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1. Introduction

Oscillatory differential equations have often been used to model oscillatory phenomena in various fields of applied sci-
ences such as celestial mechanics [9], molecular dynamics [30], quantum chemistry [52] and regulatory genomics [22], to
mention a few. This class of differential equations can be formulated as initial value problems of the general form

yx) =fy®x). yXo)=yo. (11)

Simulating such an oscillatory system (1.1) is not an easy task since it usually involves periodic or oscillating solutions. An
extensive discussion on numerical analysis of (1.1) including oscillatory systems can be found in [33]. In particular, classi-
cal methods such as explicit Runge-Kutta schemes have their limitations (e.g., the lack of stability) in capturing the right
behavior of oscillatory solutions. This forces them to use tiny time steps and thereby is inefficient. In this regard, standard
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methods such as implicit Runge-Kutta methods [32] or recent advanced methods such as exponential integrators (e.g., see
[34,42-47]) are preferable since they may offer A-stable property or much larger stability regions, meaning less restriction
to stepsizes. Recently, effective spectral methods in time were derived and implemented as boundary value methods in
[8,11,12] for highly oscillatory Hamiltonian problems. Here, we focus on diagonally implicit Runge-Kutta (DIRK) methods (or
sometimes referred to as semi-implicit Runge-Kutta methods) [7,40], among others, which have shown to be very attractive
[13] over fully implicit methods in terms of computational efficiency. They were also designed for differential systems with
eigenvalues on the imaginary axis where the phase errors (dispersion) and the numerical damping (dissipation) of the free
oscillations in the numerical solution are small, see [25].

Motivated by the work of [39] which utilizes higher order derivatives to derive superconvergent (implicit) Runge-Kutta
schemes, a class of two-derivative Runge-Kutta (TDRK) methods for solving (1.1) was proposed in [17,56]. An advantage of
these methods is that the number of algebraic order conditions is significantly reduced in comparison with the classical
Runge-Kutta methods of the same order, thereby allowing the construction of high-order schemes with only a few stages
(see also [6,29,53,57,63,64]). Following this, implicit TDRK methods were derived in [4,18], general linear TDRK methods
were presented in [1-3,14], and recently TDRK methods with optimal phase properties were constructed in [23,38,41]. In
the case if a good estimate of frequency is known in advance, one can further improve the numerical solution of these
methods by incorporating the exponential fitting idea[10,20,28,35,48] in order to integrate exactly the system who solutions
are linear combinations of e*®* ( is a prescribed frequency). This leads to exponentially/trigonometrically fitted Runge-
Kutta (EFRK) methods whose coefficients are non-constant coefficients involving w [54,58,59]. Exponentially fitted symmetric
and symplectic implicit Runge-Kutta method were derived in Calvo et al. [15,16]. An extensive survey of exponentially fitted
methods can be found in [49,65] and the references therein. We also note that trigometrically/exponentially fitted two-
derivative Runge-Kutta (EFTDRK) methods were derived in [5,19,24].

In this paper, we combine the idea of DIRK and EFTDRK methods to construct a new class of exponentially fitted two-
derivative diagonally implicit Runge-Kutta (EFTDDIRK) methods up to order six. In contrast to the previous work, we di-
rectly formulate the general format of these methods specially for oscillatory systems (called modified two-derivative DIRK
schemes) by allowing coefficients to be functions of a complex variable p = iwh (i2 = —1) involving the frequency w and
the stepsize h. We then use a set of bi-colored rooted trees to represent the expansion of the exact and the numerical solu-
tion, and thus derive new elementary weights. This allows us to easily derive the order conditions for high-order methods.
Next, using the idea of EFTDRK approach, we obtain some preliminary results leading to new exponential fitting conditions
of high-order. With these in place, we were able to construct EFTDDIRK methods of high-order using only few stages. In
particular, with s =2 stages we obtain superconvergent schemes of order p=2s and p=2s+ 1, and with s = 3 stages, a
method of order p = 2s is derived. This is a significant improvement since previous EFTDRK methods (either explicit or
implicit) [4,17,18,38] only achieve orders p = 2s for s = 2 stages and p = 2s — 1 for s = 3 stages.

The outline of the paper is as follows. In Section 2, we introduce the modified two-derivative diagonally implicit
Runge-Kutta method (TDDIRK) for solving (1.1) and derive their order conditions (Lemma 2.1 and Theorem 2.1). In
Section 3, we present a theoretical framework to establish exponential fitting conditions for these modified TDDIRK methods
(Theorem 3.1). This gives rise to EFTDDIRK methods. With the classical order conditions and exponential fitting conditions
in hand, we are able to derive EFTDDIRK schemes of orders up to six in Section 4. Our main results in this section are the
new schemes EFTDDIRK2s4(cq, c3, @) (a family of 2-stage fourth-order methods), EFTDDIRK2s5 (a 2-stage fifth-order method),
and EFTDDIRK3s6 (a 3-stage sixth-order method). The stability and phase properties of these new methods are studied in
Section 5, in which the new fourth-order schemes are optimized for their accuracy. A technique for the estimation of fre-
quency needed for the implementation of EFTDDIRK methods is discussed in Section 6. Section 7 devotes to the numerical
experiments, in which the effectiveness of the new EFTDDIRK methods is demonstrated. Finally, we give some concluding
remarks in Section 8.

2. Numerical method

In this section, we introduce so-called modified two-derivative diagonally implicit Runge-Kutta methods (TDDIRK) for solv-
ing (1.1) and derive their order conditions. Our idea was motivated by [19], in which the modified explicit two-derivative
Runge-Kutta (TDRK) methods were introduced.

2.1. Modified two-derivative diagonally implicit Runge-Kutta methods

For the numerical solution of oscillatory problems (1.1), we define an s-stage modified TDDIRK method by the following
formulation:

Yi =yn +E@)chfn) + 1) a(u)g(Yy), i=1....5s, (2.1a)
=1
Yne1 =Yn+hfQm) + h? an(ﬂ)g(yz) (2.1b)

i=1
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Here, h is the stepsize, g(y) =y” = f'(y) f(y), and u = iwh, where w > 0 is an accurate estimate of the principal fre-
quency of the problem. The coefficients &; (), b;j(it), and a;;(1) are assumed to be complex differentiable on their domains.
Furthermore, they are also supposed to be even functions of w (this will be justified later in Section 3, see Lemma 3.2).

Note that the coefficients in (2.1) can be represented in a Butcher’s type tableau with ¢ = (cq,...,c)T, &(u) =

G (). &', b(w) = (br (1), ... bs(w))T, and A1) = [ay; (W] ;_;-

2.2. Local error and order conditions

To derive general order conditions for the proposed scheme (2.1), we consider y,,; as the numerical solution at x, + h
obtained after one step starting from y(x;) with the local assumption that y(x;) = yn. Similar to the derivation of the order
conditions for Runge-Kutta methods, the idea is then to compare the series expansion of y, 1 with that of the exact solution
y(xn + h) (in terms of the stepsize h) to study the local error

LTE, =y(Xn +h) — yns1. (2.2)

For a sufficient smooth solution y(x), the modified TDDIRK method (2.1) is said to be of order p (consistency) if the local
truncation error of the solution satisfies

ITE, = O(h**') as h— 0. (2.3)

For deriving schemes of high order, it turns out that the expansion of the numerical and exact solution become much
more complicated. In this regard, the rooted tree theory significantly simplifies the derivation of order conditions (e.g., see
[13,31] for classical Runge-Kutta methods and see [19] for modified TDRK methods). Here, we adapt this approach to the
proposed modified TDDIRK methods.

2.2.1. Expansion of the exact solution
Assume that f(y) is sufficiently differentiable (thus g(y)), one can then expand y(x, + h) using the Taylor series about x;
to obtain

h?2 R ht
YO+ h) =yn+hf+ 58+ 578+ 7 (g2+8(f.)) + ... (2.4)

where f and g and their derivatives are the short abbreviations representing that they are evaluated at y,. Generalizing
(2.4) in terms of rooted trees, one can show that

he(©

Y&n+h) =yn+ )  ——a(T)F(T)(n) (2.5)
r§7'p(-[)!

where BT is the set of bi-colored trees

BT—{.,T,%, Y}

associated with the recursively generated elementary differentials F(t)(yn) = {f.8. & f. g2. 2’ (f. f),...}, T € BT, p(t) is the
order of the tree T (the number of vertices of t), and «(7) is the number of monotonic labellings of t € BT, as respectively
defined in a recursive approach, see [19, Appendix]|:

1, T =e
p(r) = {2, =
1+Z;11p(7—i)7 T = [7—17---77—m]2
and
1, T =e
a(tT) =< 2, T = T
21 k 1 [ a(r) i _rm ng
(p(r) = DTTE, 4 (52)™, 7= [, 7 e
Here, the fact that a tree T =[14, ..., Tml2 € BT does not depend on the ordering of its branches which themselves need not
be distinct, we suppose it has only k distinct branches among 7, ..., T (say Ty, ..., T;) with their number of occurrences
denoted by nq, ..., n, (nq + ...+ n, = m), respectively. Thus, we rewrite such a tree 7 as 7 = [11"1 ..... r:k]z.

3
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2.2.2. Expansion of the numerical solution
First, inserting the internal stages (2.1a) into (2.1b) gives

Yns1 =Yn+hf+h* Y bi()g(yn + &(w)chf +h* " a;j()g(Y))). (2.6)

i=1 j=1

Then, we expand the function g in (2.6) in Taylor series about y, to obtain
h S
Ynet =Yn+ g7 f+ o721 Zb (M)g+ 731 Y i) (&(w)e)g f
i=1

4
_,_% 41.1. Zbi(ﬂ)zaij(u)gjg

i=1 j=1
4 s
+ZT 12-1- Z;bi(ﬂ)(gi(ﬂ)ci)zgﬂ(f, H+... (2.7)

Now using the set of bi-colored trees B7, we derive a general expansion of (2.7) as

Yni1 =Yn+ ) p( ),y(r)a(f)d>(r)f(r)(yn) (2.8)
TeBT

where p(7) and «(7) were defined above; y (7) is the density of 7, and ®(7) is the elementary weight function (depending
on A(i), b(w), £(i) and c), which are recursively defined respectively as follows:

1, T = e
(1) =1 2 =1
p(T)(p(T) - 1)’7(7_1) ’Y(Tm) T = [7—17 77—m]2;
and
> bils). r=|
o(r) = { 5
;bl(ﬂ)@ ( ) - (Tm) T = [7—17 Tm]2
with B
[ &(p)ei, T=oe

2 () P(11) - (), T = [0, T2
\ J=1

The elementary weight function ®(7) defined in (2.9)-(2.10) is new and applies to our modified TDDIRK method (2.1).
Consider a special case of our method, e.g., when &;(1t) =1 and a;; () = a;; (constant coefficients), we note that using this
elementary weight function gives the similar results to the elementary weight function given in [19, Appendix], which was
defined in a much more complicated way.

2.2.3. Local error and derivation of the order conditions
By subtracting the numerical solution (2.8) from the exact solution (2.5), the local truncation error (2.2) takes the form

ITE = Z G )'(y(r)cb(r)—l)oz(t)f(r)(yn) (2.11)

TEBT

From this, one obtains the following result at once.

Lemma 2.1. Assuming that the solution of the initial value problem (1.1) is sufficient smooth. The modified two-derivative diago-
nally implicit Runge-Kutta method (2.1) has order of consistency p if

O(1) = +O(h”” p(’)) for all 7 eBT with p(t) <p. (2.12)

1
7

4
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Table 1
Elementary differentials and general order conditions for the modified TDDIRK methods (2.1) for all
trees T € BT with 2 < p(t) <6.

Tree (1) p(T) F(t)Wn) Order condition(s) No.

2 g b(pn)-e= %+ 0Pt 1

3 gf b(p) - (E(w)*e) = § + O(hP-2) 2

4 &g b(1) - (A()e) = 55 + O(h*=2) 3

4 g ¢ b(p) - (E(u)*e)* = 35 + O(hr=3) 4

5 gef b(w) - AW EG ) = 75 + OhP~*) 5

5 g'(f.9) b(w) - (E(W)* 0" (A(w)e)) = z5 + O(hP~) 6

5 g"(f. . b(w) - (E(p)*e)’ = & + O(hP—4) 7

6 ges (i) - (A% (p)e) = 745 + O(hP5) 8

6 ge'(f.h (k) - (A() E()*€)*) = 55 + O(hP~) 9

g'(f.ghn b(w) - (E(W)* O"AEW)0) = g +O(P) 10

6 g2 b(1) - (A()e)® = i + O(hP-5) 1

6 g"(f.f.8 b(w) - (E(w)"e)** (A()e)) = & + O(hP5) 12

4 e e e e

6 gL LD b(w) - (E(w)*e)* = & + OhP=5) 13

Using (2.12), we obtain in Table 1 the general order conditions (in vector form) for the modified TDDIRK methods (2.1) of
order p (2 < p < 6), corresponding to the bi-colored trees, the order trees, and their elementary differentials (note that, there
e=|[1,..., 1]" and “*” denotes the component-wise product).

On the other hand, with the assumption that the coefficients a;;(w), b;(11) and &; () of (2.1) are sufficiently differentiable
and even functions of u = iwh, they can be expanded as

a;j () = a,.(]‘.)) + a,.(jz),u2 + al.(f)u“ +...= al.(f) - al.(jz)a)zh2 + al.(;”w“h4 —_— (2.13a)
bi(w) =b” +bPu? + bW ut + .. = b® -~ bPw?h? + bPwiht — ..., (2.13b)
() =EQ +EP P+ EPut + L =0 — PR 1 EP it (2.13c)

since i = —1). Here, we only consider w # 0 since if otherwise (w =0, i.e.,, u =0) one has a;j(p) = al.(]p), bi(n) = bi(o),

&i(w) = %‘i(o) and thus (2.1) is reduced to classical two-derivative Runge-Kutta methods. With the scalar coefficients from

5
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(2.13), we define

(o)
ay

A oy ) = 167 B BT
Al = ) ; (2.14)
. . . £0) = [51(6)7§2(H)s---7§5(6)]T,
o a3y ... a
(here 0 =0,2,4,...) to derive the classical order conditions for (2.1) in the Theorem 2.1 below.
Theorem 2.1. (Classical order conditions) Under the conventional simplifying assumptions that
2
O —e  AOe— % (2.15)
the scheme (2.1) is of order p consistency (for 2 < p < 6), if the following classical order conditions are fulfilled:
e Order 2 requires
bO e~ L (2.16)
2
e Order 3 requires, in addition
1
© . ¢— 2 217
b'"™ .c 6 ( )
e Order 4 requires, in addition
1
© .2 - )
bO . ¢ 3 (2.18a)
b? .e=0. (2.18b)
e Order 5 requires, in addition
1
0. (A®e) — 1
b . (A¥c) 50" (2.19a)
b® .3 = € (2.19b)
20’
b® . (E@*¢) +b? .c=0. (2.19¢)
e Order 6 requires, in addition
1
0 . (A®e2) — - _
b® - (AV¢) = o, (2.20a)
1
O  (*(ADe)) —
b . (c*(A¥¢)) 180" (2.20b)
b® .t = € (2.20c)
30°
b® .e=0, (2.20d)
2b©@ . APe 1 p? . % =0, (2.20e)
2h©@ . (5(2)*(_-2) +b@ .c2=0. (2.20f)

Proof. The main idea is to insert (2.13) into conditions 1-13 of Table 1 to derive the classical order conditions (2.16)-(2.20).

We now illustrate this procedure for the case p = 6. First, consider the tree of order two f . Inserting (2.13b) into

T =
condition 1 of Table 1 yields

(b0 €) — (B2 - e)u?h? + (b - e)ur'hi + O(H) = 5 + O(R). (221)
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Taking the limit of both sides of (2.21) as h approaches zero results in order condition (2.16). Employing (2.16) and dividing
both sides of (2.21) by h? gives

—(b? - e)w? + (b - e)w*h? + O(h*) = O(h?). (2.22)

Again, taking the limit of both sides as h approaches zero (w # 0) implies order condition (2.18b). Dividing both sides of
(2.22) by h? and keeping in mind the use of (2.18b) gives

(b - e)w* + O(h*) = O(h), (2.23)
which shows (2.20e) when taking the limit of both sides as h — 0.

Next, consider - — % . Inserting (2.13b) and (2.13¢) into condition 2 of Table 1 yields

1
(0 (¥ 2)* 212 2 212 4\ _ 4
b ) — (b (EP*c))w’h? — (b? - c)w?h* + O(h*) _€+O(h )- (2.24)
From (2.24), as h — 0, one immediately obtains order condition (2.17). With this, dividing (2.24) by h%, we obtain
~(B9 - ED0)w? - (b? - ¢)w? + O(?) = O(h?). (2225)

Therefore, as h — 0, (2.19¢) is confirmed.

Similarly, consider - _ | . Inserting (2.13a) and (2.13b) into condition 3 of Table 1 gives
1
) . A0 © . A2 2. A0 2h2 4y — 3
b -AQe— (b0 AP+ b . AVe)w’h’ + O(h') = 5, +O(I). (2.26)

Using (2.15), one obtains (2.18a) as h — 0. With (2.18a), dividing both sides by h%, we obtain
—(2b9 - A®e+b? . ) w? + O(h?) = O(h). (2.27)
Therefore, as h — 0, we obtain (2.20e).

Furthermore, consider - — Y . Inserting (2.13c) and (2.13b) into condition 4 of Table 1 and using the first assumption
in (2.15) yields

1
0) 2 0 (2)%p2 ) (2),,,21h2 4\ _ 3
b® - — (26 - (§27¢*) + b - )’ h? + O(h?) = -5 + O(I). (2.28)
Using (2.18a) and dividing both sides by h2, we obtain
—(Zb(o) - (ED*c¢?) + b? -cz)a)2 + O(hz) = O(h), (2.29)

which shows (2.20f) as h — 0.
Continuing in this manner for other trees t in Table 1, the remaining classical order conditions in (2.16)-(2.20) can be
obtained. O

3. Exponential fitting conditions

As our focus is on the IVP problem (1.1) with oscillatory solutions, it is desirable to require that the proposed scheme
can integrate exactly the system whose solutions involve a linear combinations of reference sets of the form {p,(x)e*«},
where p,(x) are polynomials in x and A can be real or complex numbers (note that in the case A, = +iw, such a reference
set becomes {pj, (x)e*®* = p, (x)(cos(wx) + isin(wx)}). This enforces additional requirements on the coefficients of the two-
derivative Runge-Kutta methods, which are referred to the so-called exponential fitting conditions, see [36]. Therefore, along
with the required order conditions given in Table 1, in this section we will derive such conditions for (2.1).

Following [36] (see also [49] and references therein), for which explicit exponential-fitted Runge-Kutta/Runge-Kutta-
Nystréom methods were presented, the idea is to determine fitting conditions so that the local truncation errors of the
internal stages Y; and the final stage y,,; of (2.1) vanish on a certain reference set. For this, we introduce the following
linear operators

Lilh, A, ¢, Ely(x) =y(x + cih) —y(x) — &(u)chy (%) —h* Y~ a;(w)y" (X +c;h), (3.1a)
j=1
Llh,b,cly(x) =y(x+h) —y(x) —hy'®) = h* Y bi()y" (x + cih), (3.1b)

i=1
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which are associated with the internal stages and the final stage, respectively (i = 1

Definition 3.1. The scheme (2.1) is said to be exponentially fitted TDDIRK (EFTDDIRK) method of degree (K, L) if

Llh,b,cly(x)=0 and £Li[h, A c Ely(x)=0, i=1,..., S (3.2)
for all y(x) that belong to the subspace
Fio = span{xke** A, eC, k=0,..., K l=1,..., L}. (3.3)

On Fi 1, we prove the following important properties of the operators £; and £ defined in (3.1).

Lemma 3.1. For all yx(x) = xKe** e Fi; and A; € C, we have

K
K
Lilh, A, ¢ Elyk(x) = ) <m>ym () Li[h, A, ¢. Elyk-m(0), (34a)
m=0
Sk
£[h. b. clyx (x) = X% (m)ym ®)L[h. b, €lyx_m(0). (3.4b)
m=
Proof. With yg (x) = xKe*X one can verify that
K
Yr(x+cih) = (x+ cih)<eheah = 3™ (111<1>ym X)Yi_m(cih), (3.5)
m=0
Vi (%) = Kyg_1(x) + Ay (%), (3.5b)
V(0 = K(K = 1)yk_2(X) + 2KAyk -1 (X) + Ay (%). (3.5¢)

Inserting (3.5a) and (3.5b) into (3.1a) gives

K i
Lith, A Elye() = (,’;)ym ()Yk-m(Cth) = Yk (X) = Vi()ChIKYK-1 (%) + Ay ()] = h? 3 a()yie (x + c;h).

m=0 j=1
(3.6)
Using (3.5¢) and (3.5a) (with ¢; in place of ¢;), we obtain
yK(X + C]h) = K(K — 1)}/1(,2 (X + C]h) + ZK)\lyK,] (X + C]h) + klzy,<(x + C]h)
K2 /e 5
—KK-1)Y ( . )ym<x>y,<_z_m(cjh)
m=0
K1 e
+2K0 Y ( m >ym ()Yk-1-m(c;h)
m=0
S (K
A7 ) |y JYm@yem(cih).- (3.7)
m=0

Next, we insert (3.7) into (3.6) and factor out the terms yg(x), (Kli 1)y,<,1 (x) = Kyg_1(x), and er;;zo (:’:)ym(x) from the
obtained result. It is then not difficult to show that (3.6) becomes

Li[h. A, ¢, E]yk(®) = yk(X)Li[h, A, ¢, E]yo(0) + Kyk 1 () Li[ h, A, €, §]y1(0)
K-2

+ (ﬁ)ym ®)Li[h, A, ¢, E]yk-m(0)
m=0

which proves (3.4a).
Note that using (3.5a) (with ¢; = 1) and (3.7) (with ¢; in place of c;), the proof of (3.4b) can be carried out in the same
way. We omit the details. O

Using the result of Lemma 3.1, we are ready to state the fitting conditions for the proposed method (2.1).

Theorem 3.1 (Fitting conditions). Under the following conditions
Lilh, A, c, Elym(0) =0, L[h,b,clyn(0) =0, (3.8)
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for all ym(x) = xMe*X ¢ Fip with A, eC, m=0,1,2,...,Kand 1 =0,1,2,...,L, the scheme (2.1) is an EFTDDIRK method of
degree (K, L). In particular, we have:

o Degree (0, L) requires the following fitting conditions

1
()" @i (e + & (w)cihh = e — 1, (3.9a)
=1
(M) " bi(p)eh = et — 1 — 3h. (3.9b)

i=1
e Degree (1, L) requires, in addition to (3.9), the following conditions

> a()[24h + ¢ (Ah)?1e™M ! + & (w)e; = e, (3.10a)
j=1

S
D bi()[2Mh + ¢ (Ah)?JedMh = et — 1. (3.10b)

i=1
e Degree (K > 2, L) requires, in addition to (3.9) and (3.10)

1
Z ajj (;,L)[K(K - 1)C§.<_2 +2 I(Cf_lklh + Cﬂg(k,h)z]ecﬂ"h = cleath, (3.11a)
j=1

N
D bi()[K(K = 1) 2 +2 Kef T Ah + ¢ (Ah)? [eh = eMh, (3.11b)

i=1
Proof. The first part of Theorem 3.1 follows directly from Lemma 3.1. More specifically, (3.8) implies at once (3.2) for all
y(x) € Fg 1. Next, we work out (3.8), i.e,,

Lilh, A, ¢, Elym(0) = ym(cih) — ym(0) — & (w)cihyy, (0) — h* Y~ a;;()yn (cjh) =0, (3.12a)
j=1
L[h, b, clyn(0) = ym(h) — ym(0) — hy;,,(0) — h* > " bi(1)yp (cih) = 0. (3.12b)

i=1
For K=0, we have m=0 and thus consider yg(x) =e**. A simple calculation shows that yg(cih) = e%*h y,(0) =
1, y5(0) = Ay, and yg(cjh) = Alzecf)"h. Inserting these relations into (3.12), we immediately get (3.9). For K =1, we have
m=0,1, and thus consider, in addition to yy(x), y; (x) = xe**. Again, one can easily verify (3.10) by plugging y;(cih) =
ciheSi*h, y1(0) =0, y;(0) =1, and y}(cjh) = (2A; + AZc;h)e%™! into (3.12). Similarly, (3.11) is confirmed for K > 2 (ie.,
m=0,1,2,...,K) by considering yx(x) = xKe**, O

As a direct consequence of Theorem 3.1, we obtain the following result for EFTDDIRK methods of degree (0,L).

Corollary 3.1. An EFTDDIRK method of degree (0, L) with the coefficients b; (i) expanded as (2.13b) has order of consistency at
least three.

Proof. Based on Theorem 3.1, we have that an EFTDDIRK method of degree (0, L) satisfies the fitting condition (3.9). Em-
ploying the Taylor expansions e*" =1+ ¢Ah+O(h?) and ! =1+ A h+ $(4h)? + L (Ah)? + O(h*), one can express
(3.9b) as

> bi(u) + (Y bi(w)c)Ah+ O(h?) = % + %k,h + O(h?). (3.13)

i=1 i=1

Inserting b; () = bl.(o) + O(w?h?) (from (2.13)) into (3.13) and taking the limit of both sides as h approaches 0 shows that
N ( 1
0)
be =5 (3.14)
i=1
With this, (3.13) can be simplified as

(ib}% - %)A, +0(h) =0(h), (3.15)
i=1
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which implies
d 1
Zbi(O)Ci =5 (3.16)
i=1
when h approaches 0. Clearly, (3.14) and (3.16) are the order conditions for EFTDDIRK methods of order 3. O

We note that this result is similar to a result for the trigonometrically fitted two-derivative Runge-Kutta methods
[24] which holds for s > 2.

Next, in order to allow a direct treatment of oscillatory solutions, we now consider the case A; = +ilw, [ =0,1,...,L
Since w = iwh, we have A;h = £lu. Therefore, the fitting condition (3.9) of EFTDDIRK methods of degree (0, L) becomes

i
()Y aj(pye* s + & (u)clp = e*al — 1, (3.17a)
=1
S
(Iw)? Y bi(uyeat = e —1xIu. (3.17b)

i=1
When [ = 1, we have the following observation.

Corollary 3.2. The fitting conditions in (3.17) for an EFTDDIRK method of degree (0,1) whose coefficients expanded as in
(2.13) imply the following

90 =1, Za“)’ (3.18a)
1
Za@)q +&%¢ =5, (3.18b)
j=1
1l 02, w@_ 1.4
51 2% +y ai) = TR (3.18¢)
| & = !
S 1 < 1
© _ 0, _
- b' = 7!, - bl Cl = ﬁ’ (3.18d)
1= 1=
Il 02, wne |
57 200+ b7 = 4 (3.18e)
i=1 i=1
1 S 1
31 2.0 + ) bP = . (3.18f)
Ti=1 i=1 :
1 %0 1 v 0 YR
4 2
a2 b 5 Db+ Y b = (3.18g)
i=1 i=1 i=1 :

Proof. The proof is straightforward by inserting (2.13) and the Taylor series expansions of e“i*, eSi#, e into (3.17) with [ = 1
and comparing term by term on both sides of each condition. We omit the details. Here, we note that (3.18d) is already ob-
tained in Corollary 3.1 for the more general case, and (3.18a) justifies the simplifying assumption needed in Theorem 2.1. O

Finally, we justify the assumption on the coefficients a;;(1), b;(11), and &;(u) stated in the Section 2.1.
Lemma 3.2. If the fitting conditions in (3.17) are held for all u, the coefficients a;; (1), b;(1), and & () must be even functions.
Proof. Adding the two equations in (3.17a) gives
()2 Za”(u)( el 4 e9l) = el el — 2, (3.19)
j=1

10
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Interchanging 4 — —u and subtracting the resulted equation from (3.19) leads to

> lai () — aij(—p)] (€9 + e~9') = 0. (3.20)
=1

This shows a;j(u) = a;;(—u) due to the fact that the functions {eil 4 e’cil“}g:1 are linearly independent. Similarly, using
(3.17b) one can show that b;(®) = b;(—u). Next, interchanging u — —u for the first equation in (3.17a) and subtracting
from the other, we have

(Ip)? Z[aij(,u) —aij(—p)]e "M — [&(p) — & (=) = 0. (3.21)
-1

Since a;;(u) = a;j(—u), one derives & () = &(—p). O

4. Construction of EFTDDIRK methods

In this section, using the results presented in Theorems 2.1 and 3.1, we construct EFTDDIRK methods based on the
reference set (3.3) with K =0 and L = 1, i.e., methods of degree (0, 1). This is the case in which these methods can integrate
exactly differential equations with oscillating solutions involving e*i®* = cos(wx) =+ isin(wx). Since EFTDDIRK methods are
at least of order 3, i.e., the order conditions (2.16) and (2.17) are automatically satisfied (as shown in Corollary 3.1), we will
derive methods of orders 4, 5, and 6 by using the fitting conditions in (3.17) and the remaining required order conditions
(2.18)-(2.20).

Clearly, with s = 1, it is not possible to construct fourth-order EFTDDIRK methods. Therefore, we start off our construction
with s = 2. For later display the coefficients of our EFTDDIRK methods in a compact form, we denote

E, " (¢) =ett f e tH, E, (f)=ebt —e ¥ [ eR (4.1)

Clearly, given ¢ and w, one can compute these terms (involving the sum and difference of exponential terms) directly (e.g.,
using the available MATLAB function exp) without truncating their Taylor series expansions.

Remark 4.1. Since u = iwh, using the Euler’s formula one can also represent the terms E, *(¢) and E,~(¢) in (4.1) as

E,"(¢) = elf@h 4 e~i6@h — 2 cos(¢ wh), (4.2a)

E, (¢) = elt@h — e=i¢@h — Djsin( wh). (4.2b)
Therefore, we note that while the coefficients of all our newly constructed EFTDDIRK methods below in this section are
displayed in terms of E,*(-) and E, (), they actually involve sin(¢wh) and cos({wh) (with appropriate constants { € R
depending on each method).
4.1. Two-stage fourth-order methods

The fitting conditions in (3.17) and the required order conditions (2.18) for this case (s = 2) now read as

pran (n)e=H £ & (u)eyp = e*at — 1, (4.3a)
WPag ()e*" + pPag, ()eHt £ & (n)cop = e*2H — 1, (4.3b)
wrby ()e* 1 + by (p)e*H = e — 15 pu. (4.3¢)
bOG b0 = . (43d)
b + b8 =0, (4.3e)

respectively. While solving (4.3a) gives aq; (i) and &; (i) at once, solving (4.3c) gives by () and b, (). Since (4.3b) includes
two equations with three unknown coefficients, one can take one of them as a free parameter. For instance, we take ay; (i)
as a free parameter and set it as a,; (i) = ¢. Putting altogether, we display the solution to (4.3) as follows:

E."(c2) - (2 + ¢/’L2EM+(C1))
W2EL " (c2)

1 2
an(u) = e (1 - W) W1 () =@, an(n) =

)

1
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_ Eu (@) _E () —duPE, (61 — )
§1(p) = HEL (D) & (pn) = T IRATS) ,
E, () +E. (1 —c2) — HE, " (c2) ME, " (c1) —E,"(c1) —E (1—01)
b _ Eu I ©w b _ HEu I I 4.4
1() E, (6 -6 (1) = E, (0 =) (4.4)

Next, we solve for the two order conditions (4.3d)-(4.3e). Due to (3.18e) (see Corollary 3.2 for s =2), we see that one
only needs to satisfy one of them (as the other one will be then automatically satisfied). For instance, we solve (4.3d) by
expanding by (u) and b, () in (4.4) (with note that i = iwh) in Taylor series as

1-3c 10(c;1—2¢,) (¢ —3¢1¢2)—20c2+15¢;—-3  21.2 4

bi(pn) = G(Cl_é) + 300G w*h® + O(h*) (4.5a)
3¢—1 10(c;—2¢1) (3¢1 ¢, —€)+20c2 —15¢1 43 W2 h? 4

by () = se—cp T 36006 -0) h® +0(h*) (4.5b)

(to get b(O), b(o) ), and thus obtain a constraint for ¢; and c;:

3C2 2 2 | 3C1 -1 2 l

6(C1 — Cz) 6(C1 — C2) 12

for all ¢; # cy. Overall, this results in a family of fourth-order 2-stage methods which will be called EFTDDIRK2s4(cq, c3, @).
For example, solving (4.6) with a choice of ¢c; = 1/4 leads to ¢, = 1, denoted EFTDDIRK234(%, 1, ¢). Another solution is to

choose c¢; = 0, resulting in c; = 1/2, and aq; (1) = 0 (the first stage is explicit), denoted EFTDDIRK2s4 (0, % ¢). The parameter
¢ will be determined by the optimizing the phase property of the methods. This will be discussed in the next section.

— 2(c1+¢—-3c1c0)—1=0 (4.6)

4.2. Two-stage fifth-order methods

In this subsection, we consider whether using s =2 is possible to derive a fifth-order method. For this, in addition
0 (4.3), the conditions in (2.19) are required. Supposed that (2.19b) is satisfied, one derives b‘® .¢ =0 due to (3.18e) in
Corollary 3.2. With this, (2.19¢) is now simplified to

bO . (§@%¢) =0 = bOED e + bOEPc, (4.7)

Next, usmg (3.18f) which can be written as A@¢ + “g'(z)*c = 4¢3, we have b©® - (A@¢) = @ . ¢3 - b® . (§@*¢) = ;55 -

0= m. This shows that (2.19a) is then automatically satisfied. Therefore, to fulfill (2.19), we eventually need to solve
(2.19b) and (4.7) only.
Expanding &;(u) (see (4.4)) in Taylor series

E(w) =1+ G0 + 0, &) =1 (¢ — 2 — F)?h? + O(h*) (48)

to get 5(2), 2 and employing (4.5), the two conditions (2.19b) and (4.7) become

1- 3C2 e 3¢ — 1 S = 1 3
— = - 4.
6(Ci — ) +6(C1 —Cz) =50 C1+C2+C1C2 3c162(c1 +¢3) = 10 (4.9)
(for all ¢ # cp) and 6(:3_?2)( )+ 6(3;1__612) (¢ — @ - —)cz = 0, respectively. Note that, with c; # c;, the later equation can
be simplified as
1
2, 2 ~1) = — - 4.1
€1+ 65 —3c162(c1 +¢62) + 162 + 39 (3¢ )=0 < ¢ 101 —3¢)) (4.10)

by employing (4.9). Clearly, c; and ¢, can be easily solved from the system of two algebraic equations (4.6) (to fulfill (4.3))
and (4.9) (indeed, given the form of this system, c; and c, are the two roots of the quadratic equation (10X% — 8X + 1 = 0).
Then inserting them into (4.10) gives ¢. We display the results as follows

1 1 1
_E(4_£), czzﬁ(4+«/6), ¢=%(2+3f6). (4.11)
This results in a 2-stage fifth-order method with the coefficients given in (4.4) and (4.11) which will be called EFTDDIRK2s5.

4.3. Three-stage sixth-order method

For a 3-stage method, the exponential fitting conditions using (3.17) for this case (s = 3) now gives
pran (et L& (n)c = e*t — 1, (4.12a)

praz (e + plag (e £ & (u)copu = ek — 1, (4.12b)

12
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pwraz ()= + p2as (e 2k + plass(n)ersH £ & (n)cspu = esh — 1, (4.12¢)

Wby () + u2by (e + b (p)e ™ = e — 1 . (4.12d)

In addition to (4.12), we require the coefficients to satisfy the classical order condition (2.16)-(2.20). As in the two-stage
method, one can similarly solve (4.12a) for a;; (i) and &; (i0). Next, we solve parameters (4.12b) for &, (i) and ay;, (1), while
we make ay; (i) = x a free parameter. Furthermore, we solve (4.12c) for &3(u) and as3(w), while setting a3 (1) = 8 and
asy () =6 as free parameters. Lastly, setting b, () = 1 as a free parameter in (4.12d), we solve for by (i) and bs(u). The
solution to (4.12) therefore yields the following:

an(pu) = Mlz(l - E,ﬁz(c])) Uy () = X, o (1) = E,"(c2) ;L(Zé;)((clj)ZEM(C]))’

0y (1) = 1 (C3) —MZ(/’;LEZ,;;SCEC);)F SES@) =2 m

£ (p) = E“_(CZ);;ﬁiE(‘é;)(cl —) gy = B @) _MZ(ﬁEgM(;:(Z))ME“_(CZ ).
by () = (@) + B (= 32)]5; M(if_(z; — B (6 — )

by (o) = ME (@) “Eu”(c) — B (1 —c) —m’Eu (@ o).

W2E; " (c1 —¢3)

Now that we have the solution, we obtain the Taylors expansion of the coefficients and seek the free parameters in order
to satisfy classical sixth-order conditions (2.16)-(2.20). With the help of Corollary 3.2, the classical order conditions (2.18a),
(2.19b), (2.19¢), (2.20a), (2.20b), and (2.20c) are sufficient to attain order six. These set of conditions, yield a system of
cumbersome algebraic equations, which are omitted here. The free parameters satisfy the sixth-order conditions with

=0, o=36-v5, a=36+v5, x=5G-V5),
B=g(1+V5), 8=gG+3v5), n=56+V5).

This method is denoted as EFTDDIRK3s6.

Remark 4.2. If the frequency w of the problem is close to 0 (so does u = iwh), for practical computation, it is then prefer-
able to compute the coefficients of our EFTDDIRK methods based on their truncated Taylors series. We note, however, that
this is not the case for our numerical examples presented in Section 7.

Remark 4.3. Since our EFTDDIRK methods were constructed based on Taylor series expansion of the coefficients (satisfying
the classical order conditions), it is straightforward to prove that the numerical scheme (2.1) is stable. In particular, let y,,4
and z,,; denote two approximations to the exact solution y(x) at x = x, 1, one can show that there exists a constant C such
that

IYni1 — Zns1ll < Cllyn — zall

(under the Lipschitz conditions of f and g). We thus omit the details.

5. Phase and stability properties

This section is concerned with the linear stability and phase-lag analysis of the EFTDDIRK methods derived in Section 4.
Following [24,61] for oscillatory systems, we apply the method (2.1) to the test equation

y =iAy, i=-1, A>0. (5.1)
This results in the following difference equation

Yue1 = RO, 0h)ys, 6 = Ah, (5.2)
where R(6, wh) is the imaginary stability function of 6 and wh given as

R(O, wh) = (1-0%b(i) - (Is + 0*A(1)) ")) +i(0 (1 — 6*)b(1) - (Is + 6*A(1)) " (€ % €)) (5.3)

(here, w = iwh, I is the s x s identity matrix).

13
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Table 2
Dispersion and dissipation of the newly derived EFTDDIRK methods.

Method Dispersion Disp(0)
Dissipation Dis(8)

EFTDDIRK2s4(§.1.¢) 545 (=11 +209)(1 —12)05 + 0(67)
oo (—230 + 360 — 7r2) (1 — 12)65 + O(6%)
EFTDDIRK2s4(0, 3.¢) 555 (=3 +40¢)(1 —12)8° + 0(67)
5 (=50 4+ 720¢p — 12)(1 — 12)85 + O(6%)
_r2 \/77 2 \/’7
EFTDDIRK2s5 a-r >((168 z;gzg 840 162) 07 + 0(0°)
Har22
( 12106 )gs +0(0%) )
(1-r2)( (17v/5-10)12—4+/5-10 7 9
3780(5++/5)3 07 +0(0°)
(1—r2>((15+J§)ﬁ+17s(5¢§79)r2475<1+3ﬁ))
15120000(3++/5)

EFTDDIRK3s6

0% + 0(01%)

Table 3

An example of imaginary stability intervals for the EFTDDIRK methods with w =5 and h = %
Methods h wh  Stability intervals Range values of A
EFTDDIRK2s4(}, 1,0) L2 [0,0.625] [0,5]
EFTDDIRK2s4(4, 1, 31 o [0,0.625]U[1.388,2.819]  [0,5]U[11.104, 22.552]
EFTDDIRK2s4(0, 1,0) o3 [0,0.625] [0,5]
EFTDDIRK2s4(0, 1, 3 I [0,0.342] U[0.625,2.132]  [0,2.726] U5, 17.056]
EFTDDIRK2s5 o3 [0,0.625]U[1.268,4.140]  [0,5]U[10.144,33.120]
EFTDDIRK3s6 o [0.419,0.625]U[2.689,5]  [3.352,5]U[21.512, 41.224]

5.1. Phase properties

The dispersion and dissipation are important properties which characterize the numerical behavior of methods con-
structed for oscillatory problems. Similarly to [24,61], they can be defined for our proposed EFTDDIRK methods as follows.

Definition 5.1 (Dispersion and dissipation). With the stability function R(6, wh) given in (5.3), the quantities
Disp(0) = 0 — arg(R(6, wh)) and Dis(f) =1 — |R(0, wh)| (5.4)

are called the dispersion (phase-lag) and the dissipation (amplification error), respectively. The scheme (2.1) is dispersive of
order p and is dissipative of order q if

Disp(6) = Cpy1 (NOPH + ©(OP+3), Dis(0) = Cy+1 (NI + 091+3),
respectively (here r = %h). In the case Disp(f) =0 or Dis(f) = 0, it is called zero-dispersive or zero-dissipative, respectively.

Using (5.4), in Table 2 we derive the dispersion and dissipation for the EFTDDIRK methods constructed in Section 4.

In view of Table 2, it is easy to see that by choosing ¢ = 15 and ¢ = ;, the phase-lag for EFTDDIRK2s4(}.1,¢) and
EFTDDIRK2s4(0, %,q‘)) is optimized and increased to order siX, respectively. In Section 7, we demonstrate the efficiency of
these optimized methods over non-optimized phase-lag methods (which we simply take ¢ = 0).

5.2. Region of imaginary stability

One can also study the imaginary stability region of the proposed EFTDDIRK methods similarly to [61].
Definition 5.2 (Imaginary stability region). The region of imaginary stability S of the EFTDDIRK methods (2.1) is given by
S={(@,wh) |0 >0w=>0, |[RG,wh)| <1}.

In Fig. 1, we plot the imaginary stability regions in the 8 — wh plane on [0, 5]% (see the shaded regions) of the newly con-
structed EFTDDIRK methods. For a fixed value of wh, one can determine a sequence of the imaginary stability intervals for
each EFTDDIRK method (by finding the intersection of the horizontal line passing through wh crossing the shaded region).
For a given frequency w, the step size h can be chosen such that the EFTDDIRK methods satisfy the imaginary stability condi-
tion. For example, with @ =5 and if we take h = % one can obtain the sequence of stability intervals ((a;, b;) = (Ajh, Ajh))
given in Table 3 for the newly derived EFTDDIRK methods. Scaling by a factor of h one can then determine the range of A
values (the imaginary part of the eigenvalues) such that the EFTDDIRK methods satisfy the imaginary stability conditions.

As seen from Table 3, while the optimized methods EFTDDIRK2s4(}, 1, 1) and EFTDDIRK2s4(0, §, ;) have larger imag-
inary stability intervals (and thus the range of A) than EFTDDIRKQsAL(%, 1,0) and EFTDDIRK2s4(0, % 0) (their corresponding
non-optimized counterparts), EFTDDIRK3s6 has the largest stability interval.

14
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EFTDDIRK2s4(;,1,0) EFTDDIRK2s4(y,1,%) EFTDDIRK2s4(0,%,0)
5 ;| 5 ;| 5 5
4 1 4 1 4
3 ] 3 ] 3
§ 3 3
T2 = =
1 1 1
(0] (0] (0]
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
0 4 4
EFTDDIRK2s4(0, £, %) EFTDDIRK2s5 EFTDDIRK3s6
5 7 5 : 5
4 1 4 1 4
3 ] 3 ] 3
3 3 3
=2 1 T 1 T
1 1 1 1 1
(0] J (0] ] (0] ]
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
0 4 4

Fig. 1. Imaginary stability plots for the newly derived EFTDDIRK methods.

6. A note on frequency estimation

In view of the constructed EFTDDIRK schemes, it is crucial to determine the principal frequency w (in turn u = iwh)
for their implementation. This was a challenging aspect of the numerical integration of initial value problems with expo-
nentially/trigonometrically based methods, especially when the frequency is not known in advance. In [37], a strategy was
derived for estimating the frequency of the system based on the leading term of the local truncation error. This approach
has been extended and explored in [61]. Another approach was discussed in [51,60] to obtain the optimum frequency (wopt)
as a result of minimizing the total energy of nonlinear periodic oscillators. In this work, we apply the strategy presented
in [60] for the problem where the fitting frequency is not given. In particular, the golden section search technique [50] is
utilized to obtain the optimum frequency (wop) based on minimizing the error of the method for a given interval around
the angular frequency.

7. Numerical experiments

In this section, we evaluate the effectiveness of the newly constructed EFTDDIRK methods of orders 4, 5, and 6 when
compared to existing implicit methods of the same orders in the literature. Our numerical experiments are carried out on
a list of three oscillatory test problems (see below) and implementations are performed in MATLAB on a single workstation
using a 8GB RAM processor Intel(R) Core(TM) i5-8250U CPU @ 1.80GHz Laptop. Numerical investigation include accuracy
and efficiency comparisons. For accuracy comparisons, all methods use the same set of stepsizes. However, for efficiency
comparisons, the stepsizes are chosen such that all the considered methods achieve the same error thresholds (measured
based on the maximum global error (log;q(MGE))). When the exact solution is unknown, the reference solution is computed
by using the sixth-order method EFTDDIRK3s6 with sufficient small stepsize.

7.1. Computation of the internal stages.

The internal stages Y; ~ y(xn + c;h), i=1,2,...,s of our EFTDDIRK methods are sequentially computed by using the fixed
point iteration technique, which is given as

2
Yi(O) 1: Yn + hcifa + (C’;) &n, )
Y = yn+ & (wcifa + B2 (X5 a5 £(Y)) + ai() £(Y,)).-

The stoping criterion for the iterative procedure (7.1) is

(7.1)

YD~y O, <tol =107, r=0,1,2,...

15
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Fig. 2. Solution components q; (t) and g, (t) of Example 1 showing oscillatory behavior.

where Yi(r) is the value at the rth iteration in the iterative process.

For the readers’ convenience, we list the evaluated methods in two groups as follows.
Methods of Order 4

TDFIRK2s4: 2-stage two-derivative implicit RK method [18].

TDDIRK2s4: 2-stage two-derivative DIRK method [4].

EFSSDIRK3s4 3-stage symmetric and symplectic DIRK method [21].
TFTDDIRK2s4 2-stage trigonometrically fitted TDDIRK method of order 4 [5]
EFTDDIRK2s4(cq, cp, @): new 2-stage EFTDDIRK method of order 4.

Methods of Order 5 and 6

TDFIRK3s5: 3-stage implicit two-derivative RK method of order 5 [18].
Gauss3: Gauss 3-stage implicit RK method of order 6 [13].

TDDIRK3s5: 3-stage two-derivative DIRK method of order 5 [4].
EFTDDIRK2s5: new 2-stage EFTDDIRK method of order 5.

Applied Mathematics and Computation 418 (2022) 126770

TDDIRK4s6: 4-stage two-derivative DIRK method of order 6 [4].

EFSSIRK3s6a: new 3-stage symmetric and symplectic implicit Runge-Kutta method of order 6 [15].
EFSSIRK3s6b: new 3-stage symmetric and symplectic implicit Runge-Kutta method of order 6 [16]
EFTDDIRK3s6: new 3-stage EFTDDIRK method of order 6.

Example 1 (perturbed Kepler’s problem). Consider the Hamiltonian system studied in [27]

1 w? o
H(p.q) = 5 (P} +P3) + 5 (@ +63) + 5 (af + @3)°. (7.2)
with the initial data
q1(0)=1, ¢(0)=0, p1(0)=0, p(0)=w+e¢,

where o = € 2w + €). The analytic solution is given by

q1(t) =cos((w+e)t), pi1(t) =—(w+e€)sin((w+€)t),
g2 (t) =sin((w +€)t), pr(t) = (w+e€)cos((w+€)t),

which presents oscillations (see Fig. 2). In this experiment, we have chosen the parameter values € = 1072, w = 5, and the
integration is carried out on the interval [0,100]. For accuracy comparisons, the same set of stepsizes {h = l, j=3,4,5,6}is
used for all the considered integrators. The numerical results are presented in Figs. 3 and 4, which also show the efficiency
plots (the step sizes are chosen in such a way that the same error thresholds are achieved). As seen from the left diagrams
of these figures, all the new methods fully achieve their orders of convergence (4, 5, and 6).

It can be seen from Fig. 3 that the methods whose dispersion were optimized (EFTDDIRK254(%, 1, %) and
EFTDDIRK2s4(0, % 43—0)) clearly outperform the other methods of order 4. Fig. 4 shows (right) that the newly derived methods
EFTDDIRK2s5 (order 5) and EFTDDIRK3s6 (order 6) derived in this work are much more accurate and faster when compared
to the considered existing methods of order 5 and 6.
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Fig. 3. Accuracy (left) and efficiency (right) plots of 4th-order methods for Example 1. For comparison, a straight line with slope 4 is added.
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Fig. 4. Accuracy (left) and efficiency (right) plots of 5th and 6th-order methods for Example 1. For comparison, straight lines with slopes 5 and 6 are
added.

Example 2 (Fermi-Pasta-Ulam problem). Next, we consider the highly oscillatory Fermi-Pasta-Ulam (FPU) problem (see
[33]) including m stiff springs, in which the motion is described by a second-order system of differential equations of the
form

X(t) + Q%x(t) = =VU (1)), t € [to, teng], (7.3)
where
Q- [g:i: C‘U’Fnj; } (with > 1),
and U(x) is a smooth nonlinear potential function given by
1 m-1
Ux) = Z[(Xl — Xm+1 )4 + Z(Xjﬂ —Xmyj-1 —Xj — Xm+j)4 + (Xm +X2m)4]
j=1

with x; = x;(t) represents for positions of the jth stiff spring. As in [33], we consider the case for m = 3, and choose
x1(00=1, %0)=1, x4(0) ="', %(0)=1,

and zero for the remaining initial values. The system is integrated on [0,100] with w = 50.
Note that the FPU problem (7.3) can be also described by the Hamiltonian system with total energy

. 1 . 1
HE0R) = 5 1617 + S 1917 + U ), (74)
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Fig. 5. Accuracy (left) and efficiency (right) plots of 4th-order methods for Example 2.
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Fig. 6. Accuracy (left) and efficiency (right) plots of 5th and 6th-order methods for Example 2.

where x and x expresses the scaled displacements and velocities (or momenta), respectively. Therefore, the exact value of
the total energy is H(xg, Xg)

= 1(v/2)? + 1 (1?) + (0.501200080) = 2.001200080.

While the left diagrams of Figs. 5 and 6 show the accuracy comparisons (using the same set of step sizes {h = 1/2/,
j=6,7,8,9} for each method), the right diagrams display the efficiency evaluations, in which the step sizes are chosen in
such a way that the same error thresholds are achieved.

Among methods of order 4, one can see again that the new method EFTDDIRK2s4(0, % 43—0) is the most accurate and
efficient. Also, the newly derived fifth- and sixth- order methods EFTDDIRK2s5 and EFTDDIRK3s6 are more accurate and
efficient compared to some existing methods of the same order, respectively.

Next, we investigate the preservation of the Hamiltonian for the FPU system by some selected methods of orders 4, 5,
and 6. Fig. 7 presents the absolute error of the Hamiltonian (|Hy — Hg|) versus time using stepsize h = 2(1)—0, where Hy is the
computed Hamiltonian after N steps.

It is observed that the most accurate methods of the new derived fourth-order methods EFTDDIRK2s4 (0, % 43—0) preserves
the Hamiltonian best. However, the newly derived fifth- and sixth-order methods EFTDDIRK2s5 and EFTDDIRK3s6 preserve
the total energy much better than the existing methods of the same order, respectively.
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Fig. 7. Hamiltonian errors of 4th-order (left), 5th- and 6th-order (right) methods for Example 2.

Example 3 (Sine-Gordon equation). We consider the sine-Gordon nonlinear equation with periodic boundary condition (see
[62])

2 2
ng—sinu, -1<x<1, t>0 (7.5)

u(=1,t) =u(1,t).

A semi-discretization in the spatial variable by the second-order centered finite difference method leads to the following
system of ODEs

d?u

W—kMU:F(U), 0 <t <tea> (7.6)
where U(t) = (up(t), ... un(t))T with u;(t) =u(x;,t), i=1,...,N. Eq. (7.6) can be further transformed to a system of first
order DEs given by

dlul] [o 1I](u 0
dt |:Vi| =l_Mm 0] (V) + |:F(U)]’ 0 <t <teng- (7.7)
Here, V =U’, I is the N x N identity matrix, 0 is the N x N zero matrix, 0 is a zero column vector of size N x 1,
2 -1 -1
-1 2 -1
1
M= — .
sz .
-1 2 -1
-1 -1 2

(with Ax=2/N, x; = -1+iAx,i=1,2,...,N), and F(U) = —sin(U) = —(sinuy, ..., sinuy)T. As in Franco [26], we use the
initial conditions

. N
uo)=@m>y¥, V(@) :m(0.01+sin (21\]7”)) ,
i=1

(N = 64) and integrate the problem on the interval [0,10].

Again, on the left side of Fig. 8 we display accuracy plots using the same set of stepsizes h = 1/2{, i=5,6,7, 8, and the
efficiency plots are shown on the right side (different time step sizes were chosen so that all the compared methods attain
about the same level of accuracy).

The numerical results show that EFTDDIRK2s4 (0, % 0) is the least accurate but the most efficient among the tested meth-
ods. This can be explained by the fact that its first stage is computed explicitly (since c; = 0). One can also see that the
optimized fourth-order method EFTDDIRK2s4 (0, % %) performs the best overall compared to other fourth-order methods .

Next, we also investigate the spatial grid effect on this problem. For this, we compare the maximum global error obtained
by all the methods for different values of N (25, 50, and 100) with stepsize h = 11—6 at time t = 10. We present the obtained
results in Tables 4 and 5. From these results, we observe that the accuracy decreases when increasing N. This is due to the

stiffness of the problem which is increasing for larger spatial grid sizes N, which consequently affects to the global error.
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Fig. 8. Accuracy (left) and efficiency (right) plots of 4th-order methods for Example 3.
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Fig. 9. Accuracy (left) and efficiency (right) plots of 5th and 6th-order methods for Example 3.

Table 4

Errors for 4th-order methods for different values of N using h = %.
Method N=25 N=50 N =100
TDDIRK2s4 1.05x10% 1.00x 103  2.76 x 1072
TDFIRK2s4 145x 1074  1.60x 103  1.04 x 102
EFSSDIRK3s4 6.15x 10> 9.18x10% 3.20x 103
TFTDDIRK2s4 407x1077  134x105 127 x107

EFTDDIRK2s4(},1,0) 735%x 107 429 x 10~° 1.71 x 104
EFTDDIRK2s4(0, 1, 0) 1.00x 103 769x10%  3.00 x 103
EFTDDIRK2s4(}, 1, 3} 164x10> 178x10% 558x10~*
EFTDDIRK2s4(0, 1, 7)  247x 1077 3.09x 106  234x10°°

Example 4 (An “almost” periodic orbit problem). Lastly, we consider the almost periodic orbit problem studied in [55] given
by

y" +y=0.001e¥*, y(0)=1, y'(0)=0.9995i,
whose analytical solution is given by
y(x) = (cosx + 0.0005x sinx) + i(sinx — 0.0005x cos x),

which represent a motion on a perturbation of a circular orbit in the complex plane. Clearly, for this problem w = 1.
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Table 5
Errors for 5th- and 6th-order methods for different values of
N using h = L.

Method N=25 N =50 N =100

TDDIRK3s5 1.80x 104 1.40x103 4.62x 102
TDFIRK3s5 859 x 10 829x10° 1.06 x 102
EFTDDIRK2s5  6.46 x 1078 583 x 1077  4.64 x 10~
Gauss3 9.76 x 10-8 1.92 x 106 1.16 x 107>
TDDIRK4s6 1.07x10°6 221x10° 6.63x10~*
EFSSIRK3s6a 6.79 x 1079 4.48 x 10-8 7.56 x 1077
EFSSIRK3s6b  3.38 x 10~  1.07x 1077  2.01 x 10°6
EFTDDIRK3s6 128 x 107  6.79x 10~  1.64 x 10~/
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Fig. 10. Accuracy (left) and efficiency (right) plots of 4th-order methods for Example 4.
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Fig. 11. Accuracy (left) and efficiency (right) plots of 5th and 6th-order methods for Example 4.

We integrate the problem on [0, 1000] using all the methods listed above. Numerical results were obtained for all the
methods using stepsizes h = 1/2", n =0, 1,2, 3 and are illustrated in Figs. 10 and 11.

In view of Figs. 10 and 11, the methods whose dispersion were optimized (EFTDDIRK2S4(%, 1, %) and
EFTDDIRK2s4(0, % 43—0)) clearly outperform the other methods of order 4. Besides, we observe clearly from efficiency curves
of Figs. 10 and 11 that the newly derived methods EFTDDIRK2s5 (order 5) and EFTDDIRK3s6 (order 6) derived in this work
are much more accurate and faster when compared to the considered existing methods.
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8. Conclusion

We have derived a class of exponentially fitted two-derivative diagonally implicit Runge-Kutta (EFTDDIRK) methods for
solving oscillatory differential equations. New order and exponential fitting conditions are obtained, leading to the derivation
of new methods of orders 4, 5, and 6. The linear stability and phase-lag analysis of these methods were investigated which
resulted in optimized fourth-order schemes that are much more accurate and efficient. Our numerical experiments have
confirmed the efficiency and accuracy of these new EFTDDIRK methods when compared to standard implicit (two-derivative)
Runge-Kutta methods of the same orders.

Future works will be focusing on the existence of symmetric EFTDDIRK methods for symplectic, Hamiltonian or reversible
systems. Also, we will consider the two-derivative singly diagonally implicit methods with a view to practical applications
because of the easy implementation structure as discussed in [13,40].
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