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Abstract. We consider a linear Fermi-Pasta-Ulam-Tsingou lattice with ran-

dom spatially varying material coefficients. Using the methods of stochastic

homogenization we show that solutions with long wave initial data converge
in an appropriate sense to solutions of a wave equation. The convergence is

strong and both almost sure and in expectation, but the rate is quite slow.

The technique combines energy estimates with powerful classical results about
random walks, specifically the law of the iterated logarithm.

1. Introduction. We prove an almost sure convergence result for solutions of
the following one-dimensional random polymer linear Fermi-Pasta-Ulam-Tsingou
(FPUT) lattice in the long wave limit:

m(j)ü(j) = k(j) [u(j + 1)− u(j)]− k(j − 1) [u(j)− u(j − 1)] . (1.1)

Here j ∈ Z, u = u(j, t) ∈ R and t ∈ R. We choose the coefficients m(j) (which
we refer to as “the masses”) to be independent and identically distributed (i.i.d.)
random variables contained almost surely in some intervals [am, bm] ⊂ R+ with
standard deviation σm. We similarly take the coefficients 1/k(j) (“the springs”)
to be i.i.d. with support in [ak, bk] ⊂ R+ and deviation σk. This system is well-
understood when these coefficients are either constant or periodic with respect to j
[8], but for the random problem most of what is known is formal or numerical [6, 9].

For initial conditions whose wavelength is O(1/ε), with ε a small positive number,
we prove that the `2 norm of the difference between true solutions and appropriately

scaled solutions to the wave equation is at most O
(√

log log(1/ε)
)

for times of

O(1/ε) for almost every realization. While such an absolute error diverges as ε →
0+, it happens that this is enough to establish an almost sure convergence result
within the “coarse-graining” setting used in [8] to study the (multi-dimensional)
periodic problem. In addition to the almost sure convergence, we are able to provide
estimates on the mean of the error in terms of σm and σk and prove convergence in
mean.

The articles [1, 5] study the nonlinear FPUT lattice with periodic coefficients.
These show that soliton-like solutions exist for very large time scales using Korteweg-
de Vries (KdV) approximations. The authors of [5] used the so called multiscale
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method of homogenization, a by-now classical tool with a long history in PDE for
deriving effective equations, see [2]. In this paper, we carry out a very similar ap-
proach in deriving and proving the results; however, our expansions only result in
an effective wave equation, not the KdV equation. In our setting, since the coeffi-
cients are random, it is necessary to average over the entire lattice. The law of large
numbers implies this average is equal to the expectation, so the speed of the approx-
imate solution depends on the expectation of the random variables. The probability
theory hinges upon classical but extremely powerful asymptotic analysis of random
walks, namely the law of the iterated logarithm, as well as basic martingale theory.

We denote a doubly infinite sequence {f(j)}j∈Z by f . Let S± be the shift
operators which act on sequences f as

(S±f)(j) := f(j ± 1),

and the operators δ+ and δ−, the left and right difference operators, are

(δ+f)(j) := f(j + 1)− f(j)

(δ−f)(j) := f(j)− f(j − 1).

Defining

r := δ+u

p := u̇,

we convert our second order equation (1.1) to the system

ṙ = δ+p

ṗ =
1

m
δ−(kr).

(1.2)

For the remainder of the paper, we work with (1.2).
Here is the idea of our ultimate result. Suppose that the initial conditions for

(1.2) have the following long wave form:

r(j, 0) = Φ(εj)/k(j) and p(j, 0) = Ψ(εj)

where Φ,Ψ : R → R are suitably smooth and of somewhat rapid decay. Then the
solution p of (1.2) has

L[p](X/ε, τ/ε) −→ P0(X, τ)

as ε → 0+ where P0 solves the wave equation ∂2
τP0 = c2∂2

XP0. The operator L
interpolates the sequence p into a function on R. It is defined below, as is the
wave speed c. The convergence is strong in L2(R) and is both almost sure and in
expectation. A similar convergence holds for r.

The paper is organized as follows. We carry out the multiscale expansion in
Section 2 and derive effective equations and approximate solutions. In Section
3 we dive into the analysis of various smooth, rapidly decaying functions which
are sampled at integers and multiplied componentwise by random walks. These
estimates are necessary to control the error and here is where most the probability
theory is needed. In Section 4 we provide the rigorous estimates of the error. We
introduce coarse-graining and prove the convergence results in Section 5. In Section
6 we provide numerical simulations as evidence that our estimates are good ones
i.e. they are not vast overestimates.
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2. Homogenization and derivation of the effective wave equation. In this
section we homogenize the equation following closely what is done in [5]. First, we
define “residuals”, which quantify how close some function is to a true solution. For
any functions r̃(j, t) and p̃(j, t) put

Res1(r̃, p̃) := δ+p̃− ∂tr̃

Res2(r̃, p̃) :=
1

m
δ−(kr̃)− ∂tp̃.

(2.1)

We look for approximate long wave solutions of the form

r̃(j, t) = r̃ε(j, t) := R(j, εj, εt)

p̃(j, t) = p̃ε(j, t) := P (j, εj, εt),
(2.2)

where R = R(j,X, τ) and P = P (j,X, τ) are maps

Z×R×R→ R.

In the periodic-coefficient problem studied in [5], it was necessary to assume that
these functions are periodic in the Z slot, but this needs to be exchanged in the
random case. Here, we make a “sublinear growth” assumption that makes averaging
possible:

lim
|j|→∞

R(j,X, τ)/j = lim
|j|→∞

P (j,X, τ)/j = 0. (2.3)

The following lemma is crucial to the derivation of the effective equations.

Lemma 2.1. Fix g = {g(j)}j∈Z. There exists an f = {f(j)}j∈Z satisfying both

(δ±f)(j) = g(j)

and
lim
|j|→∞

f(j)/j → 0 (2.4)

if and only if

lim
N→∞

1

N

N−1∑
i=0

g(i) = lim
N→∞

1

N

N∑
i=1

g(−i) = 0.

Proof. We only give a proof for “δ+”.
⇒ Since g(j) = f(j + 1)− f(j) we get

lim
N→∞

1

N

N−1∑
i=0

g(i) = lim
N→∞

1

N

N−1∑
i=0

[f(i+ 1)− f(i)] = lim
N→∞

f(N)− f(0)

N
= 0

by assumption (2.4). Proof of the second equality follows the same reasoning.
⇐ It is easily checked that

f(j) =

j−1∑
k=0

g(i) and f(−j) = −
j∑

k=1

g(−i) (2.5)

for j > 0 solves δ+f = g. Then

lim
j→∞

f(j)

j
= lim
j→∞

j−1∑
i=0

g(i)

j
= 0.

It is likewise seen that

lim
j→∞

f(−j)
−j

= 0
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by using the formula for f(−j).

Now we continue with the homogenization procedure. We must understand how
δ± act on functions of the type (2.2). The following expansions are found in [5]. If
u(j) = U(j, εj), then

δ±u(j) =
∑
n≥0

εnδ±n U

where

δ±0 := δ̂
±

and δ±n :=
(±1)n+1

n!
Ŝ
±
∂nX .

Here δ̂
±

and Ŝ
±

act only on the first slot; they are analogous to partial derivatives
with respect to j. Precisely,

Ŝ
+

(U)(j,X) := U(j + 1, X),

Ŝ
−

(U)(j,X) := U(j − 1, X),

δ̂
+

(U)(j,X) := U(j + 1, X)− U(j,X),

δ̂
−

(U)(j,X) := U(j,X)− U(j − 1, X).

Let

(E±Mu)(j) := (δ±u)(j)−
M∑
n=0

εn(δ±n U)(j, εj)

be the error made by truncating the series expansion of δ±u after M terms. Thus
the lowest power of ε we see in the error term is εM+1.

We further assume that our approximate solutions R and P themselves have
expansions in ε:

R(j,X, τ) = R0(j,X, τ)+εR1(j,X, τ) and P (j,X, τ) = P0(j,X, τ)+εP1(j,X, τ).
(2.6)

Of course Ri(j,X, τ) and Pi(j,X, τ) meet (2.4). Using the above expansion, we
directly compute Res1(r̃ε, p̃ε):

Res1(r̃ε, p̃ε) = δ+
0 P0 + εδ+

1 P0 + E+
1 (P0)

+ εδ+
0 P1 + ε2δ+

1 P1 + εE+
1 (P1)

− ε∂τR0 − ε2∂τR1.

(2.7)

Here we have used the expansion for δ+. Similarly

Res2(r̃ε, p̃ε) =
1

m
(δ−0 kR0 + εδ−1 kR0 + E−1 (kR0)

+ εδ−0 kR1 + ε2δ−1 kR1 + εE−1 (kR1)

− ε∂τP0 − ε2∂τP1).

(2.8)

Next set
Qi := kRi. (2.9)

We choose P0, P1, Q0 and Q1 so that the O(1) and O(ε) terms in (2.7) and (2.8)
vanish. We get

δ̂
+
P0 = 0

1

m
δ̂
−
Q0 = 0

(O(1))
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and

δ̂
+
P1 =

1

k
∂τQ0 − S+∂XP0

δ̂
−
Q1 = m∂τP0 − S−∂XQ0.

(O(ε))

From (O(1)) we learn that P0 and Q0 do not depend on j, i.e.

P0(j,X, τ) = P̄0(X, τ) and Q0(j,X, τ) = Q̄0(X, τ). (2.10)

If there are to be solutions P1 and Q1 to (O(ε)) which satisfy (2.4), Lemma 2.1 tells
us we must have

lim
N→∞

1

N

N−1∑
j=0

[
1

k(j)
∂τ Q̄0 − ∂X P̄0

]
= lim
N→∞

1

N

N∑
j=1

[
1

k(−j)
∂τ Q̄0 − ∂X P̄0

]
= 0

lim
N→∞

1

N

N−1∑
j=0

[
m(j)∂τ P̄0 − ∂XQ̄0

]
= lim
N→∞

1

N

N∑
j=1

[
m(−j)∂τ P̄0 − ∂XQ̄0

]
= 0.

(2.11)
Since P̄0 and Q̄0 do not depend upon j these can be rewritten as lim

N→∞

1

N

N−1∑
j=0

1

k(j)

 ∂τ Q̄0 = lim
N→∞

 1

N

N∑
j=1

1

k(−j)

 ∂τ Q̄0 = ∂X P̄0

and  lim
N→∞

1

N

N−1∑
j=0

m(j)

 ∂τ P̄0 =

 lim
N→∞

1

N

N∑
j=1

m(−j)

 ∂τ P̄0 = ∂XQ̄0.

The strong law of large numbers tells us that

lim
N→∞

1

N

N−1∑
j=0

m(j) = lim
N→∞

1

N

N∑
j=1

m(−j) = E[m] =: m̄ (2.12)

and

lim
N→∞

1

N

N−1∑
j=0

1

k(j)
= lim
N→∞

1

N

N−1∑
j=0

1

k(−j)
= E

[
1

k

]
=:

1

k̃
(2.13)

almost surely, since m and k are sequences of i.i.d. random variables. To be clear
E[·] is the expectation of a random variable. And so we find that

∂τ Q̄0 = k̃∂X P̄0

∂τ P̄0 =
1

m̄
∂XQ̄0.

(2.14)

From this, out pops the effective wave equation

∂2
τ Q̄0 = c2∂2

XQ̄0

with wave-speed

c :=

√
k̃/m̄.

We can use d’Alemberts formula to get Q̄0 and subsequently find P̄0 from its
relation to Q̄0:

Q̄0(X, τ) = A(X − cτ) +B(X + cτ)

P̄0(X, τ) =
1√
k̃m̄

(−A(X − cτ) +B(X + cτ)).
(2.15)
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The functions A and B will ultimately be determined by the initial conditions for
(1.2) in a fashion that is consistent with (2.2).

At this point we have computed the effective wave equation but we must also
determine the full form of P1 and Q1. Using (2.10) and (2.14) in (O(ε)) we get

δ̂
+
P1 =

(
k̃

k
− 1

)
∂X P̄0

δ̂
−
Q1 =

(m
m̄
− 1
)
∂XQ̄0.

Define χm and χk as the solutions to

δ+χk =
k̃

k
− 1 and δ−χm =

m

m̄
− 1.

Using formula (2.5) in Lemma 2.1, we can solve explicitly for χk and χm. They are

χk(j) =

j−1∑
i=0

[
k̃

k(i)
− 1

]
and χk(−j) =

j∑
i=1

[
1− k̃

k(i)

]

χm(j) =

j−1∑
i=0

[
m(i)

m̄
− 1

]
and χm(−j) =

j∑
i=1

[
1− m(i)

m̄

]
.

(2.16)

Observe that
k̃

k
− 1 and

m

m̄
− 1 are mean zero random variables and as such χk and

χm are classical random walks. The expression for Q1 and P1 can be given in terms
of χk and χm:

Q1(j,X, τ) = χm(j)∂XQ̄0(X, τ)

P1(j,X, τ) = χk(j)∂X P̄0(X, τ).
(2.17)

We need to know estimates for the norm of P1 and Q1 so that we can estimate the
residuals. Results are given in the next section. Here is an important preview of
what we find: the growth rates for random walks ultimately imply that the terms
εP1 and εR1 in (2.6) are, despite appearances, not actually O(ε); we show below

that they are in fact O(
√

log log(1/ε)). This in turn implies that the residuals are
not as small as the above derivation would lead one to believe; the formal calculation
presented above predicts O(ε2) but they turn out to be O(ε

√
log log(1/ε)). This is

the main technical complication in this article and the key difference between the
random problem we study here and the periodic or constant coefficient problems
studied in [8].

Before moving on, we now spell out our long wave approximation in detail.
Putting together (2.2), (2.6), (2.9), (2.10), (2.15) and (2.17) we see that

r̃ε(j, t) =
1

k(j)
(A(ε(j − ct)) +B(ε(j + ct)))

+ ε
χm(j)

k(j)
(A′(ε(j − ct)) +B′(ε(j + ct)))

p̃ε(j, t) =
1√
k̃m̄

(−A(ε(j − ct)) +B(ε(j + ct)))

+ ε
χk(j)√
k̃m̄

(−A′(ε(j − ct)) +B′(ε(j + ct))) .

(2.18)
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3. Probabilistic estimates. In this section we provide tools which will allow us
to compute the `2 norms of the residuals for all |t| ≤ T0/ε. The first subsection
deals with almost sure and realization dependent estimates by making use of the
the law of the iterated logarithm (LIL). The second subsection provides estimates
on the expectation of the norms using martingale inequalities.

3.1. Almost sure estimates. One can find the statement of the LIL in [3] and
more details can be found in [4]. Here we present the theorem in a form convenient
to us.

Theorem 3.1. (The Law of the Iterated Logarithm) Suppose y(j) (j ∈ Z) are i.i.d
random variables with mean zero and E[y2] = σ2. Define the (two-sided) random
walk χ via

χ(j) :=

j−1∑
i=0

y(i) and χ(−j) :=

j∑
i=1

y(−i) (3.1)

for j > 0 and χ(0) = 0.
Then

lim sup
|j|→±∞

±χ(j)√
2|j| log log(|j|)

a.s.
= σ.

The LIL is an extremely sharp description of a random walk. It says that, with
a probability of one, the magnitude of χ(j) exceeds the curve σ

√
2j log log(j) (by

any fixed amount) only a finite number of times but comes arbitrarily near it an
infinite number of times. Here is how we use the LIL:

Corollary 3.2. For almost every realization of {k(j)} and {m(j)} there is a finite
positive constant Cω = Cω(k,m) for which

|χk(j)|+ |χm(j)| ≤ Cω
√
|j| log log(|j|+ e)

for all j ∈ Z.

Remark 1. The constant Cω is almost surely finite by the LIL, but it may be
extremely large. There is no way to determine its magnitude except in very special
circumstances. Note, however, it does not depend on ε.

Remark 2. In this paper, we use a small modification of the usual “big C” notation.
If a constant in an estimate depends on the particular realization of the coefficients
we mark it as “Cω.” If it does not, we omit the subscript ω. All such constants Cω
are always almost surely finite. No such constants will ever depend on ε.

Proof. (Corollary 3.2) We have assumed that 1/k(j) and m(j) are i.i.d. and as such

yk(j) =
k̃

k(j)
− 1

and

ym(j) =
m(j)

m̄
− 1

satisfy the hypotheses of the LIL. Thus that result implies for almost every realiza-
tion of {k(j)} there is a natural number Nk for which

|χk(j)| ≤ 2k̃σk
√

2|j| log log(|j|)
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when |j| ≥ Nk. Then put

Ck := max

{
2k̃σk

√
2, max

0<|j|≤Nk

χk(j)√
|j| log log(|j|)

}
.

It follows that |χk(j)| ≤ Ck
√
|j| log log(|j|) ≤ Ck

√
|j| log log(|j|+ e) for all j. The

same argument can be used to estimate χm.

Given the growth rate in the LIL, we introduce a new norm fashioned to absorb
it:

‖F‖HsLIL :=
s∑
i=0

‖(1 + | · | log log(| · |+ e))1/2F (i)‖L2 .

The space Hs
LIL will be the completion of L2 with respect to this norm. Similarly,

we also introduce

‖F‖Hssr :=
s∑
i=0

‖(1 + | · |)1/2F (i)‖L2

and the space Hs
sr. Note that ‖F‖Hs ≤ ‖F‖Hssr ≤ C‖F‖HsLIL where Hs is the usual

L2-based Sobolev space of functions R→ R which are weakly s-times differentiable.
Now we unveil the two main estimates we need to provide almost sure control of

the residuals.

Lemma 3.3. For any T0 > 0 and almost every realization of {k(j)} and {m(j)}
there is a finite positive constant Cω = Cω (k,m, T0) for which ε ∈ (0, 1/4) implies

sup
|t|≤T0/ε

‖χ(·)F (ε(· − ct))‖`2 ≤ Cωε−1
√

log log(ε−1)‖F‖H1
LIL

(3.2)

and

sup
|t|≤T0/ε

‖χ(·)δ±F (ε(· − ct))‖`2 ≤ Cω
√

log log(ε−1)‖F‖H2
LIL

. (3.3)

In the above χis either χk or χm.

To prove these we need some calculus estimates.

Lemma 3.4. For all ε ∈ (0, 1/4), and a, b ∈ R

|a+ b| log log(|a+ b|+ e) ≤ |a| log log(2|a|+ e) + |b| log log(2|b|+ e)

and

log log(|x|+ e) ≤ log(2 log(ε|x|+ e)) + log log(ε−1 + e).

Proof. The first inequality follows from the fact that |x| log log(|x|+ e) is a convex
function.

We will show the second inequality in two steps. First we show that

log log(|x|+ e) ≤ log(2 log(ε|x|+ ε−1 + e)).

Since log is monotonic, this inequality follows from

|x|+ e ≤ (ε|x|+ ε−1 + e)2,

which is trivial.
Now we show that

log(2 log(ε|x|+ ε−1 + e)) ≤ log(2 log(ε|x|+ e)) + log log(ε−1 + e).



USING RANDOM WALKS TO ESTABLISH WAVELIKE BEHAVIOR 2589

Note that at x = 0, equality holds. For x ≥ 0 we have that

d

dx
log(εx+ ε−1 + e) =

ε

εx+ ε−1 + e

and
d

dx
log(ε|x|+ e) log(ε−1 + e) =

ε log(ε−1 + e)

εx+ e
.

Since
ε

εx+ ε−1 + e
≤ ε

εx+ e
≤ ε log(ε−1 + e)

εx+ e
,

we see that log(εx+ ε−1 + e) grows more slowly than log(εx+ e) log(ε−1 + e). Since
both functions are even, we get by symmetry that

2 log(ε|x|+ ε−1 + e) ≤ 2 log(ε|x|+ e) log(ε−1 + e).

Taking log of both sides, we get the desired result.

Now we can prove our key estimates.

Proof. (Lemma 3.3) Take χ to be χk or χm and fix T0 > 0. Using Corollary 3.2

‖χ(·)F (ε(· − ct))‖`2 =

∑
j∈Z

χ(j)2F (ε(j − ct))2

1/2

≤ Cω

∑
j∈Z

|j| log log(|j|+ e)F (ε(j − ct))2

1/2

.

The constant Cω here depends upon the realization and any estimate below will
depend on the realization because of this step only.

Using the first inequality in Lemma 3.4 with a = j − ct and b = ct and the
triangle inequality we get

‖χ(·)F (ε(· − ct))‖`2 ≤ Cω

∑
j∈Z

|j − ct| log log(2|j − ct|+ e)F (ε(j − ct))2

1/2

+ Cω
√
|t| log log(2c|t|+ e)‖F (ε(· − ct))‖`2 .

Call the two terms on the right I and II. We estimate II first.
Lemma 4.3 from [5] shows that

‖F (ε(· − ct))‖`2 ≤ Cε−1/2‖F (· − ct)‖H1 = Cε−1/2‖F‖H1

and so

II ≤ Cωε−1/2
√
|t| log log(2c|t|+ e)‖F‖H1 .

Then

sup
|t|≤T0/ε

II ≤ Cωε−1
√

log log(2cT0ε−1 + e)‖F‖H1 .

Routine features of the logarithm show that log log(2cT0ε
−1 + e) ≤ C log log(1/ε)

when ε ∈ (0, 1/4) and so we have

sup
|t|≤T0/ε

II ≤ Cωε−1
√

log log(1/ε)‖F‖H1 .
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As for I, using the second inequality in Lemma 3.4 with |x| = 2|j − ct| followed
by the triangle inequality gets us:

I ≤Cω

∑
j∈Z

|j − ct| log(2 log(2ε|j − ct|+ e))F (ε(j − ct))2

1/2

+Cω

∑
j∈Z

|j − ct| log log(ε−1 + e)F (ε(j − ct))2

1/2

.

Then we multiply by
√
ε/ε and do some algebra to get:

I ≤Cωε−1/2‖
√
ε| · −ct| log(2 log(2|ε(· − ct)|+ e))F (ε(· − ct))‖`2

+Cωε
−1/2

√
log log(ε−1 + e)‖

√
ε| · −ct|F (ε(· − ct))‖`2 .

Applying Lemma 4.3 from [5] tells us that

‖
√
ε| · −ct| log(2 log(2|ε(· − ct)|+ e))F (ε(· − ct))‖`2 ≤Cε−1/2‖F‖H1

LIL

and

‖
√
ε| · −ct|F (ε(· − ct))‖`2 ≤ Cε−1/2‖F‖H1

sr

and so we have,

I ≤ Cωε−1
√

log log(ε−1 + e)‖F‖H1
LIL
≤ Cωε−1

√
log log(ε−1)‖F‖H1

LIL
,

where we have absorbed the additional plus e inside the iterated logarithm into
the constant Cω. Note that the right hand side does not depend on t and so
sup|t|≤T0/ε I ≤ Cωε

−1
√

log log(ε−1) and all together we have shown (3.2).

It happens that (3.3) follows almost immediately from (3.2) with some operator
trickery. For functions G : R→ R and ε 6= 0 define the operator Aε via

(AεG)(X) :=
1

ε

∫ X+ε

X

G(s)ds.

We have

‖AεG‖H ≤ C‖G‖H (3.4)

where H may be Hs, Hs
LIL or Hs

sr. Here comes the argument. First we use Jensen’s
inequality to get:

‖w(·)AεG‖2L2 =

∫ ∞
−∞

w(X)2

(
1

ε

∫ X+ε

X

G(s)ds

)2

dX

≤
∫ ∞
−∞

w(X)2 1

ε

∫ X+ε

X

G(s)2dsdX.

In the above w(X) is a weight function. If we change the order of integration we
get

‖w(·)AεG‖2L2 =

∫ ∞
−∞

G(s)2 1

ε

∫ s

s−ε
w(X)2dXds.

Let bε(s) :=
1

εw(s)2

∫ s

s−ε
w(X)2dX so we have

‖w(·)AεG‖2L2 =

∫ ∞
−∞

w(s)2G(s)2bε(s)dXds ≤ ‖bε‖L∞‖w(·)G‖2L2 .
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If w(X) = 1, w(X) =
√

1 + |X| or w(X) =
√

1 + |X| log log(|X|+ e) it is easy to
use the mean value theorem to show ‖bε‖L∞ ≤ C when ε ∈ (0, 1/4). With this, the
last displayed inequality implies (3.4).

Continuing on in the proof of (3.3), the fundamental theorem of calculus tells us
that F (X + ε)− F (X) = ε(AεF ′)(X). Thus:

(δ+F )(ε(j − ct)) = F (ε(j − ct) + ε)− F (ε(j − ct)) = ε(AεF ′)(ε(j − ct)).

In which case we see that

‖χ(·)δ+F (ε(· − ct))‖`2 = ε‖χ(·)(AεF ′)(ε(· − ct))‖`2 .

We have produced an extra factor of ε. Using (3.2) and (3.4)

‖χ(·)δ+F (ε(·−ct))‖`2 ≤ Cω
√

log log(ε−1)‖AεF ′‖H1
LIL
≤ Cω

√
log log(ε−1)‖F‖H2

LIL
.

That is (3.3) and does it for this proof.

Now we can prove:

Proposition 3.5. Fix A,B ∈ H3
LIL and take r̃ε and p̃ε as in (2.18). Fix T0 > 0.

Then for almost every realization of {k(j)} and {m(j)} there is a finite positive

constant Cω = Cω

(
k,m, T0, ‖A‖H3

LIL
, ‖B‖H3

LIL

)
for which ε ∈ (0, 1/4) implies

sup
|t|≤T0/ε

(‖Res1(r̃ε, p̃ε)‖`2 + ‖Res1(r̃ε, p̃ε)‖`2) ≤ Cωε
√

log log(1/ε). (3.5)

Proof. We prove the estimate for the piece involving Res1 as the other part is all but
identical. A tedious calculation (plugging (2.18) into (2.1) and using the product
rule for finite differences) shows that

Res1(r̃ε, p̃ε) =
1√
k̃m̄

(
−δ+[A(ε(j − ct))] + εA′(ε(j − ct))

)
+

1√
k̃m̄

(
δ+[B(ε(j + ct))]− εB′(ε(j + ct))

)
+
cε2χm(j)

k(j)
A′(ε(j − ct)) +

cε2χm(j)

k(j)
B′(ε(j + ct))

− εχk(j + 1)√
k̃m̄

δ+[A′(ε(j − ct))]− εχk(j + 1)√
k̃m̄

δ+[B′(ε(j + ct))].

(3.6)

The terms in the first two lines are fully deterministic and estimable using Lemma
4.3 of [5]. Specifically the `2 norm of each is controlled by

Cε3/2 (‖A‖H2 + ‖B‖H2)

for |t| ≤ T0/ε. This is dominated by the right hand side of (3.5). Using (3.2) we
see that the `2 norm in the third line is controlled by

ε2
(
Cωε

−1
√

log log(1/ε)
(
‖A′‖H1

LIL
+ ‖B′‖H1

LIL

))
for |t| ≤ T0/ε. Again this is dominated by the right hand side of (3.5). Similarly
we use (3.3) to handle the terms in the last line, which are controlled by

ε
(
Cω
√

log log(1/ε)
(
‖A′‖H2

LIL
+ ‖B′‖H2

LIL

))
.

It is here we see why H3
LIL is needed in (3.5).
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Remark 3. We quickly note that if the springs and masses vary periodically, one
finds that χm(j) and χk(j) are in `∞ and then this proof would demonstrate the
size of the residuals is bounded by Cε1/2.

3.2. Boundedness in mean. The almost sure boundedness does not provide us
with any kind of description for the ω dependent constant Cω. In this section we
estimate the error in mean, finding estimates in terms of σm and σk.

Lemma 3.6. Let y(j) and χ(j) be as in Theorem 3.1 and n ∈ Z+ ∪ {0}. Consider
the process

Wj(n) := χ(j + n)− χ(j).

Then, for every j, Wj(n) is a martingale in the variable n and, for any N > 0,

E[ max
0≤n≤N

(Wj(n))2] ≤ 4Nσ2. (3.7)

Proof. From the definition of χ, we have

Wj(n) = y(j) + · · ·+ y(j + n− 1). (3.8)

Then

E[|Wj(n)|] ≤ C|n|.
Conditioning upon Wj(n) gives

E[Wj(n+ 1)|Wj(n)] = E[y(j + n) +Wj(n)|Wj(n)] = Wj(n).

This proves that Wj is a martingale. From the basic theory of martingales this tells
us |Wj |2 is a submartingale. It follows from the Lp maximum inequality, see [3],
and a direct computation using (3.8)

E
[

max
0≤n≤N

(Wj(n))2

]
≤ 4E[|Wj(N)|2] = 4Nσ2.

Remark 4. We can define a similar process Wj(n) := χ(j−n)−χ(j) which would
have exactly the same properties but with a different version of (3.8) i.e.

Wj(n) = y(j − n) + · · ·+ y(j − 1).

This symmetry allows us to handle positive and negative times with the same ar-
gument.

We use the following corollary in the results that follow.

Corollary 3.7.

χk(j + n)− χk(j) and χm(j + n)− χm(j)

are martingales in n with

E
[

max
0≤n≤N

(χk(j + n)− χk(j))
2

]
≤ 4Nk̃σ2

k and

E
[

max
0≤n≤N

(χk(j + n)− χk(j))
2

]
≤ 4N

σ2
m

m̄
.

We have now gotten the necessary probability out of the way to prove the fol-
lowing lemma, analogous to Lemma 3.3, but in expectation.
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Lemma 3.8. For any T0 > 0 and ε ∈ (0, 1/4) the following inequalities hold

E

[
sup
|t|≤T0/ε

‖χ(·)F (ε(· − ct))‖`2
]
≤ 2
√

2ε−1σmax{2
√
|c|T0, 1}‖F‖H2

sr
(3.9)

and

E

[
sup
|t|≤T0/ε

‖χ(·)δ±F (ε(· − ct))‖`2
]
≤ 3
√

2σmax{2
√
|c|T0, 1}‖F‖H3

sr
. (3.10)

In the above χ is either χk or χm with σ either σk
√
k̃ or

σm√
m̄

respectively.

Proof. Without loss of generality (see Remark 4) let t ∈ R+ ∪ {0}. Write ct =
bctc+ α where α ∈ [0, 1). Let n ∈ Z in the following. We start with the inequality

sup
0≤t≤T0/ε

‖χ(·)F (ε · −εct)‖2`2 ≤ sup
0≤n≤cT0/ε,α∈[0,1)

∑
j∈Z

χ(j)2F (εj − εn− εα)2.

The inequality is due to the fact that for any t ∈ [0, bT0/εc + 1) there exists an
n ∈ [0, cT0/ε] and α ∈ [0, 1) such that n+ α = ct, which is a slightly greater range
for t than we initially cared about. Using the Mean Value Theorem, we have that

F (εj − εn− εα) = F (εj − εn)− εαF ′(xj)
where xj ∈ (εj−εn−εα, εj−εn). Substituting this in and using the basic inequality
(a+ b)2 ≤ 2(a2 + b2), we get

sup
0≤t≤T0/ε

‖χ(·)F (ε · −εct)‖2`2

≤ sup
0≤n≤cT0/ε,α∈[0,1)

∑
j∈Z

χ(j)2(F (εj − εn)− εαF ′(xj))2.

≤ sup
0≤n≤cT0/ε,α∈[0,1)

2
∑
j∈Z

χ(j)2F (εj − εn)2 + χ(j)2(εαF ′(xj))
2.

We look at the two terms

I = E

 sup
0≤n≤cT0/ε,α∈[0,1)

2
∑
j∈Z

χ(j)2F (εj − εn)2


II = E

 sup
0≤n≤cT0/ε,α∈[0,1)

2
∑
j∈Z

χ(j)2(εαF ′(xj))
2


separately. Starting with I, we find from a change of indices, that

I = E

 sup
0≤n≤cT0/ε

2
∑
j∈Z

χ(j + n)2F (εj)2


= E

 sup
0≤n≤cT0/ε

2
∑
j∈Z

(χ(j + n)− χ(j) + χ(j))2F (εj)2

 (3.11)

Using the same basic inequality as above we get

I ≤ E

 sup
0≤n≤cT0/ε

4
∑
j∈Z

(
χ(j)2 + (χ(j + n)− χ(j))2

)
F (εj)2

 . (3.12)
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The supremum sees only the term with n, and Fubini’s theorem allows the expected
value to pass through the sum. And so

I ≤ 4
∑
j∈Z

(
E
[
χ(j)2

]
+ E

[
sup

0≤n≤cT0/ε

(χ(j + n)− χ(j))2

])
F (εj)2.

A direct computation on the first term using the definition of χ and using Corollary
3.7 on the second term we find

I ≤ 4
∑
j∈Z

(
σ2|j|+ 4σ2cT0ε

−1
)
F (εj)2. (3.13)

According to Lemma 4.3 and 4.4 from [5], I is dominated by

8ε−2σ2 max{4cT0, 1}‖F‖2H1
sr
. (3.14)

Now we turn our attention to II. We can eliminate the α dependence by taking
α = 1 i.e. choose x̃j such that

F ′(x̃j) = max
x∈[εj−εn−ε,εj−εn]

F ′(x).

Then

(εαF ′(xj))
2 ≤ (εF ′(x̃j))

2.

Shifting the index by n we get

II ≤ E

 sup
0≤n≤cT0/ε

2
∑
j∈Z

χ(j + n)2F ′(x̃j+n)2


where x̃j+n ∈ [εj−ε, εj] does not depend on n. We therefore may relabel x̃j = x̃j+n.
We use the same steps here as we used from (3.12) to (3.13).

II ≤ 4
∑
j∈Z

(σ2|j|+ 4σ2cT0ε
−1)ε2F ′(εx̃j)

2.

Again, by Lemma 4.3 from [5], II is dominated by

8σ2 max{4cT0, 1}‖F‖2H2
sr
. (3.15)

By (3.14) and (3.15) we have

E

[
sup

0≤t≤T0/ε

‖χ(·)F (ε · −εct)‖2
]
≤ 8ε−2σ2 max{4cT0, 1}‖F‖2H2

sr
.

An standard application of Jensen’s inequality yields

E

[
sup

0≤t≤T0/ε

‖χ(·)F (ε · −εct)‖

]
≤ 2
√

2ε−1σmax{2
√
cT0, 1}‖F‖H2

sr
.

This proves (3.9).
The exact same trickery that was used in Lemma 3.3 works to prove (3.10). Using

(3.9) and then (3.4)

E

[
sup

0≤t≤T0/ε

‖χ(·)δ+F (ε(· − ct))‖`2
]
≤ 3
√

2σmax{2
√
cT0, 1}‖F‖H3

sr
.

This shows (3.10).
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Remark 5. The functions in this subsection are required to be once more differ-
entiable than the functions in the previous subsection, due to the use of the Mean
Value Theorem in the beginning of the proof of the previous lemma.

Now we can prove:

Proposition 3.9. Fix A,B ∈ H4
sr and take r̃ε and p̃ε as in (2.18). Fix T0 > 0.

For there exists a positive constant C(k̃, m̄, ak, bk, am, bm, T0, ‖A‖H4
sr
, ‖B‖H4

sr
) for

which ε ∈ (0, 1/4) implies

E

[
sup
|t|≤T0/ε

(‖Res1(r̃ε, p̃ε)‖`2 + ‖Res2(r̃ε, p̃ε)‖`2)

]
≤ Cε

(
ε1/2 + max{σm, σk}

)
.

(3.16)

Proof. The proof begins the same way as the proof for Proposition 3.5 except now
we take expectation of (3.6). Since the first two lines of (3.6) are deterministic,
using Lemma 4.3 in [5], they are controlled by

ε3/2
√

2√
k̃m̄

(‖A‖H2 + ‖B‖H2) .

Next use (3.9) to control the third line with

2
√

2εσmcmax{2
√
|c|T0, 1}

ak
√
m̄

(
‖A′‖H2

sr
+ ‖B′‖H2

sr

)
,

which is dominated by (3.16). We use (3.10) to estimate the fourth line:

3
√

2εσk max{2
√
|c|T0,1}√

m̄

(
‖A′‖H3

sr
+ ‖B′‖H3

sr

)
.

As before, the estimate for Res2 follows a parallel argument and is omitted.

4. Error estimates. In this section we prove rigorous estimates using “energy”
arguments, similar to [5, 1, 10].

4.1. The energy argument. Let r and p be a true solution to (1.2) and take r̃ε
and p̃ε as in (2.18). Define error functions η and ξ implicitly by

r = r̃ε +
η

k
and p = p̃ε + ξ. (4.1)

It is our goal to determine the size in `2 of η and ξ during the period |t| ≤ T0/ε. To
that end, insert (4.1) into (1.2) to find that

η̇

k
= δ+ξ + Res1

mξ̇ = δ−η + Res2

(4.2)

where Res1 = Res1(r̃ε, p̃ε) and Res2 = Res2(r̃ε, p̃ε) as in (2.1).
Next define the energy to be

H(t) :=
1

2

∑
j∈Z

[
k(j)−1η2(j, t) +m(j)ξ2(j, t)

]
.

Since we have assumed that the k(j) and m(j) are drawn from distributions with
support in [ak, bk] ⊂ R+ and [am, bm] ⊂ R+, respectively, a short calculation shows

that
√
H is equivalent to ‖η, ξ‖`2×`2 and the constants of equivalence depend only

on ak, am, bk and bm. That is to say, the equivalence is realization independent.
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Time differentiation of H gives

Ḣ =
∑
j∈Z

[
k−1ηη̇ +mξξ̇

]
.

Using (4.2)

Ḣ =
∑
j∈Z

[
η(δ+ξ + Res1) + ξ(δ−η + Res2)

]
.

Summing by parts:

Ḣ =
∑
j∈Z

[ηRes1 + ξRes2] .

Cauchy-Schwarz implies that

Ḣ ≤ ‖Res1,Res2‖`2×`2‖η, ξ‖`2×`2 .

Then we use the equivalence of
√
H and ‖η, ξ‖`2×`2 to get:

Ḣ ≤ C‖Res1,Res2‖`2×`2
√
H.

Set

Γε := sup
|t|≤T0/ε

‖Res1,Res2‖`2×`2 ,

so Ḣ/
√
H ≤ CΓε. We integrate from 0 to t

2
√
H(t) ≤ 2

√
H(0) + CΓεt.

And so, for t ≤ T0/ε, we have√
H(t) ≤

√
H(0) + CΓεT0ε

−1.

If we use the equivalence of the
√
H and ‖η, ξ‖`2×`2 once again, we find that we

have proven

sup
|t|≤T0/ε

‖η(t), ξ(t)‖`2×`2 ≤ C‖η(0), ξ(0)‖`2×`2 + CΓεε
−1. (4.3)

A key feature of the above inequality is that the only place where the specific
realization of the springs and masses enters is through Γε.

4.2. Almost sure error estimates. We can now prove our first main theorem,
which is about almost sure estimation of the absolute error:

Theorem 4.1. Fix Φ,Ψ ∈ H3
LIL and T0 > 0. Let r and p be the solution of (1.2)

with initial data

r(j, 0) = Φ(εj)/k(j) and p(j, 0) = Ψ(εj).

For almost every realization of {k(j)} and {m(j)} there is a finite positive constant

Cω = Cω(k,m, ak, bk, am, bm, ‖Φ‖H3
LIL

, ‖Ψ‖H3
LIL

)

for which ε ∈ (0, 1/4) implies

sup
|t|≤T0/ε

∥∥∥∥r(·, t)− 1

k(·)
(A (ε(· − ct)) +B (ε(·+ ct)))

∥∥∥∥
`2
≤ Cω

√
log log(1/ε)

and

sup
|t|≤T0/ε

∥∥∥∥∥p(·, t)− 1√
k̃m̄

(−A (ε(· − ct)) +B (ε(·+ ct)))

∥∥∥∥∥
`2

≤ Cω
√

log log(1/ε).
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In the above

A(X) :=
1

2
Φ(X)−

√
k̃m̄

2
Ψ(X) and B(X) :=

1

2
Φ(X) +

√
k̃m̄

2
Ψ(X).

Remark 6. In the case where the masses and springs vary periodically instead of
randomly, the size of the error decreases to Cε1/2; in fact the proof we supply in
a moment together with Remark 3 suffices to demonstrate this. It is this extra
wiggle room in the error in this case which opens the door to longer time scales and
KdV-like approximations.

Proof. Form r̃ε and p̃ε from the functions A and B as specified in (2.18) and η and
ξ as in (4.1). A bit of algebra shows that

η(j, 0) = εχm(j) (A′(εj) +B′(εj)) and ξ(j, 0) = ε
χk(j)√
k̃m̄

(−A′(εj) +B′(εj)) .

(4.4)
Using (3.2) in a very crude way, we see that almost surely

‖η(0), ξ(0)‖`2×`2 ≤ Cω
√

log log(1/ε)

with the constant depending on ‖A‖H2
LIL

and ‖B‖H2
LIL

. We estimated Γε in Propo-

sition 3.5 and found that Γε ≤ Cωε
√

log log(1/ε) when ε ∈ (0, 1/4) almost surely.
Therefore (4.3) gives

sup
|t|≤T0/ε

‖η(t), ξ(t)‖`2×`2 ≤ Cω
√

log log(1/ε).

To finish the proof we note that the triangle inequality tells us∥∥∥∥r(·, t)− 1

k(·)
(A(ε(· − ct)) +B(ε(·+ ct)))

∥∥∥∥
`2

≤‖r(t)− r̃ε(t)‖`2 +

∥∥∥∥r̃ε(·, t)− 1

k(·)
(A(ε(· − ct)) +B(ε(·+ ct)))

∥∥∥∥
`2

≤C‖η(t)‖`2 + Cε‖χm(·)A′(ε(· − ct))‖+ Cε‖χm(·)B′(ε(· − ct))‖`2 .

The terms involve A and B can be estimated using (3.2) by Cω
√

log log(1/ε) so we
find

sup
|t|≤T0/ε

∥∥∥∥r(·, t)− 1

k(·)
(A(ε(· − ct)) +B(ε(·+ ct)))

∥∥∥∥
`2
≤ Cω

√
log log(1/ε).

The remaining estimate in the Theorem 4.1 is shown by a parallel argument and is
omitted.

It may seem like the estimates in Theorem 4.1 are utterly useless since the size
of the error diverges as ε→ 0+. But the error in that theorem is the absolute error;
the relative error does in fact vanish in the limit.

Corollary 4.2. Under the same conditions as in Theorem 4.1 we almost surely
have

lim
ε→0+

sup
|t|≤T0/ε

∥∥∥r(·, t)− 1
k(·) (A(ε(· − ct)) +B(ε(·+ ct)))

∥∥∥
`2

‖r(t)‖`2
= 0
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and

lim
ε→0+

sup
|t|≤T0/ε

∥∥∥∥p(·, t)− 1√
k̃m̄

(−A(ε(· − ct)) +B(ε(·+ ct)))

∥∥∥∥
`2

‖p(t)‖`2
= 0.

Proof. The reverse triangle inequality gives

‖r(t)‖`2 ≥
∥∥∥∥ 1

k(·)
(A(ε(· − ct)) +B(ε(·+ ct)))

∥∥∥∥
`2

−
∥∥∥∥r(·, t)− 1

k(·)
(A(ε(· − ct) +B(ε(·+ ct)))

∥∥∥∥
`2
.

Using Lemma 4.3 from [5] for the first term and Theorem 4.1 for the second we
obtain

‖r(t)‖`2 ≥ Cε−1/2 − Cω
√

log log(1/ε)

for all |t| ≤ T0/ε. This is positive for ε small enough and so we get the first limit in
the corollary by dividing the absolute error for r in Theorem 4.1 by this estimate
and taking the limit. The second limit is analogous.

4.3. Error estimate in mean. We can now prove our second main theorem, which
is an estimate of the mean of the error.

Theorem 4.3. Fix Φ,Ψ ∈ H4
sr and T0 > 0. Let r and p be the solution of (1.2)

with initial data

r(j, 0) = Φ(εj)/k(j) and p(j, 0) = φ(εj).

There exists a positive constant C(k̃, m̄, ak, bk, am, bm, T0, ‖A‖H4
sr
, ‖B‖H4

sr
) for which

ε ∈ (0, 1/4) implies

E

[
sup
|t|≤T0/ε

∥∥∥∥r(·, t)− 1

k(·)
(A(ε(· − ct) +B(ε(·+ ct)))

∥∥∥∥
`2

]
≤ C

(
ε1/2 + max{σm, σk}

)
and

E

[
sup
|t|≤T0/ε

∥∥∥∥∥p(·, t)− 1√
k̃m̄

(−A(ε(· − ct) +B(ε(·+ ct)))

∥∥∥∥∥
`2

]
≤ C

(
ε1/2 + max{σm, σk}

)
.

In the above

A(X) :=
1

2
Φ(X)−

√
k̃m̄

2
Ψ(X) and B(X) :=

1

2
Φ(X) +

√
k̃m̄

2
Ψ(X).

Proof. Begin as in the proof of Theorem 4.1. Using (3.9) on (4.4)

‖η(0), ξ(0)‖`2×`2 ≤ C max{σm, σk}
with constant C depending on ‖A‖H3

sr
and ‖B‖H3

sr
. Proposition 3.9 gives us

E [Γε] ≤ Cε
(
ε1/2 + max{σm, σk}

)
when ε ∈ (0, 1/4). Therefore (4.3) gives

E

[
sup
|t|≤T0/ε

‖η(t), ξ(t)‖`2×`2
]
≤ C

(
ε1/2 + max{σm, σk}

)
.
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To finish the proof we note that the triangle inequality tells us

E

[
sup
|t|≤T0/ε

∥∥∥∥r(·, t)− 1

k(·)
(A(ε(· − ct)) +B(ε(·+ ct)))

∥∥∥∥
`2

]

≤E

[
sup
|t|≤T0

‖r(t)− r̃ε(t)‖`2

]

+ E

[
sup
|t|≤T0

∥∥∥∥r̃ε(·, t)− 1

k(·)
(A(ε(· − ct)) +B(ε(·+ ct)))

∥∥∥∥
`2

]

≤E

[
sup
|t|≤T0

C‖η(t)‖`2
]

+ E

[
sup
|t|≤T0

Cε‖χm(·)A′(ε(· − ct))‖

]
+ E

[
sup
|t|≤T0

Cε‖χm(·)B′(ε(· − ct))‖`2
]
.

The C depends on ak, bk, am, and bm, which are fixed, so we may pull it out of the
expected value. The terms that involve A and B can be estimated using (3.9) by
C max{σk, σm} so we find

E

[
sup
|t|≤T0/ε

∥∥∥∥r(·, t)− 1

k(·)
(A(ε(· − ct)) +B(ε(·+ ct)))

∥∥∥∥
`2

]

≤ C
(
ε1/2 + max{σk, σm}

)
.

The remaining estimate in the Theorem 4.3 is shown by a parallel argument and is
omitted.

5. Coarse-graining. We now prove strong convergence results using the ideas of
coarse-graining from [8]. We need quite a few tools. Letting f : Z → R and
g, u, v : R→ R define

F [f ](κ) :=
1

2π

∑
j∈Z

e−ijκf(j)

F−1[g](j) :=

∫ π

−π
g(κ)eiκj

F [u](ξ) :=
1

2π

∫
R

u(x)e−iξxdx

F−1[v](x) :=

∫
R

v(ξ)eiξxdξ

θφ(κ) :=

{
1 κ ∈ (−φ, φ)

0 else

L[f ](x) := F−1[θπ(·)F [f ](·)](x)

S[u](j) := u(j).

These are, in order, the Fourier transform for sequences, its inverse, the Fourier
transform of functions R→ R, its inverse, the indicator function of (−φ, φ), a “low
pass” interpolation operator, and a sampling operator. To be clear, in the above
x, ξ, κ ∈ R and j ∈ Z, always.
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The operator L converts a sequence f defined on Z to a new function defined on
R. The sampling function S returns a sequence from a function defined on R. It
is an easy exercise to show that SL[f ](j) = f(j) so it is clear L is an interpolation
operator. Another essential property is the following.

Lemma 5.1. Let f be a sequence in `2. Then

‖f‖`2 = 2π‖L[f ]‖L2(R).

Proof. By Plancherel’s theorem for Fourier series:

‖F [f ]‖L2(−π,π) =
1

2π
‖f‖`2 .

Then by Plancherel’s theorem for the Fourier transform:

‖F−1[θπF [f ]]‖L2(R) = ‖θπF [f ]‖L2(R) = ‖F [f ]‖L2(−π,π)

completing the proof.

We need one more lemma before we can state the strong convergence results. It
states that the more frequently you sample a function, the more its interpolation
looks like the original function.

Lemma 5.2. Let f : R → R be continuous and in Hs with s > 0. Put fε(x) :=
f(εx). Then

lim
ε→0+

‖LS[fε](·/ε)− f‖L2 = 0.

Proof. From their definitions we have

LS[fε](x) =
1

2π

∫ π

−π
(
∑
j∈Z

e−iκjf(εj))eiκxdκ =
1

2π

∫ π

−π
(
∑
j∈Z

e−i
κ
ε εjf(εj))eiκxdκ.

Changing variables with u = κ/ε we get

LS[fε](x) =
1

2π

∫ π/ε

−π/ε
(
∑
j∈Z

εe−iuεjf(εj))eiuεxdu.

Exchanging the sum and integral and then computing the integral gives

LS[fε](x) =
∑
j∈Z

f(εj) sinc(x− j).

This sinc is the normalized sinc function,
sinπx

πx
.

Now put f̃ε(X) := F−1[θπ/εF [f ]](X). f̃ε is a band-limited approximation of f .
Using Plancherel’s theorem

‖f − f̃ε‖2L2 = ‖F [f ]− θπ/εF [f ]‖2L2 =

∫
|κ|>π/ε

|F [f ](κ)|2 dκ.

Since f ∈ Hs we have

‖f − f̃ε‖2L2 =

∫
|κ|>π/ε

1

|κ|2s
|κ|2s |F [f ](κ)|2 dκ

≤ sup
|κ|>π/ε

(
1

|κ|2s

)∫
|κ|>π/ε

|κ|2s |F [f ](κ)|2 dκ

≤Cε2s‖f‖2Hs .

Since s > 0 we see that limε→0+ ‖f − f̃ε‖L2 = 0.
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Since f̃ε is band-limited, it is exactly equal to its cardinal series, see [7]:

f̃ε(X) =
∑
j∈Z

f(εj) sinc(X/ε− j).

But this is exactly equal to LS[fε](X/ε). Therefore we have shown that

lim
ε→0+

‖LS(fε)(·/ε)− f(·)‖L2 = 0.

Remark 7. We assumed that f is continuous in Lemma 5.2 so that the sampling
map S is well-defined upon it. In fact, using the same sorts of calculations as in the
proof it is possible to show that LS[f ](x) = F−1 [θπ(·)F [f ](·)] (x) for continuous
functions. Since the right hand side of this formula makes sense for functions which
are merely L2, we can extend LS to such functions without the need of continuity.
This line of reasoning allows us to eliminate the continuity condition from the lemma
(though we still require s > 0).

Here is our first coarse-graining result:

Theorem 5.3. Fix Φ,Ψ ∈ H3
LIL and T0 > 0. Let r and p be the solution of (1.2)

with initial data

r(j, 0) = Φ(εj)/k(j) and p(j, 0) = Ψ(εj).

Put

Qε(X, τ) = L[kr(·, τ/ε)](X/ε) and Pε(X, τ) = L[p(·, τ/ε)](X/ε).

Suppose that Q0(X, τ) and P0(X, τ) solve (2.14) with initial data Q0(X, 0) = Φ(X)
and P0(X, 0) = Ψ(X). Then, almost surely,

lim
ε→0+

sup
|τ |≤T0

(‖Qε(·, τ)−Q0(·, τ)‖L2 + ‖Pε(·, τ)− P0(·, τ)‖L2) = 0.

Proof. We show the limit for ‖Pε − P0‖L2 as the other is all but identical. By the
triangle inequality we have

‖Pε(·, τ)− P0(·, τ)‖L2

≤ ‖Pε(·, τ)− LS[P0(ε·, τ)](·/ε)‖L2 + ‖LS[P0(ε·, τ)](·/ε)− P0(·, τ)‖L2 .

The second term vanishes as ε→ 0+ by virtue of Lemma 5.2. (In fact, given (2.15)
one sees that this convergence happens uniformly for all τ ∈ R.)

For the first term we do a change of variables X = εx and τ = εt to get

‖Pε(·, τ)− LS[P0(ε·, τ)](·/ε)‖L2 =
√
ε‖Pε(ε·, εt)− LS[P0(ε·, εt)](·)‖L2 .

Then we use the definition of Pε and Lemma 5.1 to get

‖Pε(·, τ)− LS[P0(ε·, τ)](·/ε)‖L2 =
1

2π

√
ε‖p(·, t)− S[P0(ε·, εt)]‖`2 .

Using (2.15) and the formulas relating Φ and Ψ to A and B in Theorem 4.1 we see

S[P0(ε·, εt)](j) =
1√
k̃m̄

(−A(ε(j − ct)) +B(ε(j + ct))) .

Thus we can use the final estimate in Theorem 4.1 to get
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sup
|τ |≤T0

‖Pε(·, τ)− LS[P0(ε·, τ)](·/ε)‖L2 ≤ sup
|t|≤T0/ε

1

2π

√
ε‖p(·, t)− S[P0(ε·, εt)]‖`2

≤ Cω
√
ε log log(1/ε).

(5.1)

The right hand side goes to zero as ε→ 0+ and we are done.

We have a similar result but the convergence is in mean:

Theorem 5.4. Fix Φ,Ψ ∈ H4
sr and T0 > 0. Let r and p be the solution of (1.2)

with initial data

r(j, 0) = Φ(εj)/k(j) and p(j, 0) = Ψ(εj).

Put

Qε(X, τ) = L[kr(·, τ/ε)](X/ε) and Pε(X, τ) = L[p(·, τ/ε)](X/ε).

Suppose that Q0(X, τ) and P0(X, τ) solve (2.14) with initial data Q0(X, 0) = Φ(X)
and P0(X, 0) = Ψ(X). Then

lim
ε→0+

E

[
sup
|τ |≤T0

(‖Qε(·, τ)−Q0(·, τ)‖L2 + ‖Pε(·, τ)− P0(·, τ)‖L2)

]
= 0.

Proof. As before, we start with the triangle inequality

E

[
sup
|τ |≤T0

‖Pε(·, τ)− P0(·, τ)‖L2

]

≤E

[
sup
|τ |≤T0

‖Pε(·, τ)− LS[P0(ε·, τ)](·/ε)‖L2

]

+ E

[
sup
|τ |≤T0

‖LS[P0(ε·, τ)](·/ε)− P0(·, τ)‖L2

]
.

The expected value does not see the second term, so it vanishes as ε → 0+ by
virtue of Lemma 5.2. The same steps are valid up through (5.1) only now we take
expectation and use Theorem 4.3

E

[
sup
|τ |≤T0

‖Pε(·, τ)− LS[P0(ε·, τ)](·/ε)‖L2

]
≤ C
√
εmax{σk, σm}.

The right hand side vanishes as ε→ 0+.

6. Simulations. We present various numerical data supporting our results. In our
experiments, the springs k are picked to be constant, and the probability distribu-
tion of the masses m such that m̄ = 1. If the springs had also been chosen randomly,
the results would have looked the same, but it is computationally less expensive to
keep them constant. We choose initial conditions

r(j) = e−(εj)2 and p(j) = −e−(εj)2 .

From these

A(X) = e−X
2

and B(X) = 0.



USING RANDOM WALKS TO ESTABLISH WAVELIKE BEHAVIOR 2603

We numerically integrate (1.2) to get r(j, t) and use this to calculate the relative
error which we call ρ

ρ := sup
0≤t≤T0/ε

‖(r(·, t)−A(ε(· − ct))‖`2
‖r(t)‖`2

.

According to Corollary 4.2, for some Cω, ρ will vanish to 0 at least as fast as
Cω
√
ε log log(1/ε). Seeing the

√
log log(ε) is numerically challenging and we make no

claim that we do here. However, if it were to show up in the numerical calculations,
it would be best to factor it out, so we calculate

ρ√
log log(1/ε)

.

Now this should vanish at a rate no slower than Cω
√
ε, which on a log-log plot,

should look like a straight line with a slope of 1/2. Anything with a slope greater
than 1/2 is vanishing at a faster rate.

We move onto the figures after one aside on the methods of integration used.
Since the total energy of the system is conserved, it is worth performing experiments
with a symplectic integrator. A six-step version of Yoshida’s method, see [11], was
initially used, as well as the standard four-step Runge-Kutta method. As it turns
out, these methods produce negligible differences for the time scales studied, so
most of the experiments below all use only the four-step Runge-Kutta for the sake
of computational efficiency.

Moving on, Figure 1 gives some numerical validations of our relative error results,
since the slope produced by the log-log plot is greater than 1/2. In this case,
the realization of masses is the same for each ε. Figure 2 repeats the experiment
in Figure 1 40 times, displaying the results as a series of box plots. A sample
size of 40 was used because significantly larger sample sizes would require using
more computing power since simulations for small values of ε are computationally
demanding due to the long time scales. Figure 2, suggests the slope in Figure 1 is
not a statistical anomaly.

It is worth noting that the most important tool of our analysis is χm. For
instance, it allows one to carry out similar analysis with many different kinds of
sequences of masses. If the average of the masses exists and one knows the growth
rate of χm, then one can find an upper bound on the error. For example, in Figure
4, we use a sequence of masses such that χ(j) grows like

√
j. In particular, using

two types of masses m1 and m2, the following pattern works

m1,m2,m1,m1,m2,m2,m1,m1,m1,m2,m2,m2...

We conjecture without providing arguments that if χm grows like |j|p, analysis
would show that the relative error is bounded by an ε1−p order term, which in this
case coincides with the numerical results seen in Figure 4.

There are also hints in our work, see for example 3.9, that for fixed ε and small
σm, the mean of the error should be close to that of the system where masses and
springs are taken to be constant average. Evidence for this is seen in Figure 5.
When σm is smallest, then error from 40 trials, is concentrated around the error in
the case of the system being constant coefficient, which was numerically calculated
to be roughly 0.126. In conclusion, the simulations are a strong affirmation of our
analytic results and that our bounds are at least close to optimal.
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Relative Error for Fixed Random Masses

Figure 1. Figure 1 is a log-log plot of the relative error ρ divided by
√

log log(1/ε).

40 Random Experiments

Figure 2. Figure 2 is 10 box plots of 40 different realization of masses at 10 various epsilons. It
is also log-log.
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Periodic Masses

Figure 3. Figure 3 is a log-log plot of the relative error masses chosen periodically

χ(j) Grows like
√
j

Figure 4. In Figure 4 masses are chosen so that χ(j) will grow like
√
j.

7. Conclusion. Our results are significant in several important ways regarding the
description of approximate waves in the random polymer linear FPUT system. We
have proven from first principles that that solutions to the wave equation are good
approximate solutions to the system studied here. We showed that the absolute
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Masses with Small σ

Figure 5. In Figure 5 ε is fixed and small while σ is varied and the absolute error is measured.

When σ is smallest, the data is concentrated near the error for the constant coefficient case.

error only grows at most like O(log log(1/ε)) almost surely and is constant in mean,
but also small in mean if the masses and springs have small deviation. Using an
interpolation operator with strong analytic properties we were able to show that
the interpolated approximate solutions converged to interpolated true solutions in
a relative sense a.s. and in expectation. Such results provide a rigorous justification
for claiming that the relative error is made arbitrarily small by taking ε to be small.

The advantage of our method comes from the use of the random walk in cap-
turing the build up of error. Since random walks of independent variables are well
studied and sharp asymptotic estimates are known, we were able to use the random
walk to its full extent. Although it remains unproven if the error we achieved is
sharp, the numerical results suggest it is close, and it seems nothing more about the
asymptotics of the random walk, at least in the almost sure sense, could be used
to prove sharper bounds. It also remains unclear if the random walk is an intrinsic
part of the mechanics of the problem or if it is only a useful fiction for modeling the
error. To what extent could it be further exploited here and in other models that
have similar dynamics

With this work we have laid the foundation for a couple of questions. First,
can the error term be modeled by a random variable independent of ε with a nice
probability distribution such as a Gaussian. There is also the question as to whether
the results can be extended to higher dimensions. Probably most interesting is to
determine what happens on longer time scales. The nonlinear periodic problem is
known to be well-approximated by KdV equations for times times proportional to
1/ε3 [1, 5] but it is not clear how to extend our work here to these longer time
scales (where for this problem we would expect the approximating equation to be
something like Airy’s equation instead of KdV). This is mainly because one needs
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to make sense of limn→∞
∑
|j|≤n χ(j)/n, which, even if one optimistically replaces

χ(j) with
√
|j|, will diverge. This raises the question: is it is possible to find

an effective equation describing the the dynamics for longer times and will these
descriptions be statistical or is there room to achieve anything more definite, like
the high probability and almost sure results constructed here?
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