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Abstract—In people’s daily lives, travel takes up an important part, and many trips are generated everyday, such as going to school or

shopping. With the widely adoption of GPS-integrated devices, a large amount of trips can be recorded with GPS trajectories. These

trajectories are represented by sequences of geo-coordinates and can help us answer simple questions such as “where did you go”.

However, there is another important question awaiting to be answered, that is “what did/will you do”, i.e., the trip purpose inference. In

practice, people’s trip purposes are very important in understanding travel behaviors and estimating travel demands. Obviously, it is

very challenging to infer trip purposes solely based on the trajectories, because the GPS devices are not accurate enough to pinpoint

the venues visited. In this paper, we infer individual’s trip purposes by combining the knowledge from heterogeneous data sources

including trajectories, POIs and social media data. The proposed Dynamic Bayesian Network model (DBN) captures three important

factors: the sequential properties of trip activities, the functionality and POI popularity of trip end areas. In addition, we propose an

efficient method with local candidate pools to identify POIs from geo-tagged social media messages, and learn the POI popularities

from nearby social media data. Moreover, trip data is usually imbalanced across different activities. This data imbalance problem can

cause serious challenges because the DBNmodel could be biased by those “popular” class labels. Considering this challenge, we

propose an ensemble DBN method with sampling technique (eDBN) which results in more accurate inference. Furthermore, real-world

trip data are continuously collected on a daily basis. The batch model would result in unnecessary computation because historical data

need to be revisited. We handle this problem by proposing an incremental DBN method (iDBN) which is both effective and efficient.

Extensive experiments are conducted on real-world data sets with trajectories of 8,361 residents and the 6.9 million geo-tagged tweets

in the Bay area. Experimental results demonstrate the advantages of the proposed method on correctly inferring the trip purposes.

Index Terms—Dynamic Bayesian network, trajectory, social media, point of interest, trip purpose
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1 INTRODUCTION

IN this big data era, we are able to collect a large amount of
human trajectories because of the ubiquitous adoption of

GPS-integrated devices. For instance, smart phones can
track real-time trajectories and geo-tagged social media
messages can also reveal users’ trajectories. On the surface,
these human trajectories record people’s daily trips with a
sequence of geo-coordinates. But in essence, they reveal
people’s activities or trip purposes, e.g., “shopping” or “eat
out”. With these abundant trajectory data in hand, we are
curious to ask “what did/will you do when you arrive at
one place?”. This is the trip purpose inference problem.

The inference of people’s trip purposes has many bene-
fits for the whole society. First, people’s trip purposes can
help government officials understand travel behaviors and

estimate travel demands which will lead to better city plan-
ning and investment decisions. In addition, it can provide
customers with more accurate recommendations and better
services, and this recommendation can be made even before
users start their trips.

However, trip purpose inference is very challenging,
because the GPS records are not accurate enough to pin-
point the venues visited, let alone revealing the purposes of
the trip. Although there have been some attempts on this
research topic [1], [2], [3], existing methods overlooked sev-
eral important properties such that makes them less practi-
cal. First, existing methods do not take fully advantage of
the heterogeneous data, such as trajectories, POIs and social
media. Most of them only utilize one or two of these data
sources. In addition, people’s activities usually follow cer-
tain patterns, and there are intrinsic relationships among
the sequence of activities. Take the trips shown in Fig. 1 as
an example. Parents may drop off their children at school
before going to work, and people would eat in a restaurant
after shopping. Similar activity patterns commonly reside
across different users. As a result, modeling the whole
sequence of activities can help us infer the past or future
activities. Moreover, although nearby POI information is
useful to infer the trip purposes [2], [4], their geo-graphical
distribution cannot reveal how much do people like the
venues. Obviously, not all the POIs attract equal attentions,
and some of them are usually more popular than the others.
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Because the trip purpose is a people-centric concept, the
popularity of the POIs would be useful for the inference.

In thiswork,we propose to infer trip purposes froma large
amount of heterogeneous data sets, i.e., users’ trajectories,
POIs and social media messages. In order to capture the
sequential property of the trips, this paper proposes a
dynamic Bayesian network model in which the trip purposes
are hidden variables. By this means, we incorporate the
knowledge of all other trips in the sequence to infer the trip
purposes. Another advantage of the proposed method is that
we can derive ranked results of purpose inferencewith corre-
sponding confidence, e.g., 60 percent shopping, 35 percent
eat out and 5 percent recreation. In fact, the results with
higher ranks are very helpful, especially for trips with vague
purposes, such as having lunch while shopping in a mall. In
addition, this paper proposes to incorporate POI popularity
in the trip purpose inference, and mine the popularity of
POIs from geo-tagged social media data. This popularity
information can provide a different perspective on the func-
tionality of trip end locations, and it can help us infer the
activities performed. However, the social media data is noisy
and it is usually very hard to extract relevant information. In
order to solve this problem,we propose an effective approach
with local candidate pools to extract POI mentions from geo-
tagged Twitter data. Then the popularity of a POI can be cap-
tured by the number of mentions in the social media. More-
over, trip data collected in the real-world applications
usually have imbalanced distributions across different activi-
ties. For example, more trips would be annotated with
“Transportation” because people spend a lot of trips on daily
transit. In order to solve this problem, we propose to enhance
the DBN method with sampling and ensemble techniques.
As a result, the model can reduce the bias towards these
“popular” labels. Furthermore, we also propose an incremen-
tal DBN method (iDBN) which can handle the large amount
of streaming trip data effectively and efficiently.

In summary, this workmakes the following contributions:

� We propose to infer individual’s trip purposes
by combining the knowledge from heterogeneous
data sources including trajectories, POIs and social
media data.

� The proposed dynamic Bayesian network model
captures the sequential property of people’s activi-
ties. By this means, a sequence of trips is considered
as an integral part to infer the past or future trip pur-
poses. In addition, the ranked results derived can
help us handle trips with vague purposes.

� We propose an effective method to extract men-
tioned POIs from geo-tagged social media messages,
and model POIs’ popularities in trip end locations.
This popularity knowledge can help improve the
inference performance.

� We propose an ensemble DBN method (eDBN) to
tackle the problem of imbalanced distributions in trip
data, and also propose an incremental DBN method
(iDBN) to handle the large amout of streaming trip
data in real-world applications.

� We conduct extensive experiments on real-world data
with trajectories of 8,361 residents and 6.9 million geo-
tagged tweets in the Bay Area, CA. The results dem-
onstrate the advantage of the proposed method on
correctly inferring users’ trip purposes.

The rest of the paper is organized as follows. We for-
mally define the trip purpose inference problem in Section 2.
The proposed methods are detailed in Section 3, 4, 5, and
experiments are shown in Section 6. We review the related
work in Section 7 then conclude the paper in Section 8.

2 OVERVIEW

In the following, we introduce several important concepts
that will be used throughout the work, then formally define
the trip purpose inference problem.

Definition 1. A Trajectory ðTrÞ is a sequence of spatial points li
with time stamps ti, Tr : ðl1; t1Þ ! ðl2; t2Þ ! � � � ! ðln; tnÞ
where each point l is represented by a pair of GPS coordinates,
i.e., longitude and latitude.

In this paper, we regard “trip” as the movement from
one location to another, e.g., l1 ! l2, and we refer these GPS
points l as “trip end locations”. Take the trajectory in Fig. 1
as an example. The trajectory comprises eight GPS points
which follows the sequence of lHome ! lSchool ! lWork !
lGrocery ! lGrocery ! lHome ! lRestaurant ! lHome. From the
perspective of trips, it has seven trips labelled by blue
circles. However, in most cases, we cannot know the activi-
ties performed in a location without users’ input. In other
words, we don’t know whether a user is shopping in a gro-
cery store or having meal at a restaurant, given only the
geo-coordinates of trip end locations.

Definition 2. Trip Purpose is the activity that a user performed
at a trip end location.

As the name refers, it denotes the purpose of a trip. In the
following sections, we use “trip purpose” and “activity”
interchangeably. As shown in Table 1, we categorize all trip
purposes into eight categories, i.e., “Home”, “Education”,
“Shopping”, “EatOut”, “Recreation”, “Personal”, “Work”,
and “Transportation”. The example activities shown in
Table 1 are defined by the California Household Travel Sur-
vey (CHTS) [5] which collected people’s daily trajectories and

Fig. 1. A typical user’s daily trips.
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activities. More details about this data set will be discussed in
Section 6.

Definition 3. Point of Interest (POI) is a specific location that
someone may find useful. In this work, they represent venues in
the physical world, e.g., banks and shopping malls. Each POI is
associated with properties such as name, address, coordinates,
category and etc.

Definition 4. Geo-tagged Tweet is a Twitter message associ-
ated with a pair of GPS coordinates where the message was
generated.

Problem Definition. Given the trajectories of users, the
points of interest and the Twitter messages near trip end
locations, our Objective is to infer the purposes of trips.

Note that some of the trips have labels with correspond-
ing purposes. These labels can be manually recorded by
users or mined from social media messages. However,
acquiring these labels is very difficult, and it is usually
assumed to be unavailable for a large portion of trips.

3 TRIP PURPOSE INFERENCE WITH DYNAMIC

BAYESIAN NETWORK

A trip’s purpose is determined by many factors, such as
other activities of the day, the category of the visited venue,
the functionality and the popularity of the destination area.
Before discussing the proposed methods, we first shed
some light on how these factors associate with the trip pur-
pose inference.

Sequential Activities of the Day. Common sense tells us that
users’ activities usually follow some patterns, and there are
intrinsic relationships among the sequence of activities. For
instance, parents may drop off their children at school
before going to work, people would eat in a restaurant after
shopping in a mall, and etc. Similar patterns among sequen-
tial activities widely exist, and it is very useful information
for the purpose inference.

The category of the visited venue usually correlates with the
trip purpose. For example, people arriving at a restaurant
are very likely to have lunch or dinner; checking in at a mall
tells us he will be shopping. There will be close relations
between the category of venue people visited and their trip

purposes. Unfortunately, the GPS devices are not accurate
enough to pinpoint the venues visited. In addition, it is also
not easy to acquire this knowledge from people because of
the efforts it takes and potential privacy concerns.

The functionality of the trip end area reveals the general
usage of the nearby area. When we are not aware of the spe-
cific venue that a user visited, the nearby POIs can give us a
hint about what the trip purpose would be. For example,
arriving at a place with many shops nearby means people
will go shopping with a higher probability. Specifically, the
distribution of POI categories is a good feature to denote the
functionalities of a location.

The Popularity of the Trip End Area. Although the nearby
POIs can help us understand the functionalities of a location,
it cannot capture how people think about this area. Obvi-
ously, not all the venues attract equal attentions. In other
words, some of them are more popular than the others. The
popularity of the venues can be a useful feature for the pur-
pose inference task, because the trip purpose is indeed a peo-
ple-centric concept. Fortunately, social media can help us out
here. Take Twitter as an example, people can send geo-tagged
messages, and many of them contain the comments towards
nearby POIs. By matching these geo-tagged tweets to real-
world POIs, we can reveal venues’ popularities accordingly.

A good trip purpose inference method needs to consider
all these factors and the intrinsic relationships among them.
In the following sections, we will first describe the proposed
method for POI popularity modeling with social media
data, then demonstrate the proposed Dynamic Bayesian
Network approach.

3.1 POI Popularity Modeling

Based on the above reasoning, a POI’s popularity can be cap-
tured ifwe can accurately identify them from tweetmessages.
The basic idea is that a POI ismore popular if it has beenmen-
tioned by more tweets. However, this is a very challenging
task. First, social media data are very short. Existing named
entity extraction methods perform poorly on these messages
with very limited contexts. For example, “apple” may refer to
the IT company or the fruit. Second, social media data are
also very noisy. People usually use informal languages and
names in tweets, such that we cannot expect to match a POI’s
full name in tweets. For instance, a tweet “dinner 2 tacos from
lacorneta” mentions a restaurant “La Corneta Taqueria”
without the full name, but ratherwith an abbreviation.

In this section, we propose a method to learn POIs’ popu-
larities from geo-tagged tweets. It can be much easier to
identify mentioned POIs from these tweets because their
associated geo-coordinates give us a good hint. Specifically,
we can narrow down the search space to the nearby POIs.
Compared with traditional methods [6] that work with a
city-wide or world-wide POI knowledge base, our method
can restrict the number of POI candidates within several
dozens in a local area.

In general, the proposed method works as follows. For
each geo-tagged tweet, we first construct a local candidate
pool with nearby POIs. Then a match index is calculated
between the tweet content and each candidate POI names.
Among the candidates, the POI with the largest match index
above the threshold is marked as matched. Finally, the POI
popularity of a trip end area can be derived by aggregating

TABLE 1
Activity Categories

Category Example Activities

Home Any activities performed at home
Education School, Class, Laboratory, Meal at

college, etc.
Shopping Groceries, Clothing, Gas, etc.
EatOut Drive through meals, Meal at

restaurant/dinner
Recreation Indoor or outdoor exercise, Health

care, etc.
Personal Household errands, Religious

activities, etc.
Work All activities performed at the work

place, etc.
Transportation Change type of transportation, Pick

up/drop off
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all the identified POIs from geo-tagged tweets. By thismeans,
we can identify the mentioned POIs from geo-tagged tweets
effectively and efficiently. In the following, we describe each
component in detail.

POI Local Candidate Pool Construction. In order to identify
POI mentions for a geo-tagged tweet, we first construct a
local candidate pool with all the POIs near the geo-coordi-
nates of the tweet. The range limitation should be set con-
sidering the accuracy of GPS devices. In this work, we set
the range as 200 meters which usually results in candidate
pools with several dozen POIs. In addition, we consider the
accuracy of the GPS signals, and a 200-meter threshold can
tolerant most of the localization errors.

Calculate POI Match Index. After constructed a local can-
didate pool for each tweet, the next step is to find the best
matched POI among all candidates. To this end, we design
a match index to measure the similarity between a tweet
and a POI name. This match index considers two essential
factors:

� The number of matched terms. The match index
should be larger if there aremore termsmatched betw-
een a tweet and a POI name. For example, a tweet
“Was just told by a teenager working at this Jamba
Juice, that I looked like a young Walter White” men-
tions the POI “Jamba Juice Redwood City”, and two
terms are matched between them. However, there is
another nearby POI “Geoff White Photographers”
which matches a term “white” to the tweet. In this
case, “Jamba Juice” with 2 matched terms should be
weighed higher than the other one with only 1
matched term.

� The rareness of the matched terms. Some terms may
frequently appear in the candidate pool. For example,
there is no surprise that many POI names contain
“San Francisco” in the Bay area. Then these terms
should have less impact on the matching index. On
the contrary, terms such as “Corneta” is relatively
rare. In fact, this term only appears in a restaurant
named “La Corneta Taqueria”. No doubt that these

terms should have larger impact on the matching
index. In otherwords, if terms like “Corneta”matched
between a tweet and a POI name, we should have a
high belief that the tweet mentioned the restaurant
“LaCorneta Taqueria”.

In this work, we propose a POIMatch Indexwhich charac-
terizes the aforementioned factors. Specifically, each Tweet Ti

is represented by a set of terms, i.e., Ti ¼ fu1; u2; . . . ; umg.
Similarly, each candidate POI’s name is represented by
Pj ¼ fv1; v2; . . . ; vng. The set of Matched Terms MT between
Ti andPj are

MT ðTi; PjÞ ¼ Ti \ Pj: (1)

Then we can calculate the Match Index as follows which
borrowed the idea of the TF-IDF in the Information Retri-
eval field

MIðTi; PjÞ ¼ jMTðTi; PjÞj
� log

Npool

1þPN
k¼1 11 MT ðTi; PkÞ 2 Pkð Þ ;

(2)

where Npool denotes the size of the candidate pool. 11ð�Þ is the
indicator function which returns 1 if and only if the condition
holds. In addition,

PN
k¼1 11ðMTðTi; PkÞ 2 PkÞ calculates the

frequency of the matched terms MT in the POI candidate
pool. As shown in the Equation (2), the first term considers
the number of matched terms, and the second term considers
the rareness of the matched terms. Note that jMTðTi; PjÞj
could be zero, i.e., there are nomatched terms between Ti and
Pj. In this case, the Match Term Index will be 0 which is
reasonable.

After calculated the Match Index between Ti and every Pj

in its candidate pool, we can return the one with the highest
index as the identified POI. However, we still need to set a
threshold to the MI, and return non-identified if none of MIs
exceed the threshold. In sum, With the constructed local POI
candidate pool and the proposed Match Term Index, we
can accurately identify the nearby POIs that mentioned in the
Tweets.

Note that, in real-world applications, we are always fac-
ing the GPS inaccuracy issues. Fortunately, researchers
have developed effective and efficient algorithms for the
map matching problem, e.g., Lou et al. [7]. In addition, the
proposed framework can also tolerant the GPS inaccuracy
issue by constructing the POI local candidate pool with a
range limitation.

POI Popularity Modeling. After extracted the mentioned
POIs from social media data, we can further represent the
POI popularity across different categories by counting the
corresponding mentions from social media. For example, if
restaurants are mentioned by 10 different tweets, we will
count 10 towards the popularity of the POI category “Food”.
Then the counts can be normalized into a distribution across
all the POI categories in Table 2.

3.2 Dynamic Bayesian Network Construction

In this work, we propose a Dynamic Bayesian Network
(DBN) to model people’s sequential activities. As shown in
the Fig. 2, a 2 A denotes the activity performed (or trip

TABLE 2
POI Categories

Category Google Place Type

Money accounting, atm, bank, post office, finance
Leisure art gallery, gym, movie rental, movie theater,

museum, etc.
Food bakery, cafe, food, restaurant, meal delivery
Bar bar, night club
Care beauty salon, hair care, spa
Store book store, clothing store, grocery,

supermarket, etc.
Transportation bus station, subway station, train station,

taxi stand, etc.
Auto car repair, car wash, gas station
Religion cemetery, church, funeral home, mosque, etc.
Civic courthouse, lawyer, police, fire station,

city hall, etc.
Health dentist, doctor, health, hospital, pharmacy, etc.
Improve electrician, locksmith, painter, real estate

agency, etc.
Education library, school, university
Lodge rv park, lodging, campground
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purpose), c 2 C denotes the category of POI a user visited,
and l is the trip end Location. All activities (A) and POI cate-
gories (C) defined in this paper are shown in Tables 1 and 2.

The DBN model can be interpreted in a generative pro-
cess. For each trip i, a user first decides an activity ai (or
purpose) based on his previous one ai�1. Then he chooses a
venue category ci based on this choice of activity. At last, he
chooses a geo-location li to finally perform the activity ai in
venue ci. This process continues until the last trip.

The likelihood function of the proposed DBN model is as
follows:

P ða; c; lÞ ¼ P ða0ÞP ðc0ja0ÞP ðl0jc0Þ

�
YN
i¼1

P ðaijai�1ÞP ðcijaiÞP ðlijciÞ
 !

;
(3)

where P ðaijai�1Þ is the probability of the activity ai given
previous activity ai�1, P ðcijaiÞ is the probability of the vis-
ited POI category given current activity ai, and P ðlijciÞ is
the probability of chosen location li given currently chosen
POI category ci. In the proposed model, the visited location
li is always observed from the trajectory data, such that we
can use Bayes’s rule to approximate P ðlijciÞ as follows:

P ðlijciÞ / P ðcijliÞ
P ðciÞ

/ PPOIðcijliÞPtweetðcijliÞP
j PPOIðcjjliÞPtweetðcijliÞ �

1

P ðciÞ :
(4)

In the Equation (4),P ðcijliÞdenotes the POI category distri-
bution given a geo-location li, and it is defined as the distribu-
tion of nearby POI categories near the location l. Specifically,
it is determined by two aforementioned factors: the function-
ality distribution PPOIðcijliÞ, and the popularity distribution
PtweetðcijliÞ. The first distribution is obtained from populating
the nearby POIs, and the second distribution is obtained by
extracting POImentions from nearby tweets.

3.3 DBN Parameter Learning

There are two sets of parameters in theDBNmodel: the tran-
sition probabilities P ðaijai�1Þ and the emission probabilities
P ðcijaiÞ. Note that in our problem, the activities ai and visited
venues ci are not fully observed. In other words, many activi-
ties and corresponding venues are not labelled in the data. In
order to learn the parameters from such incomplete data, we
adopt the EM algorithm [8]. The process is summarized in
Algorithm 1. It starts with an initial set of parameters. In each
Expectation step (E-step), we compute the expected sufficient

statistics for the parameter variables. Then in eachMaximiza-
tion step (M-step), we treat the expected sufficient statistics as
observed, and perform Maximum Likelihood Estimation to
estimate a new set of parameters. The algorithm continues
between these two steps until converges.

Algorithm 1. DBN Parameter Learning

Input: DBN structure G,
Initial set of parameters u0 ¼ fP ðaijai�1Þ; P ðcijaiÞg
Partially observed trip data set D,

Output: DBN parameters u
1: for t 1; 2; . . ., until convergence do
2: for each a 2 A and each c 2 C do " Initialize
3: Mt½ai; ai�1� ¼ 0
4: Mt½ci; ai� ¼ 0
5: end for
6: for each d 2 D do " E-Step
7: Inference on graph hG; ut�1i using evidence d
8: for each a 2 A and each c 2 C do
9: Mt½ai; ai�1�  Mt½ai; ai�1� þ P ðai; ai�1jdÞ
10: Mt½ci; ai�  Mt½ci; ai� þ P ðci; aijdÞ
11: end for
12: end for
13: for each a 2 A and each c 2 C do " M-Step

14: Ptðaijai�1Þ  Mt½ai;ai�1 �
Mt½ai�1�

15: PtðcijaiÞ  Mt½ci;ai�
Mt ½ai �

16: ut  fPtðaijai�1Þ; PtðcijaiÞg
17: end for
18: end for
19: return ut.

3.4 DBN Prediction

With the learned parameters of the DBNmode, we can infer
possible activities and their corresponding probabilities for
any given trip. Specifically, we can calculate the posterior
probability of the jth activities given a user’s trajectory
tr 2 Tr, where Tr denotes all users’ trajectories. This esti-
mates the probability of activity aj out of all possible activi-
ties A, as shown in Equation (5)

P ðajjtrÞ ¼ P ðaj; trÞ
P ðtrÞ ; 8aj 2 A; (5)

The returned results are possible activities ranked by
their probabilities. Note that, generating a ranked result is a
great advantage by adopting the Bayesian method, espe-
cially compared with traditional methods which can only
provide a best guess. In fact, the top ranked inference results
are very useful in real-world applications. Many classifica-
tion tasks may have very vague decision boundaries, and
usually the best guess results in poor performance. How-
ever, a ranked list with corresponding confidence can help
us identify several meaningful results and improve the
inference accuracy. The experiment results shown in Section
6.3 provide a good demonstration.

4 eDBN: Ensemble DBN on Imbalanced Data

In Section 3.3, we present how to learn the parameters of the
DBN model with all the trip data collected, and there is an

Fig. 2. The dynamic Bayesian network.
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underlying assumption that the class labels are balanced, i.e.
the number of trip purposes are evenly distributed across dif-
ferent classes. However, this “balanced data” assumption
usually does not hold in real-world applications. Table 3 pop-
ulates the different purposes in our collected trip data, and it
clearly shows the imbalanced distribution among different
activities. The most popular activity recorded is “Trans-
portation” which appears almost 7 times more often than the
“Education”. This is not a surprise because people spend a lot
of trips on daily transits. This data imbalance problem can
cause severe problems because the model can be biased
towards those “popular” classes.

In light of these challenges, we propose to improve the
DBN method by adopting both sampling and ensemble
techniques.

Sampling. We can split the trip data according to their trip
purposes. As we discussed, these trips of different activities
are usually imbalanced. To alleviate this issue, we form a
new training dataset by randomly under-sample the data.
The sample rate RðaÞ is determined with respect to the
probability of the corresponding activity P ðaÞ (e.g., the third
column in Table 3)

RðaiÞ ¼
minaj2AðP ðajÞÞ

P ðaiÞ ; ai 2 A: (6)

This ensures the trips of rare activities are sampled with
higher probability, and vice versa.

Algorithm 2. Ensemble DBN Parameter Learning

Input: DBN structure G,
Initial set of parameters u0 ¼ fP ðaijai�1Þ; P ðcijaiÞg
Partially observed trip data set D,
number of ensemblesK,

Output: DBN parameters u
1: for k 1; 2; . . . ;K do
2: Populate the class distribution FðDÞ
3: Under-sample the training data Ds with Equation (6)
4: uk = DBN_learning(Ds, u0, G) " Algorithm 1
5: end for
6: return u ¼ fu1; . . . ; uKg.

Ensemble. Although the sampling method may alleviate
the bias towards the “popular” activities, the DBN method
may miss important information because the sampling tech-
nique under-samples the records from the majority activi-
ties and high variance is thus introduced. Therefore, we
propose to adopt ensemble method to reduce the variance
by training several DBN models on different sampled data.
As demonstrated in [9], the variance could be reduced by

training multiple models as long as the samples are uncorre-
lated. Suppose we have learned a series of DBN models on
different data samples. Given any trip, we can infer its pur-
pose using all the models, and then aggregate the results by
majority voting.

Algorithm 2 summarizes the parameter learning process
for the eDBNmethod.

5 iDBN: Incremental DBN Learning

In real-world applications, trip data are generated on a daily
basis. Such data are continuously collected in a “streaming”
manner. Taking more data as input would help the DBN
model to refine the model and make better inference. How-
ever, unnecessary computation may be introduced if histori-
cal data needs to be re-visited each time. Eventually, theDBN
method would suffer from the ever-increasing training time.
To reduce the computational cost, we propose an incremental
learningmethod forDBNwhich guarantees constant running
time at each time epoch by processing the trip data only once.

By closely examining the DBN learning method (Algo-
rithm 1), we realize that the most computation-intensive
operation lies in the EM algorithm, and more specifically, in
the expectation step. At every iteration of the E-step, we need
to first perform inference on the DBN to estimate purposes
for the trips without labels. This inference takes up lots of
computational cost since it evaluates all the possibilities.

Algorithm 3. Incremental DBN Parameter Learning

Input: DBN structure G,
Parameters ut�1 on time epoch t� 1,
Trip data Dt on time epoch t,

Output: DBN parameters ut
1: while not converge do
2: for each a 2 A and each c 2 C do " Initialize
3: Mt½ai; ai�1� ¼ 0
4: Mt½ci; ai� ¼ 0
5: end for
6: for each d 2 Dt do " Incremental E-Step
7: Inference on graph hG; ut�1i using evidence d
8: for each a 2 A and each c 2 C do
9: Mt½ai; ai�1�  Mt½ai; ai�1� þ P ðai; ai�1jdÞ
10: Mt½ci; ai�  Mt½ci; ai� þ P ðci; aijdÞ
11: end for
12: end for
13: Mt½ai; ai�1� ¼ gMt½ai; ai�1� þMt�1½ai; ai�1�
14: Mt½ci; ai� ¼ gMt½ci; ai� þMt�1½ci; ai�
15: for each a 2 A and each c 2 C do " M-Step

16: Ptðaijai�1Þ  Mt½ai;ai�1�
Mt½ai�1�

17: PtðcijaiÞ  Mt½ci;ai�
Mt ½ai �

18: ut  fPtðaijai�1Þ; PtðcijaiÞg
19: end for
20: end while
21: return ut.

In the following, we assume there are T time epochs in
total, and the trip data Dt are collected at each time epoch
t 2 1; 2; . . . ; T . Let’s first examine how DBN performs on
this streaming data. At epoch 1, DBN takes in the data D1;
At epoch 2, it takes in data fD1;D2g; similarly, at epoch t, it
takes in the data collected from current and all previous

TABLE 3
Activity Distribution

Activity Number of Occurrences Probability

Education 1285 5.6%
Shopping 4478 19.6%
EatOut 2425 10.6%
Recreation 2695 11.8%
Personal 3013 13.2%
Transportation 8945 39.2%
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time epochs, i.e., fD1;D2; . . . ;Dtg. As a result, historical data
is re-evaluated too many times, and this results in huge
computational cost.

In order to tackle this challenge, we propose iDBN, an
incremental DBN learning method. The algorithm is det-
ailed in Algorithm 3. At each time epoch t, iDBN takes in
the parameters ut�1 (transition probabilities and emission
probabilities) learned from the previous epoch t� 1, and
updates the parameters with the trip data recently collected
Dt. This schema, known as the incremental EM algorithm,
was proposed in [10]. It has many advantages comparing to
the traditional EM algorithm including fast convergence
rate and comparable estimation accuracy. In addition to this
“incremental E-step”, the iDBN method shares the same
M-step as the DBNmethod.

6 EXPERIMENTS

The proposed method is evaluated with real-world data sets
including human trajectories, point of interests, and tweets
in the Bay area, CA. In the following sections, we discuss
the data sets, the baselines, and the evaluation results.

6.1 Data Sets

Trajectories. The California Household Travel Survey (CHTS)
[5] collected travel information from residents across Cal-
ifornia’s 58 counties. The survey was designed to obtain
detailed information about the household socioeconomic
characteristics and their travel behaviors. Among its various
achievements, the survey collected 8,631 participants’ GPS
trajectories for a week. In addition, each trajectory is accom-
panied with a detailed trip diary which records visited POIs
and trip purposes. The trip purposes are labelled by users
with pre-defined categories, and some of them are shown on
the second column in Table 1. However, the diaries are far
from exhaustive andmany trips recorded by GPS devices are
not logged in the diary. This is a common issue for traditional
surveys because it requires too much efforts from the partici-
pants. The heatmap of trip end locations are shown in Fig. 3a.

Twitter Data. We collected 6.9 million geo-tagged tweets in
the Bay area from Jan 31 2013 to Feb 16 2017. They are queried
through Twitter APIs and filtered by geo-coordinates. The
heatmap of geo-tagged tweets are shown in Fig. 3b.

Point of Interest. The POIs are queried through Google Pla-
ces API [11]. In this work, we use its Nearby Search request to
get the nearby POIs of any given geo-coordinates, and the
returned POI names and types are utilized by the proposed
method. SomeGoogle Place types are shown in Table 2.

6.2 Baselines

In the following experiment, we compare the proposed
method with the following baseline methods,

� Random Forest (RF) is an ensemble learning method
for classification. It is constructed by a large amount of
decision trees with sub-samples. The prediction result
is decided by taking themajority vote across all trees.

� Support Vector Machine (SVM) tries to find the opti-
mal decision boundary with the largest margins to
classify data from different classes.

� Artificial Neural Network (ANN) can be trained to
perform classification tasks. In the experiment, we
adopt Multi-layer Perceptron, one typical kind of
ANN, to predict the trip purpose.

� K-nearest Neighbor (KNN) finds a predefined num-
ber of training samples closest in distance to the new
point, and predict the label from these samples.

In the following, we perform extensive experiments on
the proposed DBNmethod, and demonstrate its advantages
compared with baselines. Specifically, the performance of
trip purpose inference is discussed in Section 6.3, the pro-
posed POI mention identification method with social media
is evaluated in Section 6.4, and we discuss how POI popu-
larity features can affect the performance of trip purpose
inference in Section 6.5.

6.3 Trip Purpose Inference

To compare the performance of all the methods on the trip
purpose inference, we conduct experiments on the collected
real-world data set. The features used for training include
travel mode, previous activity category, activity time and
duration, nearby POI category distribution, and nearby POI
popularity distribution. We randomly select 80 percent trips
as training data, and leave the rest for testing. All themethods
are evaluated by 10 times, and the average results are
reported. In addition, there are about one third trip end loca-
tions in the dataset are either home or work, because the sur-
vey collected trips from people’s daily lives. Using these trips
to train the model would greatly bias the performance. As a
result, we only test the inference results on other activities,
and assume the home and work trips are known. In fact, it is
also easy to infer users’ home and work locations from their
trajectories, because normal people stay in these locations for
themost time. In other words, we are interested in non-trivial
tasks of inferring non-home and non-work trip purposes.

Note that the proposed DBN model can output a ranked
list of activities with corresponding confidence. This is a great
advantage by adopting the Bayesianmethod. Aswe have dis-
cussed in Section 3.4 the top ranked inference results are very
useful in real-world applications, especiallywhen the classifi-
cation boundaries among classes are vague. As a result, we
also evaluate the DBN performance with top-2 and top-3
inference results in the experiment, denoted as DBN-top-2,
and DBN-top-3 respectively. In these cases, we regard the
inference as correct if the ground truth activity is among the
top-2 or top-3 results.

The inference accuracy and F1 scores are shown in
Table 4, and the average results are also compared in Fig. 4.
We can observe that the proposed DBN model, including
DBN-top-1, DBN-top-2 and DBN-top-3, outperform other

Fig. 3. Trip ends and Geo-tagged tweets.
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baselines on almost every activity category with higher
accuracy and F1 score. This is because DBN model captures
the intrinsic relationships among sequential activities, trip
end locations’ POI distributions and the popularities identi-
fied from the Twitter data. On average, the DBN model can
reach 64 percent accuracy with the top-1 inference result.
This demonstrates the top-ranked results generated by the
DBN model are very useful in the trip purpose inference.
Comparing with the random forest method, the proposed
DBN also demonstrates better performance with respect to
the average accuracy and F1.

In the Section 3.1, we construct a POI local candidate pool
in order to identify the matched POIs with the social media
data. A 200 meter range was set as the threshold when con-
structing the candidate pool by considering both the GPS
signal accuracy and the POI density. In the Fig. 5, we exam-
ine the robustness of this threshold, and it turns out that the
performance of the proposed method is not greatly affected
by the threshold, we believe this is because the GPS signal is
quite accurate in the collected trip data set, such that
narrowing down the threshold does not introduce much
errors. However, the performance does diminish to some
extent with larger thresholds, for example, increased from
200 meters to 500 meters, because the POI candidate pool is
larger and this makes it harder to correctly match the tweets
with the nearby POIs. As for other real-world data sets with
less GPS signal accuracy, we expect much worse perfor-
mance with respect to larger or smaller thresholds.

6.4 POI Mention Extraction from Geo-Tagged
Tweets

In Section 3.1, we propose to extract mentioned POIs from
geo-tagged tweets. For each geo-tagged tweet, we can accu-
rately identify the mentioned POI with a local candidate pool
and the match index. In practice, it is very hard to evaluate
the performance of POI mention extraction from tweets,
because we have so many nearby tweets and trips in the data
set. Fig. 6 shows the histogram of tweets near trip ends. On
average, there are 2,607 geo-tagged tweets near each trip end
location (within 200 meters). Actually, it is impossible to be
evaluated without a standard data set labelled by human
workers. To this end, we recruited volunteers to label the POI
mentioned tweets near 50 random trip end locations. Given a
list of tweets, the volunteers are asked to judge whether those
tweetsmentioned anynearby POI, andwhether the identified
POIs are correct. In Table 5, we present the results on several
example trip end locations and the average performance. For
each location, we populate the total number of nearby tweets,
the number of POI-mentioned tweets which are identified by
human workers. Some of the tweets are formatted by third
partyApps, such as Foursquare and Instagram.We can easily
parse POIs from these well formatted tweets, for example,
“Im at Applewood Pizza in San Carlos Ca” and “Bagel time!
@ Bagel Street Cafe Town Center Alameda”. However, there
are still many POI-mentioned tweets without these formats.
For instance, “Catch us at amc Mercado 20 12 am insur-
gent!!!!”. The better performance shown in Table 5 indicates

TABLE 4
Performance of Trip Purpose Inference

Accuracy SVM ANN KNN RF-top-1 DBN-top-1 RF-top-2 DBN-top-2 RF-top-3 DBN-top-3

Education 27.0% 41.9% 34.4% 40.2% 52.3% 71.0% 72.9% 78.5% 78.4%
Shopping 59.6% 65.3% 52.5% 78.6% 80.1% 82.3% 94.2% 87.9% 98.4%
EatOut 4.8% 30.0% 32.1% 60.6% 79.0% 66.9% 83.2% 76.2% 85.5%
Recreation 18.6% 39.0% 30.6% 55.5% 62.7% 71.9% 77.4% 83.3% 84.7%
Personal 7.7% 21.7% 22.5% 50.4% 42.2% 68.5% 65.0% 85.5% 90.0%
Transportation 84.6% 74.2% 59.1% 75.4% 68.3% 93.9% 84.3% 97.9% 89.6%

Average 33.7% 45.4% 38.5% 60.1% 64.1% 75.8% 79.5% 84.9% 87.8%

F1 Score SVM ANN KNN RF-top-1 DBN-top-1 RF-top-2 DBN-top-2 RF-top-3 DBN-top-3

Education 0.362 0.461 0.358 0.419 0.484 0.777 0.757 0.854 0.840
Shopping 0.517 0.600 0.452 0.756 0.754 0.842 0.853 0.899 0.909
EatOut 0.087 0.349 0.320 0.635 0.712 0.742 0.835 0.825 0.879
Recreation 0.281 0.430 0.342 0.585 0.592 0.746 0.721 0.856 0.826
Personal 0.134 0.299 0.266 0.550 0.476 0.729 0.737 0.871 0.920
Transportation 0.625 0.655 0.588 0.722 0.735 0.859 0.869 0.910 0.919

Average 0.334 0.465 0.387 0.611 0.626 0.783 0.795 0.871 0.882

Fig. 4. Average performance of trip purpose inference. Fig. 5. Robustness of the range threshold.
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the proposed method can extract mentioned POIs from
tweets, nomatter they arewell formatted or not.

6.5 Impact of the POI Popularity Features

For each trip end, we can model its nearby POIs’ popularity
based on the social media data discussed in Section 3.1. In
this section, we perform experiments to evaluate how this
popularity distribution can help us infer people’s trip pur-
poses. We first evaluate its impact based on the Random
Forest model. In this experiment, we train two Random For-
est models, one with the POI popularity features (RF-Tweet)
and the other without them (Rf-noTweet). As shown in
Table 6. the POI popularity features mined from the Twitter
data can improve the inference accuracy on every class.

In addition,we further evaluate thePOI popularity features
on the DBN model. Two DBN models are trained and com-
pared. One without the popularity features (DBN-noTweet),
and the other with the popularity features (DBN-Tweet). The
results are shown in Table 6. Interestingly, this popularity fea-
ture has different impacts on different activity categories. Spe-
cifically, incorporating the popularity features leads to higher
accuracy on the inference of “Education”, “EatOut”, and
“Personal”. But it results in slightly lower accuracy on the
inference of “Shopping”, “Recreation”, and “Transportation”.
The reason lies in the different properties between the cyber
and physical worlds. Take the activity “Education” as an
example. One educational institute, e.g., high school, would
be surrounded by many other POIs, e.g., restaurants. In this
case, the weight of high school will be under-estimated in the
POI distribution. Fortunately, we can identify more people’s

tweets in the school than in the restaurant, i.e., the school is
more popular than other POIs in the social media. By this
means, the POI’s popularity feature can help us recognize the
importance of the school. On the other hand, the POI’s popu-
larity may fail to capture the importance of certain POIs if
there are not enough people discussing them in the social
media. This may result in slightly worse inference perfor-
mance, such as in “Recreation” and “Transportation”, because
people tweet about these activities less frequently.

6.6 Evaluation on the eDBNMethod

In this section, we conduct experiments to illustrate the effec-
tiveness of the ensemble DBN method. As discussed in
Section 4, the trip purposes are not balanced in the training
data (Table 3) such that the model could be biased by
“popular” activities, e.g., Transportation. In this experiment,
we first sample the training data with Equation (6), then learn
an ensemble ofmultiplemodels according to Algorithm 2.

We compare the eDBN with two baselines—the DBN
method and the DBN method with sampling. The results
are summarized in the Table 7. As expected, the eDBN
method improves the inference performance on “less-popu-
lar” activities, such as Education, EatOut, Recreation and
Personal. Overall, the eDBN method also shows better per-
formance than the baselines.

6.7 Evaluation on the iDBNMethod

We also evaluate the performance of the proposed incremen-
tal DBN method. The trip data is first split into 10 parts, and
each part contains trips collected at one time epoch. We then
feed the trip data to DBN and iDBN respectively. Table 8
shows the inference accuracy of bothmethods. Obviously, the
incremental DBNhas the same accuracy as the non-incremen-
tal method DBN. However, the running time of iDBN is con-
sistently low comparing to that of DBN which increases
dramatically over time (Fig. 7). This experiment clearly dem-
onstrates the effectiveness and efficiency of the iDBNmethod.

7 RELATED WORK

There are several research fields related to this work, and
we summarize them in this section.

Trip Purpose Inference. The ubiquitous adoption of GPS-
integrated devices has enabled extensive studies on the trip
purpose inference [12], [13], [14]. In [15], they proposed to
annotate geo-tagged tweets with POI categories. Detailed fea-
ture extractionmethods are introduced and traditional classi-
fication methods are utilized for the annotation task. [3]
proposed a method to predict the POIs that users visited,

TABLE 6
Accuracy Comparison with POI Popularity Features

Accuracy RF-
noTweet

RF-
Tweet

DBN-
noTweet

DBN-
Tweet

Education 40.3% 40.5% 50.0% 52.3%
Shopping 77.0% 78.6% 82.9% 80.1%
EatOut 60.0% 60.6% 78.9% 79.0%
Recreation 53.2% 55.5% 65.7% 62.7%
Personal 47.7% 50.4% 38.9% 42.2%
Transportation 75.1% 75.4% 69.5% 68.3%

Fig. 6. Histogram of tweets near trip ends.

TABLE 5
Performance of POI Extraction from Geo-Tagged Tweets

Example
Locations

Total
Nearby
Tweets

POI-
mentioned
Tweets

App-
formatted
Tweets

POI-
identified
Tweets

37.4028125,
-121.881519784

575 184 116
(63.0%)

159
(86.4%)

37.3896875,
-122.03080036

294 103 80
(77.7%)

93
(90.3%)

37.3278125,
-121.8842176

1188 368 247
(67.1%)

305
(82.9%)

37.6715625,
-122.472796763

1232 596 446
(74.8%)

495
(83.1%)

Average Recall - - 68.8% 83.5%
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then infer the activities with a pre-defined mapping from
POIs. In [4], [16], [17], they use taxi trajectories and POIs to
capture the human mobility patterns in an urban area. It is
worth mentioning that taxi trajectories are quite different
from individual’s daily trajectories, and it results in different
strategies between [4], [16], [17] and this work. In [18], they
propose a relational travel topic model to infer the personal
travel preferences of aviation customers. In addition, tradi-
tional classification methods were widely utilized to infer the
trip purposes, such as random forest [2], artificial neural net-
work [19], decision tree [20], SVM [1] and etc. Comparedwith
the aforementioned work, the model proposed in this work
incorporates heterogeneous data sets, including trajectories,
POIs and social media messages. In addition, the proposed
method captures the sequential properties of individual’s
trip activities which results in better inference results.

Trajectory Mining. Human trajectory data mining [21], [22],
[23] has attracted lots of studies recently. Wu et al. [24] pro-
posed aMarkov Random Fieldmodel to infer the visited POIs
given users’ trajectories. It aims to answer the question “if a
person is observed at certain location and time, which venue
is the true destination of this person”. In [25], Zhang et al.
adopted Hidden Markov model to capture group-level
human mobilities with social media data, and latent activity
states are represented by topical words. In order to capture
the topical information of trajectories, Kim et al. [26] proposed
a probabilistic model to cluster different trajectories. With this
method, significantmovement patterns that appear frequently

in data can be recognized. In [27], [28], they propose methods
to predict future locations of users. In addition, there have
been studies [29], [30] that extract the patterns underlying peo-
ple’s activities. Our task is different from these studies, as
none of them attempts to capture the high-level trip purpose
with both the knowledge fromPOI and socialmedia.

POI Identification from Social Media Data. As we have men-
tioned, social media messages are quite noisy. This makes it
very difficult to performNamedEntity Recognition from such
short and noisy texts. In order to extract fine-grained location
information from tweets, Li et al. [31] proposed a Conditional
Random Field model to identify POI mentions from social
media messages, and they further proposed a method [32] to
link the POI name with Foursquare inventory. In [33], Flatow
et al. proposed a data-driven approach to identify phrases ass-
ociated with regions. Then it is used to label non-geotagged
tweetswith a regional area. In addition, a supervised Bayesian
Model [34] is proposed to annotate POIs with tweet informa-
tion. The above research aim at identifying POIs from general
social media messages, especially for tweets without geo-tags.
However, in this work, we propose to extract POI mentions
from geo-tagged tweets. The proposed method with local
POI candidate pools can solve this problem effectively and
efficiently.

8 CONCLUSIONS

The knowledge of people’s daily activities is very useful
which can benefit both the government and residents. In this
paper, we propose to infer people’s trip purposes with het-
erogeneous data sets including trajectories, POIs, and social
media messages. The proposed dynamic Bayesian network
model can capture the intrinsic relationships among sequen-
tial activities. In addition, we also propose to incorporate
POIs’ popularity information near trip end locations. This
information can give us good hints about people’s activities.
Moreover, in order to deal with the noisy social media data,
we propose an effective method with local POI candidate
pool to identify POIs from geo-tagged tweets. Furthermore,
we also propose ensemble DBN and incremental DBN meth-
ods which can handle real-world challenges such as data
unbalance and large data volume. Extensive experiments
were conducted on real-world data sets, and the results dem-
onstrate the advantages of the proposed method on accu-
rately inferring the trip purposes.
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TABLE 7
Performance of the Ensemble DBN

Accuracy DBN DBN sample DBN Ensemble F1 Score DBN DBN sample DBN Ensemble

Education 51.3% 72.3% 73.9% Education 0.472 0.486 0.489
Shopping 79.8% 78.8% 79.2% Shopping 0.752 0.765 0.771
EatOut 77.5% 80.3% 80.3% EatOut 0.703 0.683 0.681
Recreation 62.3% 62.4% 65.0% Recreation 0.574 0.562 0.562
Personal 42.1% 45.8% 51.4% Personal 0.421 0.476 0.508
Transportation 68.5% 53.9% 57.6% Transportation 0.734 0.666 0.701
Average 63.6% 65.6% 67.9% Average 0.618 0.606 0.618

Fig. 7. Running time of iDBN.

TABLE 8
Accuracy of iDBN and DBN

Accuracy F1 score

DBN 62.63% 0.614
iDBN 62.57 0.613
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