| + €' +€)) < log(2log(e|z| + ¢€)) + loglog(e™" + e).
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Note that at x = 0, equality holds. For x > 0 we have that

d
—log(ex + e ' +e) = ‘

dx ex+el+e

and

d 1 -1

75 log(elz] +e)log(e ™" +¢) = 603;2574_6—&-6).
Since

1
€ c_ € . elog(e +e)7
ex+el+e  exte” €+ e

we see that log(ex + €1 +€) grows more slowly than log(ex + ¢) log(e~! +¢). Since
both functions are even, we get by symmetry that

2log(e|lz| + €' 4 e) < 2log(e|z| + e) log(e ™! + ¢).
Taking log of both sides, we get the desired result. O

Now we can prove our key estimates.

Proof. (Lemma 3.3) Take x to be xx or x, and fix Ty > 0. Using Corollary 3.2
1/2
IXC)F(e(- = et))lle = | D x () Fe(i — ct)?
JjEZ
1/2
< Cu | D lilloglog(|j] + ) F(e(j — ct))”
JEZ
The constant C,, here depends upon the realization and any estimate below will
depend on the realization because of this step only.
Using the first inequality in Lemma 3.4 with a = j — ¢t and b = ¢t and the
triangle inequality we get
1/2
IXCYE(e(- = )l < Cuo | D 15 — ctlloglog(2]j — ct| + €) F(e(j — et))?
JEZ
+ C\/|t| loglog(2¢|t] + e) || F (e(- — ct))]|¢2-
Call the two terms on the right I and I1. We estimate 7 first.

Lemma 4.3 from [5] shows that

IE(e(- = et))llez < Ce™2|F(- = ct)|[ = Ce™V2||F|

and so

IT < C,eY2\/]t|loglog(2c|t| + €)||F|| g1 -
Then

sup II < C,e ty/loglog(2c¢Toe=t + €)||F|| g1
[t|<To/e

Routine features of the logarithm show that loglog(2c¢Tpe ! + €) < C'loglog(1/e)
when € € (0,1/4) and so we have

sup IT < C,e *y/loglog(1/e)||F|| g -

[t|<To/e
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As for I, using the second inequality in Lemma 3.4 with |z| = 2|j — ct| followed
by the triangle inequality gets us:
1/2

I<C, Z |7 — ct|log(2log(2¢|j — ct| + €)) F(e(j — ct))?
JEZ
1/2
+C, Z |j — ct|loglog(e ™! + e)F(e(j — ct))?
JEZ
Then we multiply by /¢/e and do some algebra to get:
I <Cue ' 2||/e] - —ct|log(2log(2le(- — ct)| + €)) F(e(- — ct)) 2
+CLe Y2 floglog(e=t + )|\ /e| - —ct|F(e(- — ct))]|g2.
Applying Lemma 4.3 from [5] tells us that

IV/el - —ct[log(2log(2le(- — ct)| + €)F(e(- — ct))lle <Ce V2| ||y

LIL

and
Vel - —ct|F(e(- — ct)) [z < Ce V2| F || 1,

and so we have,

I < Cuety/loglog(e! + PNy, < Coe ty/log log(e V[ Fllm

where we have absorbed the additional plus e inside the iterated logarithm into
the constant C,. Note that the right hand side does not depend on t and so
Suppj<r, e L < Coe1/loglog(e~1) and all together we have shown (3.2).

It happens that (3.3) follows almost immediately from (3.2) with some operator
trickery. For functions G : R — R and € # 0 define the operator A, via

X+e
u4mxy:3/ G(s)ds.

€Jx
We have
IAG|a < ClIGla (3.4)
where H may be H®, Hj;; or H].. Here comes the argument. First we use Jensen’s
inequality to get:

o] 1 X+e 2
lw(-)AG 7 =/ w(X)? (/ G(s)ds) dx

—00 €Jx
o] 1 X+e
< / w(X)*= / G(s)*dsdX.
—0o0 €Jx

In the above w(X) is a weight function. If we change the order of integration we
get

oo 1 S
[w(-)AG|7- :/ G(s)zz/ w(X)?dXds.

1 S
Let b.(s) := E / w(X)?%dX so we have

ew(s

lw()AGII> = /OO w(s)G(5)?be(5)dX ds < [|be]| o [|[w () GI[7-

— 00
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If w(X) =1, wX)=/1+|X]or w(X)=1/1+]|X|loglog(|X]|+e) it is easy to
use the mean value theorem to show ||bc||z < C when € € (0,1/4). With this, the
last displayed inequality implies (3.4).

Continuing on in the proof of (3.3), the fundamental theorem of calculus tells us
that F(X +¢€) — F(X) = ¢(AF')(X). Thus:

(0T F)(e(j —ct)) = F(e(j — ct) +€) — F(e(j — ct)) = e(AF")(e(j — ct)).
In which case we see that
IX()FF(e(- = ct))llee = ellx(V(AEF") (e — b))l ez
We have produced an extra factor of e. Using (3.2) and (3.4)
IX()8TF(e(- —ct))llez < Cu/loglog(e ) [ AF |y, < Cuon/loglog(e™) || Fllmz,, -

That is (3.3) and does it for this proof. O
Now we can prove:

Proposition 3.5. Fiz A,B € H},;; and take Te and p. as in (2.18). Fiz Ty > 0.
Then for almost every realization of {k(j)} and {m(j)} there is a finite positive

constant C, = C, (k,m,TO, [Allzs HB”H%IL) for which € € (0,1/4) implies
sup (|| Resy(7e, pe)llez + [| Resy (7, pe)llez) < Cuey/loglog(1/e). (3.5)

[t|<To/e

Proof. We prove the estimate for the piece involving Res; as the other part is all but
identical. A tedious calculation (plugging (2.18) into (2.1) and using the product
rule for finite differences) shows that

Res (7., ) = 71% (—3*[A(elj — et))] + €A'(e(j — ct)))
b GHBG + )] - Bl + 1))
cezkm () c€xm(5) (3:6)
+ %A’(e(j —et) + %B’(e(j +et))
exk(j+1) ekl +1)

0T [A(e( — ct))] 5B (e(j + )]

Vim Vim

The terms in the first two lines are fully deterministic and estimable using Lemma
4.3 of [5]. Specifically the £ norm of each is controlled by

O (|| All = + || Bl a=)

for |t| < Tp/e. This is dominated by the right hand side of (3.5). Using (3.2) we
see that the £2 norm in the third line is controlled by

& (Cue* VIoglog(176) (1411, + 1Bl ))

for |t| < Ty/e. Again this is dominated by the right hand side of (3.5). Similarly
we use (3.3) to handle the terms in the last line, which are controlled by

e (Covloglog(1/) (14112, +1Bllz,, ) ) -

It is here we see why H3;; is needed in (3.5). O
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Remark 3. We quickly note that if the springs and masses vary periodically, one
finds that x,,(j) and xx(j) are in £>° and then this proof would demonstrate the
size of the residuals is bounded by Ce!/2.

3.2. Boundedness in mean. The almost sure boundedness does not provide us
with any kind of description for the w dependent constant C,,. In this section we
estimate the error in mean, finding estimates in terms of o, and oy.

Lemma 3.6. Let y(j) and x(j) be as in Theorem 3.1 and n € ZT U{0}. Consider
the process

Wj(n) :==x(j +n) — x(j)-
Then, for every j, W;(n) is a martingale in the variable n and, for any N >0,

E[ max (W;(n))?] < 4No>. (3.7)

0<n<N
Proof. From the definition of y, we have
Win) =y() +-+y(i+n—1). (3.8)
Then
E[W;(n)l] < Clnl.
Conditioning upon W;(n) gives
E[W;(n+ 1)|W;(n)] = Ely(j +n) + W;(n)[W;(n)] = W;(n).

This proves that W} is a martingale. From the basic theory of martingales this tells
us |W;|? is a submartingale. It follows from the L? maximum inequality, see [3],
and a direct computation using (3.8)

B | (V1)) | < 4B, (0] = 4N
O

Remark 4. We can define a similar process W;(n) := x(j —n) — x(j) which would
have exactly the same properties but with a different version of (3.8) i.e.

Win) =y(G—n)+--+y@i—1).

This symmetry allows us to handle positive and negative times with the same ar-
gument.

We use the following corollary in the results that follow.
Corollary 3.7.

k(i +n) = xk(j) and xm(j+n) = Xm(j)

are martingales in n with

) )2 7.2
—_ <
E [Og}%xjv (xx(j +n) —xx()) ] ANkoy, and

2

. A\ 2 Om
— < AN
E LQ?S‘N (Oer(d +1) = xx (7)) ] <4AN—

We have now gotten the necessary probability out of the way to prove the fol-
lowing lemma, analogous to Lemma 3.3, but in expectation.
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Lemma 3.8. For any Ty > 0 and € € (0,1/4) the following inequalities hold

E ‘ lsup/ Ix()F(e(- — Ct))gz] < 2v2e Yo max{2+/]¢| Ty, 1}|| F| m2, (3.9)
t|<To/e
and
E l sup  |[x()0FF(e(- — ct))||g2] < 3v20max{2/|c|Ty, 1}||F||gz . (3.10)
|t|<To /e

~ o
In the above x is either xr or X., with o either ak\/i or —= respectively.

Vm
Proof. Without loss of generality (see Remark 4) let t € R* U {0}. Write ¢t =
|ct| + « where o € [0,1). Let n € Z in the following. We start with the inequality

sup [Ix(-)F(e- —ect)|[72 < sup > X()*F(ej — en — ea)®.
0<t<Ty/e 0<n<cTy/e,a€[0,1) jez

The inequality is due to the fact that for any ¢t € [0, |Tp/e] + 1) there exists an
n € [0,cTp/e] and « € [0,1) such that n + o = ct, which is a slightly greater range
for t than we initially cared about. Using the Mean Value Theorem, we have that

F(ej —en —ea) = F(ej — en) — eaF'(x;)

where x; € (ej —en—ea, €j —en). Substituting this in and using the basic inequality
(a+0b)? <2(a® + b?), we get

sup  |[x(-)F(e- —ect)||%

0<t<Ty /e
< sup Zx(j)2(F(ej —en) — eaF'(x;))?.
0<n<cTo/e,a€l0,1) jez
< sup 2> X(5)*F(ej — en)® + x () (eaF' ()
0<n<cTy/e,a€0,1) jez
We look at the two terms
I=E sup 2 X()*F(ej — en)?
0<n<cTy/e,a€[0,1) jez
II=E sup 2 x()*(eaF (z))?
0<n<cTy/e,a€[0,1) jez

separately. Starting with I, we find from a change of indices, that

I=E sup ZZx(j+n)2F(ej)2
0<n<cTy/e

i€Z
- e (3.11)
=E| sup  2) (x(+n)—x()+x())*F(ef)?
0<n<cTy/e jez
Using the same basic inequality as above we get
I<E| sup 4% (x()*+ (G +n) = x(7)?) F(ei)?| - (3.12)

0<n<cTy/e jez



2594 JOSHUA A. MCGINNIS AND J. DOUGLAS WRIGHT

The supremum sees only the term with n, and Fubini’s theorem allows the expected
value to pass through the sum. And so
) F(ej)%

1<4y ( |+E
JEZ

A direct computation on the first term using the definition of x and using Corollary

3.7 on the second term we find

<4 (o?|j] + 40°cToe ") F(ej)>. (3.13)
JjEZ

sup  (x(j +n) — x(j))?
0<n<cTy/e

According to Lemma 4.3 and 4.4 from [5], I is dominated by
8¢ 20 max{4cTo, 1}||F |71 - (3.14)

Now we turn our attention to II. We can eliminate the o dependence by taking
a =1 i.e. choose Z; such that

F'(z;) = max F'(x).

zE[ej—en—e,ej—en)
Then
(eaF'(x5))* < (eF' (%))
Shifting the index by n we get

IT<E| sup 2) X(j+n)*F(Fj4n)°
0<n<cTy/e jez

where Z;1,, € [ej —¢, €j] does not depend on n. We therefore may relabel T, = Z ;4.
We use the same steps here as we used from (3.12) to (3.13).

IT <4 (0?|j] + 40°cThe e F ().
JEZ
Again, by Lemma 4.3 from [5], IT is dominated by
802 max{4¢Ty, 1} F| %2 - (3.15)
By (3.14) and (3.15) we have

E

sup  |Ix()F(e- —ect)||*| < 8¢ 20% max{4cTy, 1}||F||% -
0<t<Ty/e s

An standard application of Jensen’s inequality yields

E

sup |Ix(-)F(e- —ect)||] < 2v2e 1o max{2+/cTy, LHIF| 2, -

0<t<Tp/e

This proves (3.9).
The exact same trickery that was used in Lemma 3.3 works to prove (3.10). Using
(3.9) and then (3.4)

E

sup [|x(-)d" F'(e( —Ct))llezl < 3v20 max{2y/cTo, 1}|| Fl a3 -

0<t<Tp /e

This shows (3.10). O
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Remark 5. The functions in this subsection are required to be once more differ-
entiable than the functions in the previous subsection, due to the use of the Mean
Value Theorem in the beginning of the proof of the previous lemma.

Now we can prove:

Proposition 3.9. Fiz A, B € H2. and take 7. and p. as in (2.18). Fiz Ty > 0.
For there exists a positive constant C(k,m, ax, bk, @m, b, To, |Allgs , (| Bll#a ) for
which € € (0,1/4) implies

E | sup ([[Resi(7e,pe)llez + || Resa(Te, pe)l2)

< Ce (61/2 + max{o,, ok}) .
[t|<To/e

(3.16)

Proof. The proof begins the same way as the proof for Proposition 3.5 except now
we take expectation of (3.6). Since the first two lines of (3.6) are deterministic,
using Lemma 4.3 in [5], they are controlled by
0 V2
2 —= (|Allg= + | Bl =) -

km
Next use (3.9) to control the third line with

2v/2€0,,c max{2\/|c|Tp, 1}
) A/ + B/ ,
.= (A ez, + 1B [|zz2, )

which is dominated by (3.16). We use (3.10) to estimate the fourth line:

3v/2ea), max{2+/|c|Tp,1}
Vm

As before, the estimate for Ress follows a parallel argument and is omitted. O

(||A/||H§7, + ”B/”H;?‘r) .

4. Error estimates. In this section we prove rigorous estimates using “energy”
arguments, similar to [5, 1, 10].

4.1. The energy argument. Let r and p be a true solution to (1.2) and take 7
and p. as in (2.18). Define error functions n and £ implicitly by

r:ﬁ—l—% and p=p.+E. (4.1)

It is our goal to determine the size in £2 of  and £ during the period |¢| < Tp/e. To
that end, insert (4.1) into (1.2) to find that

n +
— =67+ Res
k : ! (4.2)
m& =46 1+ Resy
where Res; = Res; (7, pc) and Resy = Resa (7, De) as in (2.1).
Next define the energy to be

H(t) = 5 37 G P Gt) + m)E 1]
jez
Since we have assumed that the k(j) and m(j) are drawn from distributions with
support in [ag, bx] C RT and [am, by] C RT, respectively, a short calculation shows
that vH is equivalent to 17, &]le2xe2 and the constants of equivalence depend only
on ay, ., by and b,,. That is to say, the equivalence is realization independent.
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Time differentiation of H gives
H= Z [k_lm? + m&i} .
JEZ
Using (4.2)

H=> [n(6"¢+Resy) +£(6n + Resy)] .

jezZ

Summing by parts:
H= Z [NRes; + £Ress) .
jez

Cauchy-Schwarz implies that

H < ||Rest, Resa|[g2 2 ||, |2 2 -
Then we use the equivalence of vH and ||, £||;2 <2 to get:

H < C||Resy, Resal|2 w2 VH.

Set

I'. == sup |Resi,Resal|e2xez,
[t|<To/e

SO H/\/ﬁ < CT.. We integrate from 0 to t

2¢/H(t) <2v/H(0) + CTt.

And so, for t < Ty/e, we have

VH(t) < /H(0)+ CT Toe .

If we use the equivalence of the vV H and |9, £]||¢2xe2 once again, we find that we
have proven

s In(6),§@)lle2e2 < ClIn(0),£(0)lle2ez + CTee ™. (4.3)
t_ 0/€

A key feature of the above inequality is that the only place where the specific
realization of the springs and masses enters is through I'..

4.2. Almost sure error estimates. We can now prove our first main theorem,
which is about almost sure estimation of the absolute error:

Theorem 4.1. Fiz ®, ¥ € H};, and To > 0. Let v and p be the solution of (1.2)
with initial data

7(5,0) = ®(€j)/k(j) and p(j,0) = ¥(ej).
For almost every realization of {k(j)} and {m(j)} there is a finite positive constant
Cy, = Cw(k7 m,ag, bkv Am, bma H(I)HH%ILa H\IJHHiIL)
for which € € (0,1/4) implies
1

s 0~ g (Al ) + Ble(+e)| < Co/IogTon(179
and
0~ e (AL ) + B+ )| < OuiogTon(1/)
>1to/€ m 02
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In the above

AX) = %‘I)(X) - \/sim\I/(X) and B(X):= %(D(X) + \/;;Tﬁllf(X)

Remark 6. In the case where the masses and springs vary periodically instead of
randomly, the size of the error decreases to C'e’/2; in fact the proof we supply in
a moment together with Remark 3 suffices to demonstrate this. It is this extra
wiggle room in the error in this case which opens the door to longer time scales and

KdV-like approximations.

Proof. Form 7, and p, from the functions A and B as specified in (2.18) and n and
€ asin (4.1). A bit of algebra shows that

1(4,0) = exm(4) (A'(ej) + B'(€j)) and  £(j,0) = GX}‘L(j) (—A'(ej) + B'(e])) -

ke
(4.4)

Using (3.2) in a very crude way, we see that almost surely

17(0), £(0)[l¢2 x> < Coy/loglog(1/€)
with the constant depending on [|Al[z2 ~and [|Bl|52 . We estimated I'c in Propo-

sition 3.5 and found that I'. < C,ey/loglog(1/€) when e € (0,1/4) almost surely.
Therefore (4.3) gives

sup [|n(t),€(t) ]| xe> < Cu/loglog(1/e).

[t|<To/e

To finish the proof we note that the triangle inequality tells us

r(-t) — — (A(e(- — et)) + B(e(- + ct)))

é2
auw—ﬁjmw~wm+3wwwm>

<Cln@®)llez + Cellxm (VA (e(- = et))|| + Cellxm () B'(e(- — ct))

<lr(®) =Tl +

02
| g2

The terms involve A and B can be estimated using (3.2) by C,,+/loglog(1/€) so we
find

P 1) — o (A(e(- — et)) + B(e(- + ct))

k() < Cu/loglog(1/e).

The remaining estimate in the Theorem 4.1 is shown by a parallel argument and is
omitted. O

sup
[t|<To/e

J4

It may seem like the estimates in Theorem 4.1 are utterly useless since the size
of the error diverges as ¢ — 01. But the error in that theorem is the absolute error;
the relative error does in fact vanish in the limit.

Corollary 4.2. Under the same conditions as in Theorem /.1 we almost surely
have

- Hr(-j)—ﬁ(A(eC—ct))+B(e(~+ct)))H€2:

=0T |¢1<Tp /e |7 (£)]]e2
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and

Hmwr—l (“A(e(- — et)) + Ble(- + ct)))

2 — .

lim sup
e=0% |¢|<T /e lp() |2

Proof. The reverse triangle inequality gives

1

lr@lle> 2 | 775 (Alel = eh)) + Ble(: + b)) B
1

= |0 = 5 (Al = et) + Blel- + et))) .

Using Lemma 4.3 from [5] for the first term and Theorem 4.1 for the second we

obtain
Ir(t)[le> > Ce™ ' = Cyy/loglog(1/e)

for all |t| < Tp/e. This is positive for € small enough and so we get the first limit in
the corollary by dividing the absolute error for r in Theorem 4.1 by this estimate
and taking the limit. The second limit is analogous. O

4.3. Error estimate in mean. We can now prove our second main theorem, which
is an estimate of the mean of the error.

Theorem 4.3. Fiz ®,V € H. and Ty > 0. Let r and p be the solution of (1.2)
with initial data

r(5,0) = ©(ej)/k(j) and p(j,0) = é(ej).

There exists a positive constant C’(Flé7 My Ay bky Ay by, To, || A|
e € (0,1/4) implies

o, || Bllga, ) for which

E| sup ||r(,t) — — (A(e(- — ct) + B(e(- + ct)))

[t|<To/e

<C (61/2 + max{o,, Uk})

.

52
and
P(t) = — (—A(e(- — ct) + B(e(- + 1))

km

<C (61/2 + max{om,ak}) .

E| sup

[t|<To/e

In the above
A(X) = %@(X) - 7”’;7"\1/()() and B(X) = %@(X) + —V;ﬁm\y(){).
Proof. Begin as in the proof of Theorem 4.1. Using (3.9) on (4.4)
[7(0),£(0)[lezxe2 < Cmax{om,on}

with constant C' depending on [|A[|s and || B||gs . Proposition 3.9 gives us
E[T] < Ce (61/2 + max{omﬁk})
when € € (0,1/4). Therefore (4.3) gives

<C (61/2 + max{o,, ak}) .
[t|<To/e

El sup [|1(£), ()2 xe2
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To finish the proof we note that the triangle inequality tells us

E l sup ||r(-,t) — % (A(e(- — ct)) + B(e(- + ct))) ]
[t|<To/e 02
<E | sup |[r(t) —?e(t)Hez]
[t|<To
+E | sup ||Te(,t) — % (A(e(- = ct)) + B(e(- + ct))) 1
[t|<To 02
<E

sup Clln(t)IIﬁ]

[t|<To

sup Cellxm(-)A'(e(- — ct))[|| + E

[t|I<To

+E

sup Cellxm () B/ (e(- —ct»uz] .

[t|I<To

The C depends on ay, by, G, and by, which are fixed, so we may pull it out of the
expected value. The terms that involve A and B can be estimated using (3.9) by

C max{oy, 0., } so we find
52]
<C (61/2 + max{ok,am}) .

The remaining estimate in the Theorem 4.3 is shown by a parallel argument and is
omitted. 0O

E| sup

[t|<To/e

r(-,t) — — (A(e(- — et)) + B(e(- + ct)))

5. Coarse-graining. We now prove strong convergence results using the ideas of
coarse-graining from [8]. We need quite a few tools. Letting f : Z — R and
g,u,v: R — R define

FIfI() = 5= 32 e 1))
JEZ

P = [ " gyt

1

Flu](€) = %/Ru(x)e_ifwdx

F (@) = /R o(€)eier g

9¢(:‘$) = {1 K€ (_¢a (b)

0 else

L[f](x) == F 0= () F[F1()](x)

S[ul(j) := u(d)-
These are, in order, the Fourier transform for sequences, its inverse, the Fourier
transform of functions R — R, its inverse, the indicator function of (—¢, ¢), a “low

pass” interpolation operator, and a sampling operator. To be clear, in the above
r, &,k € R and j € Z, always.
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The operator £ converts a sequence f defined on Z to a new function defined on
R. The sampling function S returns a sequence from a function defined on R. It
is an easy exercise to show that SL[f](j) = f(j) so it is clear £ is an interpolation
operator. Another essential property is the following.

Lemma 5.1. Let f be a sequence in £2. Then
[fllez = 27| £[FN| > (w)-

Proof. By Plancherel’s theorem for Fourier series:

1
IET W22 (-mm) = 5l
Then by Plancherel’s theorem for the Fourier transform:

1F=H 0= F L2y = 102 F (£l L2y = I F[f]ll2(—r,m)
completing the proof. O
We need one more lemma before we can state the strong convergence results. It

states that the more frequently you sample a function, the more its interpolation
looks like the original function.

Lemma 5.2. Let f : R — R be continuous and in H® with s > 0. Put f.(z) :=

flex). Then
Tim 1£817(/0) ~ fll 2 = 0.

Proof. From their definitions we have

LS[fe)(x) = i/ ) e f(ej))e dr = S (> e 59 f(ej))e’ " d.
2m —T jeZ 2 - iz

Changing variables with u = k/e we get
1 m/e —iuej - TUET
elf) = gz [ (e pleppe i
JEZ
Exchanging the sum and integral and then computing the integral gives
LS[f(@) = Y f(ej)sinc(z — j).
JEZ

L . . . sin Tz
This sinc is the normalized sinc function, .

~ 7T
Now put fe(X) := F 0./ F[f]](X). fe is a band-limited approximation of f.
Using Plancherel’s theorem
I = Tl = WP 00y U = [ 1FLAG0 i
K|>T/€
Since f € H® we have

I = Flie= [ el FA

1
< sup ( 23>/ |6 |F[f](k) | dre
|k|>m /€ |"€| |k|>m /€

<Ce*| flie-

Since s > 0 we see that lim._,g+ || f — .]?;HL? =0.
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Since f~} is band-limited, it is exactly equal to its cardinal series, see [7]:
(X) = 3 fej) sine(X /e — ).
JEZ
But this is exactly equal to LS[fc](X/e€). Therefore we have shown that
lim [[£S(fe)(-/€) = f()llz> = 0.
e—0t

O
Remark 7. We assumed that f is continuous in Lemma 5.2 so that the sampling
map S is well-defined upon it. In fact, using the same sorts of calculations as in the
proof it is possible to show that £S[f](z) = F~1[0.(-)F[f](:)] (z) for continuous
functions. Since the right hand side of this formula makes sense for functions which
are merely L?, we can extend £S to such functions without the need of continuity.
This line of reasoning allows us to eliminate the continuity condition from the lemma
(though we still require s > 0).

Here is our first coarse-graining result:

Theorem 5.3. Fiz ®, ¥ € H},;, and To > 0. Let r and p be the solution of (1.2)
with initial data

r(4,0) = ®(ej)/k(j) and p(j,0) = ¥(ej).
Put

Q (X, 7)=L[kr(-,7/e)|(X/e) and PAX,7)=Lp(-,7/€)](X/e).
Suppose that Qo(X,7) and Py(X,T) solve (2.14) with initial data Qo(X,0) = &(X)
and Py(X,0) = U(X). Then, almost surely,

i sup. (1Qe(sm) = Qo )2 + [P 7) = Po(- )| 22) = 0.

e—0t Ir|<

Proof. We show the limit for |P. — Pyl|z2 as the other is all but identical. By the
triangle inequality we have

1Pe(5 ) = Pol- 7)lz2

<P, 7) = L£S[Po(e, T)](/) |2 + [[£S[Po(e, T)](-/€) = Po(, ) 2

The second term vanishes as e — 01 by virtue of Lemma 5.2. (In fact, given (2.15)
one sees that this convergence happens uniformly for all 7 € R.)
For the first term we do a change of variables X = ex and 7 = €t to get

1P ) = LS[Po(e, MI(/€)ll L2 = Vel Pe(er, et) — LS[Po (e, et)](-)]| 2

Then we use the definition of P. and Lemma 5.1 to get

[1Pe(-7) — LS[Po (e, T)](-/€) |2 :7\[“2)( t) — S[Po(e-, et)]]|e2-

Using (2.15) and the formulas relating ® and ¥ to A and B in Theorem 4.1 we see

S[Po(er, et)](j) = —m— (~ A(e(j — ct)) + B(e(j + 1)) .

km

Thus we can use the final estimate in Theorem 4.1 to get
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sup [|Pe(,7) = LS[Po(e 7))(-/€)|| L2 < sup \f\lp( t) = S[Po(e-, et)][| 2

I71<To |t|<To /e 2

< Cy/eloglog(1/e).

(5.1)
The right hand side goes to zero as € — 07 and we are done. O

We have a similar result but the convergence is in mean:

Theorem 5.4. Fiz ®, ¥ € H. and Ty > 0. Let r and p be the solution of (1.2)
with initial data

r(5,0) = ®(ej)/k(F) and p(j,0) = ¥(ej).
Put
Qe(X,7) = LIkr(-,7/6)|(X/e) and  P(X,7) = L[p(-,7/€)|(X/e).
Suppose that Qo(X,7) and Py(X,T) solve (2.14) with initial data Qo(X,0) = &(X)
and Po(X,0) = U(X). Then

lim E

e—0t

sup ([Qe(-7) = Qo )|z + [Pl 7) — PO('vT)HL?)] =0.

|7|<To

Proof. As before, we start with the triangle inequality
E l sup |[Pe(:,7) — Po(wT)llH]
|7|<To
|7|<To

<E l sup || Pe(-,7) — ES[Po(ewT)]('/e)IIB]

+E

sup [|LS[Po(e, 7)](-/€) — PO('J’)W] -

|7|<To

The expected value does not see the second term, so it vanishes as ¢ — 0T by
virtue of Lemma 5.2. The same steps are valid up through (5.1) only now we take
expectation and use Theorem 4.3

E ‘ slup |P.(-,7) — LS[Po(e-, 7)](-/e)|l2 | < Cvemax{ok,om}
T|<To
The right hand side vanishes as € — 0. O

6. Simulations. We present various numerical data supporting our results. In our
experiments, the springs k are picked to be constant, and the probability distribu-
tion of the masses m such that m = 1. If the springs had also been chosen randomly,
the results would have looked the same, but it is computationally less expensive to
keep them constant. We choose initial conditions

r(j) = @ and p(j) = —e~ (",

From these
AX)=eX" and B(X)=0.
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We numerically integrate (1.2) to get r(j,¢) and use this to calculate the relative
error which we call p

ICr(t) — Ale( = et))lle=

p= sup
0<t<Ty /e ()¢

According to Corollary 4.2, for some C,, p will vanish to 0 at least as fast as
Cy+/€loglog(1/e). Seeing the 4/loglog(¢) is numerically challenging and we make no
claim that we do here. However, if it were to show up in the numerical calculations,
it would be best to factor it out, so we calculate

p

Voglog(1/e)

Now this should vanish at a rate no slower than C,+/¢, which on a log-log plot,
should look like a straight line with a slope of 1/2. Anything with a slope greater
than 1/2 is vanishing at a faster rate.

We move onto the figures after one aside on the methods of integration used.
Since the total energy of the system is conserved, it is worth performing experiments
with a symplectic integrator. A six-step version of Yoshida’s method, see [11], was
initially used, as well as the standard four-step Runge-Kutta method. As it turns
out, these methods produce negligible differences for the time scales studied, so
most of the experiments below all use only the four-step Runge-Kutta for the sake
of computational efficiency.

Moving on, Figure 1 gives some numerical validations of our relative error results,
since the slope produced by the log-log plot is greater than 1/2. In this case,
the realization of masses is the same for each e. Figure 2 repeats the experiment
in Figure 1 40 times, displaying the results as a series of box plots. A sample
size of 40 was used because significantly larger sample sizes would require using
more computing power since simulations for small values of € are computationally
demanding due to the long time scales. Figure 2, suggests the slope in Figure 1 is
not a statistical anomaly.

It is worth noting that the most important tool of our analysis is x,,. For
instance, it allows one to carry out similar analysis with many different kinds of
sequences of masses. If the average of the masses exists and one knows the growth
rate of x,,, then one can find an upper bound on the error. For example, in Figure
4, we use a sequence of masses such that x(j) grows like 4/7. In particular, using
two types of masses my and ms, the following pattern works

my, M2, M1, M1, M2, M2, M1, M1, M1, M2, M2, M2...

We conjecture without providing arguments that if y,, grows like |j|P, analysis
would show that the relative error is bounded by an €' ~? order term, which in this
case coincides with the numerical results seen in Figure 4.

There are also hints in our work, see for example 3.9, that for fixed € and small
Om, the mean of the error should be close to that of the system where masses and
springs are taken to be constant average. Evidence for this is seen in Figure 5.
When o, is smallest, then error from 40 trials, is concentrated around the error in
the case of the system being constant coefficient, which was numerically calculated
to be roughly 0.126. In conclusion, the simulations are a strong affirmation of our
analytic results and that our bounds are at least close to optimal.
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Relative Error for Fixed Random Masses

o

r Linear Fit: y=057" - 1.264 ¥

V9oglog(1/e)

* Error|
— Fit

11210 1% 4t T 28 a® ot o ot !
€

Figure 1. Figure 1 is a log-log plot of the relative error p divided by 1/loglog(1/e).
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Figure 2. Figure 2 is 10 box plots of 40 different realization of masses at 10 various epsilons. It
is also log-log.
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Figure 3. Figure 3 is a log-log plot of the relative error masses chosen periodically
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Figure 4. In Figure 4 masses are chosen so that x(j) will grow like /5.

7. Conclusion. Our results are significant in several important ways regarding the
description of approximate waves in the random polymer linear FPUT system. We
have proven from first principles that that solutions to the wave equation are good
approximate solutions to the system studied here. We showed that the absolute
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Masses with Small o
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Figure 5. In Figure 5 € is fixed and small while o is varied and the absolute error is measured.
When o is smallest, the data is concentrated near the error for the constant coefficient case.

error only grows at most like O(loglog(1/¢)) almost surely and is constant in mean,
but also small in mean if the masses and springs have small deviation. Using an
interpolation operator with strong analytic properties we were able to show that
the interpolated approximate solutions converged to interpolated true solutions in
a relative sense a.s. and in expectation. Such results provide a rigorous justification
for claiming that the relative error is made arbitrarily small by taking € to be small.

The advantage of our method comes from the use of the random walk in cap-
turing the build up of error. Since random walks of independent variables are well
studied and sharp asymptotic estimates are known, we were able to use the random
walk to its full extent. Although it remains unproven if the error we achieved is
sharp, the numerical results suggest it is close, and it seems nothing more about the
asymptotics of the random walk, at least in the almost sure sense, could be used
to prove sharper bounds. It also remains unclear if the random walk is an intrinsic
part of the mechanics of the problem or if it is only a useful fiction for modeling the
error. To what extent could it be further exploited here and in other models that
have similar dynamics

With this work we have laid the foundation for a couple of questions. First,
can the error term be modeled by a random variable independent of € with a nice
probability distribution such as a Gaussian. There is also the question as to whether
the results can be extended to higher dimensions. Probably most interesting is to
determine what happens on longer time scales. The nonlinear periodic problem is
known to be well-approximated by KdV equations for times times proportional to
1/€3 [1, 5] but it is not clear how to extend our work here to these longer time
scales (where for this problem we would expect the approximating equation to be
something like Airy’s equation instead of KdV). This is mainly because one needs
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make sense of lim,,_, ZI jl<n x(j)/n, which, even if one optimistically replaces

x(7) with +/|j|, will diverge. This raises the question: is it is possible to find

an

effective equation describing the the dynamics for longer times and will these

descriptions be statistical or is there room to achieve anything more definite, like
the high probability and almost sure results constructed here?
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