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ABSTRACT: Fine-resolution computer models of supercell storms generate realistic tornadic vortices. Like real torna-

does, the origins of these virtual vortices are mysterious. To diagnose the origin of a tornado, typically a near-ground

material circuit is drawn around it. This circuit is then traced back in time using backward trajectories. The rate of change of

the circulation around the circuit is equal to the total force circulation. This circulation theorem is used to deduce the origins

of the tornado’s large vorticity. However, there is a well-known problem with this approach; with staggered grids, parcel

trajectories become uncertain as they dip into the layer next to the ground where horizontal wind cannot be interpolated.

To circumvent this dilemma, we obtain a generalized circulation theorem that pertains to any circuit. We apply this theorem

either tomoving circuits that are constrained to simple surfaces or to a ‘‘hybrid’’ circuit defined next. LetA be the horizontal

surface at one grid spacing off the ground. AboveA the circuit moves as a material circuit. Horizontal curve segments that

move in A with the horizontal wind replace segments of the material circuit that dip below A. The circulation equation for

the modified circuit includes the force circulation of the inertial force that is required to keep the curve segments horizontal.

This term is easily evaluated onA. Use of planar or circular circuits facilitates explanation of some simple flows. The hybrid-

circuit method significantly improves the accuracy of the circulation budget in an idealized supercell simulation.
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1. Introduction

Based on a maximum tangential wind of 100m s21 at a core

radius of 100m, the vertical vorticity in the core of a strong

tornado is estimated to be 2 s21. The corresponding estimate

for the circulation at the radius of maximum tangential velocity

is 6.3 3 104m2 s21. How such large values of vorticity and

circulation develop on the scale of a tornado core is still un-

decided (Davies-Jones et al. 2001; Davies-Jones 2015). Even

though some fine-resolution computer simulations of supercell

storms (without Earth’s background vorticity) generate real-

istic tornado-like vortices (Orf et al. 2017), the origins of these

vortices are difficult to decode, as foretold by Rotunno (1986).

In many studies, diagnostic calculations based on circulation

are performed on fields generated either by computer simulations

of supercells (e.g., Rotunno and Klemp 1985; Davies-Jones

and Brooks 1993; Adlerman et al. 1999) or by Doppler-radar

analyses of actual supercells (e.g., Markowski et al. 2012).

Typically, a small material horizontal circuit is drawn at some

time t1 around the maximum of vertical vorticity at a low level

in the storm. By calculating backward trajectories, this circuit is

taken backward to an earlier reference time t0. By Kelvin’s

theorem (Dutton 1986, p. 368), the barotropic part of the cir-

culation does not change and so is equal to the initial circula-

tion at t0. The total circulation generally changes significantly

over long intervals [t0, t1] as a result of torques (Shapiro 1972).

The rate of change of the circulation is equal to the sum of the

force circulations, i.e., to the sum of the line integrals of the

tangential forces acting around the circuit (Dutton 1986,

p. 372). The baroclinic and frictional force circulations account

for the increase in circulation in the interval [t0, t1] and most of

the total circulation at t1 (Rotunno and Klemp 1985; Davies-

Jones and Brooks 1993; Trapp and Fiedler 1995; Adlerman

et al. 1999; Dahl et al. 2014; Dahl 2015; Roberts et al. 2016,

2020; Roberts and Xue 2017; etc.).

Calculating the circulation around a material circuit that is

drawn horizontally around a near-ground vorticity maximum

and then tracked backward using saved data to a much earlier

time is susceptible to several errors including interpolation and

extrapolation ones. The backward trajectories used to trace the

circuit can be clearly erroneous, such as when they cross frontal

boundaries dividing air masses (Dahl et al. 2012) or when

parcels remain trapped in the vortex (Markowski et al. 2012, p.

2918). The circuit should be recoverable by running forward

trajectories from the earlier time. However, this is not the case

if the numerical trajectory scheme does not satisfy time-reversal

symmetry adequately. Since the flow is 3D and convergent (i.e.,

divergent in backward time), the length of the circuit gets very

large and becomes very convoluted (Markowski andRichardson

2014). Because trajectories can be chaotic (Dombre et al. 1986),

the curve may resemble a fractal and thus have a length

(Mandelbrot 1982) and circulation around it that may converge

poorly with progressively finer model resolution.

Almost all 3D numerical models of clouds use staggered

grids. In these models the vertical wind vanishes at the ground

(z5 0), but the horizontal wind is undefined there. The lowest

level at which it is defined is the first staggered level above the

surface (at height z5Dz/2, whereDz is the vertical grid spacing
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next to the ground). This level is often referred to as the lowest

scalar level. Consequently, there is uncertainty in the calcula-

tion of trajectories when they dip into the layer between the

lowest scalar level and the ground (e.g., Dahl et al. 2014;

Markowski and Richardson 2014). Often the horizontal wind

vH is assumed unrealistically to be constant in this layer (e.g.,

Markowski and Richardson 2014), extrapolated from higher

levels (Yokota et al. 2018; Tao and Tamura 2020), or, if the

lower boundary condition is semislip, assumed to adhere to

log-law behavior (e.g., Markowski 2016), which is probably

unrealistic within convective storms (e.g., Markowski et al.

2019). The above problem with trajectories is also present in

Doppler-radar analyses where there are no data between the

lowest observation level and the ground (Markowski et al.

2012). Additional errors arise in circuit analyses because the

forces influencing near-surface parcels (e.g., buoyancy) also

have to be extrapolated from higher levels.

When interpreting the results of a circulation analysis, we

should bear in mind that the circulation around a material

circuit is unaffected by a vortex passing inside it (Fig. 1). In this

context, Morton (1966, p. 182) stated that ‘‘It is interesting to

note that there is some evidence for the existence around

tornado cores of vorticity opposite in sense to that of the core

(Hoecker 1960; Glaser 1960) so that the circulation around the

core perimeter exceeds that in circuits of larger radius. If this is

correct, it suggests that at least part of the air mass of the

tornado column has been introduced from other presumably

higher levels. (The circulation in a large circuit is unchanged

when a funnel of rotating fluid dips down through it.)’’ Note

that Morton’s deduction is still valid if the rotating fluid passes

through the circuit from below instead of from above. Although

the material circuit will expand to accommodate the extra fluid

(Fig. 1), the barotropic circulation around it will not react to a

tornado developing upward or downward through it according

to Kelvin’s circulation theorem.

Sometimes it is useful to consider the circulation around a

nonmaterial circuit. A point on such a circuit has a non-

advective velocity, which is its velocity minus the wind at that

point. For example, the nonadvective velocity of a point on a

stationary curve is the negative of the wind at the point.

Computing the circulations around constrained curves that

move partially with the wind and remain in the same plane can

alleviate some of the aforementioned problems. With a hori-

zontal circuit that moves with the horizontal wind vH, we can

avoid the difficulty associated with parts of circuits dipping

below the lowest scalar grid level. Another advantage is that

the above fractal difficulty, if a problem, can be avoided easily

in 2D by using Stokes’s theorem to compute the circulation as

an equivalent integral over a horizontal area. A disadvantage is

that the circulation around horizontal curves is independent of

horizontal vorticity so that this approach is oblivious to the

‘‘river-bend effect’’ wherein baroclinically or frictionally gen-

erated horizontal vorticity is reoriented from crosswise to

streamwise. Note, however, that for a 3D material circuit the

bend effect is hard to discern from the convoluted geometry of

the circuit. As shown in section 4b, a circuit confined to a

vertical plane is optimal for demonstrating the river-bend ef-

fect. Another disadvantage of analyses with level curves (i.e.,

horizontal curves that stay at the same height) is that although

tilting of horizontal vorticity into the vertical is included, it

excludes baroclinic generation of horizontal vorticity, which is

well represented in a 3D material circulation analysis prior to

the circuit becoming flat. In a level-curve analysis, vertical

forces are represented only through their accumulated effects

on vertical velocity w. On the other hand, the rate of change of

material circulation is independent of tilting and stretching,

which have to be assessed from the complicated changing 3D

configuration of a material circuit. Thus, the two analyses

complement one another. Keeping the circuit level requires

adding the circulation of the partial inertial force2w›vH/›z to

the circulation equation.

To determine the sensitivity of the circulation analyses to the

size of the horizontal closed curve at the time t1, one could draw

two circuits, one inside the other, and take both circuits

backward to time t0. (This is not attempted in this paper.) If the

closed curves are ones that move with the horizontal wind

while staying in the same level, the smaller circuit is always

contained inside the larger one. (If this were untrue, the curves

would intersect at some time, which is impossible because

intersection points move with the horizontal wind and thus

remain on both curves for all time including t1.) If, on the other

FIG. 1. Schematic showing vortex lines when a cyclonically ro-

tating funnel of air dips down through a material circuit L that

encloses an areaA. In the 3Dperspectives, the vortex line segments

are colored red, black, or blue according to whether the vertical

vorticity is cyclonic, zero, or anticyclonic, respectively. The curved

arrows indicate the direction of rotation. In the horizontal sections,

subareas of A where the vorticity is cyclonic or anticyclonic are

shaded pink or blue, respectively. (a) At time zero, the funnel is

above the initial circuit L(0), which has zero circulation. (b) At a

later time t, the funnel has pierced the area A(t), which is now

larger to accommodate the extra fluid. According to Kelvin’s cir-

culation theorem, there is still no circulation around L(t). For the

areal average of vorticity normal to A to remain zero, the inner

core of cyclonic vorticity within A(t) must be surrounded at least

partly by a region of anticyclonic vorticity.

2896 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Brought to you by Pennsylvania State University, Paterno Library | Unauthenticated | Downloaded 08/31/22 03:07 PM UTC



hand, the detached curves are material ones that move in 3D,

there is no containment and the only thing that can be said

about how the two curves relate to each other is that they never

intersect (because they do not share a common parcel). Thus,

the configuration of the 3D curve at the earlier time t0 may be

very sensitive to the choice of the final curve at t1.

A hybrid approach can capture the best features of the 3D-

and the flat-circuit circulation analyses. To circumvent the

problem of a material curve passing below the lowest scalar

level while retaining a 3D approach, we specify that the curve

moves with the 3D flow everywhere above the height Dz.
When a part of the material curve dips below this level, it is

replaced with a horizontal curve segment that moves with the

horizontal wind.We thenmake use of a generalized circulation

theorem. The height z 5 Dz is chosen because it is the lowest

grid level at which the extra term is easily evaluated. Thus, the

hybrid method still detects past baroclinic generation of cir-

culation along elevated parts of the circuit while preventing the

circuit from dipping into the layer of ill-defined wind next to

the ground.

This paper is organized as follows. In section 2 and appendix

A, we derive a general circulation theorem for a nonmaterial

circuit. Section 3 adapts this theorem to special curves, and

section 4 applies this theory to simple examples such as the

linear theory of updraft rotation, flow around a bend, and

axisymmetric flow. In section 5, we perform circulation ana-

lyses for a vortex that forms in a simulated supercell-like

pseudostorm and compare the results for the horizontal circuit,

the fully 3D circuit, and the hybrid circuit. Section 6 summa-

rizes our main points.

2. A circulation theorem for a moving nonmaterial curve

We need a general circulation theorem for arbitrarily mov-

ing curves. Let t be time and x [ xi 1 yj 1 zk be the position

vector, where i, j, and k are eastward, northward, and upward

unit vectors and z is height above (flat) ground. The presence

or absence of a subscript a denotes an absolute or relative

quantity, respectively. Davies-Jones (2004) derived the fol-

lowing theorem for the rate of change of the absolute circula-

tion Ga(t) around any simple closed oriented curve K(t) in a

reference frame rotating with Earth:

dG
a

dt
5

þ
K(t)

(v
a
3N) � dx2

þ
K(t)

a dp2 g

þ
K(t)

q
l
dz1

þ
K(t)

F � dx .

(1)

We derive this equation more rigorously than heretofore in

appendix A. Thus, we can calculate the rate that circulation

changes solely from quantities on the circuit itself regardless of

values inside the circuit. The curve K can be stationary or

moving in any specified way in two or three dimensions. In (1),

N is the nonadvective velocity of points on K(t), a is specific

volume, p is pressure, g is the gravitational acceleration, ql is

the hydrometeor mixing ratio, and F is the frictional force.

OnK,N[V2 vwhere v[ ui1 yj1wk is the wind vector and

V [ Ui 1 Vj 1 Wk is the velocity of the curve points. On an

f plane the absolute vorticity is

v
a
[ (›

y
w2 ›

z
y)i1 (›

z
u2 ›

x
w)j1 (z1 f )k , (2)

where ›x [ ›/›x and so on, z[ ›xy 2 ›yu is the relative vertical

vorticity, and f is the Coriolis parameter. The general circula-

tion equation in (1) states that the rate of change of absolute

circulation is equal to the sum of the force circulations of the

following forces per unit mass: pressure-gradient force, pre-

cipitation drag, and frictional force. There is also an additional

term (the first one on the right side) that appears when the

circuit is not a material one.

In the Boussinesq approximation (a 5 a0 1 a0, dp/ dz5
2g/a0, and a0 5 constant), the second term on the right of

(1) becomes

2

þ
K(t)

a dp’2

þ
K(t)

a0 dp
dz

dz5

þ
K(t)

ga0

a
0

dz . (3)

If we define the buoyancy force Bk as g(a0/a0 2 ql)k, then the

Boussinesq version of (1) is

dG
a

dt
5

þ
K(t)

(v
a
3N) � dx1

þ
K(t)

Bdz1

þ
K(t)

F � dx . (4)

The last two terms in (4) are the buoyancy and frictional force

circulations. They are equal to the work done by the buoyancy

and frictional forces on a parcel that is moved instantaneously

once aroundK(t) in the positive direction. [IfK(0) is horizontal

at a time t5 0, the counterclockwise direction aroundK(0) and

the mapping from K(0) to K(t) define the positive direction

around K(t).]

3. Special cases

We now adapt the circulation theorem in (1) to special cir-

cuits. These circuits are material circuits, denoted by M(t),

stationary curves S, level curves L(t), stationary level curves

SL, and hybrid circuits Y(t). Level circuits are defined as ones

that reside in one horizontal plane.

a. Material circuits

For material circuits, N 5 0, and (1) reduces to

dG
a

dt
52

þ
M(t)

adp2 g

þ
M(t)

q
l
dz1

þ
M(t)

F � dx , (5)

which is Bjerknes theorem with frictional force (Dutton 1986,

p. 372) and precipitation drag. The rate of change of circulation

around a material circuit is equal to the sum of the force cir-

culations. The barotropic circulation is constant (Kelvin’s cir-

culation theorem).

b. Stationary circuits

For a stationary curve S, N 5 2v and (1) becomes

›G
a

›t
52

þ
S

(v
a
3 v) � dx2

þ
S

adp2 g

þ
S

q
l
dz1

þ
S

F � dx , (6)

where va 3 v is the sum of the Lamb vector v 3 v and the

Coriolis acceleration.
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c. Level circuits

For a level curve L(t), we letN5 P2 wk, where2wk is the

vertical nonadvective velocity required to keep the circuit

horizontal (dz 5 0) and P is the horizontal nonadvective ve-

locity of the curve points. Then (1) turns into

dG
a

dt
5

þ
L(t)

(z1 f )P � nds2
þ

L(t)

w
›v

H

›z
� dx2

þ
L(t)

adp1

þ
L(t)

F
H
� dx

(7)

(Davies-Jones 2004), where subscriptH denotes the horizontal

component, n [ idy/ds 2 jdx/ds is the outward horizontal unit

normal to L(t), and ds is the element of arclength in the

counterclockwise direction along L(t). The second term on the

right of (7) has an alternative form, namely,

2

þ
L(t)

w
›v

H

›z
� dx5

þ
L(t)

�
2w

�
›u

›z
2
›w

›x

�
dx1w

�
›w

›y
2

›y

›z

�
dy

�

5

þ
L(t)

wv
H
� n ds . (8)

Here we have used the fact that the integral of an exact dif-

ferential around a closed circuit is zero. Hence the second term

on the right of (7) is the ‘‘v flux term’’ in (4.4) of Trapp and

Weisman (2003). We can also relate thev flux term to terms in

the vertical-vorticity equation. By Stokes’s theorem,

2

þ
L(t)

w
›v

H

›z
� dx52

ðð
A(t)

k � =3 (w›
z
v
H
)dx dy

5

ðð
A(t)

(2›
x
w›

z
y1 ›

y
w›

z
u2w›

z
z)dx dy , (9)

where A(t) is the horizontal area enclosed by L(t). Thus, the

second term on the right of (7) represents the rate of change of

circulation from tilting of horizontal vorticity and vertical ad-

vection of vertical vorticity within the circuit. The first term on

the right of (7) accounts for the rate that circulation increases

as a result of advection of vertical vorticity into the horizontal

area bounded by a horizontal curve that is moving differently

from the horizontal wind (P 6¼ 0). The last two terms in (7) are

the solenoidal- and frictional-force circulations, respectively. If

we make the Boussinesq approximation and assume that FH 5
ne=

2vH, where ne is a constant eddy viscosity, then (7) becomes

dG
a

dt
5

þ
L(t)

(z1 f )P � nds2
þ

L(t)

w›
z
v
H
� dx1 n

e

þ
L(t)

=
H
z � n ds

1 n
e

þ
L(t)

›
zz
v
H
� dx , (10)

where the last two terms represent horizontal diffusion of

vertical vorticity intoA(t) and vertical shear diffusing vertically

toC(t). Note that in the Boussinesq approximation there are no

solenoids in a horizontal plane and therefore the2

þ
a dp term

does not appear in (10).

To investigate the growth of circulation around updrafts,

Davies-Jones (2004) set w5 0 at the updraft edge and P equal

to the propagation velocity of the edge points. Here we are

interested in how circulation develops around a level curve that

eventually surrounds a maximum of vertical vorticity near the

ground. In this situation, we retain the second term and in the

first term set P 5 0 for a level curve that moves with the hor-

izontal wind (so that there is no horizontal flux into or out of

the enclosed area).

d. Stationary level circuits

For a stationary level curve SL, we setP52vH andN52v.

Then (7) becomes

›G
a

›t
5

þ
SL

(2zv
H
2 fv

H
1wv

H
) � n ds2

þ
SL

adp1

þ
SL

F
H
� dx

(11)

after use of (8). In the Boussinesq approximation, the sole-

noidal term vanishes and this equation becomes equivalent to

(4.4) in Trapp and Weisman (2003).

e. Hybrid circuits

For the hybrid circuit with its flat base at z5Dz, P5 0 at all

points, and N5 0 at all heights greater than Dz. If w, 0 at the

level z 5 Dz, then N 5 2 wk there so that the curve points

never dip below this level. Let m5 1 on the horizontal floor of

the curve and 0 otherwise. From (1), the rate that circulation

around the hybrid circuit changes is

dG
a

dt
52

þ
Y(t)

mw
›v

H

›z
� dx2

þ
Y(t)

a dp2 g

þ
Y(t)

q
l
dz1

þ
Y(t)

F � dx .

(12)

Relative to (5) for a totally material curve, (12) has an extra

term, the first one on the right. This is thev flux term. It applies

here only to the horizontal floor of the circuit. Since w , 0 on

the floor, the term contributes positively to the rate of change

of circulation where the vertical shear vector is directed along

the curve in the positive direction. Alternatively, via (8), hor-

izontal vorticity vectors aligned with the inward normal to the

circuit act to increase the circulation [as in Fig. 10 of Trapp and

Weisman (2003)].

4. Examples

The following examples illustrate how use of the generalized

circulation theorem in (1) with a nonmaterial circuit instead

of a material one simplifies explanation of several supercell

phenomena. Since the planetary vorticity is small relative to

the horizontal vorticity in the environment (Davies-Jones

1984), we henceforth neglect the planetary vorticity, as is

customary in supercell dynamics.

a. Linear theory of updraft rotation

We start by using the circulation theorem to prove a well-

known result. Davies-Jones (1984) used linear theory to show
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that an updraft with a circular cross section rotates cyclonically

as a whole when the vorticity in the environment is streamwise

to the storm-relative wind v(z)2 c. Here c is the storm-motion

vector, and the overbar denotes environmental quantity. The

environmental shear vector S(z) is then 908 to the right of the

relative environmental wind. In inviscid linear theory, we may

let the level curve L(t) be a circle at height h that moves cen-

trally through the updraft from far upstream with the constant

velocity v(h)2 c. Then P5 0, and in the absence of torques (7)

reduces to

dG

dt
52

þ
L(t)

wS � dx , (13)

where the positive direction around L(t) is counterclockwise.

The circulation G is zero upstream. The circle acquires

circulation as its leading edge moves into the updraft be-

cause w . 0 and 2S � dx. 0 . 0 at the leading edge, with

w 5 0 still at the trailing edge (Fig. 2). Conversely, the

circle loses circulation as it exits the updraft (now w 5 0 at

the leading edge; w. 0 and2S � dx, 0 at the trailing edge)

until its circulation returns to zero after it has completely

passed through the updraft. Inside the updraft, the circu-

lation is positive (cyclonic) as Lilly (1982) and Davies-

Jones (1984, 2004) concluded by different means. Since the

environmental vorticityv5k3S, an alternative version of

(13) is

dG

dt
5

þ
L(t)

wv � nds . (14)

Thus, the right side of (13) is the linearized version of thev flux

term on the right side of (8).

The important component of nonadvective velocity in this

example is the vertical one, which cancels the updraft’s vertical

velocity and keeps the circuit in its horizontal plane. To explain

updraft rotation using a material circuit would entail the

complicated process of drawing a horizontal curve around the

updraft, taking the curve to earlier times using backward tra-

jectories, and seeing how the environmental vortex lines

threaded the deformed circuit.

b. Flow around a bend

To illustrate the development of streamwise vorticity around

a left-hand bend (Fig. 3), we use a planar vertical circuit, which

revolves around the bend’s center of curvature as a solid body.

The normal to the plane is in the direction of the primary flow

and perpendicular to the radius vector from the center of cur-

vature. Because of surface friction, the flow entering the bend is

vertically sheared with the flow speed being an increasing

function of z and the primary vorticity v0 being directed left-

ward of the flow. The vertical vorticity z of each parcel is zero

upstream and is conserved approximately (Shapiro 1972) as

there is practically no torque about a vertical axis. Therefore, the

shear vorticity cancels curvature vorticity, and the flow is faster

on the inside of the bend and slower on the outside of the bend.

The flowwould swivel amaterial circuit about a vertical axis and

tilt it downshear. Hence the nonadvective velocityN required to

keep the circuit in solid-body rotation consists of N1, which is

upstream on the inside of the bend and downstream on the

outside of the bend, andN0, which is upstream in the upper part

of the flow and downstream in the lower part of the flow (Fig. 3).

To a first approximation,

N’N
0
(z)1N

1
(r)52y

0
(z)t2 y

1
(r)t (15)

in cylindrical coordinates, where r is distance from the axis

(center of curvature), t is the unit downstream vector, y0(z) is

the primary flow, and y1(r) is the adjustment in the downstream

wind component required for z to remain zero. The primary

vorticity is

v
0
5

dy
0

dz
n , (16)

where n is the unit vector to the left of the flow. Hence,

v
0
3N’

d

dz

�
y20
2

�
k1

dy
0

dz
y
1
(r)k . (17)

FIG. 2. Linear theory of overall updraft rotation (or of positive

circulation around the updraft). Green and red arrows depict the

environmental vorticity vector and shear vector S, respectively.

The circle L(t) moves with the environmental storm-relative wind

(orange arrow) centrally through the updraft (shaded orange).

Note that the storm-relative environmental vorticity is streamwise.

The positive direction around L is counterclockwise. As L enters

the updraft (w. 0) the circulation aroundL increases from zero as

a result of positive

þ
(2w)S � dx or equivalently positive

þ
wv � n ds,

where n is the outward normal to L. When L is concentric with the

updraft, the circulation aroundL reaches its maximum value, which is

equal to that of the updraft. Thereafter,

þ
(2w)S � dx and

þ
wv � n ds

turn negative, and the circulation around L decreases, becoming zero

again when L is completely outside the updraft.
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If we assume that the frictional term is small, then the rate of

circulation change is

dG

dt
’

þ
K(t)

�
d

dz

�
y20
2

�
k1

dy
0

dz
y
1
(r)k

�
dz5

þ
K(t)

dy
0

dz
y
1
(r) dz (18)

from (4) and (17). The direction of dx around the circuit is

given by the right-hand rule with the thumb pointing down-

stream. Hence, at the inside of the bend dz is positive and u(r)

is greatest and at the outside of the bend dz is negative and u(r)

is least. Thus dG/dt . 0, indicating generation of secondary

streamwise circulation in the bend.

c. Vortex formation in axisymmetric flow

In axisymmetric simulations of tornadogenesis (e.g., Markowski

et al. 2003; Davies-Jones 2008),L(t) would be a horizontal circle of

variable radius s(t) centered on the axis. In this section, M

represents angular momentum. The circulation G is related to

M by G [ 2pM. In cylindrical coordinates (r, f, z) with cor-

responding wind components (ur, M/r, w), imposing axisym-

metry on (7) yields the angular-momentum equation

dM

dt
52w›

z
Mj

r5s
2l(u

r
›
r
M)j

r5s
1 n

e

�
›
zz
M1 r›

r

�
1

r
›
r
M

������
r5s

,

(19)

where we have assumed for simplicity a constant eddy viscosity

ne. Here l5 1 for a stationary circle and l5 0 for a circle that

moves horizontally with the radial wind ur so that there is no

horizontal influx of angular momentum into the circle of radius

s. The solenoidal torque does not appear in (19) because of the

axisymmetry.

For the Rott (1958) vortex [see also Davies-Jones andWood

(2006)], M increases radially outward (assuming a cyclonic

vortex in the Northern Hemisphere) and is independent of

height. In this case (19) reduces to

dM

dt
52l(u

r
›
r
M)j

r5s
1 n

e

�
r›

r

�
1

r
›
r
M

������
r5s

. (20)

An initially wide Rott vortex contracts in convergent flow

(ur 52ar, w5 2az, and a5 const. 0) until inward advection

of M is balanced by outward diffusion of M (Fig. 4). From the

perspective of (20) with l 5 1, M at a fixed radius r* changes

at a rate equal to its inward advection minus its outward dif-

fusion. For l5 0, the circle contracts asymptotically to the axis.

As it does so, the circulation around it decreases owing to

outward diffusion of M.

We now examine amore general case in whichM varies with

height. The Davies-Jones (2008) axisymmetric model shows

how rotation develops next to the ground in a flow initially

devoid of low-level rotation and how a tornado can form ac-

cording to Fujita’s (1973) recycling hypothesis. The domain of

radiusR is closed with no-slip boundary conditions imposed on

the tangential wind and free-slip on the other wall-parallel

components. The initial condition is an updraft that is rotating

at midlevels surrounded by a compensating downdraft (Fig. 5).

In axisymmetric flow the angular-momentum contours are also

the vortex lines. Precipitation drag initiates a downdraft

around the periphery of the updraft. This downdraft and its

outflow transports air with significant angular momentum

downward and inwards, thereby increasing the circulation at

(r, z)5 (0.25, 0.1), for example (Fig. 6). Near the axis, this air is

FIG. 4. Radial profiles of tangential wind y(r, t) for the Rott

convergent vortex at three different times. The parameters M‘, n,

and 2a are the angular momentum at radial infinity, constant eddy

viscosity, and constant horizontal convergence, respectively. At the

arbitrary initial time t5 0, the radius of maximum tangential wind

is 500m. The tangential wind approaches the steady state (t 5 ‘)
asymptotically.

FIG. 3. Three-dimensional diagram of streamwise-vorticity de-

velopment around a left-hand bend (thin black lines). Black arrows

on the inner bank of the bend entrance indicate the vertical profile

v0(z) of the primary downstream flow. Black arrows on the top face

at top midbend show the lateral profile v1(r) of downstream

velocity that develops in the bend. The vertical circuit (thick

black lines) revolves around the bend’s center of curvature as a

solid body. The blue arrows indicate the direction of the primary

transverse vorticity v0. The magenta arrows depict the non-

advective velocity N (5N0 1N1) required to keep the circuit in

solid-body rotation, and the red arrows show the direction of dx

around the circuit. The black transverse arrows at the exit of the

bend indicate the sense of the secondary streamwise circulation

produced by the positive v0 3 N � dx.

2900 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Brought to you by Pennsylvania State University, Paterno Library | Unauthenticated | Downloaded 08/31/22 03:07 PM UTC



drawn into the updraft. From loss of angular momentum to the

ground, air that flows next to the surface penetrates close to the

axis before rising and abruptly spreading out. In Fig. 7a tor-

nado is present. The tornado forms from the ground up with

the circulation in the tornado at (0.08, 0.1) increasing as a result

of upward advection.

The domain’s bounding surface is a material surface with

zero angularmomentum. This statement is true either by virtue

of the boundary conditions when the fluid is viscous or by

virtue of the initial condition and conservation of angular

momentum when the fluid is inviscid. Now consider the cir-

culation around concentric horizontal circles of radius s in a

given level (say z 5 0.1 in Fig. 5). When s 5 R the circle is

also a stationary material circle and always has zero circulation

regardless of rotating air dipping through it. It is therefore an

example of Morton’s deduction (see section 1) but with the

rotating fluid building upward instead of dipping downward.

The areal mean vertical vorticity in the disk enclosed by this

circle is zero. The precipitation-induced downdraft has drag-

ged down vortex lines, which reascend close to the axis. Thus,

the cyclonic tornado is surrounded by anticyclonic vorticity.

In the numerical experiment, diffusion is a slow process

relative to advection. From (19) the circulation around a

smaller stationary circle s , R therefore increases if there is

either a horizontal flux of angular momentum into the circle or

vertical advection of angular momentum on the circle or both.

For a circle of radiuss(t) thatmoves in its horizontal plane with

the radial wind, the horizontal flux vanishes and circulation

increases when there is positive vertical advection of M at the

circle circumference. Consider such a circle inside of the rain

curtain at a low height. As it contracts in the converging flow,

its circulation increases at first owing to angular momentum

bring transported downward from above and later owing to

angular momentum bring transported upward from below,

as indicated at the black dots in Figs. 6 and 7. In both

situations, 2w›zM at r 5 s(t) is positive. According to this

experiment, observations (Fujita 1973), and numerical simu-

lations (e.g., Markowski and Richardson 2014), it seems that

all of the air in a tornado has descended at some distance from

the axis of rotation before ascending in the core. The tornado

vortex develops upward (Davies-Jones 2008), as has been

recently observed with mobile Doppler radar by Bluestein

et al. (2019).

5. Circulation analyses of a simulated supercell-like
pseudostorm

To test the benefits of using horizontal or hybrid circuits as

comparedwith fully 3D ones in the general circulation theorem

in (1), we performed some circulation diagnostics of the CM1

model Sc8m8 simulation ofMarkowski andRichardson (2014).

This is their main simulation, the one that produces a long-

lived tornado-like vortex (TLV). A specified stationary heat

source is activated in an environment with a semicircular ho-

dograph of radius 8m s21. The environmental shear is greatest

FIG. 5. Initial fields of angular momentum M (color-shaded

contours) and streamfunction c (red and black solid-line contours)

in theDavies-Jones (2008) main experiment. The arrow shows flow

direction in the radial–height plane. The contours ofM are also the

vortex lines.

FIG. 6. As in Fig. 5, but at a later time t 5 4.6. The dashed con-

tours are for rain mixing ratio. The black dot indicates a location at

which the circulation is increasing as a result of downward angular

momentum advection.
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in the lowest 1 km and decreases rapidly with height. The lower

boundary condition is w5 0 at z5 0 and is ‘‘free slip’’ (i.e., no

variation in the shear stresses t13 and t23 between z5 0 and z5
Dz). After 15min a quasi-steady rotating updraft has formed,

at which time a low-level stationary heat sink close to the

north-northeast of the heat source is activated. TLV formation

is at t5 46min, hereinafter t2 0. The grid spacing is 100m in x,

y, and z within the lowest 1 km of the central 20 km 3 20 km

region of the domain. Horizontal grid stretching is used outside

that region. Throughout the domain, the lowest level for u and

y in the staggered grid is 50m; thus, z 5 100m represents the

first level at which centered finite differences can evaluate

w›zvH and horizontal vorticity (from the horizontal winds at

z 5 50m and z 5 150m, and the vertical wind at 100m). The

circuits at t 2 0 are horizontal circles of radius 1 km sur-

rounding the vortex at a height of 100mAGL.A radius of 1 km

is sufficiently large to mostly avoid problems arising from

tracking the circuits backward in time through large velocity

gradients associated with the vortex. The circuits are traced

backward in time using the specified velocities of the curve

points. As in Markowski and Richardson (2014), we use a

fourth-order Runge–Kutta scheme to compute backward tra-

jectories. The trajectory time step is21 s, and themodel output

is saved every 5 s. (Saving the model output every second and

using a trajectory time step of20.25 s led to negligible changes

in the circulation budgets.) Second-order extrapolation is used

to assign values of a scalar s(x, y, z) such as a horizontal wind

component, a momentum forcing, or temperature, to par-

cels that pass below the lowest scalar level. At fixed x and y,

let s 5 f(z). We extrapolate f below z 5 0.5Dz by using the

quadratic polynomial that passes through the three points

[0.5Dz, f(0.5Dz)], [1.5Dz, f(1.5Dz)], and [2.5Dz, f(2.5Dz)].
For this case, the Lagrange interpolating formula yields

f(z) 5 0.5«(« 2 1)f(0.5Dz) 1 (1 2 «2)f(1.5Dz) 1 0.5«(« 1 1)

f(2.5Dz), where « [ (z 2 1.5Dz)/Dz.
The maximum spacing allowed between adjacent parcels in

the circuits as they are run backward in time is 10m. When the

spacing exceeds this limit, new parcels are added to the circuit

via interpolation.

The configurations of the 3D, hybrid, and horizontal circuits

at various times are shown in Fig. 8. The hybrid circuit has a

floor at z 5 Dz 5 100m AGL, below which the circuit is not

allowed to dip. At the time t 2 0, the 3D-material, the hybrid,

and the horizontal circuits are coincident and lie in the floor.

Each parcel on the 3D circuit is associated with curve points on

the hybrid and horizontal circuits, the ones that are collocated

with it at t 2 0. Curve points on the horizontal circuit are

constrained to move just with the horizontal wind. Thus, the

3D circuit separates from the horizontal one when its parcels

have nonzero vertical velocity. Curve points on the hybrid

circuit also move with the horizontal wind, but with the vertical

wind too when they are not constrained to the floor. Because

the trajectories are backward ones, a parcel continuously in

downdraft stays above the floor and remains coincident with its

associated hybrid-curve point. Conversely, hybrid-curve points

that are held to the floor are in regions where the near-ground

vertical wind is upward. As a parcel first dips below the floor

along its 3D backward trajectory, its associated hybrid-curve

point follows a different path along the floor. The two circuits

thus split apart. Since the flow is mostly divergent in reverse

time, all the circuits become widely separated as they are

traced backward in time.

The horizontal circuit is much shorter and less convoluted in

backward time than the 3D and hybrid circuits. At t 2 30min,

the 3D and hybrid circuits require;750 000 parcels tomaintain

a spacing of less than 10m between adjacent parcels. In con-

trast the 2D horizontal circuit only requires ;25 000 parcels.

At least some of the ‘‘folds’’ in the circuits are the result of

adjacent circuit parcels being ‘‘captured’’ within the vortex for

different numbers of orbits before ‘‘escaping’’ in backward

time. Such parcels become widely separated quickly.

In considering the circulations and their budgets for the

different curves as functions of time (Fig. 9), we should re-

member that the curves and the circulations around them are

the same only at the final time t2 0 and that the only material

circuit is the 3D one. For the other two circuits, Kelvin’s the-

orem for barotropic circulation does not apply. Note that the

subgrid-scale turbulence scheme’s contribution to F is rela-

tively small in these simulations and therefore the frictional

force F is dominated by numerical diffusion. The advec-

tion scheme is odd ordered, and such schemes have implicit

diffusion. Thus, additional explicit diffusion is not used, in

accordance with the ‘‘industry standard’’ these days. The

implicit-diffusion effects on velocity tendencies are diagnosed

FIG. 7. As in Fig. 6, but at time t5 5.6. The black dot illustrates a

region in the tornado where the circulation is increasing as a result

of upward angular momentum advection. As evidenced by the

vortex lines, the intensifying cyclonic vortex is surrounded by a

wide region of anticyclonic vorticity.
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FIG. 8. (left) Three-dimensional material, (center) hybrid, and (right) horizontal circuits overlaid on horizontal cross sections of po-

tential temperature perturbation (color shades) at z5 50m in theMarkowski and Richardson (2014) Sc8m8 simulation of a supercell-like

pseudostorm at (a) 16min or t 2 30min, (b) 26min or t 2 20min, (c) 36min or t 2 10min, and (d) 46min or t 2 0min, the time of

maximum cyclonic vorticity at the lowest model level. The altitudes of the circuits above the surface are indicated in meters at select

locations, and a dotted curve is used where the circuit dips below the lowest model level for horizontal wind. Axis labels are distances in

kilometers.
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FIG. 9. Circulations, partial circulations, and force circulations about the (top) three-dimensional, (middle) hy-

brid, and (bottom) horizontal circuits, respectively, analyzed in the Markowski and Richardson (2014) Sc8m8

simulation of a supercell-like pseudostorm as functions of time. The time labels are as in Fig. 8. (a),(c),(e)

Circulations and partial circulations about the three-dimensional, hybrid, and horizontal circuits, respectively.

(b),(d),(f) Contributions to circulation tendencies from baroclinity, tilting and vertical advection (thev flux term),

and viscous effects (turbulent plus numerical diffusion). The inset in (b) shows the percentages of the 3D circuit that

are below 100m (black curve) and below the lowest scalar level at z 5 50m (red curve) as functions of time. The

inset in (d) gives the percentage of the hybrid circuit that is being held to the first interior level for vertical shear and

vertical velocity (z 5 100m). At t 2 0 all parcels are at 100m AGL.
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at runtime and written to output. These diagnostics are prob-

ably less than perfect, even away from the ground, in regions of

large velocity gradients.

We now compare the results of the circulation analyses for

the different circuits. At t2 0, G is about 53 104m2 s21, which

is a typical circulation for a strong tornado. Using the time

integral of (12) from t 2 30min to t, we partition the total

circulation G around each circuit into partial circulations G0,

GBC, GTVA, and GF, where G0 is the circulation at t 2 30min

(practically the initial circulation), GBC is the baroclinic circu-

lation or the buoyancy-force circulation, GTVA is the circula-

tion due to tilting of horizontal vorticity and vertical advection

of vertical vorticity into the area A(t) bounded by K(t), and GF

is the diffusive circulation (the time integral of the frictional-

force circulation). Alternatively, GTVA is the integral over time

of the circulation of the force needed to keep horizontal seg-

ments of the circuit level.

There is almost no circulation around the horizontal circuit

at 100m AGL 15min prior to vortex formation (Figs. 9e,f).

Since the circuit is horizontal, the buoyancy force cannot

generate circulation around it. Thus G0 and GBC are both zero.

The growth in circulation between t 2 15 and t 2 5min is due

entirely to GTVA because GF in this time interval is slightly

negative. Note, however, that frictional or baroclinic torques

near the ground may have generated some of the horizontal

vorticity that is tilted into A(t).

For the 3D material circuit (Figs. 9a,b), the circulation G0 at

t 2 30min is about 1 3 104m2 s21. Since the rate of change of

circulation from torques at early times is negligible, G0 in this

case is nearly the barotropic circulation, which is conserved

since the circuit is a material one (Kelvin’s circulation theo-

rem). For a material circuit, GTVA is zero and effects of tilting

and stretching are concealed in the changing 3D geometry of

the circuit. Initial circulation increase is due to GBC, but this

source of growth fades as the circuit levels out. For the last

12min before vortex formation, the circulation intensifies be-

cause of GF, which exceeds GBC in the last 7min. The sum of G0,

GBC, and GF is less than G at t2 0. This suggests that GF, which is

less accurately estimated than GBC, may be underestimated at

the time that the vortex forms.

The hybrid circuit has the largest change in G between t2 30

and t 2 0min (Figs. 9c,d). In this interval, the diffusive circu-

lation GF is small. From a negative initial value, the circulation

increases initially because of GBC; GTVA supplies the circulation

spurt between t2 12 and t2 5min as the circuit levels out and

GBC stops increasing.

Like the blindmen and the elephant, the circulation analyses

detect different features but not the entirety. The horizontal

circuit sees the development of vertical vorticity in the last

15min prior to TLV formation. Its circulation is due to ver-

tical advection of vertical vorticity and tilting of horizontal

vorticity toward the vertical into the area enclosed by the

circuit. Amplification of vertical vorticity is implicit in the

circuit’s contraction. Circulation around the 3D material

circuit increases as a result of buoyancy-force circulation in

the interval from t2 20 to t2 15min (but none later because

of the circuit becoming flat) and to frictional-force circulation

in the last 10min prior to the tornado. From this perspective,

the frictional circulation becomes the dominant partial cir-

culation. The effects of vorticity advection, tilting, and

stretching are all implicit in the circuit’s changing geometry.

The hybrid circuit reacts chiefly to baroclinic generation of

vorticity in the interval from t2 25 to t2 10min and to tilting

of horizontal vorticity toward the vertical and vertical ad-

vection of vertical vorticity during the last 12min prior to the

tornado. For the hybrid circuit, the frictional circulation is

insignificant. The baroclinic circulations for the hybrid and

3D circuits are different (Fig. 9) because the circuits are dif-

ferent at all elevations.

The circulation imbalance G 2 (G0 1 GBC 1 GTVA 1 GF),

which ideally should vanish, is much lower for the hybrid cir-

cuit than for the other two circuits for two reasons. First, the

hybrid circuit has none of its points below 100m whereas the

3D circuit has a high percentage of its points in the lowest 50m

(Fig. 9b) where the horizontal wind is ill defined. Second, given

that the hybrid circuit obtains at least part of its circulation

from the baroclinic forcing, which varies far more smoothly

than the circulations of F and 2w›z(vH) (Fig. 9), the hybrid

circuit’s circulation budget is more accurate than that of the

horizontal circuit, which depends solely on F and 2w›z(vH),

both of which are more error prone than B. We also conducted

circulation analyses (not shown) for circuits at 250m AGL at

t 2 0. The hybrid circuit again had the least circulation

imbalance.

Heat maps of normalized baroclinic and viscous circulation

forcing (Bdz/jdxj and F � dx/jdxj, respectively) are provided in

Fig. 10 to show the vertical extent of the circuits and how the

circulation forcings are distributed in time and height. Tao and

Tamura (2020, their Fig. 11b) showed a similar heat map for

frictional forcing in their case study. Given how convoluted the

circuits are, we found it futile to use a scheme as in Roberts and

Xue (2017, their Fig. 8) by which the circuits shown in Fig. 8 are

colored in proportion to the circulation forcings. The signifi-

cant positive GF acquired by the 3D circuit (Fig. 9a), which is

perhaps surprising, is mainly the result of positive circulation

forcing from turbulent and numerical diffusion along portions

of the circuit that have dipped below the lowest scalar level

(50m) (Fig. 10b, inset). Given that these forcings have been

extrapolated, it would be prudent to view them with skepti-

cism. There are other reasons to be cautious about conclusions

drawn from partitioning the circulation forcings into parts

along segments. First, the quantitiesBdz/jdxj andF � dx/jdxj are
the integrands. The line integrals themselves are the result of

integrating these quantities with respect to amaterial arclength

that is generally decreasing with (forward) time. The arclength

factor is unrepresented in the heat maps. Second, as revealed

by the derivation in appendix B, the rate of change of the line

integral of wind along each material segment of the circuit

contains an extra term (which vanishes around a closed curve)

in addition to the line integrals of the buoyancy and frictional

forces. For an asymmetric vortex this extra term could be sig-

nificant (appendix B) and should not be ignored. For a steady

axisymmetric tornado (e.g., Figs. 5–7), the frictional-force cir-

culation near the ground should reduce circulation around an

axisymmetric circuit so that inflowing parcels approach the

axis more closely and rotate faster (Fiedler and Rotunno 1986;
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Lewellen 1993). [See sections 4.1 and 6.2 of Davies-Jones

(2015) for a brief synopsis of this mechanism].

6. Conclusions

Todiagnose the origins of large vertical vorticity near the ground,

supercellmodelers calculate the circulation aroundmaterial circuits.

This approach suffers from the problem that trajectories become ill

definedwhenparcels dipbelow the lowest scalar level of a staggered

grid. To circumvent this problem, we derive (1), which provides the

theorem for the rate of change of circulation around any moving

closed curve. Special cases include a stationary curve, a material

one, and a permanently horizontal one that is moving with the

horizontal wind. To avoid having circuit parcels that dip below the

lowest scalar level, we adopt a hybrid curve with material segments

used at heights z $ Dz and horizontal segments at z 5 Dz
where the material curve dips below z 5 Dz. Another force

circulation has to be added to the customary equation for

circulation [see (12)]. This force circulation is

þ
G � dx, where

G52w›zvH is the force needed to keep the horizontal segments

level and G 5 0 on the unrestrained parts of the circuit.

The generalized circulation theorem is verified through ap-

plication to simple flows such as the development of updraft

rotation in a sheared environment, flow around a bend, and

vortex formation in axisymmetric flow. The hybrid-circuit

method significantly improves the accuracy of the circulation

budget in an idealized supercell simulation.
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forcing from turbulent and numerical diffusion along portions of the circuit that have dipped below the lowest scalar
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APPENDIX A

Rigorous Derivation of the Circulation Formula in (1)

Consider the circulation around any simple time-dependent

closed curveK(t) in a reference frame rotating with Earth. The

curve can be stationary or moving in any specified way in

two or three dimensions. At a chosen initial time t 5 0, the

curve K(0) can be parameterized by arc length s measured

counterclockwise from an arbitrary point on the curve

where s 5 0. At later times s, the initial arc length, acts as a

label for each curve point. On the curve there are two dif-

ferent velocity fields, namely, the wind v(s, t) [ [u(s, t), y(s,

t), w(s, t)] at the curve points and the prescribed velocity

V(s, t)[ [U(s, t), V(s, t),W(s, t)] with which the curve points

are moving. These velocity fields are the same only if the

curve is a material one. In Cartesian coordinates let x(s, t)[
[x(s, t), y(s, t), z(s, t)] be the position vectors of the curve

points. Then the velocity vector of the curve points is

given by

V(s, t)5

�
›x(s, t)

›t

�
s

. (A1)

The nonadvective velocity of each curve point is N(s, t) [
V(s, t) 2 v(s, t). On an f plane, the absolute circulation Ga(t)

around a closed curve K(t) is

G
a
(t)5

þ
K(0)

�
v(s, t)1

f

2
k3 x(s, t)

�
� ›x(s, t)

›s
ds, (A2)

where the quantity inside the square brackets is the absolute

velocity (aside from a constant term that does not contribute to

the contour integral). Note that line integrals with respect to s

are along the curve K(0) and not K(t). The rate of change of

circulation is therefore

dG
a

dt
5

þ
K(0)

��
›v

›t

�
s

1
f

2
k3V(s, t)

�
� ›x(s, t)

›s
ds

1

þ
K(0)

�
v(s, t)1

f

2
k3 x(s, t)

�
� ›V(s, t)

›s
ds (A3)

with use of (A1). The line integrals of exact differentials

around closed curves in a simply connected region vanish. By

integration by parts with respect to s and use of the above

property where applicable, we find that

þ
K(0)

v(s, t) � ›V(s, t)

›s
ds52

þ
K(0)

N(s, t) � ›v(s, t)
›s

ds and (A4)

þ
K(0)

f

2
k3 x(s, t) � ›V(s, t)

›s
ds5

þ
K(0)

f

2

�
2y(s, t)

›U(s, t)

›s
1 x(s, t)

›V(s, t)

›s

�
ds5

þ
K(0)

f

2

�
U(s, t)

›y(s, t)

›s
2V(s, t)

›x(s, t)

›s

�
ds

5

þ
K(0)

f

2
[k3V(s, t)] � ›x(s, t)

›s
ds. (A5)

Thus (A3) becomes

dG
a

dt
5

þ
K(0)

�
›v

›t

�
s

� ›x(s, t)
›s

ds2

þ
K(0)

N(s, t) � ›v(s, t)
›s

ds

1

þ
K(0)

[fk3V(s, t)] � ›x(s, t)
›s

ds. (A6)

To proceed further we need to ascertain the meaning of

(›v/›t)s. In terms of Cartesian coordinates,

v(s, t)5 v̂[x(s, t), y(s, t), z(s, t), t], (A7)

where v̂ is the wind reexpressed as an explicit function of
x, y, z. Hence,�

›v

›t

�
s

5

�
›v̂

›t

�
x,y,z

1

�
›v̂

›x

�
y,z,t

�
›x

›t

�
s

1

�
›v̂

›y

�
x,z,t

�
›y

›s

�
s

1

�
›v̂

›z

�
x,z,t

�
›z

›t

�
s

5

�
›v̂

›t

�
x,y,z

1 (V � =)v̂5dv̂

dt
1 (N � =)v̂ (A8)

by (A1), where dv̂/ dt is the material derivative of v in the ro-

tating reference frame. Differentiating (A7) with respect to s

yields

�
›v

›s

�
t

5
›v̂

›x

�
›x

›s

�
t

1
›v̂

›y

�
›y

›s

�
t

1
›v̂

›z

�
›z

›s

�
t

5=v̂ �
�
›x

›s

�
t

.

(A9)

Inserting (A8) and (A9) into (A6) and discarding the now

unnecessary hat (caret) notation yields

dG
a

dt
5

þ
K(t)

�
dv

dt
1 fk3 v1 (N � =)v2N � =v1 fk3N

�
� dx ,

(A10)

where

N � =v5N
j
›y

j
/›x

i
(A11)

in tensor notation. With the aid of a vector identity
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(N � =)v2N � =v5 (=3 v)3N (A12)

(D’haeseleer et al. 1991, p. 39), (A10) becomes

dG
a

dt
5

þ
K(t)

�
dv

dt
1 fk3 v1 (=3 v)3N1 fk3N

�
� dx . (A13)

From the vector equation of motion on an f plane,

dv

dt
1 fk3 v52a=p2=(gz)2 gq

l
k1F . (A14)

Introducing (A14) into (A13) gives

dG
a

dt
5

þ
K(t)

(v
a
3N) � dx2

þ
K(t)

a dp2 g

þ
K(t)

q
l
dz1

þ
K(t)

F � dx ,

(A15)

which is the circulation theorem in (1).

APPENDIX B

Line-Segment Theorem for a Material Curve

Here we consider the line integral around a curveC(t), which is

just amaterial segment of a closedmaterial circuitK(t), andwe set

f5 0 for simplicity. SinceC(t) andK(t) arematerial curves,V5 v

and N 5 0. Arclength s along the initial circuit K(0) labels the

parcels on thematerial curves. Let s1 and s2 be the endpoint labels

of the material segment. The contribution I(t) from the material

segment to the circulation around the material circuit is

I(t)5

ðs2
s1

v(s, t) � ›x(s, t)
›s

ds. (B1)

The material rate of change of I is

dI

dt
5

ðs2
s1

›v(s, t)

›t
� ›x(s, t)

›s
ds1

ðs2
s1

v(s, t) � ›v(s, t)
›s

ds. (B2)

On a material curve (›v/›t)s is simply dv/dt, however.

Therefore,

dI

dt
5

ðs2
s1

dv

dt
� dx1

�v � v
2

�s2

s1

. (B3)

Inserting the equation of motion in the form

dv

dt
5T=S2=(c

p
T1 gz)2 gq

l
k1F , (B4)

where S is entropy, gives

dI

dt
5

ðs2
s1

T dS2

ðs2
s1

gq
l
dz1

ðs2
s1

F � dx1
�v � v

2
2 c

p
T2 gz

�s2

s1

,

(B5)

where (v � v)/2 2 cpT 2 gz is the specific kinetic energy of a

parcel minus its specific enthalpy and specific potential energy.

The last term in (B5) originates from an irrotational wind

component. It is zero for a closed circuit (s1 5 s2) in a simply

connected region. Parcels entering a tornado gain kinetic en-

ergy and lose enthalpy (Davies-Jones 2015, section 6.2). Even

though the barotropic circulation around the entire material

circuit is constant, the contribution to barotropic-circulation

gain from a material segment will increase significantly if the

segment is drawn lengthwise into a tornado.

Using the Boussinesq-approximated form of the equation of

motion instead of (B4) yields

dI

dt
5

ðs2
s1

Bdz1

ðs2
s1

F � dx1
�v � v

2
2a

0
p0
�s2

s1

, (B6)

where the first two terms on the right are the work done by

buoyancy and frictional forces on a hypothetical parcel that

moves instantaneously along the curve segment from s1 to s2.

The third term on the right is the specific kinetic energy minus

specific pressure energy. It increases rapidly with proximity to

a vortex.
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