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Who Is in Control? Practical Physical Layer Attack
and Defense for mmWave-Based Sensing in
Autonomous Vehicles

Zhi Sun

Abstract— With  the wide bandwidths in millimeter
wave (mmWave) frequency band that results in unprecedented
accuracy, mmWave sensing has become vital for many
applications, especially in autonomous vehicles (AVs). In addition,
mmWave sensing has superior reliability compared to other
sensing counterparts such as camera and LiDAR, which is
essential for safety-critical driving. Therefore, it is critical
to understand the security vulnerabilities and improve the
security and reliability of mmWave sensing in AVs. To this end,
we perform the end-to-end security analysis of a mmWave-based
sensing system in AVs, by designing and implementing practical
physical layer attack and defense strategies in a state-of-the-art
mmWave testbed and an AV testbed in real-world settings.
Various strategies are developed to take control of the victim
AV by spoofing its mmWave sensing module, including adding
fake obstacles at arbitrary locations and faking the locations
of existing obstacles. Five real-world attack scenarios are
constructed to spoof the victim AV and force it to make
dangerous driving decisions leading to a fatal crash. Field
experiments are conducted to study the impact of the various
attack scenarios using a Lincoln MKZ-based AV testbed, which
validate that the attacker can indeed assume control of the
victim AV to compromise its security and safety. To defend
the attacks, we design and implement a challenge-response
authentication scheme and a RF fingerprinting scheme to
reliably detect aforementioned spoofing attacks.

Index Terms— Autonomous vehicles (AVs), millimeter wave
(mmWave) radar, cyber-physical security.
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I. INTRODUCTION

UTONOMOUS vehicles (AVs) are envisioned to be the

future of transportation. It is predicted that in the coming
decades (by 2045) more than half of the new vehicles man-
ufactured will be autonomous [1]. Fully autonomous vehicles
need human-like cognition capabilities to safely navigate the
environment and react to unforeseen circumstances. To achieve
real-time human-like sensing capability, AVs rely on multitude
of heterogeneous sensors such as camera, LiDAR, and radar.
Millimeter wave (mmWave) radars have become an attractive
choice in AVs due to their better spatial resolution thanks to
the wide bandwidth available at mmWave spectrum. Currently,
the mmWave sensor is a crucial component of state-of-the-
art software systems for AVs such as Baidu Apollo [2] and
Autoware [3]. Open-source software systems like OpenPilot
uses mmWave radar as a major component for its lane keep
assist and forward collision warning capabilities [4].

With increasing companies vying for the lucrative AV
market and the predicted prevalence of AVs on the road,
the safety-critical operation of AVs is important. AV safety
has been a subject of intense scrutiny over the past few years.
Even though AVs use state-of-the-art sensors and software
systems to make reliable decisions and perform safe driving
actions, multiple serious or fatal accidents involving AVs have
been reported [5]-[7]. Those accidents show that sensors and
software used in AVs are prone to vulnerabilities, which raises
a serious question: Can a powerful adversary take advantage
of the vulnerabilities of the sensors used in AVs and cause an
intentional safety-critical incident? For example, the camera
in the AV could be attacked by blinding it with laser beams
thus derailing the AVs capabilities to detect lanes and traffic
signs leading to severe consequences [8]. Similarly, LiDAR
could be spoofed with fake obstacles which could be perceived
as a vehicle thus spoofing the victim AV to make erroneous
critical decisions which may lead to fatal crash [9]-[11].

Despite the important role of mmWave sensing in AVs,
the understanding of its vulnerabilities is far from sufficient.
In [12], attacks aiming to spoof chirp-based radar are investi-
gated using software defined radios. However, the attack is
highly impractical since the attacker uses a physical cable
connecting to the victim’s system to send the spoofing signals.
The radar also only works at 2.4GHz, not the mmWave band.
In [13], a preliminary attempt to spoof mmWave sensor in AVs
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using waveform generators is reported. However, the designed
spoof signals do not use the chirp waveform that is used in
mmWave radar. Instead, the waveform generator only gener-
ates simple noise signals that can be easily detected by the
victim. In summary, the attacks developed in existing works
are too simple to cause meaningful security consequences in
AVs.

To our best knowledge, no existing work performs compre-
hensive security analysis of the AV mmWave sensor module
and its implications at driving decision level in real-world
driving scenarios. On that front, this paper aims at performing
practical physical layer security analysis of mmWave radar
in AVs by designing and implementing practical attack and
defense strategies. We ask the following questions: Is it
possible to reliably spoof an mmWave sensor used in the
victim AV? And in doing so, will the attacker be able to
cause meaningful security consequences to the victim AV?.

There are three key challenges in answering the above
questions. (a) Is it feasible to spoof a mmWave sensor to
perceive a fake obstacle? The attacker must be able to gen-
erate the replica of the signal used by the victim mmWave
sensor, with a precisely controlled time delay. (b) Can the
attacker continuously spoof an obstacle to deceive the AV?
The attacker needs to continuously spoof the AV to influence
the AV’s decision making process. Hence, the attacker should
continuously track the position of the victim AV to update
the time delay with which the attacker must spoof. More
importantly, in addition to (a) and (b), we ask a more ambitious
question. (c) Is it possible for the attacker to make the AV
crash on to a lead obstacle by deceiving the victim AV to
perceive the lead obstacle out of the danger zone? To deceive
the AV into recognizing the lead vehicle as out of the danger
zone, for instance, perceiving it as an obstacle in adjacent lane,
the attacker must deviate the obstacle from the real position
to a strategically controlled position, which is a daunting
task.

In this work, we solve all the above challenges and show
that the mmWave sensor in the victim AV can be reliably
spoofed using a multi-attacker approach, leading to severe
security consequences. First, to address (a), we develop a
mmWave radar adversary system using the state-of-the-art
mmWave software defined radio [14], which is capable of
transmitting a replica of the waveform used by the victim
AV. Second, to address (b), we design a tracking module
to continuously track the position and velocity of the victim
AV and update the delay parameters of the spoofing signals.
Finally, to address (c), we identify the challenges in faking the
locations of existing obstacles and develop three sophisticated
strategies: (1) random deviation of an obstacle by using
Gaussian signal attack; (2) synchronous attacks that can fake
the positions of obstacles in a controlled manner, and (3) since
the perfect synchronization among distributed attackers is not
practical, we develop a novel asynchronous attack strategy,
which explores the signal correlation in the position estimation
method used in the mmWave sensor. The attack strategy can
reliably fake the locations of existing obstacles from their
real positions to the attacker controlled strategic positions.
We validate the developed strategies by conducting real-world
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drive-by experiments and perform end-to-end security analysis
using Baidu Apollo! based AV software [2].

To understand the severity of the security impact of our
developed attacks, we construct 5 real-world attack scenarios:
1) AV Stalling Attack, which creates traffic chaos; 2) Hard
Braking Attack, which endangers the safety of the passengers
and the vehicle behind; 3) Lane Changing Attack, which forces
the victim AV into making unintentional lane change; 4) Multi-
stage Attack, which combines multiple attack stages with the
goal of leading the AV to a fatal crash; and 5) Cruise Control
Attack, which spoofs the cruise control function of the victim
AV and leads to a fatal crash.

As defense mechanism, we propose and implement two
physical layer solutions to detect the developed spoofing
attacks. First, we propose a challenge-response defense where
the victim AV detects the spoofing attacks from the response
to the transmitted randomized challenge waveform. Second,
we adopt an RF fingerprinting scheme to distinguish spoofed
received signal from the legitimate received signal, thereby
detecting the spoofing attacks.

Our major contributions are summarised as follows:

o We perform the first comprehensive physical layer secu-
rity analysis of AV mmWave sensing. Practical spoofing
attack strategies are developed and implemented, which
are proved to be able to cause fatal consequences in
real world. The proposed attacking strategies are not just
heuristic but based on rigorous mathematical analysis
on the state-of-the-art AV sensing algorithms, which has
guaranteed spoofing performance.

« We develop a software defined radio based mmWave test-
bed to perform sophisticated single node and multi-node
spoofing attacks on the mmWave sensor module in a
Lincoln MKZ-based AV testbed.

o To study the severity of the developed attack on the AC
security, we conduct extensive real-world experiments on
the Lincoln MKZ AV fitted with state-of-the-art sensors.
Five attack scenarios are designed to impart various levels
of security impacts on the AV.

« We show that our spoofing attacks impact the end-to-end
security of AVs and spoof the AV into making hazardous
safety-critical driving decisions.

o As a defense against the spoofing attack, we propose
and implement two spoofing attack mitigation strategies,
including the challenge-response authentication and the
RF fingerprinting mechanism.

II. RELATED WORK
A. Sensor Attacks

In [13], jamming and spoofing attacks are performed on
ultrasonic sensors. Blinding attacks on camera and preliminary
jamming attacks on mmWave radars are also investigated.
In [8], physical sensor attack are performed on AV camera and
LiDAR. In [15] and [10], adversarial attack are launched on
LiDAR-based perception in AVs. In [16], an attack strategy
is developed to spoof chirp-based ranging system. In [12]

Baidu Apollo is an open-source software that implements perception,
planning, and control for AVs and is widely used by AV industry.
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Fig. 1.

Mlustration of the adversarial setting and victim AV system overview. Block [A] shows the mmWave sensing module used in AVs. Block [B] shows

the transmitted and received mmWave chirp waveform. Block [C] illustrates the attack methodology. Block [D] shows the driving decisions taken by the AV

due to the attack described in block [C].

and [17], the feasibility of spoofing FMCW based radar is
explored. However, the attacker has to use physical cables
connected to the victim radar to launch the attack. In [18],
a distance spoofing attack on mmWave FMCW radar is
presented. Contrary to all those works, we perform the end-to-
end security analysis of AV mmWave sensing system in real
AV testbed in various practical real-world scenarios.

B. System Level Attacks

In [19] and [20], fault injection tools are proposed to study
the safety and reliability of various AV hardware and software
components. In [21], the resilience of OpenPilot, an open-
source Adaptive cruise control (ACC), LKAS, and Assisted
lane change system for AVs is evaluated, where radar is
used as a primary sensor. Contrary to the security analysis
using synthetic data, in this work, we evaluate the end-to-
end security vulnerability of the AV by performing physical
spoofing attack on the victim AV.

C. Adversarial Attacks

Recently, significant efforts have been made to investigate
the security of AVs against adversarial sensor attacks [10],
[22]-[25]. Those works target the machine learning model
used in AVs, whereas this paper focuses on the physical attack
of the radar used in AVs.

D. Defense

The integrity of sensor signals can be verified at the physical
layer by considering the physics governing the sensor. For
instance, the physical propagation characteristics of sensor sig-
nals can be exploited to design attack detection mechanisms.
In [26], PyCRA, a physical challenge-response authentication
scheme is proposed to defend magnetic and RFID sensors
against malicious spoofing attacks. In this work, we propose
to use (1) the challenge-response mechanism that randomizes
the waveform parameters of the mmWave radar, as well
as (2) the RF fingerprinting mechanism that exploits signal
characteristics, to defend against malicious attacks.

III. SYSTEM OVERVIEW AND ADVERSARY MODEL

In this section, we overview the proposed attack system,
introduce the background of the mmWave sensing module in
AV, and discuss the threat model and attack goals. Fig.1 shows
the overview of the attack system architecture and the AV
mmWave sensing module. The proposed attack system consists
of multiple distributed attackers (Attacker “i” and “j” in Fig.1)
transmitting spoofing signals with the objective of deceiving
the victim AV (black car in Fig.1) into making dangerous
decisions. The mmWave sensing module of the victim AV is
shown in block [A] of Fig. 1, which is introduced in Sec. III-
A. The objective of the attackers is to spoof a reliable fake
obstacle at an arbitrary location or fake the location of an
existing obstacle (e.g., the leading vehicle), using the methods
discussed in Sec. IV. The key methodology is to generate a
spoofed point cloud (i.e., the positioning results derived by the
mmWave radar) by combining the legitimate mmWave radar
signal (block [B]) with the spoofing signals, as shown in block
[C] in Fig. 1. Such spoofing attacks cause the victim AV to
make dangerous safety-critical decisions as shown in block
[D] in Fig. 1. The detailed attacker goals and assumptions in
our threat model are discussed in Sec. III-B.

A. Background: mmWave Radar Module in AV

A mmWave radar has one transmitter and multiple receivers,
as shown in block [A] in Fig. 1. The transmitter generates the
chirp waveform (block [B] in Fig. 1), which is:

B
i rz) : (1)
Tchirp

where fi;qr+ 1S the transmission start frequency, B is the
sweep bandwidth, i.e., fena — fsrart>» and Tepirp 18 the chirp
duration. Then the chirp signal is reflected back by the obstacle
at distance d and received by the multiple receivers at the
mmWave radar. The received signal is given by

x(t) = cos (27Tfsmrzt +

—(r—rdemy)z), 2)

chirp

r(t)=o Cos(zﬂfstart (t_tdelay) +
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where tgelay = M is the time delay due to an obstacle

at distance d moving with velocity v with respect to the AV.
This received signal is mixed with the transmitted signal in
Eq. 1, which produces a cosine signal given by

B, B
Ymixed (t) =Cos 271'](‘A"tartl‘delay -7 ?tdelay —2r ?tdelayt >
(3)
B

where 77 is the beat frequency fj, which is proportional to
the distance d. The beat frequency can be calculated by fj, =
C%Iiulfp + fdoppler with fdoppler = 200#

The mixed signal in Eq. 3 is further processed by the sensing
module shown in block [A] in Fig. 1, which consists of three
subsystems: range & velocity estimation, direction estimation,
and point cloud generation.

1) Range & Velocity Estimation: The distance from the
mmWave radar to the object is derived by taking the FFT
of the signal in Eq. 3 and finding the f} corresponding to the
peak of the FFT. Then the distance is derived by d = %.
The mobility of the obstacle introduces a Doppler shift with

the Doppler frequency faoppier = M Accordingly,
in the mobile case, the received signal is given by

B
r(t) =Co0s (Zﬂfstart (t— tdelay) + ¢d0ppler +r ? (t— tdelay)z) >
4)

where @yoppier = 27 faoppler * n % T and n is the chirp index
in a frame. The velocity of the obstacle is determined by
taking second FFT across chirps in different time indices. The
range FFT and Doppler FFT result in a Range-Doppler map of
dimension Rp;, X Vpin where Rp;, is the number of range bins
and Vp;, is the number of velocity bins. An example of the
Range-Doppler map is given in Fig. 1. The estimated range bin
and velocity bin of each of the obstacle in the Range-Doppler
map is denoted as a tuple (r,’jl, vfl), where k is the index of the
obstacle, m and n are the index of the range bin and velocity
bin, respectively.

2) Direction Estimation: As shown in block [A] in Fig. 1,
an AV mmWave radar uses multiple receiving antennas.
The Range-Doppler maps of all receiving antennas result
in a data cube of dimension N X Rpiy X Vpin where N
is the number of receiving chains. The direction 6 of each
of the obstacle (r,’,i,v,’;) can be accurately estimated using
subspace-based beamforming methods, such as the Multi-
ple Signal Identification and Classification (MUSIC) algo-
rithm [27]. For a mmWave radar with N receiving antennas
and arriving signals from K directions, MUSIC algorithm
separates N — K noise subspace Z from the K signal subspace
S(01,65,---,0k) using subspace decomposition techniques
such as Eigen decomposition. Then, the K arriving signal
directions can be estimated by the K minima of function
m, where a(0) is the steering vector corresponding
to the direction 6.

3) Point Cloud Generation: The identified positions of
the obstacles are presented as a Point Cloud for further
processing by the AVs perception, planning, and control
software modules. An example of the Point Cloud is given
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in Fig. 1. The details of AV software modules are given in
Appendix IX.

B. Threat Model and Attack Goal

1) Threat Model: We identify mmWave radar spoofing as
a threat model to spoof the victim AV into making dangerous
safety-critical decisions. A multiple-attacker spoofing model
are considered, with the following assumptions:

a) Prior knowledge: The attacker has prior knowledge on
the type of mmWave radar used in victim AV. Hence, the key
parameters are available, including the waveform parameters
(frequency sweep bandwidth and slope), the number of chirp
signals used in a frame, and the duty cycle of the radar frame.
The attackers do not need to know the perception algorithm
used by the victim AV.

b) Radar hardware physical access: The attackers do not
have physical access to the radar hardware, firmware, and
software. The attackers cannot modify the firmware or inject
false data in to the system.

c) Position of the attackers: The attackers are free to take
any position. For stealthiness, the attackers in our experiments
are stationary and are positioned on the side of the roadways.
Also, due to the current hardware limitation, there are physical
signal propagation constraints (discussed in Sec. IV-A4) that
limits the attackers’ positions. However, it should be noted that
the proposed attacking strategies do not necessarily require the
attackers to be stationary. It is possible to let mobile vehicles to
carry the distributed attackers and launch the attacks in motion.
However, it requires the attackers to acquire additional hard-
ware and software to (1) localize themselves in real time and
(2) synchronize with each other to coordinate the distributed
attacks. It also require more powerful mmWave transmitter to
overcome the physical signal propagation constraints.

d) Attack equipment: The attackers use a mmWave
receiver for sensing the victim radar’s signal and a mmWave
transmitter for performing replay and spoofing attack. The
transmitter and receiver are discussed in Sec. V-A.

2) Attack Goal: The attack goal is to spoof the victim AV
into making potentially dangerous driving decisions or actions
as shown in block [D] in Fig. 1, which endanger the occupants
of the AV as well as the other vehicles in the vicinity.

IV. ATTACK DESIGN: PHYSICAL ATTACKS ON AV
MMWAVE RADAR

In this section, we develop the two key spoofing strategies,
including adding fake obstacles at arbitrary locations and
faking the locations of existing obstacles, which form the more
sophisticated attack scenarios described in Sec. VI.

A. Adding Fake Obstacles

The fundamental yet core attack capability of an attacker
(for generality, assume “attacker i” in Fig. 1) is to reliably
trick a victim AV’s radar to perceive a fake obstacle spoofed
by the attacker as a legitimate obstacle. An AV can be spoofed
with a fake obstacle at a particular distance by transmitting a
spoofing waveform identical to the waveform in Eq. 1 used
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Fig. 3. Range FFT of a chirp showing the multiple spoofed obstacle.

by the victim AV with a carefully designed delay. An attacker
could sense the transmitted radar waveform from the AV and
either replay a previously recorded waveform or impersonate
the transmitted waveform after a delay of t4.1qy = %, where
d is the desired distance of the spoofed obstacle from the
victim radar.

1) Spoofing a Mobile Obstacle: The received waveform
reflected by the moving object with velocity v is given by
Eq. 4. The velocity progresses linearly with chirp number,
which can be estimated by the relationship fuoppiertTenirp =
Zl)f;&nTChirp. The attacker can use software defined radios
to easily change the phase of its transmitted waveform. If the
desired spoofed velocity is v, the manipulated phase should be
%nTchiw for each of the chirp n. By linearly increasing
the chirp phase, the attacker can spoof an object with the fake
velocity. As an example, Fig. 2 shows a Range FFT where a
spoofed obstacle at 30m is perceived by the victim AV.

2) Spoofing Multiple obstacles: The transmitted spoofing
signal is a superposition of signals corresponding to various
delays 74eiqy between the mmWave radar and the multiple
spoofed obstacles. The spoofing signal is given by

N
B
Xspoof (= Z Cos (27ch (t— Tdelay,n)+ T (t— Tdelay,n)z) >

n=lI
(5)

where N is the number of spoofed obstacles. For our testbed
described in Sec. V-A, the delay 7.4y in terms of number
of samples m can be calculates as m7T; = %l, where 1/T;
is the sampling rate of the transmitter, and d is the distance
between the two spoofed obstacles. As an example, Fig. 3
shows the Range FFT where multiple spoofed obstacles are
created. The attacker simultaneously spoofs four obstacles
with 10m distance between each of them.

3) Influence of Attacker’s Distance: Since the attacker need
to sense the mmWave signal from the victim AV and transmit
the spoofing waveform, the attacker should not be too far away.
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Fig. 4 shows the received power of the attacker’s spoofing
signal for varying distances between the attacker and the
victim radar, when using our mmWave testbed described in
Sec. V-A. The maximum distance from the victim AV that the
attacker can still reliably spoof is 26 m. This limitation is due
to the limited gain and transmit power of the antenna module
of the attacker [see Sec. V-B]. The gain of the antenna used
for the attack is 23 d Bi. The attack range can be significantly
improved by using a high gain directional antenna [28].

4) Influence of Attacker’s Angle: Since attackers are on
road side, there is an angle between the victim AV’s moving
direction and the attacker antenna’s direction. The attacker has
restricted angular freedom in launching the spoofing attack
since the mmWave radars in existing cars have a narrow field-
of-view, typically £10°. Fig. 5 shows the received power of the
spoofing signal for different angular positions of the attacker
with respect to the victim radar, using our mmWave testbed
(see Sec. V-A). When the attacker is within the field-of-view of
the victim radar, the victim radar is reliably spoofed. However,
as the attacker moves away from £10°, the spoofing attack
fails since the attacker is in the side-lobe of the victim radar.

B. Faking Locations of Existing Obstacles

The goal of this attack is to fake the location of an obstacle
so that the victim AV considers that obstacle is not in its
region-of-interest (ROI) (see definition in Appendix. IX). For
example, in a multi-lane scenario, the attacker can deviate the
obstacle in front of the AV (e.g., the leading vehicle) to a
position away from the current lane, which spoofs the AV
into crashing onto the leading vehicle. To achieve such goal,
we propose three location-faking attack strategies: Random
Signal Attack, Synchronous Attack, and Asynchronous Attack.

1) Random Signal Attack: Considering the victim AV uses
an optimal estimator to estimate the direction of detected
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Fig. 6. Range-Doppler map and point cloud of the identified obstacles (7;)
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obstacles, the Cramer-Rao bound [29] for such estimator is:

1
-3 0a

-
y 69xrx[l]}] )

1 K oa _1

- Tors T _ ToN—1 7T

Z[i:EIRe{x”[l]@HRy [l —a(a'a) 'a']R
(6)

where Ry =7 3/ E[Haaoli Vaaoli1x2, li1H S [iTHo 2 1
is the attacker signal covariance matrix with noise. It has
been proved that the attacker’s waveform that maximizes the
variance of the estimation is drawn from a zero-mean Gaussian
distribution [29]. Therefore, in this Random Signal Attack,
we use our mmWave testbed (see Sec. V-A) as the attacker and
let it transmit a Gaussian waveform with controlled power to
influence the victim radar. From experiments, we prove that the
attacker is able to deviate the angle of the detected objects by
+5°. This attack can cause severe consequences on the AV’s
security as the true object’s position is erroneously estimated.
Then the AV could make the decision that the object does not
exist in its ROI or the obstacle is in the adjacent lane, thus
categorizing the obstacle as rather safe instead of flagging it.

a) Drawback of random signal attack: Since the
attacker’s waveform is Gaussian distributed, the angle devia-
tion introduced by the attacker is random. As a result, the Ran-
dom Signal Attack cannot cause guaranteed and controlled
attacking consequence. Therefore, we next proceed to develop
attack strategies to generate deviations with controlled angles.

2) Synchronous Attack: Two challenges need to be
addressed to fake the obstacle’s location in a controlled man-
ner: First, the attacker need to spoof an obstacle at a controlled
position, especially the angular position (since the distance
position can be spoofed using the strategy developed in
Sec. IV-A), thus creating an illusion the obstacles position has
changed. Second, the attack need to simultaneously obliterate
the reflection signal from the existing obstacle.

a) Challenge 1: We start with addressing the first chal-
lenge, i.e., spoofing the angular position of the obstacle. The
key idea is to employ multiple attackers located at different
angular positions, hoping the combined spoofing signals from
those attackers can create an illusion that the new obstacle is
located at an angular position in between those attackers.

However, the challenge is that existing mmWave radar can
already distinguish the signals from different attackers. As
discussed in Sec. III-A, the AV mmWave radar distinguishes
object in the range r,,, Doppler v,,, and angle 8 domain. Fig. 6
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shows an example, the two attackers sl and s2 are at the
same distance 40m from the mmWave radar but with different
angles (—10° and 7°). In the left Range-Doppler map of Fig. 6,
the spoofed obstacles due to s1 and s2 have the same range
bin m but appear in different velocity bins n and n’ due to

different phase offset, resulting in two obstacles at (r,g,l), v,(,l) )

and (r,sf), vr(f)), which fails the spoofing attack.

To address the challenge, we introduce the synchronous
attack, where the attackers are perfectly synchronised (in
frequency, time, and phase), resulting in a correlated sig-
nal that make the spoofed obstacles appears in the same
Range-Doppler bin (r,g,l’z) ,v,(,]’z)). Here (1,2) refers to the
obstacle spoofed by attacker 1 and 2. The next question
is: what is the angular position of this spoofed obstacle
(1,2)? Can we control the angle? As discussed in Sec. III-A,
the subspace-based direction estimation algorithm calculates
the direction of the obstacles by separating the signal subspace
S(01, 0>) from the noise subspace Z and finding the directions
that are orthogonal to the noise subspace. The signal subspace
S8, 0,) itself is a linear combination of the directions of all
the received signals. We utilize such property and derive the
following proposition for K synchronous signals.

Proposition 1: For K synchronous signals in the
same Range-Doppler bin (rllﬁ""K,vlll""’K) with directions
01,02, - ,0k, the spoofed obstacles direction Ospoof is the
direction that maximizes ||S(01, 02, - - - , HK)Ha(Hspm,m 1> and
is given by Ospoot = mean(ty, 02, - - - , 0k).

The synchronous attackers can launch the attack based on
proposition 1. As a result, the victim AV identifies the com-
bined spoofing siénals from the multiple attackers as a single
obstacle at (r,ln s V,l1 ’K) and direction sy . The position
of the spoofed obstacle is given by (Xspoof (1), Yspoor (1)) =
{xvictim (t) + dspoof * Cos(espoof)» yvictim(t) + dspoof *
sin(@spoof)}, where dpo0r is the spoofed distance correspond-
ing to (rml’z), v,(,l’z)) and (Xyictims Yoictim) 18 the position of the
victim AV.

b) Challenge 2: Then we address the second challenge,
i.e., How to obliterate the existing obstacle? We employ an
additional attacker to perform a jamming attack to overwhelm
the genuine radar reflected signal. The power of the jamming
signal P; need to be higher than that of the reflected signal

. o e T 2

P, received by the victim AV. P; = W, where
attacker .

Parracker> Garracker» and dggracker are the transmit power,

antenna gain, and distance of the attacker.

c) Attacking results: Fig. 7 shows the results of the
synchronous attack. The scenario is the same as Fig. 6. Now
the two attackers s1 and s2 at directions —10° and 47°
are synchronized. The Range-Doppler map shows that signals
from the two attackers fall into the same bin. The point cloud
shows that the attackers’ spoofed obstacle is identified as a
single obstacle s1, s2 with direction 4° to the mmWave radar.

d) Drawback of synchronous attack: The attackers need
to be perfectly synchronized in frequency, phase, and transmis-
sion starting time. Any mismatch in frequency or phase of the
waveform between the attackers, or the transmission starting
time could invalidate the spoofing waveform in frequency and
velocity. For example, for a waveform with 300 MHz sweep
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Fig. 7. Range-Doppler map and point cloud of the identified obstacles
(T;) along with the spoofed obstacle (s1 and s2). The attackers are perfectly
synchronized leading to the two spoofing signals resolved as single obstacle
sl,s2.

bandwidth and 30 us sweep time, the frequency bin width in
the range profile is 25‘2%’% = 681.8 K Hz. If the carrier
frequency offset (CFO) between the attackers is more than
681.8 KHz, the attack fails. Considering the mmWave radar
works at 60 GHz or 77 GHz band, it is very difficult, if not
impossible, to meet such synchronization requirement.

3) Asynchronous Attack: To avoid the stringent requirement
of the synchronous attack, we propose a novel signal injection
attack strategy that achieves the same performance only based
on asynchronous attackers. This attack is designed based on
the following three observations:

o The angle-of-arrival estimation method (see Sec. I1I-A2)
separates the signal subspace from the noise subspace.
Any correlation in the subspace results in incorrect angle
estimation, as described in Proposition 1.

o The direction estimation itself is agnostic to the baseband
representation of the transmitted waveform.

o« The mmWave radar mixes the received waveform with
the transmitted waveform to obtain the mixed signal in
Eq. 3, which has a constant frequency of 271%1. Most
signals other than a replica of the transmitted waveform
(Eq. 1) result in mixed signals with high frequency that
are filtered out by the low-pass filter of the victim AV’s
radar. However, if we use a filtered noise (correlated
noise) to mix with the transmitted signal, a filtered signal
can pass the low-pass filter as the output.

The key idea of the proposed signal injection attack is to use
filtered noise to introduce undesired correlation in the received
radar signal samples, so that we can use multiple attackers to
fake the location of existing obstacles.

a) Attack procedure: Without loss of generality, we con-
sider there are two attackers in the following explanation.
The 1st attacker denoted as “attacker i” in Fig. 1 transmits
a waveform with correlated noise F(noise) and with delay
Tdelay tO spoof an obstacle at distance djpoor. The transmitted
waveform is given by

B
T Xspoof.1 =~/ Pi (cos (27tfmmt/ + 7 ?t/z) +F(noise)),
(7

where t’ = (1t — Tdelay), P1 is the transmission power. The 2nd
attacker denoted as “attacker j” in Fig. 1 transmits a correlated
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Fig. 8. Range-Doppler map and point cloud showing the identified obsta-
cles and the spoofed obstacle s1,s2. The asynchronous attackers perform
distributed angle attack leading to the two spoofing signals resolved as single
obstacle s1, s2.
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Fig. 9. By varying transmission power, the asynchronous attackers can
control the angular position of the spoofed obstacle.

filtered noise with power P»:

TXspoof,Z =vP- F(noise). (8)

At the victim mmWave radar, after mixing with the radar
waveform, the two spoofing signals become:

r = a(91)#(]dl)\/ﬁ (cos (@) + F(noise)); )
= a(@)%(zdz)\/P_zo F(noise), (10)

where a(6)), a(6») are the direction vectors corresponding to
the directions of two attackers; PL(d;), PL(d>) are the two
distance dependent path loss; ® = 2z fqp T —7 %12—271 %rt.

Since the two spoofing signal ri and r, are correlated,
the estimated direction Osp00r Of the spoofed obstacle is the
direction that maximizes ||S(6;, 62)" a(spoof)| |2. Attacker i’s
waveform determines the distance of the spoofed obstacle.
Attacker j’s waveform together with attacker i influence the
angle of the spoofed obstacle. Meanwhile, attacker j also
performs as a jammer to obliterate the existing obstacle. By
this way, the two attackers do not need any synchronization but
can simultaneously address the two challenges of the faking
location attack described in Sec. IV-B2.

b) Attacking results: Fig. 8 shows the results of two
attackers s1 and s2 performing asynchronous attack. The
attackers spoofed obstacle is identified as a single obstacle
s1,s2 at distance 40m and at angle 4° to the mmWave radar.

We further perform experiments to show how the attackers
control the position of the spoofed obstacle. In this experiment,
the two attackers are located at a direction of —10° and
+10°, respectively, as shown in Fig. 9. Fig. 9 shows the
spoofed obstacle s1 at +3° with respect to the victim AV.
By increasing the transmit power of attacker 1, we can move
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Fig. 10. The mmwave software defined radio testbed.

the spoofed obstacle’s position to s2, which is +7° with
respect to the victim AV. In Sec. VI, through the case studies
of different driving scenarios, we show how such distributed
and asynchronous attack could potentially trick the AV into
making dangerous driving decisions.

V. SYSTEM DESIGN

To cause meaningful security consequences, the attacker
need to continuously spoof the victim AV based on the
combination of the two attack strategies discussed in Sec. IV.
Moreover, beside launching the attacks, the attackers also need
to: (1) sense the signal from the victim AV; and (2) track the
position of the victim AV to continuously spoof it.

In this section, we introduce our attacker system based
on the state-of-the-art mmWave testbed. We first present the
mmWave testbed that lays the foundation of our attacker
system. Then we discuss the main components of the attacker
system. Finally we discuss how the attacker system performs
continuous spoofing attack based on the mmWave testbed and
the spoofing strategies developed in Sec. IV.

A. mmWave Radar Testbed

Our attacker testbed is based on a state-of-the-art soft-
ware defined radio (SDR) mmWave transceiver system from
NI [14]. The testbed architecture is shown in Fig. 10. Each
mmWave SDR can be configured either as a transmitter or
a receiver. On the transmitter side, each mmWave SDR has a
PXIe-3610 DAC digital-to-analog converter. The PXIe-3610 is
a 14-bit DAC with 3.072 GS/s sampling rate. It provides inter-
face to analog baseband signal with a maximum bandwidth
of 2 GHz. Each receive mmWave SDR has a PXIe-3630 ADC
with 12 bits resolution and supports 3.072 GS/s sampling
rate. The antenna module is a SIBEAM 60 GHz phased array
that supports 2 frequency bands (60.48 GHz and 62.64 GHz
center frequency). The mmWave SDR has a PXIe-7902 FPGA
module to support physical layer baseband signal processing
design.

B. Attacker System

As shown in Fig. 11, each of the attacker systems consists of
(1) tracking system, (2) sensing system, and (3) transmitter,
working in tandem to form the attacker spoofing system.
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Fig. 11.  Conceptual AV spoofing scenario showing distributed attackers and
the attacker system modules.

90

——predicted distance
~ — ~measured distance

—— predicted

- -~ measured
predicted velocity

- — ~measured velocity

@
3

\1
3
angle (deg)

distance (m)

»
3
relative velocity (m/sec)

\/

a
3

5 10 15 20 25 0 5 10 15 20 25
time (sec) time (sec)

Fig. 12. Tracking the distance,velocity, and angle of the victim AV using
the Kalman filter.

1) Tracking System: The tracking system consists of radar
and tracking modules. The radar is used to estimate the
position and velocity of victim AV, based on Kalman filter
(see Appendix. IX-2). To avoid interfering with the spoofing
transmitter, the radar in tracking system operates in a different
frequency band. This radar gives estimation results with a
cycle period of 4.45 ms. Fig. 12 shows the distance, velocity,
and angle predicted by the tracking system compared with the
ground truth, which prove that the tracking system achieves
accurate prediction of the victim’s position and velocity.

2) Sensing System: The attacker needs to sense/detect the
beginning of the transmitted mmWave signal (Eq. 1) from
the victim AV. We use the receiver of our mmWave SDR
testbed as the sensing system. According to the threat model,
the attacker knows the frequency and waveform used by
the victim mmWave radar (obtained from the radar’s data
sheet). To detect the signal from the victim AV, we use a
correlator with the known victim chirp as a template [16].
For a 33 wus chirp and with the receiver sampling rate
of 3.072 GSamples/Sec, the number of digitized samples is
101,376. Through experiments, we prove that the attacker only
needs 5000 samples of the stored template chirp to reliably
detect the mmWave signal from the victim AV. Fig. 13 shows
the received mmWave signal from the victim AV and the
detected beginning of the signal using the correlator. With
less than 5% of the samples, the signal from the victim AV is
detected with high accuracy.

3) Transmitter: After detecting the signal from victim AV,
the attacker’s transmitter continuously spoofs the victim AV
with the carefully designed signals described in Sec. IV. The
spoofing waveform x;,07 (1) is given by (1) Eq. 1 to add fake
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Fig. 13. Detected mmWave signal from the victim AV.

obstacles, and (2) Eq. 7 and Eq. 8 to fake the locations of
existing obstacles. Due to the inherent delay between sensing
the victim’s signal and triggering the transmitter (limited by
our current testbed), the spoof signals are not sent in the
same time period as the signal sensing. Instead, in our attacker
system, we sense the victim AV in a time period #; and trigger
the spoofing in a different time period #, as shown in Fig. 13.

C. Procedure of the Continuous Spoofing Attack

With the attacker system and its core modules described in
Sec. V-B, we can explain the attack procedure. To reliably
spoof an obstacle at a distance dspoof, the adversary has to
transmit the spoofing waveform under the delay constraints:

2% dspoof

TAV —Attacker + Isensing + delay + tAttacker—AV = c

(1)

where fAv_Asracker 18 the propagation delay from the victim
AV to the attacker; fyensing is the time to detect the victim
waveform; #4./4y is the delay after which the attacker transmits
the spoofing waveform; and 7as;sqcker—av 1S the propaga-
tion delay from the attacker to the AV. Based on Eq. 11,
the attacker’s distance dAsracker from victim AV is bounded
by

2xd
+wf — Isensing — ldelay * C)

2

The limiting factors for attacker’s position include sensing
time fsensing and delay f4eiqy. The sensing system (Sec. V-B)
need anywhere between lus to 3us on a state-of-the-art FPGA
to sense the victim’s signal. Assuming the attacker has a
minimum switching speed of 10 ns, and the objective of the
attacker is to spoof an obstacle at 50 meters, the distance from
the attacker to the victim AV should be dasracker < 38.75 m.
That means the attacker is only be able to spoof obstacles at a
distance further than its physical distance from the victim AV.
In order to overcome this limitation, in our system, we delay
the attack by several signal frames. As a result, the attacker
can be further away than the spoofed obstacle.

The attacker system works as follows. The multiple attack-
ers are coordinated (e.g., through WiFi) but asynchronous.
At the beginning of the attack, i.e., time 7y, each of the
attackers estimates the position of the victim AV using the
tracking system (Sec. V-B1), and continuously tracks the posi-
tion of the victim AV for subsequent time intervals. At time
1%, the attackers detect the mmWave signal from the victim AV
using the sensing system (Sec. V-B2). Based on the estimated
position of the victim AV and the attack goal (Sec. VI),

(12)

dAttacker =
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Fig. 14.  Experiment set up showing the attacker mmWave testbed and the
Lincoln MKZ-based AV testbed at University at Buffalo.

TABLE I
LONG RANGE RADAR PARAMETERS OF THE VICTIM AV

Parameter Value
Sweep bandwidth 300 MHz
Ramp slope 10 MHz/us
Inter-chirp duration 3 us
Number of chirps 128
Chirp duration 30 us
Total frame time 4.224 ms
Active frame time 3.84 ms
Start frequency 62.61 GHz

the attackers transmit corresponding spoofing signals with
delay 7geiay. The two-way propagation time due to sensing
and spoofing needs to be considered when determining t4e/ay-
The attackers continuously calculate the spoofing delay zyeiqy
using the input from the tracking system. The spoofing strategy
(transmitted waveform) depends on the goal of the attacker.
For AV stalling attack (Sec. VI-1), Hard Braking attack
(Sec. VI-2), and Lane change attack (Sec. VI-3), the attacker
uses the strategy described in Sec. IV-A. For multiple stages
attack scenarios Multi-stage Attack (Sec. VI-4) and Cruise
control attack (Sec. VI-5), multiple distributed attackers
employ combination of strategies described in Sec. IV-A and
Sec. IV-B3.

VI. FIELD EXPERIMENTS AND SECURITY ANALYSIS

We construct five real-world driving scenarios to investigate
the end-to-end security of AV under mmWave sensing spoofing
attacks. We perform real-world experiments on a Lincoln
MKZ. autonomous vehicle testbed [30], [31], which was devel-
oped at University at Buffalo, as shown in Fig. 14. The AV is
equipped with an TT IWR6843 radar [32] that uses the 60 GH
band for sensing. Table I gives the parameters of the radar.
In addition to the mmWave radar, this AV testbed also has a
LiDAR and several cameras. We use Baidu Apollo software [2]
as victim AV’s perception, planning, and navigation software.
The parameters of the Baidu Apollo AV software are given
in Table II in Appendix. IX-5. We perform the software-in-
the-loop drive-by experiments using the Lincoln MKZ AV.
We first spoof the Lincoln MKZ’s mmWave radar. Then the
detection results from the victim radar are input to the Baidu
Apollo software to derive the decision of AV. Next, the driver
moves the car according to the decision made by Apollo. This
process is repeated for each of the time steps of the scenarios to
evaluate the end-to-end security of the victim AV. Due to safety
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AV stalling attack: Spoofed obstacle at 13m at multiple frames

considerations, we performed our drive-by field experiments
in an open parking lot. The AV is driven with a speed of
approximately 10 mph. Fig. 14 shows the experiment set up
with the mmWave testbed used as attackers. According to the
threat model, we keep the attackers (i.e. the mmWave testbed)
stationary and placed them on the roadside. The mmWave
radar is mounted on the roof of the AV as shown in Fig. 15
due to cabling limitations.

1) Scenario 1: AV Stalling Attack: In this attack, the goal
of the attacker is to spoof an obstacle in front of a stationary
AV to stall it. For example, an AV waiting for the red light in
a traffic junction might not move ahead when such an obstacle
is detected by its radar, causing traffic confusion.

We performed experiments to emulate such a scenario. The
victim Lincoln MKZ AV was at a distance of 20m from
the attacker. After sensing and tracking the victim’s signal
as described in Sec. III-A at time f;, the attacker transmits
spoofing waveform in Eq. 1 continuously to spoof an obstacle
at 13m in front of the victim AV. The location of the spoofed
obstacle is given by {xspoof(tk)a y.vpoof(tk)} = (Xvicrim (tx) +
dspoof % c08(0)) + €var, Yoictim (1) + dspoof *sin(0)) + €var)-
Fig. 16 shows the spoofed obstacle at 13m for consecutive
frames. Fig. 17 shows the Baidu Apollo view with input
from the victim radar. When the spoofed obstacle is within
13m distance, the AV chooses not to move ahead even when
the traffic light turns green. In Baidu Apollo, if the spoofed
obstacle is further than 15m and if there is an adjacent lane
(two-lane road), the AV performs a side-pass and drive around
the obstacle. In such scenario, the attacker could utilize the
multiple obstacle spoofing method described in Sec. IV-A2 to
simultaneously spoof multiple obstacles on both the lanes.

2) Scenario 2: Hard Braking Attack: In this attack,
the objective of the attacker is to spoof an obstacle to force
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Fig. 17. End-to-end demonstration of AV stalling attack. The AV is waiting
at a red light traffic junction. The attacker spoofs an obstacle at 13m in front
of the AV. The AV does not move ahead after the traffic light turns green,
since it sees a spoofed obstacle.
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Fig. 18. Hard braking attack: Spoofed obstacles at multiple time frames are
overlayed.
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Fig. 19. End-to-end demonstration of AV hard braking attack. The AV is
travelling at a speed of 50 km/hr. The attacker spoofs an obstacle at 27m in
front of the AV. The AVs perception module detects the sudden obstacle and
makes an emergency braking decision.

the victim AV make a hard braking decision thus endangering
the safety of the occupants of the AV as well as other cars
on the road. The attacker tracks the position posyjcsim of the
victim AV as in Sec. V-B1 and transmits a spoofing signal to
spoof an obstacle near the victim AV. In a multi-lane scenario,
the attacker spoofs multiple obstacles so that the victim AVs
planning and control module does not initiate a sudden lane
change action. We spoofed an obstacle at 27m, and the
detected obstacle was fed to the AV software. To imitate an
obstacle slowing down in front of the AV, the attacker gradu-
ally decreases the spoofed obstacle distance with respect to the
victim AV. Fig. 18 shows the spoofed obstacle for consecutive
frames and Fig. 19 shows the corresponding scenario where
the victim AV is travelling at a speed of 50 km/hr. The attacker
spoofs an obstacle at 27m in front of the AV. At a speed
of 50 km/hr, the AV would cover 27m in 1.944 sec, which
is less than the average driver reaction time of 2.3 sec. The
AV initiates a hard braking decision in this case which could
potentially lead to fatal situation.
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Fig. 22.  The victim AV’s planning algorithm charts an alternate path due to
a spoofed obstacle.

3) Scenario 3: Lane Change Attack: The goal is to spoof
the AV into making dangerous lane change decisions. We con-
struct a scenario shown in Fig. 20. For this attack experiment,
the Lincoln AV is initially at a distance of 25m from the
attacker. The attacker detects the mmWave signal from the vic-
tim AV and tracks the position of the victim AV as described
in Sec. V-B2 and Sec. V-B1, respectively. Upon estimating the
position of the AV, the attacker spoofs an obstacle in the lane
in which the victim AV is traveling. The attacker spoofs an
obstacle at 40m at time #;. To imitate the distance decreasing
effect, the attacker spoofs the obstacle with decreasing distance
at subsequent time frames as shown in Fig. 21. The victim
AV was travelling at a speed of 30 mph. Fig. 22 shows the
decision taken by the victim AV to change lane due to spoofed
obstacle in its lane. As discussed in Appendix. IX-4, the cost
function of the planning module decides the appropriate path
decision based on various factors. Eq. 14 shows that when the
spoofed obstacle greater than the collision distance threshold,
the cost of the lane in which the AV is travelling increases
compared to other lanes and the AVs planning module searches
for other alternative path. The attacker could take advantage
knowing the planning algorithm to deviate the victim AV
from the planned path. Another observation we noticed is
that, the AV decides to change lane only when it is within a
threshold distance from the spoofed obstacle. Until it reaches
the threshold distance, the AV slows down.

Magnitude (dB)
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Fig. 23. TIllustration of scenario 4. At stage 1, the victim AV changes lane due
to a spoofed obstacle. At stage 2, the vehicle ahead is spoofed to a different
location.

4) Scenario 4: Multi-Stage Attack: 'We construct a
multiple-stage attack scenario by combining the intuitions
and AV driving behaviour from the previous attack scenar-
i0s, which could lead the victim AV to a serious accident.
We emulate a complex AV driving scenario shown in block
[A] in Fig. 23, where the victim AV is initially cruising on a
multi-lane road. We use distributed attack strategy discussed
in Sec. IV-B3. The objective of the attacker is to force the
victim AV to make a dangerous lane change (see Sec. VI-3)
and subsequently crash on to a vehicle ahead of it.

As shown in Fig. 23 [A], the victim AV is cruising in
lane 1 while another vehicle travels in lane 2. To force
a lane change, the attacker spoofs an obstacle at distance
dspoof (40.2m) in front of the victim AV, as shown in block
[B] in Fig. 23. The corresponding position of the spoofed
obstacle at time #; is (-xSpOOf(ti)a y‘spoof(ti)) = {xvictim(t;) +
dspoof * cos(0) + €var, Yoictim (1) + dspoof * sin(0) + €yar}-
In order to consistently keep the cost of the current lane higher
and to force the AV to think, the vehicle ahead is slowing
down, the attacker spoofs obstacles at decreasing distance from
40.2m to 21.2m at subsequent time intervals, as shown in
block [B] in Fig. 23. The position of the spoofed obstacles
in subsequent time intervals are (Xspoof (ti+1), Yspoof (ti+1)) =
{Xvictim (ti+l)+(dsp00f_Urel*c)*cos(e)"f'fvar, Yoictim (ti1)+
(dspoof — Vrel * €) * sin(0) + €yqr}, Where v, is the relative
velocity between the victim and the adversary.

At stage 2, two attackers perform the obstacle-deviation
attack (Sec. IV-B3). The attackers spoof the location of the
vehicle in lane 2 at 40m and at an angle of 6° to the victim AV,
as shown in block [C] in Fig. 23. Such attack makes the vehicle
ahead of the victim AV appear in a different lane than its true
lane, which leads the victim AC to a potentially fatal accident.
As discussed in Sec. VI-2, on the highway driving conditions,
with a typical lane change speed of 45 to 50 mph, a lead
vehicle at 30m that disappears from the victim AVs mmWave
radar view could turn in to a fatal accident. In addition, as we
show in the next attack scenario, when the leading vehicle
disappears from the field-of-view, the victim AV could also
accelerate to match the lane speed, causing a high speed crash.

5) Scenario 5: Cruise Control Attack: Traffic-Aware Cruise
Control (TACC) systems can keep the AV cruising at a set
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Fig. 25. Distance/Angle of victim AV tracked by the attacker.

speed while at the same time adjusting its speed according
to the traffic. Although such functionality offers comfort to
the drivers, a powerful attacker can take advantage of the
TACC techniques to manipulate the driving behaviour of the
vehicle. For instance, the attacker could spoof the victim
AV’s mmWave radar into seeing a non-existent obstacle.
Consequently, the victim AV changes its speed.

Inspired by the above discussion on TACC safety, we con-
struct the following scenario. Instead of a real physical vehicle
ahead of the victim AV, the attackers spoof a fake leading
vehicle. The objective of the attack is to influence the victim
AV to decelerate and accelerate in response to a spoofing
attack, leading to a crash, as shown in Block [A] in Fig. 24.
At the beginning, the attackers track the position of the victim
AV (Sec. V-B1). Fig. 25 shows the tracked position of the
victim AV. Before the attack, the victim AV sees no obstacle
ahead of it in the decision making zone and maintains the
set speed. At stage I, the attacker spoofs the victim AV
with an obstacle at 40m. In order to imitate a slow moving
vehicle, the attacker continuously spoofs the victim AV with
an obstacle at a decreasing distance. Block [B] in Fig. 24
shows the spoofed obstacles at various distances from 40m to
22.5m, which results in the victim AV decelerating as shown
in Fig. 26. At stage 2, the attacker stops the spoofing attack,
which makes the AV start accelerating as it sees no obstacle
in front of it. In addition, the attackers employ the attack
strategy provided in Sec. IV-B3 to fake the location of the
stationary obstacle. The goal is to let the stationary obstacle
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appear out of the way of the victim AV. The attackers spoof
the fake location of the stationary obstacle at 40m with respect
to the victim AV and at an angle of 6°, as shown in block [C]
in Fig. 24, which results in the stationary obstacle deviating
by 4m from the victim AV’s lane. Fig. 26 shows the speed
timeline of the victim AV in the experiment. The victim AV
accelerates and reaches a steady velocity before it decelerates
due to the spoofed obstacle. At around 15 sec, the victim
AV accelerates again at which point the attackers spoof the
stationary obstacle out of its way. The victim AV would have
crashed on to the stationary obstacle at this point in time,
leading to a fatal situation.

VII. DEFENDING STRATEGIES

To defend the above fatal attacks, we propose two defending
strategies to reliably detect spoofing attacks on AVs.

A. Challenge-Response

Unlike LiDAR pulses that can be randomized to mitigate
LiDAR spoofing attack, mmWave radar uses a well defined
waveform designed to meet specific sensing capabilities [33].
Such predictability empowers attackers to perform the attacks
developed in this paper. The attackers can eavesdrop on
the victims waveform and deduce its parameters to perform
the attacks. Alternatively the attacker could simply record the
signal from the victim AV and replay it at a later time to
launch the attacks. To address this problem, departing from
the traditional fixed waveform design, we propose to use a
radar frame consisting of chirps with varying parameters, yet
meet the design criteria. The transmitted chirp in Eq. 1 is:

B
x(t) = cos (27rfsmr,t + 7
Tchirp

1+ ¢im’t(n)) ,  (13)

where n is the index of the n'" chirp. The parameters fiqrs,
Ttirp’ and ¢;,i; can be randomized across chirps or frames,
thus mitigating the spoofing attacks. To that end, we intro-
duce the challenge-response authentication for mmWave radar,
where the AV radar transmits chirp with randomized parameter
as a challenge. The response, i.e., the received signal at
the radar, is verified for authenticity. Fig. 27 shows the AV
transmitting a challenge with chirps having random parameters
p1 and p>. The parameter p could be phase ¢inir or forare-
In the experiment, we used ¢inir and fsqrr as two para-
meters. For the method with ¢;,;; as a random parameter,
the AV radar transmits a sequence of chirps in Eq. 13 with a
random phase ¢;,;; for each transmitted chirp n. The attacker
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Fig. 28. Spoofed obstacle is smeared without distinct peak.

transmits a spoofing waveform with ¢;,;; = 0. Fig. 28
shows the radar detection of the victim AV. The attacker’s
spoofing signals fail to generate a peak. Instead, it appears as
a smearing. In the second challenge-response method, the AV
varies fs;q4r randomly. Therefore, the attacker fails to register
any meaningful spoofing effect on the victim AV.

B. Waveform Fingerprinting

Recently RF fingerprinting has gained attention in its ability
to detect spoofing attacks. However, there are two challenges
to utilize the RF fingerprinting techniques in radar. First,
the uniqueness and non-linearity associated with the compo-
nents of the transmitter hardware result in the RF features
that are unique to each device. However, the radar transmitter
shown in Fig. 1 is significantly simpler than communica-
tion devices, which leads to smaller feature set. Second, the
received signal in radar is a superposition of the reflections
from all the targets and the attackers. Those signals undergo
two-way path loss in addition to reflection loss due to the
reflecting object.

To address the challenges, we find that the statistical char-
acteristics of the AVs mmWave signal is influenced by the
attackers waveform, which give us the opportunity to detect
the attacks. Hence, we propose to use the statistical features,
including: standard deviation, kurtosis, skewness of magnitude
and phase of the received signal [34]. The amplitude of
the received signal at radar is influenced by the two-way
propagation path of the transmitted signal. One of the key
requirement of RF fingerprinting is that the wireless channel
influences need to be eliminated. Therefore, the received signal
in Eq. 3 is rms-normalized before feature extraction. The
rms-normalization of Eq. 3 is rpys[n] = rin] where

v s
[EN 2
N

N is the total number of samples in a received chirp.
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The rms-normalized signal is then used to extract RF fea-
tures. Since the AV mmWave signal does not use any specific
preamble, we use the entire chirp of 256 samples to extract the
features. Fig. 30 shows the distribution of the features when
there is no spoofing attack and when the AVs mmWave radar
is under spoofing attack. We can clearly see that the spoofing
attacks change the distributions of the proposed features. As a
result, the attacks can be reliably detected.

The AV software needs to detect spoofing attacks from the
received signals. Only the training signals from the AV’s own
radar can be used. Therefore, we propose to use one-class
SVM as the machine learning framework to identify spoofing
attack [35]. We use 3000 received signals without spoofing
attacks as training data. The testing data comprises 3000 sig-
nals under spoofing attack. Fig. 29 shows the 2-D embedding
of the features. We can see distinct grouping between the
features with (red points) and without (blue points) spoofing
attack. The spoofing detection accuracy is 98.9%.

VIII. DISCUSSION
A. How Quick Can Attacker Spoof

In our mmWave testbed, the attacker senses the mmWave
signal from the victim AV at frame ¢ and spoofs at a future
frame 7 + k. This is mainly due to the inherent delay of the
testbed. The spoofing response time of the attacker depends
on multiple factors, including the sampling rate of the DAC,
the delay due to the cable connecting the DAC module and
the baseband FPGA module, and sampling rate of the involved
FPGAs. Better delay resolution can be obtained by using
modules with higher sampling rate, and or implementing
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the attack system as a single chip solution (e.g., system-on-
chip) with guaranteed delay requirements. However, currently,
the available state-of-the-art commercial mmWave testbed
limits such implementations.

B. Effect of CFO

It should be noted that the testbed we used (see Sec. V-A)
introduces CFO to the transmitted spoofing signals. CFO
between the attacker and the victim AV radar manifests as an
arbitrary Doppler in the received signal. The attacker testbed
we currently use does not have any implicit control of CFO.
In the experiments, we eliminate the impacts of CFO by
calibration. In practical scenarios, to mitigate the impacts
of CFO, the precise control of carrier frequency is needed;
alternatively, the CFO between the attacker and victim must
be estimated and compensated.

IX. CONCLUSION

In this paper, we perform the end-to-end security analysis
of mmWave radars in AVs by designing and implement-
ing practical physical layer attack and defense strategies in
real-world scenarios. Two core attacking strategies are rigor-
ously designed and validated, which can reliably add spoofing
obstacles or fake the locations of existing obstacles. Based
on the state-of-the-art mmWave and AV testbed, the attackers
combine the core attacking strategies to continuously spoof
the AV into making hazardous safety-critical driving decisions,
leading to fatal accidents. To defend such attacks, we propose
two defense strategies and prove the defending solutions can
detect the sensor spoofing attacks with very high accuracy.
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APPENDIX A
MODULES OF BAIDU APOLLO SYSTEM

1) ROI Filter: Region of interest (ROI) is the region that
lies in the AV’s driving path, which directly influences the
AV’s driving decisions. The detected objects should lie within
the ROI, while objects outside ROI are discarded.

2) Object Tracking: Once the obstacles are filtered based
on ROI, they are tracked using the Kalman filter.

3) Track Matching: Objects sensed by the sensors in the
current sensing cycle are associated to the objects sensed in
the previous cycle using data matching algorithms. Apollo
Baidu matches the objects detected in a current radar frame to
the existing tracks using gated Hungarian matching algorithm.
When the object in the current radar frame does not match
any existing tracks, new track is created for that object.
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TABLE II

PARAMETERS USED BY THE APOLLO BAIDU’S PERCEPTION, PLANNING,
AND NAVIGATION MODULES

Parameter Value | Description
min-lane-change-length Sm minimum distance to change a lane
min-lane-change-prepare-length 60m minimum distance to prepare a lane
change
follow-min-distance 3m minimum distance to follow an ob-
stacle
min-stop-distance-obstacle 6m minimum stop distance from in-
lane obstacle
max-stop-distance-obstacle 10m maximum stop distance from in-
lane obstacles
lane-change-prepare-length 80m distance to prepare for lane change
min-lane-change-prepare-length 10m minimum distance to prepare for
lane change
min-nudge-distance 0.2m minimum distance to nudge
max-nudge-distance 1.Im maximum distance to nudge
min-yield-distance Sm minimum distance to yield

4) Path Planning: AVs typically use a search algorithm with
a certain cost function to decide the best path that an AV
follows [36]. In Apollo Baidu, the cost function is Cyprq1 =
Cenv + Copstacte [36]. The obstacle cost Copsracie 1S given by

0 d>d,,
Cobstacle = Cnudge(d —d;) de <d <dy, (14)
Ceollision d <d..

5) Baidu Apollo Parameters: Important parameters used in
Baidu Apollo AV software are summarized in Table II.
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