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Circulation around a Constrained Curve: An Alternative Analysis Tool for Diagnosing the
Origins of Tornado Rotation in Numerical Supercell Simulations
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ABSTRACT: Fine-resolution computer models of supercell storms generate realistic tornadic vortices. Like real torna-
does, the origins of these virtual vortices are mysterious. To diagnose the origin of a tornado, typically a near-ground
material circuit is drawn around it. This circuit is then traced back in time using backward trajectories. The rate of change of
the circulation around the circuit is equal to the total force circulation. This circulation theorem is used to deduce the origins
of the tornado’s large vorticity. However, there is a well-known problem with this approach; with staggered grids, parcel
trajectories become uncertain as they dip into the layer next to the ground where horizontal wind cannot be interpolated.
To circumvent this dilemma, we obtain a generalized circulation theorem that pertains to any circuit. We apply this theorem
either to moving circuits that are constrained to simple surfaces or to a ““hybrid” circuit defined next. Let A be the horizontal
surface at one grid spacing off the ground. Above A the circuit moves as a material circuit. Horizontal curve segments that
move in A with the horizontal wind replace segments of the material circuit that dip below A. The circulation equation for
the modified circuit includes the force circulation of the inertial force that is required to keep the curve segments horizontal.
This term is easily evaluated on A. Use of planar or circular circuits facilitates explanation of some simple flows. The hybrid-
circuit method significantly improves the accuracy of the circulation budget in an idealized supercell simulation.
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1. Introduction The rate of change of the circulation is equal to the sum of the
force circulations, i.e., to the sum of the line integrals of the
tangential forces acting around the circuit (Dutton 1986,
p- 372). The baroclinic and frictional force circulations account
for the increase in circulation in the interval [f, t;] and most of
the total circulation at #; (Rotunno and Klemp 1985; Davies-
Jones and Brooks 1993; Trapp and Fiedler 1995; Adlerman
et al. 1999; Dahl et al. 2014; Dahl 2015; Roberts et al. 2016,
2020; Roberts and Xue 2017; etc.).

Calculating the circulation around a material circuit that is
drawn horizontally around a near-ground vorticity maximum
and then tracked backward using saved data to a much earlier
time is susceptible to several errors including interpolation and
extrapolation ones. The backward trajectories used to trace the
circuit can be clearly erroneous, such as when they cross frontal
boundaries dividing air masses (Dahl et al. 2012) or when
parcels remain trapped in the vortex (Markowski et al. 2012, p.
2918). The circuit should be recoverable by running forward
trajectories from the earlier time. However, this is not the case
if the numerical trajectory scheme does not satisty time-reversal
symmetry adequately. Since the flow is 3D and convergent (i.e.,
divergent in backward time), the length of the circuit gets very
large and becomes very convoluted (Markowski and Richardson
2014). Because trajectories can be chaotic (Dombre et al. 1986),
the curve may resemble a fractal and thus have a length
(Mandelbrot 1982) and circulation around it that may converge
poorly with progressively finer model resolution.

Almost all 3D numerical models of clouds use staggered
grids. In these models the vertical wind vanishes at the ground
(z = 0), but the horizontal wind is undefined there. The lowest
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Based on a maximum tangential wind of 100ms ™' at a core
radius of 100 m, the vertical vorticity in the core of a strong
tornado is estimated to be 2s~ . The corresponding estimate
for the circulation at the radius of maximum tangential velocity
is 6.3 X 10*m*s~!. How such large values of vorticity and
circulation develop on the scale of a tornado core is still un-
decided (Davies-Jones et al. 2001; Davies-Jones 2015). Even
though some fine-resolution computer simulations of supercell
storms (without Earth’s background vorticity) generate real-
istic tornado-like vortices (Orf et al. 2017), the origins of these
vortices are difficult to decode, as foretold by Rotunno (1986).
In many studies, diagnostic calculations based on circulation
are performed on fields generated either by computer simulations
of supercells (e.g., Rotunno and Klemp 1985; Davies-Jones
and Brooks 1993; Adlerman et al. 1999) or by Doppler-radar
analyses of actual supercells (e.g., Markowski et al. 2012).
Typically, a small material horizontal circuit is drawn at some
time # around the maximum of vertical vorticity at a low level
in the storm. By calculating backward trajectories, this circuit is
taken backward to an earlier reference time #,. By Kelvin’s
theorem (Dutton 1986, p. 368), the barotropic part of the cir-
culation does not change and so is equal to the initial circula-
tion at fy. The total circulation generally changes significantly
over long intervals (¢, #;] as a result of torques (Shapiro 1972).
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next to the ground). This level is often referred to as the lowest
scalar level. Consequently, there is uncertainty in the calcula-
tion of trajectories when they dip into the layer between the
lowest scalar level and the ground (e.g., Dahl et al. 2014;
Markowski and Richardson 2014). Often the horizontal wind
vy is assumed unrealistically to be constant in this layer (e.g.,
Markowski and Richardson 2014), extrapolated from higher
levels (Yokota et al. 2018; Tao and Tamura 2020), or, if the
lower boundary condition is semislip, assumed to adhere to
log-law behavior (e.g., Markowski 2016), which is probably
unrealistic within convective storms (e.g., Markowski et al.
2019). The above problem with trajectories is also present in
Doppler-radar analyses where there are no data between the
lowest observation level and the ground (Markowski et al.
2012). Additional errors arise in circuit analyses because the
forces influencing near-surface parcels (e.g., buoyancy) also
have to be extrapolated from higher levels.

When interpreting the results of a circulation analysis, we
should bear in mind that the circulation around a material
circuit is unaffected by a vortex passing inside it (Fig. 1). In this
context, Morton (1966, p. 182) stated that ““It is interesting to
note that there is some evidence for the existence around
tornado cores of vorticity opposite in sense to that of the core
(Hoecker 1960; Glaser 1960) so that the circulation around the
core perimeter exceeds that in circuits of larger radius. If this is
correct, it suggests that at least part of the air mass of the
tornado column has been introduced from other presumably
higher levels. (The circulation in a large circuit is unchanged
when a funnel of rotating fluid dips down through it.)”” Note
that Morton’s deduction is still valid if the rotating fluid passes
through the circuit from below instead of from above. Although
the material circuit will expand to accommodate the extra fluid
(Fig. 1), the barotropic circulation around it will not react to a
tornado developing upward or downward through it according
to Kelvin’s circulation theorem.

Sometimes it is useful to consider the circulation around a
nonmaterial circuit. A point on such a circuit has a non-
advective velocity, which is its velocity minus the wind at that
point. For example, the nonadvective velocity of a point on a
stationary curve is the negative of the wind at the point.

Computing the circulations around constrained curves that
move partially with the wind and remain in the same plane can
alleviate some of the aforementioned problems. With a hori-
zontal circuit that moves with the horizontal wind v, we can
avoid the difficulty associated with parts of circuits dipping
below the lowest scalar grid level. Another advantage is that
the above fractal difficulty, if a problem, can be avoided easily
in 2D by using Stokes’s theorem to compute the circulation as
an equivalent integral over a horizontal area. A disadvantage is
that the circulation around horizontal curves is independent of
horizontal vorticity so that this approach is oblivious to the
“river-bend effect” wherein baroclinically or frictionally gen-
erated horizontal vorticity is reoriented from crosswise to
streamwise. Note, however, that for a 3D material circuit the
bend effect is hard to discern from the convoluted geometry of
the circuit. As shown in section 4b, a circuit confined to a
vertical plane is optimal for demonstrating the river-bend ef-
fect. Another disadvantage of analyses with level curves (i.e.,
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FIG. 1. Schematic showing vortex lines when a cyclonically ro-
tating funnel of air dips down through a material circuit L that
encloses an area A. In the 3D perspectives, the vortex line segments
are colored red, black, or blue according to whether the vertical
vorticity is cyclonic, zero, or anticyclonic, respectively. The curved
arrows indicate the direction of rotation. In the horizontal sections,
subareas of A where the vorticity is cyclonic or anticyclonic are
shaded pink or blue, respectively. (a) At time zero, the funnel is
above the initial circuit L(0), which has zero circulation. (b) At a
later time ¢, the funnel has pierced the area A(¢), which is now
larger to accommodate the extra fluid. According to Kelvin’s cir-
culation theorem, there is still no circulation around L(f). For the
areal average of vorticity normal to A to remain zero, the inner
core of cyclonic vorticity within A(f) must be surrounded at least
partly by a region of anticyclonic vorticity.

horizontal curves that stay at the same height) is that although
tilting of horizontal vorticity into the vertical is included, it
excludes baroclinic generation of horizontal vorticity, which is
well represented in a 3D material circulation analysis prior to
the circuit becoming flat. In a level-curve analysis, vertical
forces are represented only through their accumulated effects
on vertical velocity w. On the other hand, the rate of change of
material circulation is independent of tilting and stretching,
which have to be assessed from the complicated changing 3D
configuration of a material circuit. Thus, the two analyses
complement one another. Keeping the circuit level requires
adding the circulation of the partial inertial force —wavy/dz to
the circulation equation.

To determine the sensitivity of the circulation analyses to the
size of the horizontal closed curve at the time #,, one could draw
two circuits, one inside the other, and take both circuits
backward to time f. (This is not attempted in this paper.) If the
closed curves are ones that move with the horizontal wind
while staying in the same level, the smaller circuit is always
contained inside the larger one. (If this were untrue, the curves
would intersect at some time, which is impossible because
intersection points move with the horizontal wind and thus
remain on both curves for all time including #.) If, on the other
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hand, the detached curves are material ones that move in 3D,
there is no containment and the only thing that can be said
about how the two curves relate to each other is that they never
intersect (because they do not share a common parcel). Thus,
the configuration of the 3D curve at the earlier time ¢, may be
very sensitive to the choice of the final curve at #,.

A hybrid approach can capture the best features of the 3D-
and the flat-circuit circulation analyses. To circumvent the
problem of a material curve passing below the lowest scalar
level while retaining a 3D approach, we specify that the curve
moves with the 3D flow everywhere above the height Az.
When a part of the material curve dips below this level, it is
replaced with a horizontal curve segment that moves with the
horizontal wind. We then make use of a generalized circulation
theorem. The height z = Az is chosen because it is the lowest
grid level at which the extra term is easily evaluated. Thus, the
hybrid method still detects past baroclinic generation of cir-
culation along elevated parts of the circuit while preventing the
circuit from dipping into the layer of ill-defined wind next to
the ground.

This paper is organized as follows. In section 2 and appendix
A, we derive a general circulation theorem for a nonmaterial
circuit. Section 3 adapts this theorem to special curves, and
section 4 applies this theory to simple examples such as the
linear theory of updraft rotation, flow around a bend, and
axisymmetric flow. In section 5, we perform circulation ana-
lyses for a vortex that forms in a simulated supercell-like
pseudostorm and compare the results for the horizontal circuit,
the fully 3D circuit, and the hybrid circuit. Section 6 summa-
rizes our main points.

2. A circulation theorem for a moving nonmaterial curve

We need a general circulation theorem for arbitrarily mov-
ing curves. Let r be time and x = xi + yj + zk be the position
vector, where i, j, and k are eastward, northward, and upward
unit vectors and z is height above (flat) ground. The presence
or absence of a subscript a denotes an absolute or relative
quantity, respectively. Davies-Jones (2004) derived the fol-
lowing theorem for the rate of change of the absolute circula-
tion I',(¢) around any simple closed oriented curve K(¢) in a
reference frame rotating with Earth:

oT,
5t

= f’;(waxN)-dx— {uxdp—gi)q,dz-i— +F-dx.
K(1) K(1) K(r) K(1)

)

We derive this equation more rigorously than heretofore in
appendix A. Thus, we can calculate the rate that circulation
changes solely from quantities on the circuit itself regardless of
values inside the circuit. The curve K can be stationary or
moving in any specified way in two or three dimensions. In (1),
N is the nonadvective velocity of points on K(f), « is specific
volume, p is pressure, g is the gravitational acceleration, g, is
the hydrometeor mixing ratio, and F is the frictional force.
On K,N=V — vwhere v=ui + vj + wkis the wind vector and
V = Ui + Vj + Wk is the velocity of the curve points. On an
f plane the absolute vorticity is
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where 9, = d/dx and so on, { = d,v — d,u is the relative vertical
vorticity, and fis the Coriolis parameter. The general circula-
tion equation in (1) states that the rate of change of absolute
circulation is equal to the sum of the force circulations of the
following forces per unit mass: pressure-gradient force, pre-
cipitation drag, and frictional force. There is also an additional
term (the first one on the right side) that appears when the
circuit is not a material one.

In the Boussinesq approximation (a = ay + o/, dp/dz =
—glag, and ap = constant), the second term on the right of
(1) becomes

d— !
—aﬁadp%—%a'd—idz: C{)gai zZ. 3)
K() K@) Ko

If we define the buoyancy force Bk as g(a'/ag — q)k, then the
Boussinesq version of (1) is

oT,
3t

:ﬁ;(waxN)-dﬁ %de-i— fi;F-dx. *)

K(1) K(0) K(1)

The last two terms in (4) are the buoyancy and frictional force
circulations. They are equal to the work done by the buoyancy
and frictional forces on a parcel that is moved instantaneously
once around K(f) in the positive direction. [If K(0) is horizontal
at a time ¢ = 0, the counterclockwise direction around K(0) and
the mapping from K(0) to K(f) define the positive direction
around K().]

3. Special cases

We now adapt the circulation theorem in (1) to special cir-
cuits. These circuits are material circuits, denoted by M(¢),
stationary curves S, level curves L(f), stationary level curves
SL, and hybrid circuits Y(z). Level circuits are defined as ones
that reside in one horizontal plane.

a. Material circuits

For material circuits, N = 0, and (1) reduces to

ol
a
ot

:_+adp—gi£qldz+4;F~dx, (5)

M(r) M(1) M(r)

which is Bjerknes theorem with frictional force (Dutton 1986,
p- 372) and precipitation drag. The rate of change of circulation
around a material circuit is equal to the sum of the force cir-
culations. The barotropic circulation is constant (Kelvin’s cir-
culation theorem).

b. Stationary circuits

For a stationary curve S, N = —v and (1) becomes

I’
—“:—i(wava dx—%adp—g%qldz+i;F~ dx, (6)
s K X

ot
N S

where w, X v is the sum of the Lamb vector @ X v and the
Coriolis acceleration.
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c. Level circuits

For a level curve L(t), we let N = P — wk, where —wk is the
vertical nonadvective velocity required to keep the circuit
horizontal (dz = 0) and P is the horizontal nonadvective ve-
locity of the curve points. Then (1) turns into

ol vy
at“: %({+f)P-nds— (’swa— dx — ({)adp-i— J)FH dx
. Z .
L() L@ L() ()
(7

(Davies-Jones 2004), where subscript H denotes the horizontal
component, n = idy/ds — jdx/ds is the outward horizontal unit
normal to L(f), and ds is the element of arclength in the
counterclockwise direction along L(#). The second term on the
right of (7) has an alternative form, namely,

P .
- S’;wﬁwix: i’;{—w(d—u—a—w)dx+w(a—w—a—v)dy}
0z 0z ox ay 9z

L(1) L(r)
= f’;wmeds. 8)
L(r)

Here we have used the fact that the integral of an exact dif-
ferential around a closed circuit is zero. Hence the second term
on the right of (7) is the “@ flux term” in (4.4) of Trapp and
Weisman (2003). We can also relate the w flux term to terms in
the vertical-vorticity equation. By Stokes’s theorem,

)
- i{)w% dx = fJJk VX (wa_v,)dxdy
b4
L(t) A1)

= J'J.(faxwazv +a,wd_u— wa {)dxdy, )
A(r)

where A(t) is the horizontal area enclosed by L(¢). Thus, the
second term on the right of (7) represents the rate of change of
circulation from tilting of horizontal vorticity and vertical ad-
vection of vertical vorticity within the circuit. The first term on
the right of (7) accounts for the rate that circulation increases
as a result of advection of vertical vorticity into the horizontal
area bounded by a horizontal curve that is moving differently
from the horizontal wind (P # 0). The last two terms in (7) are
the solenoidal- and frictional-force circulations, respectively. If
we make the Boussinesq approximation and assume that Fy; =
v.V?vy, where v, is a constant eddy viscosity, then (7) becomes

or
a= §(§+f)P~nds— {)WBZVH-dx-'er f’;VHZ'ndS

ot
L(t) L(1) L(1)

+ Ve % azsz

L(t)

- dx, (10)

where the last two terms represent horizontal diffusion of
vertical vorticity into A(¢) and vertical shear diffusing vertically
to C(). Note that in the Boussinesq approximation there are no
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solenoids in a horizontal plane and therefore the —{)a dp term
does not appear in (10).

To investigate the growth of circulation around updrafts,
Davies-Jones (2004) set w = 0 at the updraft edge and P equal
to the propagation velocity of the edge points. Here we are
interested in how circulation develops around a level curve that
eventually surrounds a maximum of vertical vorticity near the
ground. In this situation, we retain the second term and in the
first term set P = 0 for a level curve that moves with the hor-
izontal wind (so that there is no horizontal flux into or out of
the enclosed area).

d. Stationary level circuits

For astationary level curve SL, weset P = —vyand N = —v.
Then (7) becomes
al’
a
ot

= %(_IV” —fv, twe,) -nds— ﬁ;a dp + \({)FH - dx
SL SL SL

(11)

after use of (8). In the Boussinesq approximation, the sole-
noidal term vanishes and this equation becomes equivalent to
(4.4) in Trapp and Weisman (2003).

e. Hybrid circuits

For the hybrid circuit with its flat base at z = Az, P = 0 at all
points, and N = 0 at all heights greater than Az. If w < 0 at the
level z = Az, then N = — wk there so that the curve points
never dip below this level. Let u = 1 on the horizontal floor of
the curve and 0 otherwise. From (1), the rate that circulation
around the hybrid circuit changes is

oI 9 [
4= — fi;ﬂwaizh"dx_ {)adp—gf#q,dz-k +F-dx.

ot
Y() Y(t) Y(t) Y(t)

(12)

Relative to (5) for a totally material curve, (12) has an extra
term, the first one on the right. This is the w flux term. It applies
here only to the horizontal floor of the circuit. Since w < 0 on
the floor, the term contributes positively to the rate of change
of circulation where the vertical shear vector is directed along
the curve in the positive direction. Alternatively, via (8), hor-
izontal vorticity vectors aligned with the inward normal to the
circuit act to increase the circulation [as in Fig. 10 of Trapp and
Weisman (2003)].

4. Examples

The following examples illustrate how use of the generalized
circulation theorem in (1) with a nonmaterial circuit instead
of a material one simplifies explanation of several supercell
phenomena. Since the planetary vorticity is small relative to
the horizontal vorticity in the environment (Davies-Jones
1984), we henceforth neglect the planetary vorticity, as is
customary in supercell dynamics.

a. Linear theory of updraft rotation

We start by using the circulation theorem to prove a well-
known result. Davies-Jones (1984) used linear theory to show
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that an updraft with a circular cross section rotates cyclonically
as a whole when the vorticity in the environment is streamwise
to the storm-relative wind ¥(z) — ¢. Here ¢ is the storm-motion
vector, and the overbar denotes environmental quantity. The
environmental shear vector S(z) is then 90° to the right of the
relative environmental wind. In inviscid linear theory, we may
let the level curve L(f) be a circle at height 4 that moves cen-
trally through the updraft from far upstream with the constant
velocity ¥(#) — ¢. Then P = 0, and in the absence of torques (7)
reduces to

r o
5—=—+ws-dx,

50 13)
L(1)

where the positive direction around L(¢) is counterclockwise.
The circulation I' is zero upstream. The circle acquires
circulation as its leading edge moves into the updraft be-
cause w > 0 and —S - dx>0 > 0 at the leading edge, with
w = 0 still at the trailing edge (Fig. 2). Conversely, the
circle loses circulation as it exits the updraft (now w = 0 at
the leading edge; w > 0 and —S - dx <0 at the trailing edge)
until its circulation returns to zero after it has completely
passed through the updraft. Inside the updraft, the circu-
lation is positive (cyclonic) as Lilly (1982) and Davies-
Jones (1984,2004) concluded by different means. Since the
environmental vorticity @ = k X S, an alternative version of
(13) is

or_ % w - nds.

m (14)
L(r)

Thus, the right side of (13) is the linearized version of the o flux
term on the right side of (8).

The important component of nonadvective velocity in this
example is the vertical one, which cancels the updraft’s vertical
velocity and keeps the circuit in its horizontal plane. To explain
updraft rotation using a material circuit would entail the
complicated process of drawing a horizontal curve around the
updraft, taking the curve to earlier times using backward tra-
jectories, and seeing how the environmental vortex lines
threaded the deformed circuit.

b. Flow around a bend

To illustrate the development of streamwise vorticity around
a left-hand bend (Fig. 3), we use a planar vertical circuit, which
revolves around the bend’s center of curvature as a solid body.
The normal to the plane is in the direction of the primary flow
and perpendicular to the radius vector from the center of cur-
vature. Because of surface friction, the flow entering the bend is
vertically sheared with the flow speed being an increasing
function of z and the primary vorticity e, being directed left-
ward of the flow. The vertical vorticity ¢ of each parcel is zero
upstream and is conserved approximately (Shapiro 1972) as
there is practically no torque about a vertical axis. Therefore, the
shear vorticity cancels curvature vorticity, and the flow is faster
on the inside of the bend and slower on the outside of the bend.
The flow would swivel a material circuit about a vertical axis and
tilt it downshear. Hence the nonadvective velocity N required to
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FIG. 2. Linear theory of overall updraft rotation (or of positive
circulation around the updraft). Green and red arrows depict the
environmental vorticity vector and shear vector S, respectively.
The circle L(r) moves with the environmental storm-relative wind
(orange arrow) centrally through the updraft (shaded orange).
Note that the storm-relative environmental vorticity is streamwise.
The positive direction around L is counterclockwise. As L enters
the updraft (w > 0) the circulation around L increases from zero as

aresult of positive %(— w)S - dx or equivalently positive %ww -nds,

where n is the outward normal to L. When L is concentric with the
updraft, the circulation around L reaches its maximum value, which is

equal to that of the updraft. Thereafter, ﬁ;(—w)g - dx and +ww -nds

turn negative, and the circulation around L decreases, becoming zero
again when L is completely outside the updraft.

keep the circuit in solid-body rotation consists of Ny, which is
upstream on the inside of the bend and downstream on the
outside of the bend, and N, which is upstream in the upper part
of the flow and downstream in the lower part of the flow (Fig. 3).
To a first approximation,

N~Ny(z) + N, (r) = =y (2)t — v ()t (15)
in cylindrical coordinates, where r is distance from the axis
(center of curvature), t is the unit downstream vector, vy(z) is
the primary flow, and v, (r) is the adjustment in the downstream
wind component required for { to remain zero. The primary
vorticity is

dv,
w,= d—zo n, (16)
where n is the unit vector to the left of the flow. Hence,
d (% dv,
XN~—(2|k+--2 k. 1
@y XN dz(Z dz v (") an
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FIG. 3. Three-dimensional diagram of streamwise-vorticity de-
velopment around a left-hand bend (thin black lines). Black arrows
on the inner bank of the bend entrance indicate the vertical profile
vo(z) of the primary downstream flow. Black arrows on the top face
at top midbend show the lateral profile v,(r) of downstream
velocity that develops in the bend. The vertical circuit (thick
black lines) revolves around the bend’s center of curvature as a
solid body. The blue arrows indicate the direction of the primary
transverse vorticity wy. The magenta arrows depict the non-
advective velocity N (=Ny + Nj) required to keep the circuit in
solid-body rotation, and the red arrows show the direction of dx
around the circuit. The black transverse arrows at the exit of the
bend indicate the sense of the secondary streamwise circulation
produced by the positive wy X N - dx.

If we assume that the frictional term is small, then the rate of
circulation change is

8T d (R, . dv, dv,

—~ (D) kg + 0 = ¢ 20

5 % {dz (2 )k iz v (Nk|dz Tf 2z Y (rdz (18)
10 K@)

from (4) and (17). The direction of dx around the circuit is
given by the right-hand rule with the thumb pointing down-
stream. Hence, at the inside of the bend dz is positive and u(r)
is greatest and at the outside of the bend dz is negative and u(r)
is least. Thus 6I'/6t > 0, indicating generation of secondary
streamwise circulation in the bend.

c. Vortex formation in axisymmetric flow

In axisymmetric simulations of tornadogenesis (e.g., Markowski
et al. 2003; Davies-Jones 2008), L(f) would be a horizontal circle of
variable radius o(¢) centered on the axis. In this section, M
represents angular momentum. The circulation I is related to
M by I' = 27M. In cylindrical coordinates (r, ¢, z) with cor-
responding wind components (u,, M/r, w), imposing axisym-
metry on (7) yields the angular-momentum equation

oM 1
S =—wo M| —AuwdM)|_+v [a M+rd (,5, M)}
ot z r=o ror r=oa e zz Ny r

)

r=o

(19)

where we have assumed for simplicity a constant eddy viscosity
v.. Here A = 1 for a stationary circle and A = 0 for a circle that
moves horizontally with the radial wind u, so that there is no
horizontal influx of angular momentum into the circle of radius
o. The solenoidal torque does not appear in (19) because of the
axisymmetry.

For the Rott (1958) vortex [see also Davies-Jones and Wood
(2006)], M increases radially outward (assuming a cyclonic
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F1G. 4. Radial profiles of tangential wind vu(r, ¢) for the Rott
convergent vortex at three different times. The parameters M., v,
and 2a are the angular momentum at radial infinity, constant eddy
viscosity, and constant horizontal convergence, respectively. At the
arbitrary initial time ¢ = 0, the radius of maximum tangential wind
is 500 m. The tangential wind approaches the steady state (t = «)
asymptotically.

vortex in the Northern Hemisphere) and is independent of
height. In this case (19) reduces to

oM

S = MM+, {rar (} arM)} (20)

r=o

An initially wide Rott vortex contracts in convergent flow
(u, = —ar,w = 2az, and a = const > 0) until inward advection
of M is balanced by outward diffusion of M (Fig. 4). From the
perspective of (20) with A = 1, M at a fixed radius r* changes
at a rate equal to its inward advection minus its outward dif-
fusion. For A = 0, the circle contracts asymptotically to the axis.
As it does so, the circulation around it decreases owing to
outward diffusion of M.

We now examine a more general case in which M varies with
height. The Davies-Jones (2008) axisymmetric model shows
how rotation develops next to the ground in a flow initially
devoid of low-level rotation and how a tornado can form ac-
cording to Fujita’s (1973) recycling hypothesis. The domain of
radius R is closed with no-slip boundary conditions imposed on
the tangential wind and free-slip on the other wall-parallel
components. The initial condition is an updraft that is rotating
at midlevels surrounded by a compensating downdraft (Fig. 5).
In axisymmetric flow the angular-momentum contours are also
the vortex lines. Precipitation drag initiates a downdraft
around the periphery of the updraft. This downdraft and its
outflow transports air with significant angular momentum
downward and inwards, thereby increasing the circulation at
(r,z) = (0.25,0.1), for example (Fig. 6). Near the axis, this air is
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FIG. 5. Initial fields of angular momentum M (color-shaded
contours) and streamfunction ¢ (red and black solid-line contours)
in the Davies-Jones (2008) main experiment. The arrow shows flow
direction in the radial-height plane. The contours of M are also the
vortex lines.

drawn into the updraft. From loss of angular momentum to the
ground, air that flows next to the surface penetrates close to the
axis before rising and abruptly spreading out. In Fig. 7a tor-
nado is present. The tornado forms from the ground up with
the circulation in the tornado at (0.08, 0.1) increasing as a result
of upward advection.

The domain’s bounding surface is a material surface with
zero angular momentum. This statement is true either by virtue
of the boundary conditions when the fluid is viscous or by
virtue of the initial condition and conservation of angular
momentum when the fluid is inviscid. Now consider the cir-
culation around concentric horizontal circles of radius o in a
given level (say z = 0.1 in Fig. 5). When o = R the circle is
also a stationary material circle and always has zero circulation
regardless of rotating air dipping through it. It is therefore an
example of Morton’s deduction (see section 1) but with the
rotating fluid building upward instead of dipping downward.
The areal mean vertical vorticity in the disk enclosed by this
circle is zero. The precipitation-induced downdraft has drag-
ged down vortex lines, which reascend close to the axis. Thus,
the cyclonic tornado is surrounded by anticyclonic vorticity.

In the numerical experiment, diffusion is a slow process
relative to advection. From (19) the circulation around a
smaller stationary circle o < R therefore increases if there is
either a horizontal flux of angular momentum into the circle or
vertical advection of angular momentum on the circle or both.
For a circle of radius o(¢) that moves in its horizontal plane with
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FIG. 6. As in Fig. 5, but at a later time ¢ = 4.6. The dashed con-
tours are for rain mixing ratio. The black dot indicates a location at
which the circulation is increasing as a result of downward angular
momentum advection.

the radial wind, the horizontal flux vanishes and circulation
increases when there is positive vertical advection of M at the
circle circumference. Consider such a circle inside of the rain
curtain at a low height. As it contracts in the converging flow,
its circulation increases at first owing to angular momentum
bring transported downward from above and later owing to
angular momentum bring transported upward from below,
as indicated at the black dots in Figs. 6 and 7. In both
situations, —wd,M at r = o(¢) is positive. According to this
experiment, observations (Fujita 1973), and numerical simu-
lations (e.g., Markowski and Richardson 2014), it seems that
all of the air in a tornado has descended at some distance from
the axis of rotation before ascending in the core. The tornado
vortex develops upward (Davies-Jones 2008), as has been
recently observed with mobile Doppler radar by Bluestein
et al. (2019).

5. Circulation analyses of a simulated supercell-like
pseudostorm

To test the benefits of using horizontal or hybrid circuits as
compared with fully 3D ones in the general circulation theorem
in (1), we performed some circulation diagnostics of the CM1
model Sc8mS8 simulation of Markowski and Richardson (2014).
This is their main simulation, the one that produces a long-
lived tornado-like vortex (TLV). A specified stationary heat
source is activated in an environment with a semicircular ho-
dograph of radius 8 ms™'. The environmental shear is greatest
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FIG. 7. Asin Fig. 6, but at time ¢ = 5.6. The black dot illustrates a
region in the tornado where the circulation is increasing as a result
of upward angular momentum advection. As evidenced by the
vortex lines, the intensifying cyclonic vortex is surrounded by a
wide region of anticyclonic vorticity.

in the lowest 1 km and decreases rapidly with height. The lower
boundary condition is w = 0 at z = 0 and is “free slip” (i.e., no
variation in the shear stresses 7;3 and 7,3 between z = 0 and z =
Az). After 15 min a quasi-steady rotating updraft has formed,
at which time a low-level stationary heat sink close to the
north-northeast of the heat source is activated. TLV formation
is at = 46 min, hereinafter  — 0. The grid spacing is 100 m in x,
v, and z within the lowest 1 km of the central 20km X 20 km
region of the domain. Horizontal grid stretching is used outside
that region. Throughout the domain, the lowest level for u and
v in the staggered grid is 50 m; thus, z = 100 m represents the
first level at which centered finite differences can evaluate
wd, vy and horizontal vorticity (from the horizontal winds at
z = 50m and z = 150 m, and the vertical wind at 100 m). The
circuits at + — 0 are horizontal circles of radius 1km sur-
rounding the vortex at a height of 100m AGL. A radius of 1 km
is sufficiently large to mostly avoid problems arising from
tracking the circuits backward in time through large velocity
gradients associated with the vortex. The circuits are traced
backward in time using the specified velocities of the curve
points. As in Markowski and Richardson (2014), we use a
fourth-order Runge—Kutta scheme to compute backward tra-
jectories. The trajectory time step is —1 s, and the model output
is saved every 5s. (Saving the model output every second and
using a trajectory time step of —0.25 s led to negligible changes
in the circulation budgets.) Second-order extrapolation is used
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to assign values of a scalar s(x, y, z) such as a horizontal wind
component, a momentum forcing, or temperature, to par-
cels that pass below the lowest scalar level. At fixed x and y,
let s = f(z). We extrapolate f below z = 0.5Az by using the
quadratic polynomial that passes through the three points
[0.5Az, f(0.5Az)], [1.5Az, f(1.5Az)], and [2.5Az, f(2.5Az2)].
For this case, the Lagrange interpolating formula yields
f(z) = 0.58(s — 1)f(0.5Az) + (1 — e})f(1.5Az) + 0.58(s + 1)
f(2.5Az), where e = (z — 1.5Az)/Az.

The maximum spacing allowed between adjacent parcels in
the circuits as they are run backward in time is 10 m. When the
spacing exceeds this limit, new parcels are added to the circuit
via interpolation.

The configurations of the 3D, hybrid, and horizontal circuits
at various times are shown in Fig. 8. The hybrid circuit has a
floor at z = Az = 100m AGL, below which the circuit is not
allowed to dip. At the time ¢ — 0, the 3D-material, the hybrid,
and the horizontal circuits are coincident and lie in the floor.
Each parcel on the 3D circuit is associated with curve points on
the hybrid and horizontal circuits, the ones that are collocated
with it at + — 0. Curve points on the horizontal circuit are
constrained to move just with the horizontal wind. Thus, the
3D circuit separates from the horizontal one when its parcels
have nonzero vertical velocity. Curve points on the hybrid
circuit also move with the horizontal wind, but with the vertical
wind too when they are not constrained to the floor. Because
the trajectories are backward ones, a parcel continuously in
downdraft stays above the floor and remains coincident with its
associated hybrid-curve point. Conversely, hybrid-curve points
that are held to the floor are in regions where the near-ground
vertical wind is upward. As a parcel first dips below the floor
along its 3D backward trajectory, its associated hybrid-curve
point follows a different path along the floor. The two circuits
thus split apart. Since the flow is mostly divergent in reverse
time, all the circuits become widely separated as they are
traced backward in time.

The horizontal circuit is much shorter and less convoluted in
backward time than the 3D and hybrid circuits. At ¢ — 30 min,
the 3D and hybrid circuits require ~750 000 parcels to maintain
a spacing of less than 10 m between adjacent parcels. In con-
trast the 2D horizontal circuit only requires ~25 000 parcels.
At least some of the “folds” in the circuits are the result of
adjacent circuit parcels being “captured” within the vortex for
different numbers of orbits before “‘escaping’ in backward
time. Such parcels become widely separated quickly.

In considering the circulations and their budgets for the
different curves as functions of time (Fig. 9), we should re-
member that the curves and the circulations around them are
the same only at the final time r — 0 and that the only material
circuit is the 3D one. For the other two circuits, Kelvin’s the-
orem for barotropic circulation does not apply. Note that the
subgrid-scale turbulence scheme’s contribution to F is rela-
tively small in these simulations and therefore the frictional
force F is dominated by numerical diffusion. The advec-
tion scheme is odd ordered, and such schemes have implicit
diffusion. Thus, additional explicit diffusion is not used, in
accordance with the ‘“industry standard” these days. The
implicit-diffusion effects on velocity tendencies are diagnosed
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Fi1G. 8. (left) Three-dimensional material, (center) hybrid, and (right) horizontal circuits overlaid on horizontal cross sections of po-
tential temperature perturbation (color shades) at z = 50 m in the Markowski and Richardson (2014) Sc8m8 simulation of a supercell-like
pseudostorm at (a) 16 min or ¢ — 30 min, (b) 26 min or ¢ — 20 min, (c¢) 36 min or  — 10 min, and (d) 46 min or # — O min, the time of
maximum cyclonic vorticity at the lowest model level. The altitudes of the circuits above the surface are indicated in meters at select
locations, and a dotted curve is used where the circuit dips below the lowest model level for horizontal wind. Axis labels are distances in
kilometers.
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FIG. 9. Circulations, partial circulations, and force circulations about the (top) three-dimensional, (middle) hy-
brid, and (bottom) horizontal circuits, respectively, analyzed in the Markowski and Richardson (2014) Sc8m8
simulation of a supercell-like pseudostorm as functions of time. The time labels are as in Fig. 8. (a),(c),(e)
Circulations and partial circulations about the three-dimensional, hybrid, and horizontal circuits, respectively.
(b),(d),(f) Contributions to circulation tendencies from baroclinity, tilting and vertical advection (the w flux term),
and viscous effects (turbulent plus numerical diffusion). The inset in (b) shows the percentages of the 3D circuit that
are below 100 m (black curve) and below the lowest scalar level at z = 50m (red curve) as functions of time. The
inset in (d) gives the percentage of the hybrid circuit that is being held to the first interior level for vertical shear and
vertical velocity (z = 100 m). At ¢ — 0 all parcels are at 100m AGL.
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at runtime and written to output. These diagnostics are prob-
ably less than perfect, even away from the ground, in regions of
large velocity gradients.

We now compare the results of the circulation analyses for
the different circuits. At r — 0, ' is about 5 X 10*m?s ™!, which
is a typical circulation for a strong tornado. Using the time
integral of (12) from ¢ — 30min to ¢, we partition the total
circulation I' around each circuit into partial circulations I'y,
I'sc, I'rva, and I'p, where Ty is the circulation at 1 — 30 min
(practically the initial circulation), I'g¢ is the baroclinic circu-
lation or the buoyancy-force circulation, 'ty is the circula-
tion due to tilting of horizontal vorticity and vertical advection
of vertical vorticity into the area A(f) bounded by K(¢), and I'
is the diffusive circulation (the time integral of the frictional-
force circulation). Alternatively, 'ty 4 is the integral over time
of the circulation of the force needed to keep horizontal seg-
ments of the circuit level.

There is almost no circulation around the horizontal circuit
at 100m AGL 15min prior to vortex formation (Figs. 9e,f).
Since the circuit is horizontal, the buoyancy force cannot
generate circulation around it. Thus I’y and I'g¢ are both zero.
The growth in circulation between ¢t — 15 and ¢ — 5 min is due
entirely to I'rya because I'z in this time interval is slightly
negative. Note, however, that frictional or baroclinic torques
near the ground may have generated some of the horizontal
vorticity that is tilted into A().

For the 3D material circuit (Figs. 9a,b), the circulation I'j at
¢ — 30min is about 1 X 10*m?s~!. Since the rate of change of
circulation from torques at early times is negligible, I'y in this
case is nearly the barotropic circulation, which is conserved
since the circuit is a material one (Kelvin’s circulation theo-
rem). For a material circuit, ['tv 4 is zero and effects of tilting
and stretching are concealed in the changing 3D geometry of
the circuit. Initial circulation increase is due to I'gc, but this
source of growth fades as the circuit levels out. For the last
12 min before vortex formation, the circulation intensifies be-
cause of I'z, which exceeds I'gc in the last 7 min. The sum of I'y,
I'gc, and I'gisless than I' at ¢ — 0. This suggests that I",, which is
less accurately estimated than I'gc, may be underestimated at
the time that the vortex forms.

The hybrid circuit has the largest change in I" between ¢t — 30
and ¢ — Omin (Figs. 9c,d). In this interval, the diffusive circu-
lation I'ris small. From a negative initial value, the circulation
increases initially because of I'gc; I'tv a supplies the circulation
spurt between ¢t — 12 and ¢t — 5 min as the circuit levels out and
I'sc stops increasing.

Like the blind men and the elephant, the circulation analyses
detect different features but not the entirety. The horizontal
circuit sees the development of vertical vorticity in the last
15 min prior to TLV formation. Its circulation is due to ver-
tical advection of vertical vorticity and tilting of horizontal
vorticity toward the vertical into the area enclosed by the
circuit. Amplification of vertical vorticity is implicit in the
circuit’s contraction. Circulation around the 3D material
circuit increases as a result of buoyancy-force circulation in
the interval from ¢ — 20 to ¢t — 15 min (but none later because
of the circuit becoming flat) and to frictional-force circulation
in the last 10 min prior to the tornado. From this perspective,
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the frictional circulation becomes the dominant partial cir-
culation. The effects of vorticity advection, tilting, and
stretching are all implicit in the circuit’s changing geometry.
The hybrid circuit reacts chiefly to baroclinic generation of
vorticity in the interval from ¢ — 25 to ¢ — 10 min and to tilting
of horizontal vorticity toward the vertical and vertical ad-
vection of vertical vorticity during the last 12 min prior to the
tornado. For the hybrid circuit, the frictional circulation is
insignificant. The baroclinic circulations for the hybrid and
3D circuits are different (Fig. 9) because the circuits are dif-
ferent at all elevations.

The circulation imbalance I' — (I'y + I'gc + I'rva + Tp),
which ideally should vanish, is much lower for the hybrid cir-
cuit than for the other two circuits for two reasons. First, the
hybrid circuit has none of its points below 100 m whereas the
3D circuit has a high percentage of its points in the lowest 50 m
(Fig. 9b) where the horizontal wind is ill defined. Second, given
that the hybrid circuit obtains at least part of its circulation
from the baroclinic forcing, which varies far more smoothly
than the circulations of F and —wd,(vy) (Fig. 9), the hybrid
circuit’s circulation budget is more accurate than that of the
horizontal circuit, which depends solely on F and —wd,(vy),
both of which are more error prone than B. We also conducted
circulation analyses (not shown) for circuits at 250 m AGL at
t — 0. The hybrid circuit again had the least circulation
imbalance.

Heat maps of normalized baroclinic and viscous circulation
forcing (Bdz/|dx| and F - dx/|dx|, respectively) are provided in
Fig. 10 to show the vertical extent of the circuits and how the
circulation forcings are distributed in time and height. Tao and
Tamura (2020, their Fig. 11b) showed a similar heat map for
frictional forcing in their case study. Given how convoluted the
circuits are, we found it futile to use a scheme as in Roberts and
Xue (2017, their Fig. 8) by which the circuits shown in Fig. 8 are
colored in proportion to the circulation forcings. The signifi-
cant positive I'r acquired by the 3D circuit (Fig. 9a), which is
perhaps surprising, is mainly the result of positive circulation
forcing from turbulent and numerical diffusion along portions
of the circuit that have dipped below the lowest scalar level
(50 m) (Fig. 10b, inset). Given that these forcings have been
extrapolated, it would be prudent to view them with skepti-
cism. There are other reasons to be cautious about conclusions
drawn from partitioning the circulation forcings into parts
along segments. First, the quantities Bdz/|dx| and F - dx/|dx| are
the integrands. The line integrals themselves are the result of
integrating these quantities with respect to a material arclength
that is generally decreasing with (forward) time. The arclength
factor is unrepresented in the heat maps. Second, as revealed
by the derivation in appendix B, the rate of change of the line
integral of wind along each material segment of the circuit
contains an extra term (which vanishes around a closed curve)
in addition to the line integrals of the buoyancy and frictional
forces. For an asymmetric vortex this extra term could be sig-
nificant (appendix B) and should not be ignored. For a steady
axisymmetric tornado (e.g., Figs. 5-7), the frictional-force cir-
culation near the ground should reduce circulation around an
axisymmetric circuit so that inflowing parcels approach the
axis more closely and rotate faster (Fiedler and Rotunno 1986;
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FIG. 10. Heat maps of normalized baroclinic and viscous circulation forcing (Bdz/|dx| and F - dx/|dx|, respec-
tively) as a function of time and height for the (a),(b) 3D material and (c),(d) hybrid circuits. The forcings have been
averaged in bins that are 50 m in depth and 30 s in duration. ‘“‘No data” indicates an absence of parcels within a given
time-height bin. The inset in (b) enlarges the portion of the plot in which there is a large positive (and suspect)
forcing from turbulent and numerical diffusion along portions of the circuit that have dipped below the lowest scalar

level (50 m; enclosed by the white-outlined rectangle).

Lewellen 1993). [See sections 4.1 and 6.2 of Davies-Jones
(2015) for a brief synopsis of this mechanism].

6. Conclusions

To diagnose the origins of large vertical vorticity near the ground,
supercell modelers calculate the circulation around material circuits.
This approach suffers from the problem that trajectories become ill
defined when parcels dip below the lowest scalar level of a staggered
grid. To circumvent this problem, we derive (1), which provides the
theorem for the rate of change of circulation around any moving
closed curve. Special cases include a stationary curve, a material
one, and a permanently horizontal one that is moving with the
horizontal wind. To avoid having circuit parcels that dip below the
lowest scalar level, we adopt a hybrid curve with material segments
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used at heights z = Az and horizontal segments at z = Az
where the material curve dips below z = Az. Another force
circulation has to be added to the customary equation for

G - dx, where

G = —wad,vy is the force needed to keep the horizontal segments
level and G = 0 on the unrestrained parts of the circuit.

The generalized circulation theorem is verified through ap-
plication to simple flows such as the development of updraft
rotation in a sheared environment, flow around a bend, and
vortex formation in axisymmetric flow. The hybrid-circuit
method significantly improves the accuracy of the circulation
budget in an idealized supercell simulation.

circulation [see (12)]. This force circulation is
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APPENDIX A

Rigorous Derivation of the Circulation Formula in (1)

Consider the circulation around any simple time-dependent
closed curve K(¢) in a reference frame rotating with Earth. The
curve can be stationary or moving in any specified way in
two or three dimensions. At a chosen initial time ¢ = 0, the
curve K(0) can be parameterized by arc length s measured
counterclockwise from an arbitrary point on the curve
where s = 0. At later times s, the initial arc length, acts as a
label for each curve point. On the curve there are two dif-
ferent velocity fields, namely, the wind v(s, 1) = [u(s, 1), v(s,
1), w(s, t)] at the curve points and the prescribed velocity
V(s,t) =[U(s, 1), V(s, t), W(s, t)] with which the curve points
are moving. These velocity fields are the same only if the
curve is a material one. In Cartesian coordinates let x(s, ) =
[x(s, 1), y(s, 1), z(s, t)] be the position vectors of the curve
points. Then the velocity vector of the curve points is
given by
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The nonadvective velocity of each curve point is N(s, ) =
V(s, t) — v(s, t). On an f plane, the absolute circulation I',(¢)
around a closed curve K(7) is

r,o= ff {v(s, 1) +j—;

K(0)

ax(s, 1)

k X x(s,1)| - a—s’ds, (A2)

where the quantity inside the square brackets is the absolute
velocity (aside from a constant term that does not contribute to
the contour integral). Note that line integrals with respect to s
are along the curve K(0) and not K(¢). The rate of change of
circulation is therefore

sr, v f ax(s, )
5 3€ [(E)S+§ka(s,t)} s ds

K(0)

+ ﬁ; {v(s,t)+§k><x(s,t)} .

K(0)

aV(s,1)
s ds (A3)

with use of (Al). The line integrals of exact differentials
around closed curves in a simply connected region vanish. By
integration by parts with respect to s and use of the above
property where applicable, we find that

aV(S f) 8v(s t)
V(s,0) = F"gst’ ’)} , (A1) Ki)v( U Ki)N( 5,1) and  (Ad)
ﬂ;gkXX(SJ) : avéj’t)dsz f%{—y(s,t)w(s L x(s, z)av(s z)} %f{U( H——— ay(s ) —V(s,t )ax(s 4
o . K(0)
- (£ g[k * V0l &?Ods (AS)
K(0)

Thus (A3) becomes

§=Ki)<:) 8x(s t) Kjl)N( 5.1) 3v(s t)
+ oy e (A6)

K(0)

To proceed further we need to ascertain the meaning of
(9v/9t),. In terms of Cartesian coordinates,

v(s, 1) = V[x(s, 1), (s, 1), 2(s, 1), 1], (A7)

where v is the wind reexpressed as an explicit function of

x, y, z. Hence,
(@), ()G (GG
—) == + (= — ] +
at /) ). ox at Y/ s \0S

(a&) <az) (av)

+ P J—

0z Xzt ot at e
dav

+ (V- V)= V+ (N-V)» (AS8)
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by (A1), where dv/ dt is the material derivative of v in the ro-
tating reference frame. Differentiating (A7) with respect to s
yields

() () () ), (),
as ax \ 3s dy \9s/, 9z \ os as
(A9)

Inserting (A8) and (A9) into (A6) and discarding the now
unnecessary hat (caret) notation yields

oI’ dv
8[“—(# +fk><v+(N V)v—N-Vv+fk XN| - dx,
k(r)
(A10)
where
N:-Vv= Nj.avj/axt. (A11)

in tensor notation. With the aid of a vector identity
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(N-V)y=N-Vy=(VXv)xN (A12)

(D’haeseleer et al. 1991, p. 39), (A10) becomes

or
= % {%+fk><v+(V><v)><N+fk><N cdx. (A13)
K.(t)

From the vector equation of motion on an f plane,

dv

E+fk><v: —aVp —V(gz) —gq,k +F. (A14)

Introducing (A14) into (A13) gives

8T [
5—;’= %(waXN)- dx — %adp—g}qldz+ +F dx,
K(r) K(r) K(r) K(r)

(A15)

which is the circulation theorem in (1).

APPENDIX B

Line-Segment Theorem for a Material Curve

Here we consider the line integral around a curve C(f), which is
just a material segment of a closed material circuit K(t), and we set
f= 0for simplicity. Since C(r) and K(¢) are material curves,V = v
and N = 0. Arclength s along the initial circuit K(0) labels the
parcels on the material curves. Let s; and s, be the endpoint labels
of the material segment. The contribution /(f) from the material
segment to the circulation around the material circuit is

10 = [ v 50y (1)
The material rate of change of [ is
al _ (29v(s,1) 9x(s,1) r av(s t)
+ B2
dt L at as T Al(t) ds (B2)

On a material curve (9v/dt), is simply dv/dt, however.
Therefore,

dl _ (2dv V-V
—=| = -dx+(—) . B3
dt Ldr X (2) (B3)
Inserting the equation of motion in the form
dv
i TVS =V(c,T +gz) —gqk +F, (B4)
where § is entropy, gives
alr  [» %2 %2 V-V 5
—=| TdS— dz+ | F-dx+(——¢T—
di JSI JSlgCI, z Ll X ( % gZ>Sl,
(B3)

where (v - v)/2 — ¢,T — gz is the specific kinetic energy of a
parcel minus its specific enthalpy and specific potential energy.
The last term in (BS) originates from an irrotational wind
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component. It is zero for a closed circuit (s; = s;) in a simply
connected region. Parcels entering a tornado gain kinetic en-
ergy and lose enthalpy (Davies-Jones 2015, section 6.2). Even
though the barotropic circulation around the entire material
circuit is constant, the contribution to barotropic-circulation
gain from a material segment will increase significantly if the
segment is drawn lengthwise into a tornado.

Using the Boussinesq-approximated form of the equation of
motion instead of (B4) yields

%=Jx23d2+J. F- dx+(——a0p) s

5, 5y

(B6)

where the first two terms on the right are the work done by
buoyancy and frictional forces on a hypothetical parcel that
moves instantaneously along the curve segment from sy to s,.
The third term on the right is the specific kinetic energy minus
specific pressure energy. It increases rapidly with proximity to
a vortex.
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