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Abstract—Nowadays, most of the taxi drivers have become users of the relocation recommendation service offered by online ride-

hailing platforms (e.g., Uber and Didi Chuxing), which could oftentimes lead drivers to places with profitable orders. At the same time,

electric taxis (e-taxis) are increasingly adopted and gradually replacing gasoline taxis in today’s public transportation systems due to

their environmental-friendly nature. Though effective for traditional gasoline taxis, existing relocation recommendation schemes are

rather suboptimal for e-taxi drivers’ user experience. On one hand, the existing schemes take no account of taxis’ refueling decisions,

as the refueling durations of gasoline taxis are usually short enough to be ignored. However, the charging duration of the e-taxis spent

at charging stations can be as long as hours. Obviously, an e-taxi’s battery could be easily depleted by the continuous relocations

suggested by existing schemes, and thus will have to be charged for a long time afterwards, making the e-taxi driver miss numerous

order-serving opportunities. On the other hand, charging posts are typically sparsely and unevenly distributed across a city. With no

consideration of charging opportunities, existing schemes could probably send an e-taxi to an area with no charging post around, even

though its battery is running low. To optimize e-taxi drivers’ user experience, in this paper, we design a joint charging and relocation

recommendation system for e-taxi drivers (CARE). We take the perspective of e-taxi drivers and formulate their decision making as a

multi-agent reinforcement learning problem where each e-taxi driver aims to maximize his own cumulative rewards. More specifically,

we propose a novelmulti-agent mean field hierarchical reinforcement learning (MFHRL) framework. The hierarchical architecture of

MFHRL helps the proposed CARE provide far-sighted charging and relocation recommendations for e-taxi drivers. Besides, we

integrate each hierarchical level of MFHRL separately with the mean field approximation to incorporate e-taxis’ mutual influences in

decision making. We set up a simulator with one of the largest real-world e-taxi datasets in Shenzhen, China, which contains the GPS

trajectory data and transaction data of 3848 e-taxis from June 1st to June 30th, 2017, coupled with 165 charging stations including 317

fast charging posts and 1421 slow charging posts. We adopt this simulator to generate 6 dynamic urban environments, which reflect

the different real-world scenarios faced by e-taxi drivers. In all of these environments, we conduct extensive experiments to validate

that the proposed MFHRL framework greatly outperforms all baselines by significantly increasing the rewards obtained by e-taxi

drivers. Besides, we also show that the charging policy learned by MFHRL can effectively reduce the range anxiety of e-taxi drivers,

which significantly boosts e-taxi drivers’ quality of experience.

Index Terms—Electric taxi, hierarchical reinforcement learning, multi-agent reinforcement learning, mean field approximation

Ç

1 INTRODUCTION

RECENTLY, the way taxi drivers work has been fundamen-
tally revolutionized by online ride-hailing platforms such

asUber1 andDidiChuxing2. Instead of simply relying on their
own experience to search for potential passengers, taxi drivers
nowadays tend to follow the relocation recommendations
given by such platforms, which could oftentimes lead them to
places with profitable orders. At the same time, taxi drivers
are also experiencing a rapid vehicle electrification process
[1], [2], [3], [4] due to the environment-friendly nature of elec-
tric vehicles. To advocate green commuting, several countries
such as the United States andChina have extensively adopted
electric taxis (e-taxis) to replace gasoline taxis.
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Though making reasonably good suggestions for gasoline
taxis, existing relocation recommendation schemes are far
from optimal for the e-taxis. On one hand, existing schemes
take no account of taxis’ refueling decisions, as gasoline taxis
can usually be refueled in minutes short enough to be
ignored. However, unlike gasoline taxis, the charging time of
the e-taxis spent at charging stations can be as long as hours.
The continuous relocations suggested by existing schemes
will easily deplete an e-taxi’s battery. As a result, an e-taxi
driver has to charge his vehicle for a long time afterwards,
who will inevitably miss the following numerous opportuni-
ties to serve orders. On the other hand, in practice, charging
posts are typically sparsely and unevenly distributed across a
city. Without considering charging opportunities, existing
schemes could probably relocate an e-taxi to an area with no
charging post around, even though its battery is running low.
Therefore, the charging and relocation decisions have to be
jointly scheduled for the benefit of e-taxi drivers.

In this paper, we design a charging and relocation recommen-
dation system for e-taxi drivers (CARE)3 to jointly schedule e-
taxis’ charging and relocation decisions.Making such recom-
mendations for an e-taxi driver is naturally a sequential deci-
sion-making task that aims to maximize his long-term
cumulative reward (e.g., the number of orders he serves over
a long period), which is challenging in the following aspects.
First, e-taxi drivers work in a real-world urban environment
with complex dynamics (e.g., stochastic order arrivals),
which requires them to take adaptive actions as the environ-
ment evolves. Second, actions such as charging or traveling
to distant locations for potential orders are beneficial to e-
taxi drivers in the long run but provide no immediate
reward. Clearly, without immediate incentives, it is difficult
for a recommendation system to make such far-sighted deci-
sions. Last but not least, e-taxi drivers are non-cooperative
with each other and may compete for the same charging or
order-serving opportunities. Consequently, an e-taxi driv-
er’s actions will be affected by the others, and thus integrat-
ing such influences in making charging and relocation
recommendations becomes essential. However, given that
there could be as many as thousands of e-taxis in a city-scale
area at the same time, it is then extremely hard to capture the
aggregate influences of the other e-taxis on any specific one.

To address these challenges, we propose a novel multi-
agent mean field hierarchical reinforcement learning
(MFHRL) framework, which integrates each level of hierar-
chical reinforcement learning [5] with themean field approx-
imation [6]. The proposed MFHRL framework treats each
e-taxi driver as an agent and generates adaptive charging
and relocation actions for each e-taxi driver in the dynamic
urban environment.

In particular, inspired by [5], we employ a two-level hier-
archical architecture in MFHRL, where each agent is com-
posed of a manager module and a worker module. Between
them, the manager operates at a lower temporal resolution
but can look ahead for a long time interval. More specifi-
cally, the manager sets goals which intrinsically guide the
worker’s decisions, as the worker will be rewarded for fol-
lowing the goals. In contrast, the worker focuses on a short

interval with a higher temporal resolution. It outputs the
agent’s decisions by jointly considering the goals set by the
manager and the rewards obtained from the environment.
In this way, though, without any immediate reward from
the environment, the worker is still willing to make the far-
sighted charging and relocation decisions, because of the
intrinsic rewards from the manager when those actions con-
form with the goals. As a result, such hierarchical architec-
ture enables an e-taxi to take far-sighted actions that
optimize the long-term reward.

To further incorporate e-taxis’ mutual influences in deci-
sion making, we integrate the aforementioned hierarchical
architecture with the mean field approximation [6], which
approximates the influences of thousands of e-taxis in the
city-scale area by the average effect from a limited number of
e-taxis within a local area. In our design, we integrate each
of the two hierarchical levels separately with the mean field
approximation. Specifically, since the worker focuses on a
short time interval, the mean field approximation in the
worker module only considers the influences of the e-taxis
within its near neighborhood. In contrast, to capture the
possible influences of other agents’ far-sighted actions, the
mean field approximation in the manager module considers
the influences of the e-taxis in a broader area reachable by
the e-taxi within the time interval covered by the manager.

To summarize, the main contributions of this paper are
listed as follows.

� For the first time, we design a charging and relocation
recommendation system for e-taxi drivers (CARE) to
jointly schedule charging and relocation decisions for
thousands of e-taxis in a city-scale area. Based on this
idea, we take the perspective of e-taxi drivers and for-
mulate this problem as a multi-agent reinforcement
learning problem, where each e-taxi driver aims to
maximize his own long-term reward.

� To solve this problem, we propose a novel multi-
agent mean field hierarchical reinforcement learning
(MFHRL) framework. The hierarchical architecture
of MFHRL can set goals for the agents to effectively
learn far-sighted charging and relocation decisions.
Besides, we integrate each of the two hierarchical
levels separately with the mean field approximation
to incorporate agents’ mutual influences in decision
making. To the best of our knowledge, MFHRL is
the first multi-agent reinforcement learning frame-
work that integrates hierarchical reinforcement
learning with mean field approximation.

� Our study is based on one of the largest real-world e-
taxi datasets, which consists of (i) 3848 e-taxis, (ii)
around 168000 orders per day, (iii) 164 charging sta-
tions which involve 317 fast charging posts and 1421
slow charging posts. Based on the dataset, we set up
an e-taxi simulator and conduct extensive experi-
ments. The results show that the proposed MFHRL
framework outperforms all the baselines.

2 RELATED WORK

In this section, we first discuss the related work on the elec-
tric vehicle (EV) and then describe the related work on deep

3. The name CARE comes from Charging and relocAtion
REcommendation.
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reinforcement learning. In what follows, we will show
the novelty of this paper compared with past literature
both in terms of the investigated problem and the solu-
tion techniques.

2.1 Research on Electric Vehicle

Nowadays, EVs are becoming increasingly more popular.
Studies on how to improve the experience of EV drivers in
urban transportation systems [1], [2], [3], [4], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21]
have drawn significant attention. In this subsection, we
organize the related work on this topic into two categories,
i.e., charging station deployment and charging station
recommendation.

2.1.1 Research on Charging Station Deployment

The objective of studies [1], [3], [14], [15], [16], [17] on charg-
ing station deployment is mainly to improve the charging
and operational efficiency of EV drivers. More specifically,
Yan et al. [3] propose a multi-objective charging station
deployment scheme. Such a scheme aims to support the con-
tinuous operation of e-taxis and meanwhile maximize the e-
taxis’ opportunities of picking up passengers at the charging
stations. Li et al. [16] propose an optimal charging post place-
ment scheme for EV drivers to minimize the average driving
time to the nearest available charging posts. Sarker et al. [1]
propose a charging station deployment scheme that mini-
mizes the drivers’ anxiety about the limited driving range of
EVs and the availability of charging posts. Based on the pro-
posed deployment scheme, the authors design a multi-object
route planning system that can always provide an energy-
efficient route for EV drivers to reduce their anxiety. How-
ever, building charging stations and charging posts will
bring extra costs. Apart from the cost of the land resources
which are already very scarce in large cities, such as New
York and Shenzhen, a fast charging station with only 10
charging posts could cost over 358000 dollars4. Instead of
building new charging posts, in this paper, our proposed rec-
ommendation system CARE can effectively utilize the exist-
ing limited charging posts, and jointly schedule the charging
and relocation actions of numerous e-taxi drivers in a city-
scale area to optimize their long-term experience.

2.1.2 Research on Charging Station Recommendation

Recently, EVs such as electric buses (e-buses) and e-taxis
have been gradually introduced into the public transporta-
tion system, and received wide attention [2], [4], [7], [8], [9],
[10], [11], [12], [13], [20]. Wang et al. [8] propose a charging
station recommendation scheme for e-buses, which recom-
mends charging stations to e-buses in a sequential manner.
Different from such a single-agent setting that ignores the
mutual influences among e-buses, we study a multi-agent
setting and employ the mean field approximation to incor-
porate mutual influences among thousands of e-taxis in
decision making. Moreover, one line of works study the
charging station recommendation for e-taxis [2], [4], [20].
Among them, Dong et al. [20] propose a real-time charging

scheduling system to recommend a charging station with a
tightly bounded waiting time. Besides, Wang et al. [4] pro-
pose a fairness-aware charging station recommendation
system to minimize e-taxis’ traveling time to charging sta-
tions and waiting time at charging stations under the fair-
ness constraint. Furthermore, Wang et al. [2] design a real-
time charging scheduling system based on the assumption
that e-taxis can be charged at e-buses’ charging stations.
Under such an assumption, the proposed system can rec-
ommend a charging station with the minimum traveling
and waiting time. However, the above recommendation
systems only focus on recommending the charging station
locations for e-taxi drivers, who still have to rely on their
own experience to decide the charging duration. Different
from them, our CARE system can provide drivers the rec-
ommendations on when, where, and how long to charge
their e-taxis. Apart from charging recommendations, CARE
can also provide relocation recommendations that could
lead e-taxi drivers to the place with profitable orders. There-
fore, as long as the e-taxi drivers follow the charging and
relocation recommendations made by CARE, they will have
a satisfactory experience.

2.2 Research on Deep Reinforcement Learning

Recently, deep reinforcement learning [22] has been widely
adopted to solve sequential decision-making problems in
real-world urban environments. Ji et al. [23] propose a
dynamic ambulance redeployment system via deep rein-
forcement learning. Besides, deep reinforcement learning is
widely used to solve various problems in online ride-hailing
platforms [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35] in recent years. Lin et al. [26] propose a contextual
multi-agent reinforcement learning to maximize the ORR of
the ride-hailing platform. Li et al. [28] design a deep value-
network based reinforcement learning framework to maxi-
mize the GMV of the ride-hailing platform. In contrast, we
take the perspective of e-taxi drivers and aim to maximize
the long-term rewards of each individual e-taxi driver.
Besides, these above relocation recommendation schemes
[26], [27], [28], [29] are mainly designed for gasoline taxis,
which can usually be refueled in minutes that are short
enough to be ignored in decision making. However, the
charging duration of e-taxis spent at charging stations can
be as long as hours. Even worse, e-taxi drivers will receive
no immediate reward during this long charging time. Such
a phenomenon corresponds to the sparse-reward challenge
in reinforcement learning [5], [18], which hinders the rein-
forcement learning approaches in [26], [27], [28], [29] from
learning effective policies in our scenario. However, the
hierarchical architecture of our MFHRL framework enables
the agents to effectively learn far-sighted charging and relo-
cation decisions. To the best of our knowledge, MFHRL is
the first multi-agent reinforcement learning framework inte-
grating hierarchical reinforcement learning with mean field
approximation, which outputs far-sighted actions with
agents’ mutual influences properly considered.

3 MOTIVATION

In this section, we first describe the real-world e-taxi data-
sets used in this paper. Then, we conduct a comprehensive

4. http://www.council.nyc.gov/data/wp-content/uploads/sites/
73/2020/01/Taxi-Medallion-Task-Force-Report-Final.pdf
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data-driven analysis to demonstrate the charging problems
that e-taxi drivers are facing.

3.1 Data Description

The real-world datasets used in this paper include the data
of e-taxis’ GPS trajectories, transactions, and charging sta-
tions in Shenzhen from June 1st to June 30th, 2017. An
example of one piece of data from each of these datasets is
shown in Table 1.

More specifically, a piece of data from the GPS trajectory
dataset records the plate ID of an e-taxi, time, longitude and
latitude, as well as the corresponding binary status to indi-
cate whether the e-taxi is serving for an order. Given such
binary status and the transaction data, we extract the order
information that includes the order time, order price, GPS
locations of the order origin and destination, as well as order
duration with the corresponding pick-up time and drop-off
time. The spatial order distributions during 3 different time
periods in Shenzhen are shown in Fig. 1, where a brighter
color indicates that there aremore orders in that area.

The charging station dataset contains the GPS locations of
charging stations and the number of fast and slow charging
posts they contain. For details, there are totally 164 charging
stations which involve 317 fast charging posts and 1421 slow
charging posts. All these charging stations and the corre-
sponding charging posts have been built upno later than 2017.

3.2 Charging Problems

Based on the data of e-taxis’ GPS trajectories and charging sta-
tions, we extract charging activities by using the method in
[20] and provide the following data-driven analysis. More
specifically, in order to extract the charging activities, we set a
circular range with the GPS location of a charging station as
the center and 500meters as the radius. Given the e-taxis’ tra-
jectory data, if a sequence of an e-taxi’s trajectory points is

within this range for a sufficiently long time (e.g., 20minutes),
and meanwhile most of these trajectory points are concen-
trated around the same GPS location, we regard that this
e-taxi driver charges his e-taxi at this charging station.

3.2.1 Long Charging Duration

As shown in Fig. 2, there exist 20 percent of the e-taxi drivers
who have to spend more than 158 minutes in one day to
charge their e-taxis. Such a long charging duration of an e-taxi
in one day is almost 20 times longer than the daily refueling
time of a gasoline taxi [36], which inevitably results in the
missing of numerous order-serving opportunities.Worse still,
as shown in Fig. 3, apart from the driving time to charging sta-
tions, we can observe that 80 percent of the charging activities
cost between 20 to 65 minutes. Thus, without a meticulously
designed charging recommendation system, e-taxi drivers
have to rely on their personal experience to appropriately
schedule their charging activities on when, where, and how
long to charge their e-taxis so as to reduce the loss of income.

3.2.2 Sparse and Uneven Distribution of Charging

Stations

After delivering passengers to their destinations, an e-taxi
driver could make a decision on whether to charge his e-taxi
or not. Based on our datasets, we calculate the straight line
distance from each e-taxi’s location to the nearest charging
station at the time when the e-taxi driver finishes serving an
on-going order. As shown in Fig. 4, we can observe that there
exist 20 percent of the e-taxi drivers who have to drive more
than 2.5 kilometers to the nearest charging station in the
urban area of Shenzhen. Even worse, in the suburban area of
Shenzhen, there are 20 percent of the e-taxi drivers who have
to drive more than 6 kilometers to the nearest charging sta-
tion. Besides, it is also worth noting that the result shown in
Fig. 4 is about the straight line distance to the nearest

TABLE 1
An Example of One Piece of Data From Each of Our Datasets

GPS Trajectory plateID longitude latitude time status
BB3296 113.611870 22.616850 2017-06-01 08:11:27 1

Transactions plateID pickup time dropoff time price (CNY) distance (m)
BN1950 2017-06-01 21:48:59 2017-06-01 22:09:21 35.0 4421

Charging Station stationID longitude latitude # of fast # of slow
26 114.131409 22.648233 8 12

Fig. 1. Order distributions in Shenzhen during three different time periods.

WANG ET AL.: JOINT CHARGING AND RELOCATION RECOMMENDATION FOR E-TAXI DRIVERS VIA MULTI-AGENT MEAN FIELD... 1277

Authorized licensed use limited to: Purdue University. Downloaded on August 28,2022 at 04:39:40 UTC from IEEE Xplore.  Restrictions apply. 



charging station, which is a lower bound of the actual driv-
ing distance. In fact, e-taxi drivers have to drive for a much
longer distance when heading to a charging station. There-
fore, our observations from Fig. 4 indicates that charging sta-
tions are sparsely and unevenly distributed in practice.

3.2.3 Heavy Congestion at Charging Stations

Though there exist 164 charging stations in Shenzhen, we
can observe that 80 percent of the charging activities happen
in only 37 charging stations, as shown in Fig. 5. Unfortu-
nately, these 37 charging stations are not equipped with suf-
ficient charging posts. As shown in Figs. 6 and 7, the
number of the charging activities in both of two different
time periods (i.e., 8:00-10:00 and 19:00-21:00) is much larger
than that of the charging posts at these charging stations. As
a result, there must be a considerable number of e-taxi driv-
ers waiting for charging and suffering from the heavy con-
gestion at the charging stations.

3.2.4 Summary of Data-Driven Analysis

From our data-driven analysis, we find out that e-taxi drivers
are suffering from the long charging duration and heavy con-
gestion at charging stations, as well as sparse and uneven

distribution of charging stations. These inefficient charging
problems directly harm the experience of e-taxi drivers and
indirectly reduce the time that can be spent in serving orders.
With the existence of the above charging problems, it is of
vital importance to help e-taxi drivers make proper charging
decisions so as to ensure the satisfactory experience for
them. Therefore, in this paper, we integrate charging deci-
sions into relocation recommendations and design a recom-
mendation system that jointly schedules charging and
relocation decisions for the benefit of e-taxi drivers.

4 PROBLEM DESCRIPTION

We consider a fleet of N e-taxis, denoted as I ¼ f1; . . . ; Ng,
distributed in a city-scale area. In our model, the time hori-
zon is discretized into equal-length time steps, and the
entire city is divided into equal-size square grids.

In this paper, we take the perspective of e-taxi drivers
and aim to design a charging and relocation recommendation
system for e-taxi drivers (CARE). CARE will instruct each e-
taxi in every time step to travel to reasonable locations to
either serve orders or charge their batteries, as shown in

Fig. 2. CDF of the total charging duration of an e-taxi in one day.

Fig. 3. CDF of the charging duration of an e-taxi for one time of charging.

Fig. 4. CDF of the distance between an e-taxi and the nearest charging
station when it finishes serving an order.

Fig. 5. CDF of the number of charging stations where charging activities
concentrate on.

Fig. 6. Number of charging activities at the charging stations during
8:00-10:00.

Fig. 7. Number of charging activities at the charging stations during
19:00-21:00.
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Fig. 8. Making such recommendations for an e-taxi driver
could be treated as a sequential decision making problem that
aims to maximize the driver’s long-term cumulative reward.
Besides, e-taxi drivers in fact work in a non-cooperative para-
digm, where each individual e-taxi driver attempts to maxi-
mize his own reward. Thus, we model the e-taxis’ decision
making process as a non-cooperative Markov game [37],
referred to as the CARE game, defined in Definition 1.

Definition 1 (CARE Game). The CARE game is a Markov
game defined by the following components.

� Agent: The CARE game has the set of e-taxis I as
agents.

� State: A state s of the CARE game consists of the cur-
rent time step t, as well as the numbers of orders,
agents, and available charging posts in each grid. All
states of the CARE game constitute the state space S.

� Observation: At every time step t, each agent i 2 I
receives a local observation oi consisting of its current
grid, battery level, and an indicator that shows if it is
serving an order. All possible observations constitute
the observation space O.

� Action: At every time step t, each available agent i
(i.e., an e-taxi not serving any order) takes an action ai
that indicates whether it stays in the current grid or
moves to one of the neighboring ones, and whether it
serves an order, charges its battery, or simply stays in
its next grid. We denote agent i’s action space as Ai,
and the joint action space as A ¼ A1 � � � � � AN .

� Policy:Given observation oi, agent i’s policy pi specifies
a probability piðaijoiÞ, with which it takes each action
ai 2 Ai.

� State Transition: Given state s and agents’ joint
action a ¼ ða1; . . . ; aNÞ, the current state s transitions
to state s0 according to the probability5 P ðs0js; aÞ.

� Reward: At time step t, given state s and agents’ joint
action a, each agent i’s immediate reward is denoted as
ri;tðs; aÞ 2 f0; 1g which represents the number of
orders served by agent i in the current time step, and it
seeks to maximize its long-term cumulative reward,
denoted as Ri ¼ E

�P1
t¼0 a

tri;t
�
, where a 2 ð0; 1Þ is

the discount factor.

Note that the CARE game is non-cooperative in nature
where each agent maximizes his own reward, and thus the
credit-assignment problem that oftentimes arises in multi-
agent reinforcement learning [38] is naturally avoided. As
the state transition and reward functions of the CARE game
is a priori unknown in real practice, we propose to train each
agent’s reward-maximizing policy via our novel multi-agent
reinforcement learning framework elaborated in Section 5.

5 PROPOSED MFHRL FRAMEWORK

In this paper, we propose to address the CARE game and
generate the reward-maximizing recommendations for e-
taxi drivers via our multi-agent mean field hierarchical rein-
forcement learning (MFHRL) framework. The rest of this sec-
tion first gives an overview of the proposed MFHRL
framework and then describes in detail its manager and
worker modules.

5.1 Framework Overview

In a real-world e-taxi environment, it is oftentimes neces-
sary for an agent to take far-sighted actions such as charging
and relocating to a distant location with potential order-
serving opportunities, which are beneficial to the agent in
the long run. However, in practice, a considerable amount
of time usually has to be spent in the process of charging
and relocating to a distant location, during which the agent
will receive no immediate reward. Without immediate extrin-
sic incentives, the agents who aim to learn the reward-maxi-
mizing policies will barely explore the above charging and
relocating actions, and thus can not learn effective policies
to take these actions, even though these actions are benefi-
cial to e-taxi drivers in the long run. Such a phenomenon
that arises in our e-taxi environment corresponds to the
notorious sparse-reward challenge in reinforcement learning
[5], [18], which hinders traditional reinforcement learning
approaches [26], [27] from effectively learning to take the
aforementioned far-sighted actions.

To address this challenge, as shown in Fig. 9, each agent
adopts a hierarchical MFHRL framework consisting of a
manager module and a worker module similar to the existing
FeUdal Networks (FuN) [5]. In MFHRL, the manager oper-
ates at a lower temporal resolution and can always look ahead
for a fixed number of time steps. Hence, the manager is

Fig. 8. An example of the recommendations made by CARE over 3 time steps, where the number at the bottom right corner of each grid represents
its index. In this example, at time step 1, CARE recommends e-taxi 1 to charge in grid 2, e-taxi 2 to serve an order in grid 5, e-taxi 3 to move to grid
10, and e-taxi 4 to move to grid 8. At time step 2, CARE recommends e-taxi 3 to charge in grid 11, and e-taxi 4 to serve an order in grid 12. E-taxi 2
and 4 take a passenger at time step 2 and 3 respectively, and start traveling to the corresponding destinations.

5. Note that such randomness in state transition is caused by factors
including stochastic order arrivals, etc.
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empowered with the ability to set goals to the worker and
reward the worker for following the goals. Thus, the goals
set by the manager could intrinsically guide the worker’s
decisions towards favorable directions. In contrast, the
worker operates at a higher temporal resolution and outputs
the agent’s action, under a policy trained via both the intrin-
sic rewards set by the manager and extrinsic rewards
obtained from the environment. As a result, such a hierar-
chical framework could better facilitate an agent to take far-
sighted actions when necessary.

Besides, as agents may compete for the same charging or
order-serving opportunities, their actions will naturally be
affected by the others. In order to capture such mutual influ-
ences in a city-scale e-taxi environment with usually thou-
sands of agents, we integrate each of the two hierarchical
levels separately with the mean field approximation [6]. For
each agent, such a method approximates other agents’ influ-
ences on it with only the average effect of the agents in its
neighborhood. Specifically, we design a mean action to rep-
resent the aforementioned average effect. As the worker
focuses on a short time interval, its mean field approxima-
tion only considers the mean action of the agents within its
near neighborhood. In contrast, the mean field approxima-
tion in the manager module considers the mean action of
the agents in a broader area reachable by the agents within
the time interval covered by the manager, which helps cap-
ture the influences of other agents’ far-sighted actions. The
design details for the mean action are given in the following
Sections 5.2.2 and 5.3.2.

To obtain the mean action, we adopt the framework of
centralized training with decentralized execution [39],
allowing an agent’s policy to use the mean action as one of
its inputs to ease the training. However, such mean action
information is not used during the execution process. To
achieve this end, we employ an advantage actor critic (A2C)

framework [39], [40] and only integrate the mean action into
the critic’s input.

The design details for both the manager and worker
modules are given in the following Sections 5.2 and 5.3.

5.2 Manager Module

5.2.1 Architecture

As shown in Fig. 9, at each time step t, the inputs of each
agent i’s manager module include its observation oi;t, and the
mean action of the agents in the manager’s neighborhood,
denoted as mi;t. The observation oi;t is then fed into an MLP,
which outputs an intermediate state representation xi;t.

In order to enable the manager to operate at a lower tem-
poral resolution, we adopt the dilated LSTM (dLSTM), which
maintains an array ðhi;0; hi;1; . . . ; hi;c�1Þ to store c historical
hidden states given a dilation radius c 2 Zþ. The dLSTM
takes xi;t and hi;t%c as its input. Apart from an updated
value of hi;t%c, the dLSTM outputs the goal gi;t that corre-
sponds to time step t, which can be considered as an
instruction to the worker’s actions in the following c time
steps. Then, the manager concatenates c� 1 previous goals
gi;t�cþ1; . . . ; gi;t�1 with gi;t. Finally, the concatenated vector is
passed to the worker as its input. The reasons for such con-
catenation are two-fold. On one hand, these c� 1 previous
goals still contain the information that can be used to
instruct the worker’s actions at time step t. On the other
hand, since the goal should be consistent and stable for at
least a few time steps, such concatenation can make the goal
delivered from the manager to the worker more consistent
with the previous one.

In our MFHRL framework, the aforementioned dLSTM
acts as the actor of agent i’ manager, which outputs gi;t in
each time step t as its action. Furthermore, the mean action
mi;t, and the intermediate state representation xi;t are
concatenated and used as the input of the manager’s critic.

5.2.2 Mean Field Approximation

At time step t, the mean action mi;t that agent i’s manager
takes as input depends on the range of the neighborhood
considered by it. Clearly, the range should be defined as the
areas that influence how the manager sets the goals. Given
that the entire city is divided into equal-size square grids,
the manager’s neighborhood is thus a square area covering
all grids the agent can reach within c time steps6. That is, we
define the manager’s neighborhood as a square area with
ð2cþ 1Þ � ð2cþ 1Þ grids centered at the agent’s current grid.

In this paper, for each agent i, we propose to use the
order-agent gap and post-agent gap to capture the effect of
other agents on it. Specifically, in each grid of the agent’s
neighborhood, the former refers to the gap between the
number of orders and that of the agents willing to serve
orders, and the latter refers to the gap between the number
of available charging posts and that of the agents willing to
charge. That is, mi;t is a 2� ð2cþ 1Þ � ð2cþ 1Þ dimensional
vector that contains the order- and post-agent gaps in all
grids of agent i’s neighborhood. However, in real practice,

Fig. 9. The MFHRL framework of an agent (with the star indicating the
location of the agent).

6. We assume in this paper that within one time step an agent could
either stay in its current grid or move to one of the eight neighboring
grids.
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an agent cannot directly obtain the order- and post-agent
gaps in order to calculate such mean action. As previous
mentioned in Section 5.2.1, we utilize the mean action only
in the training process but not in the execution process.
Thus, the mean action mi;t will only be used as an input of
the manager’s critic. The detailed training process is given
in the Section 6.

5.3 Worker Module

5.3.1 Architecture

The architecture of the worker is presented in Fig. 9. At each
time step t, each agent i’s worker takes the local observation
oi;t and the mean action wi;t of the agents in its neighbor-
hood as the inputs. As the manager module, an MLP is
designed to transform the observation oi;t into an intermedi-
ate state representation zi;t.

The mean action wi;t concatenated with zi;t is used as the
input of the critic. Different from the manager module, the
worker operates at a higher temporal resolution, and only
considers its action at the current time step. We thus adopt
a standard LSTM in the worker module. Specifically, the
hidden state hi;t�1 of the previous time step t� 1, and the
intermediate state representation zi;t are fed to the LSTM,
which outputs Ui;t and the updated hidden state hi;t.

Similar to in the manager module, the LSTM acts as the
worker’s actor in ourMFHRL framework, which outputs Ui;t

as the preliminary action of the worker. The c concatenated
goals delivered from the manager is transferred to Gi;t

through anMLP. In order to incorporate the influences of the
goals set by manager, Ui;t is further multiplied with Gi;t and
fed through a softmax layer to obtain agent i’s’ final policy
pi;t (i.e., a probability distribution over agent i’s action space
Ai). When interacting with the environment, agent i takes
action ai;t according to the policy pi;t and receives a reward,
denoted as ri;t, from the environment.

5.3.2 Mean Field Approximation

Similar to Section 5.2.2, we define the range of the neighbor-
hood considered by the worker as the area that influences
its actions. More concretely, such a neighborhood is a
square area covering all the grids that the agent can reach in
one time step, i.e., 3� 3 grids centered at the agent’s current
grid. Besides, the order-agent gap and post-agent gap are
also used in the worker module to depict the influences of
other agents. Thus, wi;t is a 2� 3� 3 ¼ 18 dimensional vec-
tor consisting of the above gaps in the worker’s neighbor-
hood. As the manager module, centralized training with
decentralized execution is also adopted for the worker mod-
ule, and only the worker’s critic takes the mean action wi;t as
one of its inputs.

6 PROPOSED TRAINING METHOD

In this section, we describe in detail our method to train the
manager and worker modules.

6.1 Training the Manager Module

In the trainingprocess, at each time step t, the actor of agent i’s
manager (i.e., dLSTM) takes xi;t and hi;t%c as the inputs, and
outputs gi;t as its action. The mean action mi;t concatenated

with xi;t is fed into the manager’s critic, which outputs the
mean field value, denoted as Vi;t ¼ Vfiðxi;t;mi;tÞwhere fi rep-
resents the value function’s parameters. After agent i receives
the reward ri;t, it stores the tuple di;t ¼ ðxi;t;mi;t; gi;t; ri;tÞ in a
replay buffer D. We train the critic of agent i’s manager by
minimizing the loss given in the following:

LðfiÞ ¼ Edi;t�D
Xc�1

l¼0

alri;tþl þ acVi;tþc � Vi;t

 !2
24 35: (1)

Instead of traditional policy gradient, we adopt the tran-
sition policy gradient [5] method to train the manager’s actor.
Such method calculates the transition policy gradient on the
actor as the following:

rui gi;t ¼ Am
i;truid cos

�
xi;tþc � xi;t; gi;tðuiÞ

�
; (2)

where ui denotes the parameters of the actor network of
agent i’s manager, d cos ða; bÞ denotes the cosine similarity
between two vectors a and b and Am

i;t ¼ RE
i;t � Vi;t represents

the manager’s advantage function. RE
i;t ¼

P1
l¼0 a

lri;tþl is the
cumulative discounted extrinsic rewards that the agent
obtains from the environment.

6.2 Training the Worker Module

Clearly, the goals set by the manager could lead the worker
to be foresightful and take actions that benefit the agent’s
long-term rewards. Thus, in order to encourage the worker
to take actions following the guidance of the goals, we intro-
duce the intrinsic reward rIi;t given in the following:

rIi;t ¼
1

c� 1

Xc�1

l¼1

d cos xi;t � xi;t�l; gi;t�l

� �
: (3)

In the training process, agent i aims to maximize a weighted
sum of the extrinsic and intrinsic rewards Ri;t ¼ RE

i;t þ �RI
i;t,

where � 2 ½0; 1� is a hyper-parameter that controls the
degree of incentivizing the worker to follow the guidance of
the goals. RI

i;t ¼
P1

l¼0 a
lrIi;tþl is the cumulative discounted

intrinsic rewards that the manager rewards the agent for
following the goals.

Similar to the manager module, agent i’s worker takes zi;t
and hi;t�1 as inputs and outputs the policy pi;t. The mean
action wi;t concatenated with zi;t is taken by the worker’s
critic as input, which then outputs the mean field value,
denoted as Ji;t ¼ J’iðzi;t; wi;tÞ, where ’i represents the value
function’s parameters. After taking action ai;t according to
the policy pi;t, agent i receives the reward ri;t at time step tþ
1. We then use a replay buffer B to store the tuple bi;t ¼
ðzi;t; wi;t; ai;t; ri;t; r

I
i;tÞ.

The worker’s critic aims to minimize the loss function
given in the following:

Lð’iÞ ¼ Ebi;t�B ri;t þ �rIi;t þ aJi;tþ1 � Ji;t

� �2� 	
: (4)

Furthermore, the actor of the worker is updated by using
the policy gradient given in the following:

r#ipi;t ¼ Aw
i;tr#i logpi;tðai;tjzi;tÞ; (5)
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where #i denotes the parameters of the worker’s actor net-
work, and Ai;t ¼ RE

i;t þ �RI
i;t � Ji;t is the worker’s advantage

function.

6.3 Overall Training Algorithm

In this section, we present the overall training algorithm of
MFHRL in the following Algorithm 1.

Algorithm 1. Training Algorithm of MFHRL

1 Initialize each agent i’s parameters fi, ui, ’i, and #i;
2 while training not finished do
3 foreach time step t from 1 to T do
4 foreach agent i do
5 The manager computes xi;t based on oi;t;
6 The manager generates gi;t based on xi;t;
7 The worker computes zi;t based on oi;t;
8 The worker generates ai;t according to pi;t;
9 The agent takes the action ai;t and observes ri;t;
10 Each agent i computesmi;t, wi;t, and rIi;t;
11 Store each agent i’s ðxi;t;mi;t; gi;t; ri;tÞ into the replay

buffer D;
12 Store each agent i’s ðzi;t; wi;t; ai;t; ri;t; r

I
i;tÞ into the replay

buffer B;
13 foreach agent i do
14 Compute Vi;t and Ji;t for time step t from 1 to T ;
15 SampleK experiences from D and B jointly;
16 Update the manager’s critic using Equation (1);
17 Update the worker’s critic using Equation (4);
18 Update the manager’s actor using Equation (2);
19 Update the worker’s actor using Equation (5);

As long as the training of MFHRL has not converged, the
algorithm first collects the experiences from each agent and
store them in replay buffers (line 3-12). At time step t that is
smaller than a predefined threshold T , each agent i gets
observation oi;t from the environment. The agent’s manager
computes the intermediate state representation xi;t and
yields the goal gi;t (line 5-6). The worker then computes the
intermediate state representation zi;t (line 7), and outputs
the action ai;t according to the generated policy pi;t (line 8).
Next, the agent takes the action ai;t and observes the reward
ri;t from the environment (line 9). After that, each agent cal-
culates the mean action mi;t and wi;t for the manager and
worker respectively (line 10). Agents’ experiences are then
stored in replay buffers D and B for later training processes
(line 11-12). After that, the algorithm enters the parameter
updating process (line 13-19). For each agent i, the algo-
rithm calculates its mean field values Vi;t and Ji;t for all the
time step t from 1 to T (line 14). Then, the algorithm samples
K experiences from the replay buffer D and B jointly (line
15). Finally, the parameters of the manager’s and worker’s
actor and critic networks are updated (line 16-19).

Note that the worker and manager modules are trained
separately in Algorithm 1. Although the goals delivered
from the manager influence the action taken by the worker
and the agent’s extrinsic reward, there is no gradient trans-
ferred from the worker to the manager.

Moreover, it is also worth noting that the critic only uses
the mean action information related to the policies of other
agents in the training process. As long as training is com-
pleted, only the actor of each agent is employed in the

execution process, which does not need themean action as its
input and operateswith only the agent’s local observation.

7 EXPERIMENT

In this section, we first introduce the e-taxi simulator as well
as the baseline methods and the parameter settings in this
paper. Then, we evaluate the performance of the proposed
MFHRL framework on both the e-taxi driver and online
ride-hailing platform side.

7.1 Simulator Design

To support the training and evaluation of the proposed
method, we adopt and extend the grid-based simulator
designed by Lin et al. [26] to the simulator for the dynamic
urban environment of CARE.

In the grid-based simulator, we use a grid-world to rep-
resent the Shenzhen city. Specifically, the coordinate of the
south-west corner of the grid-world is (latitude=22.44791,
longitude=113.72469). And the coordinate of the north-
east corner is (latitude=22.88723, longitude=114.53818).
Given the boundary of the grid-world, we divide the
Shenzhen city into 23� 42 grids. After cleaning the invalid
grids, e.g., the grid located in the lake, the city is covered
by 702 square grids. Given GPS locations of the orders, e-
taxis, and charging posts, we map these into the grids and
use the grid ID to represent the location information. The
driving distance between the neighbor grids is approxi-
mately 2 kilometers. And the time step is defined as 10
minutes [3].

We assume that the initial battery level of all e-taxis is
as full at the first time step, and consider the battery con-
sumption model as a function of the driving distance [1].
After that, at each time step, the agents’ actions decide the
distribution and battery levels of e-taxis in each grid. Like-
wise, we assume that all fast and slow charging posts are
available for the first time step. At each time step, the
agents’ actions also decide the number of available fast
and slow charging posts in each grid. More concretely, if
e-taxi drivers decide to charge their e-taxis in one grid, we
always first allocate available fast charging posts to e-taxis
in a random manner. The rest e-taxi drivers who are will-
ing to charging their e-taxis have to use the rest of the
available slow charging posts. During one time step, the
battery level of an e-taxi is increased by 25 percent via
charging at the fast charging post. In contrast, charging at
the slow charging post can only increase the e-taxi’s bat-
tery level by 8 percent. Besides, by the definition of the
action in Section 4, the e-taxi driver has to release the
charging posts after charging for one time step.

For the order generation, we generate the orders by boot-
strapping from the real-world order dataset introduced in
Section 3.1 at each time step and remove the orders that are
not served at the previous time step from the environment.
For the order dispatching, since it is not the focus in this
paper, if the e-taxis take actions and choose to serve orders,
we allocate the orders for them in a random manner. When
an e-taxi is serving an order, it is regarded as an unavailable
agent for the simulator who cannot take the next action until
it arrives at the order destination.
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7.2 Baselines and Parameter Setting

7.2.1 Baselines

Since there is no existing work studying the charging and
relocation recommendation system for a fleet of e-taxis, we
take the widely used reinforcement learning frameworks as
baselines. The details of these baselines are described as
follows:

� Rule-Based Method: The heuristic policy in the rule-
based method is that all the e-taxis move around ran-
domly and aim to serve for orders as many as possi-
ble. Besides, we set the threshold of the battery level
as 20 percent. If the battery level of an e-taxi is lower
than this predefined threshold, it will be driven to
the nearest charging station and charge its battery
level to the full.

� Independent A2C: The independent A2C framework
has been used in [26] for the multi-agent environ-
ment. More concretely, the agent in this independent
A2C framework only takes its own local observation
and action as the input of its critic. In our experi-
ments, we use the RMSProp optimizer with a learn-
ing rate of 0.0001 for both the critic and the actor.
The discounted factor a is set as 0.99.

� Mean Field A2C: Yang et al. [6] proposed the state-of-
the-art mean field actor-critic framework. In this
paper, we extend it to the mean field A2C frame-
work. The definition of the mean action is the same
as that in Section 5.3. We use a vector in the dimen-
sion of R1�18 to record the mean action and integrate
the mean action with the agent’s observation and
action into the critic’s input. The hyper-parameters
used in the mean field A2C framework are the same
as those used in the independent A2C framework.

� HRL:We also take theHierarchical Reinforcement Learn-
ing (HRL) in [5] as a baseline method. As described in
Section 5.1, each agent involves two hierarchical mod-
ules: the manager and the worker. We set the hyper-
parameter � ¼ 0:1 and the dilation radius c ¼ 3. The
RMSProp optimizer with a learning rate of 0.0003 is
adopted for both the manager and the worker mod-
ules. The discounted factors for the manager and the
worker are set as 0.999 and 0.99, respectively. Since
HRL is designed for the single-agent environment,
the agent in the HRL framework only takes its own
local observation and action as the input.

7.2.2 Parameter Setting of MFHRL Framework

We set the dilation radius in our proposed MFHRL frame-
work as c ¼ 3. So the vector that records the mean action for
agent i’s manager is mi;t 2 R1�98 at time step t. The vector
that records the mean action in the worker’s neighborhood
is wi;t 2 R1�18. The rest of the hyper-parameters used in the
MFHRL framework are the same as those in the HRL
framework.

7.3 Performance Evaluation on the E-Taxi
Driver Side

In this subsection, we consider two different charging station
scenarios, i.e., the real-world charging station scenario and
the fast charging post scenario. In each scenario, we consider
three different cases in which the order numbers are set as
50, 100, and 150 percent of the order number in the real-
world order dataset, respectively. The adoptedmetric here is
the number of the served orders in one day. The whole time
horizon used in the experiments is around onemonth.

7.3.1 Real-World Charging Station Scenario

In the real-world charging station scenario, there are two
types of charging posts: the fast charging post and the slow
charging post. The fast charging post takes only 40 minutes
to get an e-taxi fully charged while the slow charging post
needs to take 120 minutes7. The experimental results in the
real-world charging station scenario are shown in Fig. 10.
We can observe that the proposed MFHRL framework per-
forms the best. The reasons can be described as follows.

For the case in which the order number is 50 percent of
the order number in the real-world order dataset, how to
find the sparse orders is one of the major challenges for the
agents. Due to the hierarchical structure, the agents with the
MFHRL and HRL framework can always take far-sighted
relocation actions to drive across a few grids and precisely
find the potential orders. Hence, MFHRL and HRL outper-
form the rest of the baselines, as shown in Fig. 10a. Besides,
in our design, the mean field approximation in the manager
and worker module can capture the possible influences of
other agents’ charging and relocation actions. In contrast,
HRL, which is mainly designed for a single-agent setting,
fails to capture such influences. Therefore, the proposed
MFHRL framework performs the best in this case.

Fig. 10. CDF of the number of orders served by an e-taxi driver in the real-world charging station scenario.

7. https://www.byd.com/
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With the number of orders increases, the agents probably
can serve more orders but consume more battery at the
same time. Given the limited number of charging posts,
competitions for the charging opportunities will be intensi-
fied. Additionally, the agents may still compete for the
same order-serving opportunities. Hence, how to incorpo-
rate the agents’ mutual influences in the decision making
process becomes crucial for all agents. In our design, we
integrate each hierarchical level of MFHRL separately with
the mean field approximation to incorporate e-taxis’ mutual
influences in decision making. The agents with the MFHRL
framework can capture the possible influences caused by
other agents’ far-sighted actions. At the same time, they can
also effectively avoid unnecessary local competitions. Thus,
as shown in Figs. 10b and 10c, the proposed MFHRL frame-
work still performs the best.

Moreover, we can observe in Figs. 10 that A2C and
MFA2C cannot achieve good performance in all the three
cases in the real-world charging station scenario. This is
mainly because the two methods cannot effectively guide
the agents to take far-sighted actions due to the lack of a
hierarchical structure. More specifically, we find out that
A2C and MFA2C scarcely instruct the agents to charge their
e-taxis in advance to avoid charging during the time steps
with more order-serving opportunities. As a result, A2C
and MFA2C fail to learn effective charging policies.

7.3.2 Fast Charging Post Scenario

With the rapid development of charging technology, the
slow charging posts will be finally replaced by the fast
charging posts in the future [10]. In this experiment, we con-
sider a scenario in which there are only fast charging posts,
and we achieve this by replacing all the slow charging posts
with the fast charging ones. The experimental results in the
fast charging post scenario are shown in Fig. 11. Even
though the charging time is greatly reduced in this scenario,
we can still observe in Fig. 11 that the proposed MFHRL
framework performs much better than all the baselines.

In Fig. 11, it is worth noting that the performance of the
rule-based method is close to that of MFA2C in all three
cases. Worse still, the performance of A2C is even worse
than that of the rule-based method. This result demon-
strates that due to the lack of a hierarchical structure, the
policies learned by A2C and MFA2C in an urban e-taxi
environment are even less effective than the heuristic poli-
cies set by the rule-based method.

In contrast, as shown in Fig. 11, HRL and MFHRL can
still perform much better than the rest of the baselines. This
is mainly because the hierarchical structure of HRL and
MFHRL can enable agents to learn effective charging and
relocation policies. Furthermore, we can observe that the
performance of MFHRL is also much better than that of
HRL. The reason is that the mean-field approximation in
the manager and worker module can effectively incorporate
e-taxis’ mutual influences in decision making.

7.3.3 Case Study

We conduct case studies to further evaluate the perfor-
mance of the proposed MFHRL and demonstrate the effec-
tiveness of the charging and relocation policies derived by
MFHRL. Considering that all agents have the same initial
state at the first time step, we use this state as the initial state
in our case study and evaluate the one-day performance.

As shown in Fig. 16a, we can observe that MFHRL and
HRL outperform the rest of the baselines. The reason is that
the hierarchical structure of MFHRL and HRL enables the
agents to oftentimes take far-sighted relocation actions to
precisely find the sparse orders. Even for the case in which
the order number is just 50 percent of the order number in
the real-world order data set, such a hierarchical structure
can still ensure a steady increase in the average cumulative
rewards as time passes.

As the total number of orders in the scenario increases,
the competitions on the same order-serving opportunities
are intensified. As shown in Fig. 12, it is worth noting that
the performance gap between our proposed MFHRL and
the baselines is also amplified. More concretely, we can
observe that, for the performance of MFHRL, the average
number of served orders by one e-taxi driver is 29, 38, and
43 for the cases of 50, 100, and 150 percent of the real-world
orders. In contrast, the performance of HRL almost keep
unchanged in three cases. The average number of served
orders in three cases is around 28. The reason is that, com-
pared with the policies of HRL, the policies of our proposed
MFHRL takes account of mutual influences among agents.
Hence, the agents who follow the recommendations pro-
vided by the MFHRL can effectively deal with the intensive
competitions and avoid unnecessary competitions on the
same order-serving opportunities.

Besides, as shown in Fig. 12, we can observe that, for the
performance of MFA2C, the number of served orders
increases from 17 shown in Fig. 16a to 23 shown in Fig. 12c.

Fig. 11. CDF of the number of orders served by an e-taxi driver in the fast charging post scenario.
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However, such a performance is much worse than that of
MFHRL. The reason is two-fold. On one hand, due to the
hierarchical structure, MFHRL can enable agents to learn
far-sighted charging and relocation actions to explore the
available charging posts and orders. On the other hand,
instead of merely concentrating on the local competition as
MFA2C does, apart from the local mutual influences, the
policies of our proposed MFHRL also consider the mutual
influences caused by the other agents’ far-sighted actions.

Moreover, we can observe in Fig. 12 that our proposed
MFHRL can ensure a steady increase in the average cumula-
tive rewards for all three cases in a real-world charging sta-
tion scenario. One of the primary reasons is on the charging
policy learned by the MFHRL. To analysis the learned
charging policy, we redefine the charging activity in this
section. For details, if an agent takes a charging action and
successfully charges his e-taxi at the charging station, we
regard such a process as a charging activity. Based on the e-
taxi simulator described in Section 7.1, each charging activ-
ity in this section will last for 10 minutes.

From Fig. 13, we can observe that the number of charging
activities taken by the agents of MFHRL is the largest. The
first reason is that the charging policy learned by theMFHRL
can avoid unnecessary competitions and grasp every avail-
able charging opportunity. Hence, when taking a charging
action, the agent of MFHRL has the highest probability to
successfully charge his e-taxi. In addition, charging policy
learned by MFHRL can oftentimes guide the agent to take a
far-sighted charging action. More concretely, instead of only
charging the e-taxis when its battery is running low, the
agents of MFHRL can oftentimes charge their e-taxi in
advance. For details, when charging activities happen, the

average remaining battery levels of agents of MFHRL are
49.23, 44.17, and 37.17 percent for the cases of 50, 100, and
150 percent of the order numbers, respectively. Furthermore,
we also find out that the charging policy learned by MFHRL
can often choose the reasonable charging time step to avoid
charging during the time steps with more order-serving
opportunities.

In contrast, the charging policies of the baselines are not as
effective as that of our proposed MFHRL is. For the HRL
framework, since the learned charging policy does not incor-
porate agents’ mutual influences in decision making, the
probability that the agent of HRL can successfully charge his
e-taxi when taking a charging action is just 65.31 percent. As
shown in Fig. 13, the number of charging activities taken by
the agents of HRL is much smaller than that taken by the
agents of MFHRL. Besides, in our simulator, when an e-taxi
depletes its battery in a grid, the e-taxi driver has to stay at
that location forever and thus cannot obtain any reward
afterwards. To avoid depleting the battery, the agent of A2C
learns a conservative charging policy, which frequently
guides the agent of A2C to charge his e-taxi, as shown in Fig
13. Such a conservative charging policy greatly reduces the
order-serving duration. Therefore, we can observe that the
performance of A2C is evenworse than that of the rule-based
method, as shown in Fig. 12c.

Figs. 14 and 15 show the experimental results on average
cumulative rewards and the number of charging activities
in a fast charging scenario. It is worth noting that due to the
effective charging and relocation policy, our proposed
MFHRL also keeps a steady increase in the average cumula-
tive rewards in a fast charging post scenario. Additionally,
in Figs. 14 and 15, we can also observe that the average

Fig. 12. E-taxi driver’s average cumulative rewards within one day in the real-world charging station scenario.

Fig. 13. The number of charging activities in the real-world charging station scenario.
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cumulative rewards of MFHRL at the end of the day have
greatly surpassed that of other baselines.

7.4 Performance Evaluation on the Online
Ride-Hailing Platform Side

Nowadays,most taxi drivers are the users of online ride-hail-
ing platforms, such as Uber and Didi Chuxing. Thus, our
proposed recommendation system CARE can be imple-
mented on these platforms and used to boost the experience
of e-taxi drivers. In this subsection, we show that, apart from
the improvement of e-taxi drivers’ experience, the proposed
MFHRL framework can also ensure satisfactory global
rewards for the platforms. In Section 7.3, we evaluate the per-
formance in two different charging station scenarios with
three different order-number cases. More specifically, the
adopted metrics here are Order Response Rate (ORR) and
Gross Merchandise Volume (GMV). These two metrics are the

major objectives of online ride-hailing platforms. ORR is
defined as the ratio between the number of served orders
and that of all the orders received by the platforms. GMV
represents the total incomes obtained from the served orders.

Tables 2 and 3 show the relative differences between the
GMV (and ORR) of the corresponding reinforcement learn-
ing framework and that of the rule-based method for the
two scenarios. We can observe that our proposed MFHRL
on both GMV and ORR performs much better than that of
other reinforcement learning frameworks. The reasons are
as follows. First of all, the proposed MFHRL incorporates
other agents’ mutual influences in decision making. Thus,
such a framework can avoid unnecessary competitions on
the same charging and order-serving opportunities among
a fleet of e-taxis. Second, instead of using virtual rewards to
motivate agents to balance the demand-supply gap for the
online ride-hailing platforms [27], the agents of MFHRL can
spontaneously find the potential demand-supply gaps and
drive across a few grids to serve orders so as to maximize

Fig. 14. E-taxi driver’s average cumulative rewards within one day in the fast charging post scenario.

Fig. 15. The number of charging activities in the fast charging post scenario.

TABLE 2
Performance Comparison in the Real-World

Charging Station Scenario

50% 100% 150%

GMV ORR GMV ORR GMV ORR

A2C 10.39% 7.26% 7.73% 1.75% 0.14% �6.57%
MFA2C 27.55% 19.02% 17.63% 7.60% 9.94% �0.36%
HRL 59.75% 44.65% 55.91% 40.35% 31.92% 21.53%
MFHRL 85.16% 69.65% 94.81% 73.39% 88.54% 67.88%

This table reports the relative differences between the GMV (and ORR) of the
corresponding reinforcement learning framework and that of the rule-based
method.

TABLE 3
Performance Comparison in the Fast Charging Post Scenario

50% 100% 150%

GMV ORR GMV ORR GMV ORR

A2C �16.08% �18.65% �14.91% �14.36% �16.93% �12.00%
MFA2C 17.34% 17.06% 20.68% 13.52% 15.46% 9.45%
HRL 23.07% 16.67% 27.23% 21.97% 15.27% 20.36%
MFHRL 27.97% 32.54% 45.50% 32.68% 29.19% 37.09%

This table reports the relative differences between the GMV (and ORR) of the
corresponding reinforcement learning framework and that of the rule-based
method.
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their long-term reward. Last but not least, the charging pol-
icy learned by MFHRL can always choose the reasonable
charging time step to avoid charging during the time steps
with more order-serving opportunities. Therefore, although
our proposed MFHRL takes the perspective of e-taxi driv-
ers, it can still ensure a satisfactory global ORR and GMV.

7.5 Convergence of the Training Algorithm

During the training process, we consider that the training
algorithm of the proposed MFHRL framework achieves
convergence when the loss maintains a relatively small
value for at least 20 episodes. The losses considered in this
paper include the mean square error loss in Equations (1)
and (4) as well as the policy gradient loss in Equation (2)
and 5. Fig. 16 shows examples of the convergence of the pro-
posed algorithm in two different charging post scenarios
whose order number is set as 100 percent of the order num-
ber in the real-world order dataset. Specifically, we sum up
all the above losses in Equations (1), (2), (4), and (5) and cal-
culate the average value of the summation for each agent in
each step within one episode. As shown in Fig. 16, we use
the average training loss to represent the aforementioned
summation of losses. It is worth noting that, as shown in
both subfigures, the average training loss is smaller than 30
after 100 episodes. Thus, we consider that the training algo-
rithm has achieved the convergence in these two scenarios.

8 DISCUSSION

In this section, we first show that, apart from ensuring satis-
factory rewards for e-taxi drivers, our proposed recommen-
dation system CARE can greatly reduce their range anxiety
as well. Then, we discuss why CARE can be easily imple-
mented on the existing online ride-hailing platforms.

8.1 Reduction on Range Anxiety

Range anxiety [1] is the fear of an electric vehicle (EV) driver
that the battery of his vehicle is running low before reaching
the destination or an available charging post. Range anxiety
has been regarded as one of the primary barriers to the
wide deployment of EVs. Worse still, compared with pri-
vate EV drivers, e-taxi drivers have to drive for a longer
daily distance, which consumes more battery. Thus, range
anxiety is inevitably an issue faced by e-taxi drivers as well.

However, e-taxi drivers’ range anxiety could be greatly
reduced by simply following the charging recommendations
provided by CARE. The reasons are as follows. First, the
charging policy learned by MFHRL can oftentimes choose

the reasonable charging time steps and enable e-taxi drivers
to charge their e-taxis in advance to avoid charging during
the time steps with more order-serving opportunities. As
described in Section 7.3.3, when the e-taxi drivers follow the
charging recommendations of CARE, the average remaining
battery levels of these e-taxis are 49.23, 44.17, and 37.17 per-
cent for the cases of 50, 100, and 150 percent of the order
numbers in practice. Second, the charging policy learned by
the MFHRL has considered the mutual influences of other e-
taxis. Thus, when choosing a charging action, MFHRL
ensures the highest probability of choosing a charging sta-
tion with available charging posts among all the methods.
Last but not least, as described in Section 7.3.3, in our simula-
tor, when an e-taxi depletes its battery, the e-taxi driver can-
not obtain any reward afterwards, since he has to stay at that
location forever. Clearly, the reward-maximizing policy of
MFHRL has already been trained to avoid such an embar-
rassing situation.

8.2 Implementation on the Existing Online
Ride-Hailing Platforms

As described in Section 6.4, we show that the proposed
MFHRL framework can ensure a satisfactory reward for the
online ride-hailing platforms. In this section, we first give an
implementation overview of the proposed MFHRL frame-
work. Then, in this subsection, we will further discuss two
potential and practical implementation requirements of such
platforms and demonstratewhy our proposed recommenda-
tion systemCARE canmeet the requirements.

8.2.1 Implementation Overview

We adopt the framework of centralized training with decen-
tralized execution in this paper. As shown in Fig. 17, on the
online ride-hailing platform side, we implement the pro-
posed MFHRL training algorithm on its servers and train a
centralized MFHRL framework consisting of both manager
and worker modules by using the historical data. On the e-
taxi driver side, the ride-hailing platform’s application only
downloads the decentralized parameter-shared actor net-
works in the manager and worker modules, which takes the
e-taxi driver’s local observation as an input and outputs an

Fig. 16. The order number in the scenario is set as 100 percent of the
order number in the real-world order dataset.

Fig. 17. The implementation of MFHRL on the existing online ride-hailing
platforms.
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action as the recommendation. After the drivers take the
corresponding actions, the application will forward data on
their observations and actions to the database in the online
ride-hailing platform.

8.2.2 Implementation in Other Cities

The existing online ride-hailing platforms, such as Uber and
Didi Chuxing, focus on providing the worldwide service.
Hence, such platforms will naturally expect that our pro-
posed recommendation system CARE could be imple-
mented in the different dynamic urban environments and
meanwhile ensure the satisfactory performance. In this
paper, though we only use the real-world e-taxi datasets in
Shenzhen to set up the simulator, we evaluate the proposed
MFHRL framework in 6 different dynamic urban environ-
ments, which already cover a wide spectrum of real-world
scenarios. The experimental results show that the proposed
MFHRL framework can greatly outperform all baselines and
significantly increase the obtained rewards of e-taxi drivers.
Besides, the training process of the proposedMFHRL frame-
work for a new urban environment is not costly. In this
paper, we use one GTX Titan Xp GPU with 12 TFLOPS. The
training process of MFHRL under such an average hardware
settingwill cost at most one day.

8.2.3 Requirement on Running Time

After finishing the actions recommended by the online ride-
hailing platforms, the e-taxi drivers that use such platforms
expect to obtain the next recommendation shortly. Hence,
the online ride-hailing platforms generally have the require-
ment for the running time. In this paper, we adopt the frame-
work of centralized training with decentralized execution.
The size of the proposed MFHRL framework is 110 KB con-
sisting of 9 fully connected layers, 1 dilated LSTM, and 1
LSTM, as well as 1 convolutional neural network. During the
training process, the total number of the learnable parame-
ters in the MFHRL framework is 22275. In contrast, during
the execution process, we only employ decentralized param-
eter-shared actor networks. Thus, given the e-taxi driver’s
local observation as an input, the actor networks can output
an action as the recommendation at themillisecond level.

9 CONCLUSION

In this paper, to boost the user experience of e-taxis drivers,
we design a charging and relocation recommendation system
for e-taxi drivers, named as CARE.We take the perspective of
e-taxi drivers and formulate their decisionmaking as amulti-
agent reinforcement learning problem, where each e-taxi
driver aims to maximize his own cumulative rewards. To
solve this problem, we propose a novel multi-agent mean field
hierarchical reinforcement learning (MFHRL) framework. To the
best of our knowledge, MFHRL is the first multi-agent rein-
forcement learning framework that integrates hierarchical
reinforcement learningwithmean field approximation.More
specifically, the hierarchical architecture of MFHRL can set
goals for the agents to effectively learn far-sighted charging
and relocation decisions. Additionally, integrating each of
the two hierarchical levels separately with the mean field
approximation can effectively incorporate agents’ mutual

influences in decisionmaking. The extensive experiments are
conducted with one of the largest real-world e-taxi datasets,
which contains the GPS trajectory data and transaction data
of 3848 e-taxis from June 1st to June 30th, 2017, coupled with
165 charging stations including 317 fast charging posts and
1421 slow charging posts. We validate that the proposed
MFHRL framework can greatly outperform all baselines and
significantly increase the obtained rewards of e-taxi drivers.
Besides, we provide a solid discussion on the charging policy
learned by the MFHRL framework and illustrate that the
learned charging policy can effectively reduce the range anxi-
ety of e-taxi drivers. Furthermore, we also demonstrate that
the MFHRL framework can ensure a satisfactory reward for
online ride-hailing platforms. For the wide deployment of
our proposed recommendation system CARE, we discuss
CARE is readily implementable on the existing online ride-
hailing platforms.
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